PHYSICAL REVIEW A, VOLUME 65, 052118
Existence of the quantum action
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We have previously proposed a conjecture stating that quantum-mechanical transition amplitudes can be
parametrized in terms of a quantum action. Here we give a proof of the conjecture and establish the existence
of a local quantum action in the case of imaginary time in the Feynman-Kac(livhign temperature goes to
zerg. Moreover we discuss some symmetry properties of the quantum action.
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I. INTRODUCTION: DEFINITION AND USE The purpose of this paper is to give a mathematical proof
OF THE QUANTUM ACTION of the existence of the quantum action in imaginary time in

the limit of large transition time. This corresponds to ther-
Since the early days of quantum mechanics, many atnmodynamics in the low-temperature limi{Eeynman-Kac
tempts have been made to link quantum mechanics to sonénit of the Euclidean path integralOne should note that the
concept of classical-like action. First, Wentzel, Kramers,limit of large transition time is not a marginal case but is of
Brillouin proposed the so-called WKB methdd]. Then  central importance in physics.

there was Bohm’s formulation of quantum mechar{i2s (@ T'he zero—ter_nperature limit describes the ground-state
More modern is the effective actidi8] and the Gaussian Pproperties of physical systems. o _
effective action[4]. Also Gutzwiller’s trace formula[5] (b) Transition time(real timg going to infinity enters in

should be mentioned here, which establishes an approximag§attering reactions, hence in tS8enatrix and cross sections.
expression of the quantum-mechanical density of states in (c) The limit of large time is also involved in nonlinear
terms of classical periodic orbits. classical dynamics when computing Lyapunov exponents

The physical reasons, why such a concept is attractive ar@nd Poincaresections. Hence this limit plays a role when
the following: First of all, quantum mechanics eludes humarfomputing the quantum analog of Lyapunov exponents and
intuition being shaped by macroscopic physics, i.e., classicdfoincaresections8].
physics_ Thus a classical-like action in quantum physics has What is the quantum action? Let us recall its definition as
an intuitive appeal. Second, there are concepts playing aproposed in Ref[6]. We consider the quantum-mechanical
important role in modern physics, which have its origin in (QM) transition amplitude
classical physics. Examples are quantum chaos and quantum
instantons. A number of the above approaches have been
explored to investigate quantum chaos. Instantons play a role i
in quantum mechanic$a) tunneling and double-well poten- =f [dx]ex;{gS[x]
tials (chemical binding, reactions(b) in high-energy phys- Xin tin
ics in the mechanism of chiral symmetry breaking and the ) ) _ )
formation of quark-gluon plasmdg) in cosmology in the Conjecture For a given classical action
inflationary scenario. Again classical-like actions have been
gmployed to explore such physics. Eina[ly, one should men- S[x]=f dt[ TXZ—V(X)], )
tion also the use of an effective action in the theory of su- 2
praconductivity. , ,

Recently, my co-workers and | have proposed a differenf€r€ is @ quantum action
kind of classical-like action, the quantum acti@+9]. The ~
quantum action has _the virt_ue of_h_aving a form as clpse as é[x]:f dt[ TXZ—V(X)], 3)
possible to the classical action, giving a local expression for 2
guantum transition amplitudes. In Ref§—-9| the quantum
action has been postulated and also been explored numehich allows to express the QM transition amplitude by
cally. Numerical studies showed in all cases that the quantum .
action is a good representatior_1 of the quantum amplitudes. It G (Xt Xin tin) =2 ex%l_iﬁfi i
allows to give a new unambiguous definition of quantum h Xin
instantons and quantum chaos. It allows to construct the

G(Xfi i s Xin »tin) = (Xgi | exd —iH (tg —tin) /2] Xin)
Xti L

@

intin

quantum analogue of classical phase space and to obtainthe _ x..t. ~ -~ . . ti [Me. - - X

. . [ L fiobfi — 2
quantum analogue of Poincasections and Lyapunov expo- 2 N _S[XCI:”xin'tin_ ft dt) Sxa=Vxe) (| - (4)
nents[7,8]. e in Xin

Here., denotes the classical path corresponding to the ac-
*Email address: hkroger@phy.ulaval.ca tion S obeying the boundary conditions
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Xei(t=tin) =Xin,  Xel(t=tg)=Xy;. (5) fil(r)lg the quantum action becomes the Euclidean quantum ac-

Here the following remarks are in order.

