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Existence of the quantum action

H. Kröger*
Département de Physique, Universite´ Laval, Québec, Que´bec G1K 7P4, Canada

~Received 14 January 2002; published 8 May 2002!

We have previously proposed a conjecture stating that quantum-mechanical transition amplitudes can be
parametrized in terms of a quantum action. Here we give a proof of the conjecture and establish the existence
of a local quantum action in the case of imaginary time in the Feynman-Kac limit~when temperature goes to
zero!. Moreover we discuss some symmetry properties of the quantum action.
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I. INTRODUCTION: DEFINITION AND USE
OF THE QUANTUM ACTION

Since the early days of quantum mechanics, many
tempts have been made to link quantum mechanics to s
concept of classical-like action. First, Wentzel, Krame
Brillouin proposed the so-called WKB method@1#. Then
there was Bohm’s formulation of quantum mechanics@2#.
More modern is the effective action@3# and the Gaussian
effective action @4#. Also Gutzwiller’s trace formula@5#
should be mentioned here, which establishes an approxim
expression of the quantum-mechanical density of state
terms of classical periodic orbits.

The physical reasons, why such a concept is attractive
the following: First of all, quantum mechanics eludes hum
intuition being shaped by macroscopic physics, i.e., class
physics. Thus a classical-like action in quantum physics
an intuitive appeal. Second, there are concepts playing
important role in modern physics, which have its origin
classical physics. Examples are quantum chaos and qua
instantons. A number of the above approaches have b
explored to investigate quantum chaos. Instantons play a
in quantum mechanics:~a! tunneling and double-well poten
tials ~chemical binding, reactions!, ~b! in high-energy phys-
ics in the mechanism of chiral symmetry breaking and
formation of quark-gluon plasma,~c! in cosmology in the
inflationary scenario. Again classical-like actions have be
employed to explore such physics. Finally, one should m
tion also the use of an effective action in the theory of
praconductivity.

Recently, my co-workers and I have proposed a differ
kind of classical-like action, the quantum action@6–9#. The
quantum action has the virtue of having a form as close
possible to the classical action, giving a local expression
quantum transition amplitudes. In Refs.@6–9# the quantum
action has been postulated and also been explored num
cally. Numerical studies showed in all cases that the quan
action is a good representation of the quantum amplitude
allows to give a new unambiguous definition of quantu
instantons and quantum chaos. It allows to construct
quantum analogue of classical phase space and to obtai
quantum analogue of Poincare´ sections and Lyapunov expo
nents@7,8#.

*Email address: hkroger@phy.ulaval.ca
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The purpose of this paper is to give a mathematical pr
of the existence of the quantum action in imaginary time
the limit of large transition time. This corresponds to the
modynamics in the low-temperature limit~Feynman-Kac
limit of the Euclidean path integral!. One should note that the
limit of large transition time is not a marginal case but is
central importance in physics.

~a! The zero-temperature limit describes the ground-s
properties of physical systems.

~b! Transition time~real time! going to infinity enters in
scattering reactions, hence in theSmatrix and cross sections

~c! The limit of large time is also involved in nonlinea
classical dynamics when computing Lyapunov expone
and Poincare´ sections. Hence this limit plays a role whe
computing the quantum analog of Lyapunov exponents
Poincare´ sections@8#.

What is the quantum action? Let us recall its definition
proposed in Ref.@6#. We consider the quantum-mechanic
~QM! transition amplitude

G~xf i ,t f i ;xin ,t in!5^xf i uexp@2 iH ~ t f i2t in!/\#uxin&

5E @dx#expF i

\
S@x#GU

xin ,t in

xf i ,t f i

. ~1!