(a) It is known from classical mechanics that a classical NSE[X]:J dt
path, being the solution of the Euler-Lagrange equation of
motion, makes the action extremal. Often this extremum is
the minimum, but this is not always true. Mathematical con-This allows us to express the Euclidean transition amplitude
ditions that decide whether the extremum is a minimum carby
be expressed in terms of the eigenvalues of the correspond-
ing §turm-LiouviIIe operatoBZ.é'[lo]. All eigenvalues b(_aing Ge(Xsi »ti 1 Xin o tin) ZEE exp{ _ EiErx(_fi ,ttfi }
positive correspond to a minimum. Whéh=t;;—t;, in- h in"%in
creases, the eigenvalues generally decrease and some eigen-
values may become negative. A boundary point, where the it e e et tfi sz -
lowest eigenvalue takes the value zero, is called a conjugate 2E|Xi;',ti;:SE[Xc|]|Xir'1',ti:]= ft dt) 5Xc+V(Xe)
(focal) point. In order to be on the safe side, we exclude here n
the occurrence of conjugate points and caustics, by making ©)

the assumption that there is a unique classical path that minih order to compute thermodynamic functions from the par-

mizes the quantum action. However, the existence of the.. . . I .
guantum action is quite likely not limited by such conditions.%tlon function one has to impose periodic boundary condi-

For example, the harmonic oscillator is known to posses%Ions [13]. T'is Ye'a‘ed to the temperatureand the inverse
caustics[when ¢2S/ 9adb= — mw/sin(wT) becomes infinite emperatures via
at T=m/w [10]]. But for the oscillator, the classical action 1
and the quantum action coincide, hence the latter exists. B=——=TIh. (10
(b) Another problem that may arise in classical mechanics kg7
with boundary conditions given by E¢) is the following.
When the potential has sufficiently stiff walls, i.e/(x)
—oo sufficiently rapidly wher|x|— o, then for such boun
ary conditions(infinitely) many classical paths may exist
[11,12. An example where this happens is the potendal
~x*. However, those paths differ in their value of the action.
As we will deal below exactly with such kind of classical !l. PROOF OF THE EXISTENCE OF THE QUANTUM
and quantum potentials, we have to specify which path and ACTION
value of the quantum action enters in E4). We specify that
the path of the quantum action chosen is that giving thE’Eio
smallest value of the quantum action.
(c) Eventually, we will consider the Feynman-Kac limit.

me v 8
§x+(x). (8)

Xfi

Xin

In Ref.[7] we have shown that the expectation value of a
d- guantum-mechanical observalieat thermodymical equilib-
rium can be expressed in terms of the Euclidean quantum
action along its classical trajectory froxy, ,3;,=0 to x, 8.

Consider one dimensiofiD) throughout(the generaliza-
n to D=2,3 is straightforward We work in imaginary
time in what follows. For simplicity of notation we drop the
. subscript Euclidean. Let us make some assumptions on the
Then only the ground-state properties of the quantum sySterBotentiaIV(x): Let V(x)=0. Let V(x) be a smooth(suffi-
W|Il~play a role. ) ) o _ciently differentiable function of x and letV(x)—c when

Z denotes a dimensionful normalization factor. Equation|y| ... Under those assumptions on the potential, the tran-

(4) is valid with thesameaction'S for all sets of boundary sition amplitude satisfies the following properties.

positionsx;; ,X;, for a given time intervall =ty —t;,. The Proposition 1.For fixed T, G(y,T;x,0) has the following
parameters of the quantum action depend on the Tidny  properties(i) It is a real valued, positive function for ally.
dependence om;;,X;, enters only via the trajectory,. (ii) It is a symmetric function under exchange-y. Why is