Conjecture. For a given classical action

S@x#5E dtH m

2
ẋ22V~x!J , ~2!

there is a quantum action

S̃@x#5E dtH m̃

2
ẋ22Ṽ~x!J , ~3!

which allows to express the QM transition amplitude by

G~xf i ,t f i ;xin ,t in!5Z̃ expF i

\
S̃u

xin ,t in

xf i ,t f i G ,
S̃u

xin ,t
in

xf i ,t f i
5S̃@ x̃cl#uxin ,t in

xf i ,t f i 5E
t in

t f i
dtH m̃

2
ẋ̃cl

2 2Ṽ~ x̃cl!J U
xin

xf i

. ~4!

Here x̃cl denotes the classical path corresponding to the
tion S̃ obeying the boundary conditions
©2002 The American Physical Society18-1
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H. KRÖGER PHYSICAL REVIEW A 65 052118
x̃cl~ t5t in!5xin , x̃cl~ t5t f i !5xf i . ~5!

Here the following remarks are in order.
~a! It is known from classical mechanics that a classi

path, being the solution of the Euler-Lagrange equation
motion, makes the action extremal. Often this extremum
the minimum, but this is not always true. Mathematical co
ditions that decide whether the extremum is a minimum
be expressed in terms of the eigenvalues of the corresp
ing Sturm-Liouville operatord2S̃ @10#. All eigenvalues being
positive correspond to a minimum. WhenT5t f i2t in in-
creases, the eigenvalues generally decrease and some e
values may become negative. A boundary point, where
lowest eigenvalue takes the value zero, is called a conju
~focal! point. In order to be on the safe side, we exclude h
the occurrence of conjugate points and caustics, by ma
the assumption that there is a unique classical path that m
mizes the quantum action. However, the existence of
quantum action is quite likely not limited by such condition
For example, the harmonic oscillator is known to poss
caustics†when ]2S/]a]b52mv/sin(vT) becomes infinite
at T5p/v @10#‡. But for the oscillator, the classical actio
and the quantum action coincide, hence the latter exists

~b! Another problem that may arise in classical mechan
with boundary conditions given by Eq.~5! is the following.
When the potential has sufficiently stiff walls, i.e.,V(x)
→` sufficiently rapidly whenuxu→`, then for such bound-
ary conditions~infinitely! many classical paths may exi
@11,12#. An example where this happens is the potentiaV
;x4. However, those paths differ in their value of the actio
As we will deal below exactly with such kind of classic
and quantum potentials, we have to specify which path
value of the quantum action enters in Eq.~4!. We specify that
the path of the quantum action chosen is that giving
smallest value of the quantum action.

~c! Eventually, we will consider the Feynman-Kac lim
Then only the ground-state properties of the quantum sys
will play a role.

Z̃ denotes a dimensionful normalization factor. Equat
~4! is valid with thesameaction S̃ for all sets of boundary
positionsxf i ,xin for a given time intervalT5t f i2t in . The
parameters of the quantum action depend on the timeT. Any
dependence onxf i ,xin enters only via the trajectoryx̃cl .
Likewise, Z̃ depends on the action parameters andT, but not
on xf i ,xin . If we want to do thermodynamics we need to
over to imaginary time,t→2 i t . Then the transition ampli-
tude becomes the Euclidean transition amplitude

GE~xf i ,t f i ;xin ,t in!5^xf i uexp@2H~ t f i2t in!/\#uxin&

5E @dx#expF2
1

\
SE@x#GU

xin ,t in

xf i ,t f i

, ~6!

the classical action becomes the Euclidean action

SE@x#5E dtH m

2
ẋ21V~x!J , ~7!
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and the quantum action becomes the Euclidean quantum
tion

S̃E@x#5E dtH m̃

2
ẋ21Ṽ~x!J . ~8!

This allows us to express the Euclidean transition amplitu
by

GE~xf i ,t f i ;xin ,t in!5Z̃E expF2
1

\
S̃Euxin ,t in

xf i ,t f i G ,
S̃Euxin ,t in

xf i ,t f i 5S̃E@ x̃cl#uxin ,t in

xf i ,t f i 5E
t in

t f i
dtH m̃

2
ẋ̃cl

2 1Ṽ~ x̃cl!J U
xin

xf i

.

~9!

In order to compute thermodynamic functions from the p
tition function one has to impose periodic boundary con
tions @13#. T is related to the temperaturet and the inverse
temperatureb via

b5
1

kBt
5T/\. ~10!

In Ref. @7# we have shown that the expectation value o
quantum-mechanical observableO at thermodymical equilib-
rium can be expressed in terms of the Euclidean quan
action along its classical trajectory fromxin ,b in50 to x,b.

II. PROOF OF THE EXISTENCE OF THE QUANTUM
ACTION

Consider one dimension~1D! throughout~the generaliza-
tion to D52,3 is straightforward!. We work in imaginary
time in what follows. For simplicity of notation we drop th
subscript Euclidean. Let us make some assumptions on
potentialV(x): Let V(x)>0. Let V(x) be a smooth~suffi-
ciently differentiable! function of x and letV(x)→` when
uxu→`. Under those assumptions on the potential, the tr
sition amplitude satisfies the following properties.

Proposition 1.For fixedT, G(y,T;x,0) has the following
properties.~i! It is a real valued, positive function for allx,y.
~ii ! It is a symmetric function under exchangex↔y. Why is
G(y,T;x,0)>0? I give two reasons:

~a! Physical reason. G(y,T;x,0) is the solution of a dif-
fusion equation describing the motion fromx to y. This pro-
cess has a probability interpretation. A probability is positiv

~b! Mathematical reason. G(y,T;x,0) can be written in
terms of a~Wiener! path integral@see Eq.~6!#. For each path
x(t) the weight factor exp(2S@x#/\)>0 is positive@we have
assumed that the classical potentialV(x)>0 is positive#.
Hence the sum over paths is also positive.G(y,T;x,0) being
real valued is a consequence of the fact that the weight fa
exp(2S@x#/\) of the path integral is real valued. The seco
property ~ii ! follows from the first property~i! and making
the assumption thatH is a self-adjoint operator. Next we
define a new functionh to parametrizeG. In the following
we keepT fixed.
8-2
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EXISTENCE OF THE QUANTUM ACTION PHYSICAL REVIEW A65 052118
Definition.

G~y,T;x,0!5G0 exp@2h~y,x!# , ~11!

whereG0 is some constant~for fixedT) that takes care of the
fact thatG has a dimension (1/LD). Thus

h~y,x!52 ln@G~y,T;x,0!/G0#. ~12!

Note. The functionh is well defined, becauseG is a real,
positive function. Via the previous definition, the properti
of G translate into the following properties ofh.

Proposition 2. ~i! h(y,x) is a real-valued function for al
x,y. ~ii ! h(y,x) is symmetric under exchangex↔y. Com-
paring the parametrization ofG in terms of the functionh,
Eq. ~11!, with its parametrization in terms of the quantu
action, Eq.~9!, this suggests to identify

G05Z̃,

h~y,x!5
1

\
S̃@ x̃cl#ux,t50

y,t5T . ~13!

The idea of the proof is the following. We assume that
previous identities hold. Then we analyze its implicatio
We will end up in finding an explicit equation for the kinet
term and the potential term of the quantum action. Then
start at the end and go backwards through the calculat
This establishes that the quantum action is consistent,
hence proves its existence.

Identifying G05Z̃ is possible and trivial because both a
constants. Let us identifyh with S̃:

h~b,a!5
1

\
S̃ua,t50

b,t5T5
1

\
S̃@ x̃cl#ua,t50

b,t5T

5
1

\E0

T

dtH m̃

2
ẋ̃cl

2 1Ṽ~ x̃cl!J U
a,t50

b,t5T

. ~14!