Likewise,Z depends on the action parameters @nbut not G(y,T;x,0=07 1 give two rgason_s: _ _
on X i, If we want to do thermodynamics we need to go (@ Physical reasonG(y,T;x,0) is the solution of a dif-
over to imaginary timet— —it. Then the transition ampli- fusion equation describing the motion frotrio y. This pro-

tude becomes the Euclidean transition amplitude cess has a probability interpretation. A probability is positive.
(b) Mathematical reasonG(y,T;x,0) can be written in
b ey b V—/y. _ s ) terms of a(Wiene) path integra[see Eq(6)]. For each path
GO tri in in) = Xl €XHL =~ H(tsi = tin) /7] in) x(t) the weight factor exp §x]/%)=0 is positive[we have

1 Xgi i assumed that the classical potentiflx)=0 is positivd.
= f [dx]ex;{ — 5 Selx] » () Hence the sum over paths is also positi@y, T;x,0) being
Xin 'tin real valued is a consequence of the fact that the weight factor

i , . ) exp(—9x]/%) of the path integral is real valued. The second

the classical action becomes the Euclidean action property (ii) follows from the first property(i) and making

the assumption thal is a self-adjoint operator. Next we
m. define a new function to parametrizeG. In the following
— 2
Selx] Jdt[zx +V(X)]’ D we keepT fixed.
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Definition X(t) =X (t)+h(1),
G(yiT;Xao):GO eXF[_ W(Yax)] ’ (11) ;Cl(tzo):a' ;(Cl(t:T):b'

whereG is some constarffor fixed T) that takes care of the ~ ~
fact thatG has a dimension (ILP). Thus h(t=0)=da, h(t=T)=db,

7(y,x)=—In[G(y,T;x,0/Go]. (12) x(t=0)=a+da, x(t=T)=b+ éb. (16

Note The functionz is well defined, becaud® is a real, Then we compute

positive function. Via the previous definition, the properties T (. .

of G translate into the following properties af. 5~5[§<]:f dt(—(?(c,+ﬁ)2+v&c|+ﬁ)]
Proposition 2 (i) 7(y,x) is a real-valued function for all 0 2

x,y. (i) n(y,x) is symmetric under exchange—y. Com- ~

paring the parametrization @ in terms of the functiony, _ JTdt T(;( )24V (Xy)

Eqg. (11), with its parametrization in terms of the quantum 27 cl

action, Eq.(9), this suggests to identify

) dv
Go=2, Jdt (2xc|h+h)+ (xc.)h

b+ éb

a+t+da

b

a

Xe1=b,h=ob

xd:a,h:&a

T2
n(y.x)= hS[XcI” o (13 +0(h?)

e T T T dv - 2
The idea of the proof is the following. We assume that the =MXihlo + fo dt| mXC'h+ (XC') ] +0o(h?)
previous identities hold. Then we analyze its implications.
We will end up in finding an explicit equation for the kinetic
term and the potential term of the quantum action. Then we
start at the end and go backwards through the calculation.

=X (T) 5b—Fn§<C.(0)5a+f dt[%h(t)]

This establishes that the quantum action is consistent, and +0(h?)
hence proves its existence. 5 ~ 5
dentifying Go=Z is possible and trivial because both are =pei(T) 8b—pc(0) sa+O(h?), (17

constants. Let us identifyy with S ~ ~
becausedS/ 6x(t) =0 for x(t)=x¢(t). On the other hand,

one has
n(b,a)= _El Z = _S[Xcl]l Z
an an
577(b,a)=W(b,a)&bJra—X(b,a)éa. (18
. (14
at=0 Comparing Eqgs(17) and(18) for terms linear inda and &b,
respectively, we find
The question we want to answer is, can we find a param-
eterm and a local quantum potentidl[e.g., parametrized by Pei(T) = ﬁ (b a),
polynomial _coefficients vy, V(x)=Sv,x¥], such that
n(b,a)=1/#43|21Z] holds for allab ? In order to analyze