The question we want to answer is, can we find a para
eterm̃ and a local quantum potentialṼ @e.g., parametrized by
polynomial coefficients ṽk ,Ṽ(x)5(kṽkx

k#, such that
h(b,a)51/\S̃ua,t50

b,t5T holds for all a,b ? In order to analyze

this question, we proceed by using the property thatS̃ is an
action and thatx̃cl is the trajectory that makesS̃ extremal.
Let us consider the functional

S̃@x#5E
0

T

dtH m̃

2
ẋ21Ṽ~x!J ~15!

and calculate the variation of the functional to first ord
~first-order functional derivative!. Usually, one keeps initia
and final coordinates fixed and varies the path in betwe
Now we consider the variation of the path, allowing also
variation if initial and final positions. Let us denote
05211
e
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x̃~ t !5 x̃cl~ t !1h̃~ t !,

x̃cl~ t50!5a, x̃cl~ t5T!5b,

h̃~ t50!5da, h̃~ t5T!5db,

x̃~ t50!5a1da, x̃~ t5T!5b1db. ~16!

Then we compute

dS̃@ x̃#5E
0

T

dtH m̃

2
~ ẋ̃cl1 ḣ̃!21Ṽ~ x̃cl1h̃!J U

a1da

b1db

2E
0

T

dtH m̃

2
~ ẋ̃cl!

21Ṽ~ x̃cl!J U
a

b

5E
0

T

dtH m̃

2
~2ẋ̃clḣ̃1 ḣ̃2!1

dṼ

dx
~ x̃cl!h̃J U

x̃cl5a,h̃5da

x̃cl5b,h̃5db

1O~ h̃2!

5m̃ẋ̃clh̃u0
T1E

0

T

dtH 2m̃ẍ̃clh̃1
dṼ

dx
~ x̃cl!h̃J 1O~ h̃2!

5m̃ẋ̃cl~T!db2m̃ẋ̃cl~0!da1E
0

T

dtH dS̃

dx~ t !
h̃~ t !J

1O~ h̃2!

5 p̃cl~T!db2 p̃cl~0!da1O~ h̃2!, ~17!

becausedS̃/dx(t)50 for x(t)5 x̃cl(t). On the other hand
one has

dh~b,a!5
]h

]y
~b,a!db1

]h

]x
~b,a!da. ~18!

Comparing Eqs.~17! and~18! for terms linear inda anddb,
respectively, we find

p̃cl~T!5\
]h

]y
~b,a!,

p̃cl~0!52\
]h

]x
~b,a!. ~19!

Those are conditions, which are both necessary and suffic
to guarantee that the partial derivatives of the functio
1/\S̃ux

y andh(y,x) coincide for any pair of boundary point
(y,x),

]

]x

1

\
S̃ux

y5
]

]x
h~y,x!,

]

]y

1

\
S̃ux

y5
]

]y
h~y,x!. ~20!
8-3
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H. KRÖGER PHYSICAL REVIEW A 65 052118
Equation~20! implies

1

\
S̃ux

y5h~y,x! modulo a global constant. ~21!

The global constant can be absorbed into the constantsG0

and Z̃, respectively, and this proves Eq.~13!, and hence the
existence of the quantum action.

However, to complete the proof it remains to be sho
that the conditions~19! can be satisfied. This is not at a
obvious from the outset. The terms on the right-hand s
~rhs! of Eqs.~19! stem from the QM transition amplitude~6!
derived from a classical action~7!, with massm and potential
V(x). The terms on the lhs represent the initial and fin
momenta, corresponding to the trajectoryx̃cl(t). This trajec-
tory is the solution of the Euler-Lagrange equation of m
tion, which follows from the requirementdS̃/dx(t)50. As S̃

depends on the quantum mass parameterm̃ and the quantum
potential Ṽ(x), consequently also the trajectoryx̃cl(t) will
depend onm̃ and Ṽ. The same is true, in particular, for th

velocities at the boundariesẋ̃cl(0) andẋ̃cl(T) and hence also
for the momenta at the boundariesp̃cl(0) and p̃cl(T). In
other words, requiring that the condition~19! holds, imposes
a constraint onm̃ andṼ. In the following we will show that
Eq. ~19! can be satisfied and that this condition guides us
find a suitablem̃ and Ṽ. The guiding principle will be the
principle of the conserved energy. Once Eq.~19! is estab-
lished, Eqs.~20! and ~21! follow.

III. CONSTRUCTION OF QUANTUM ACTION
FROM ENERGY CONSERVATION

It remains to be shown how to construct a quantum
tion, such that the condition in Eqs.~19! is satisfied. We do
this by employing the principle of conservation of energ
Any action of the form

S̃@x#5E
0

T

dtH m̃

2
ẋ21Ṽ~x!J 5E

0

T

dt$T̃kin1Ṽ% ~22!

describes a conservative system, i.e., the force is der
from a potential and energy is conserved. This means
energy is conserved during the temporal evolution fromt
50 to t5T. In imaginary time, energy conservation read

2T̃kin1Ṽ5e5const. ~23!

Now let us choose a~positive! value of the mass paramete
m̃. Let us look at the energy balance for the trajectoryx̃cl

from a to b. Using Eq.~19!, we find att50, denotingp̃cl
in

[ p̃cl(0),
05211
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T̃kin5
~ p̃cl

in!2

2m̃
, Ṽ5Ṽ~a!,

e52
~ p̃cl

in!2

2m̃
1Ṽ~a!. ~24!

Similarly, we find att5T, denotingp̃cl
f i [ p̃cl(T),

T̃kin5
~ p̃cl

f i !2

2m̃
, Ṽ5Ṽ~b!,

e52
~ p̃cl

f i !2

2m̃
1Ṽ~b!. ~25!

Energy conservation implies

2
1

2m̃
~ p̃cl

in!21Ṽ~a!52
1

2m̃
~ p̃cl

f i !21Ṽ~b!, ~26!

or equivalently,

Ṽ~b!2Ṽ~a!5
1

2m̃
~ p̃cl

f i !22
1

2m̃
~ p̃cl

in!2. ~27!

We recall from classical mechanics that the rhs represents
work done~in imaginary time! when the particle moves from
a to b

W̃52E
a

b

dx̃m̃
d2x̃

dt2

52E
0

T

dtm̃
dx̃

dt

d2x̃

dt2
5

1

2m̃
~ p̃cl

f i !22
1

2m̃
~ p̃cl

in!2. ~28!

Moreover, we recall from classical mechanics that if t
work done by a force

W̃5E
C̃
dx̃F̃~ x̃! ~29!

is the same for any pathC̃ going froma to b, or if the work
is zero for any closed path, than we know that a poten
exists and the system is conservative. Thus combining E
~19! and~27!, we find the following necessary and sufficie
condition for the existence of the quantum action: The qu
tum action exists and is local, if there is a massm̃ and a local
potentialṼ(x), such that

2m̃

\2
@Ṽ~b!2Ṽ~a!#

5S ]h

]y
~b,a! D 2

2S ]h

]x
~b,a! D 2

holds for all a,b.

~30!
8-4
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EXISTENCE OF THE QUANTUM ACTION PHYSICAL REVIEW A65 052118
Finally, we should point out that the calculation has yielde
condition for the productm̃Ṽ(x) but not for each of the
termsm̃ and Ṽ(x) individually. The reason for this is som
underlying symmetry discussed in Sec. VI.

IV. FEYNMAN-KAC LIMIT

In the limit T→`, or equivalently, when temperature go
to zero, the Feynman-Kac formula holds,

G~y,T;x,0! T→`^yucgr&e
2EgrT/\^cgrux&, ~31!

wherecgr is the ground-state wave function andEgr is the
ground-state energy. Here we make the assumption tha
ground state is not degenerate. Equation~11! implies

G0e2h(y,x) T→`^yucgr&e
2EgrT/\^cgrux&. ~32!