~ ~ J
this question, we proceed by using the property i an p(0)= —ﬁa—;?(b,a). (19
action and thak,, is the trajectory that makeS extremal.
Let us consider the functional Those are conditions, which are both necessary and sufficient

to guarantee that the partial derivatives of the functions

~ T om. o 1/43,|Y and 5(y,x) coincide for any pair of boundary points
S[X]:j atl ™5+ 15 [x and n(y.x) yp yp
0o |2 (y.X),
I . . Jd 1~ J
and calculate the variation of the functional to first order — 3= —n(y,x),
(first-order functional derivative Usually, one keeps initial 290 X
and final coordinates fixed and varies the path in between.
Now we consider the variation of the path, allowing also a i£§|y: K2 (y.%) (20
variation if initial and final positions. Let us denote ay h ay Y2
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Equation(20) implies (BirDz
~ c -~ =
Tkin: ~ V:V(a)1
2m

1~
gEIiz 7(y,x) modulo a global constant.  (21)

e=— ——+V(a). (24)
2m

The global constant can be absorbed into the constapts o
andZ, respectively, and this proves E4.3), and hence the Similarly, we find att=T, denotingpfi=pc/(T),
existence of the quantum action. ~fio

However, to complete the proof it remains to be shown T (P V=V(b)
that the conditiong19) can be satisfied. This is not at all Kin™ om0 (b),
obvious from the outset. The terms on the right-hand side

(rh9 of Egs.(19) stem from the QM transition amplitudé) (Bfi)z
derived from a classical actidid), with massm and potential e=— —c +V(b). (25)
V(x). The terms on the lhs represent the initial and final 2m

momenta, corresponding to the trajectary(t). This trajec-
tory is the solution of the Euler-Lagrange equation of mo-

tion, which follows from the requiremeriS/ sx(t)=0. As'S 1 1

depends on the quantum mass parametend the quantum - —=(p*+V(a)=——=(pi?+V(b), (26
L L~ . 2m 2m

potential V(x), consequently also the trajectoxy,(t) will

depend orm andV. The same is true, in particular, for the or equivalently,

Energy conservation implies

velocities at the boundari&g,(O) and?c,(T) and hence also
for the momenta at the boundarigs,(0) andpg(T). In T/(b)—T/(a)zé(f)”)z—iN(B"‘)Z. 27
other words, requiring that the conditi¢h9) holds, imposes om ¢ 2m ¢

a constraint orm andV. In the following we will show that

Eq. (19) can be satisfied and that this condition guides us tg/Ve recall from classical mechanics that the rhs represents the
find a suitablem and V. The guiding principle will be the work done(in imaginary timg when the particle moves from

principle of the conserved energy. Once Ef9) is estab- atob

lished, Egs(20) and(21) follow. ) a%

W [dxin

a dt?

IIl. CONSTRUCTION OF QUANTUM ACTION _
FROM ENERGY CONSERVATION T _dxd* 1 ~fivo 1 .. 2
. Z—J dtma—2=—~(pc',) ——~(pg}) . (28
It remains to be shown how to construct a quantum ac- 0 dt® 2m 2m

tion, such that the condition in Eg€L9) is satisfied. We do ) ) )
this by employing the principle of conservation of energy_Moreover, we recall from classical mechanics that if the
Any action of the form work done by a force

~ W= |_dxF(x) (29
~ T Im. = T ~ c
S[x]zf dt[—x2+V(x)] =f dt{Tn+V} (22
0 2 0 . ~ .

is the same for any pat@ going froma to b, or if the work
is zero for any closed path, than we know that a potential
describes a conservative system, i.e., the force is deriveeXists and the system is conservative. Thus combining Egs.
from a potential and energy is conserved. This means thdfl9 and(27), we find the following necessary and sufficient
energy is conserved during the temporal evolution from condition for the existence of the quantum action: The quan-
=0 tot=T. In imaginary time, energy conservation reads tum action exists and is local, if there is a masand a local

potentialV(x), such that

—Tyin+V=€=const. (23 ~
ﬁ[V(b)—V(a)]
Now let us choose #ositive value of the mass parameter