Taking the logarithm yields

2h~y,x!1 ln G0 T→`2EgrT/\1 ln@cgr~y!#

1 ln@cgr~x!#. ~33!

From this we compute

]

]y
h~y,x!uy5b, x5a T→`2

]

]y
$ ln@cgr~y!#

1 ln@cgr~x!#%ux5a
y5b52

cgr8 ~b!

cgr~b!
. ~34!

Similarly,

]

]x
h~y,x!y5b, x5a T→`2

cgr8 ~a!

cgr~a!
. ~35!

Then the general condition, Eq.~30!, becomes

2m̃

\2
@Ṽ~b!2Ṽ~a!# T→`S cgr8 ~b!

cgr~b!
D 2

2S cgr8 ~a!

cgr~a!
D 2

for all a,b. ~36!

This means we need to findm̃ and Ṽ(x), which satisfy

2m̃

\2
„Ṽ~x!2Ṽ0…5S cgr8 ~x!

cgr~x!
D 2

for all x. ~37!

This condition can be satisfied. This establishes the existe
of a local quantum action and finishes the proof.

Let us ask a question: Can the massm̃ of the quantum
action and the local quantum potentialṼ(x) simultaneously
be chosen to be positive and real? Equation~37! shows that
the product m̃(Ṽ(x)2Ṽ0) is always real and positive
semidefinite.Ṽ0 is some constant, not determined from E
~37!. This constant can occur in the quantum potential or
the normalizationZ̃. In Ref. @9# we have argued that th
05211
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minimum of Ṽ(x) gives the ground-state energyEgr . Under
the assumption that the classical potentialV(x) is positive
semidefinite, this implies that the spectrum is positive and
particularEgr.0. This meansṼ(x)2Ṽmin>0. The rapid in-
crease of the classical potential~say faster than the harmoni
oscillator! implies a rapid fall-off behavior of the wave func
tion for uxu→`. This implies that @cgr8 (x)/cgr(x)#2→`

when uxu→`. Equation~37! then impliesṼ(x)→` for uxu
→`. Combining the propertyṼ(x)→` for uxu→` with Eq.
~37! implies thatm̃.0.

V. CHECK OF RESULT FOR HARMONIC OSCILLATOR

Let us consider the harmonic oscillator in 1D~in imagi-
nary time!. For the harmonic oscillator, the QM transitio
amplitude is given by the classical action along its class
path. Thus the quantum action should agree with the class
action. This should hold for any temperaturet or time T. In
order to check this let us compute the quantum potential
hence the quantum action from condition~30!. The QM tran-
sition amplitude reads@14#

G~b,T;a,0!5A mv

2p\ sinh~vT!
expF2

mv

2\ sinh~vT!

3@~b21a2!cosh~vT!22ba#G , ~38!

According to Eq.~11!, we identify

G05A mv

2p\ sinh~vT!
,

h~y,x!5
mv

2\ sinh~vT!
@~y21x2!cosh~vT!22yx#.

~39!

Then we compute

]h~y,x!

]y
5

mv

\ sinh~vT!
@y cosh~vT!2x#,

]h~y,x!

]x
5

mv

\ sinh~vT!
@x cosh~vT!2y#. ~40!

Consequently, we find

S ]h~b,a!

]y D 2

2S ]h~b,a!

]x D 2

5S mv

\ sinh~vT! D
2

@$b cosh~vT!2a%2

2$a cosh~vT!2b%2#

5S mv

\ D 2

@b22a2#. ~41!

Comparing this with Eq.~30! yields
8-5
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H. KRÖGER PHYSICAL REVIEW A 65 052118
2m̃

\2
@Ṽ~b!2Ṽ~a!#5S mv

\ D 2

@b22a2#. ~42!

This is satisfied if we choose

m̃5m,

Ṽ~x!5 1
2 mv2x2. ~43!

Thus the quantum potential coincides with the harmonic
cillator potential, i.e., the classical potential and hence
quantum action coincides with the classical action.