~ o~ 2 2
m. Let us Iook.at the energy belllance for the traj-ectggy =((9—7’(b,a)) —(a—n(b,a) holds for all a,b.
from a to b. Using Eq.(19), we find att=0, denotingp!| ay IX

=pci(0), (30)
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Fina“y, we should pOint out that the calculation has ylelded aminimum OfV(X) gives the ground_state enerﬁﬁr . Under
condition for the producmV(x) but not for each of the the assumption that the classical potentigk) is positive

termsm and V(x) individually. The reason for this is some semidefinite, this implies that the spectrum is positive and in

underlying symmetry discussed in Sec. VI. particularEg,>0. This mean®/(x) —V,,.,=0. The rapid in-
crease of the classical potent{ahy faster than the harmonic
IV. FEYNMAN-KAC LIMIT oscillaton implies a rapid fall-off behavior of the wave func-

tion for |x|—o. This implies that[ ¢ (X)/ g (X)]1>—
when |x|—. Equation(37) then impliesV(x)— for |x|
— 00, Combining the property/(x)— o for |x|— o with Eq.
G(Y, Tix,0)~ 1Yl hgrye B (ygex), (81 (37) implies thatm>0.

In the limit T— oo, or equivalently, when temperature goes
to zero, the Feynman-Kac formula holds,

where i, is the ground-state wave function akg, is the V. CHECK OF RESULT FOR HARMONIC OSCILLATOR
ground-state energy. Here we make the assumption that the

ground state is not degenerate. Equatibh implies Let us consider the harmonic oscillator in X imagi-
oy e Th nary timeg. For the harmonic oscillator, the QM transition
Goe™ " (Yl ihgrye mor i | X). (32 amplitude is given by the classical action along its classical

path. Thus the quantum action should agree with the classical

Taking the logarithm yields action. This should hold for any temperatur@r time T. In

— (Y, X)+INGg~1_.o—Eq TIH+In order to check this let us compute the quantum potential and
7x) o o [ary)] hence the quantum action from conditi(80). The QM tran-
+In[ g (X)]. (33)  sition amplitude readglL4]

From this we compute Mw Mo
Gb.Ta0= V5 G sinnen ©F ~ 2% snh(wT)

Jd J
W 77(yvx)|y:b, x=a~7T—o " W{In[ ‘pgr(y)]

X[ (b?+a?)coswT)—2ba]|, (39
_ Pgr(b)
y=b_ _ 79F
FInLgr () Hi=a Pgr(b) (34) According to Eq.(11), we identify
Similarly, G / Mw
o= Nom7 anh TV
2 y.x)  Yg(@) - 27h sinh(wT)
oX 7y, y=b, x=a"T—x» l//gr(a) . mo , ,
n(y,x)= m[(y +x%)coswT) —2yx].
Then the general condition, E(B0), becomes sinile (39
2m v ‘/’ér(b))z Then we comput
—[V(b)=V(a) ]~ 10| —= pute
X w
l/l’r(a) 2 7]{7);, = hsinf(wT) [yCOSth)—X],
—<9—> forall a,b. (36)
hgr() 3n(y.0)
n(y.x) Mo
This means we need to find andV(x), which satisfy X hsinwT) [x cosiwT)—y]. (40)
2m _ - (X)) 2 Consequently, we find
—2(V(x)—Vo)=<¢gr( ) for all x. (37 a Y
ﬁ YarlX) (o”ﬂ(b,a) 2 (amb,a) 2
This condition can be satisfied. This establishes the existence ay 20
of a local quantum action and finishes the proof. 2
Let us ask a question: Can the massof the quantum =<m) [{bcoshwT)—a}?
action and the local quantum potenti&(x) simultaneously )
be chosen to be positive and real? Equat®h shows that —{acosioT)—b}<]
the product m(V(x)—V,) is always real and positive 2
semidefiniteV, is some constant, not determined from Eq. = (T) [b%—a?]. (41)

(37). This constant can occur in the quantum potential or in
the normalizationZ. In Ref. [9] we have argued that the Comparing this with Eq(30) yields
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2 . m.
i—T[V(b)—V(a)]z %) [b2—a?]. (42) L(X(t).X(t))=5x2+V(x), (49

This is satisfied if we choose and the action

T .
Fmm, six1= [ at Lo ). (50
V(x)=imw?x?. (43)  The Euler-Lagrange equation of motion reads
Thus the quantum potential coincides with the harmonic os- . dV(x) B
cillator potential, i.e., the classical potential and hence the —mxg(t)+ dx (t)_o' (5D)
X:XC|

guantum action coincides with the classical action.
wherex.(t) denotes the solution corresponding to a given

VI. INVARIANCE OF QM TRANSITION AMPLITUDE pair of boundary pointsxcl(t:()):a, Xcl(t:T):b- A
One may wonder why Eq30) does not specify the quan- Egﬁl?mtefgmard computation yields the following transforma-

tum potential, but only the combinatiamV(x)? First, one

e ) i) Classical trajector
notes that the stationary Schlinger equation for the ground @ J y

state is invariantfgives the same wave functipmnder the Xel(1) = X4, (1) =X (at). (52)
transformation
(i) Lagrangian evaluated at classical trajectory
EgrH aEgr ) . . .
L(Xci(t) Xei(1) = L7 (X (1), Xgi (1)) = el (X (at) X (at)).
V(X)— aV(X), (53
M mla. (44) (i) Action evaluated along classical trajectary
Obviously, the following quantity is an invariant under this Xl = Sxal =S el 64
transformation: Thus we see that =g x.,] is an invariant in classical me-
R R chanics. Trivially, alsanV(x) is an invariant.
MV(X) —mV(X). (45) The invariance properties of the classical system immedi-

_ _ _ ately carry over to the quantum action. Consider the trans-
Let us now consider this symmetry in the general case oformation
finite temperature, corresponding to some finite value of time

T. Let us consider the following scale tranformation of the m—m/a,
classical mass, the classical potentia¥(x), and the tran-
sition time T, wherea is some real positive number; V(x)— aV(x),
m—m/«, T—T/a. (55
\A/(x)aa\A/(x), Consequentlyi is an invariant andnV/(x) is also an invari-
ant. Under the combined scale transformations, E46),
T—Tla. (46) and(55), we have shown that both, the QM transition ampli-

o R tude G and the quantum actioh, are invariants. The lesson
Then the QM Hamilton operatoH =p?/2m+V(x) trans- from this is that for a given fixed timécorresponding to
forms like finite temperaturg Eq. (30) is not sufficient to determine the
quantum potential, but one needs an independent determina-

H—aH. (47 tion of m. One way to do this is by use of the renormaliza-
N ) ) ) tion group equation proposed in Réf]. In retrospective,
Because the QM transition amplAltudhls a matrix element 50 may consider the invariance propertié® and(54) as a
of an operator-valued function ¢iT/#, being an invariant hint on a relation between the QM transition amplitude and
under the above scale transformation, consequently the Qlhe quantum action.
transition amplitude is an invariant also,

VIl. CONCLUDING REMARKS
G(b,T;a,00—-G(b,T;a,0). (48
The proof is nonperturbative. It does not require the sys-
Let us now look at invariance properties of the classical system to be integrable. The proof can, without difficulty, be

tem. Consider the Lagrangian generalized to 30or higher dimensionsAn interesting ob-
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servation is the following: After the back transformation to mentum operato®, =i#d/dx, which reminds us of canoni-
real time, the corner stone equation of the proof, 89),  cal quantization rules.
reads

- Jan
T)=ih —
Pei(T) 'ﬁﬂy(b’a)’ ACKNOWLEDGMENTS
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