VI. INVARIANCE OF QM TRANSITION AMPLITUDE

One may wonder why Eq.~30! does not specify the quan
tum potential, but only the combinationm̃Ṽ(x)? First, one
notes that the stationary Schro¨dinger equation for the groun
state is invariant~gives the same wave function! under the
transformation

Egr→aEgr ,

V̂~x!→aV̂~x!,

m→m/a. ~44!

Obviously, the following quantity is an invariant under th
transformation:

mV̂~x!→mV̂~x!. ~45!

Let us now consider this symmetry in the general case
finite temperature, corresponding to some finite value of ti
T. Let us consider the following scale tranformation of t
classical massm, the classical potentialV(x), and the tran-
sition timeT, wherea is some real positive number;

m→m/a,

V̂~x!→aV̂~x!,

T→T/a. ~46!

Then the QM Hamilton operatorĤ5 p̂2/2m1V̂(x) trans-
forms like

Ĥ→aĤ. ~47!

Because the QM transition amplitudeG is a matrix element
of an operator-valued function ofĤT/\, being an invariant
under the above scale transformation, consequently the
transition amplitude is an invariant also,

G~b,T;a,0!→G~b,T;a,0!. ~48!

Let us now look at invariance properties of the classical s
tem. Consider the Lagrangian
05211
-
e

f
e

M

-

L„x~ t !,ẋ~ t !…5
m

2
ẋ21V~x!, ~49!

and the action

S@x#5E
0

T

dt L„x~ t !,ẋ~ t !…. ~50!

The Euler-Lagrange equation of motion reads

2mẍcl~ t !1
dV~x!

dx U
x5xcl(t)

50, ~51!

wherexcl(t) denotes the solution corresponding to a giv
pair of boundary pointsxcl(t50)5a, xcl(t5T)5b. A
straightforward computation yields the following transform
tion rules.

(i) Classical trajectory.

xcl~ t !→xcl8 ~ t !5xcl~at !. ~52!

(ii) Lagrangian evaluated at classical trajectory.

L„xcl~ t !,ẋcl~ t !…→L8„xcl8 ~ t !,ẋcl8 ~ t !…5aL„xcl~at !,ẋcl~at !….
~53!

(iii) Action evaluated along classical trajectory.

S@xcl#→S8@xcl8 #5S@xcl#. ~54!

Thus we see thatS5S@xcl# is an invariant in classical me
chanics. Trivially, alsomV(x) is an invariant.

The invariance properties of the classical system imme
ately carry over to the quantum action. Consider the tra
formation

m̃→m̃/a,

Ṽ~x!→aṼ~x!,

T→T/a. ~55!

Consequently,S̃ is an invariant andm̃Ṽ(x) is also an invari-
ant. Under the combined scale transformations, Eqs.~46!,
and~55!, we have shown that both, the QM transition amp
tudeG and the quantum actionS̃, are invariants. The lesso
from this is that for a given fixed time~corresponding to
finite temperature!, Eq. ~30! is not sufficient to determine the
quantum potential, but one needs an independent determ
tion of m̃. One way to do this is by use of the renormaliz
tion group equation proposed in Ref.@9#. In retrospective,
one may consider the invariance properties~48! and~54! as a
hint on a relation between the QM transition amplitude a
the quantum action.

VII. CONCLUDING REMARKS

The proof is nonperturbative. It does not require the s
tem to be integrable. The proof can, without difficulty, b
generalized to 3D~or higher dimensions!. An interesting ob-
8-6
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servation is the following: After the back transformation
real time, the corner stone equation of the proof, Eq.~19!,
reads

p̃cl~T!5 i\
]h

]y
~b,a!,

p̃cl~0!52 i\
]h

]x
~b,a!, ~56!

which relates the classical momentump̃cl to the QM mo-
cs

-

-

05211
mentum operator,P̂x5 i\]/]x, which reminds us of canoni
cal quantization rules.
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