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Model for dissipative quantum dynamics and nonlinear coupling: Lennard-Jones potential
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In this paper a method is developed further that makes it possible to tailor the position dependence of the
coupling strength between a system and a bath in a very flexible way. To do so, generalized raising/lowering
operators from supersymmetric quantum mechanics are used, together with the Lindblad approach to dissipa-
tion. A one-dimensional numerical example illustrates the application of the method to a problem with poly-
nomial position dependence, and the extension to problems of higher dimension is discussed.
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I. INTRODUCTION

Open system quantum dynamics is a rapidly develop
field, which has applications in many areas of physics. I
impossible to give here a comprehensive overview,
among many others nuclear magnetic resonance spec
copy @1#, driven dissipative tunneling@2#, and reactions on
surfaces@3–5# should be mentioned. This paper will esp
cially be concerned with the dynamics of open system d
sity matrices within the dynamical semigroup–Lindbl
@6–9# approach. Until recent years, mostAnsätze had the
serious limitation of being only applicable to a system-b
coupling bilinear in the coordinates. For many situatio
aside from simple model systems, this is unphysical.
example, if the bath are the electronic and phononic deg
of freedom of a surface, then the coupling strength sho
decrease with the distance from the surface, and not incre
This situation is of special interest for catalytic reactions@5#
as well as matter wave optics on atom chips@10#. An early
attempt to account for this has been made in Ref.@11#. Re-
cently, two suggestions have been made how to treat non
ear coupling@12,13# more fundamentally. This paper wi
present further developments of one@13# of them. The time
evolution of the reduced density matrix is governed by
Liouville–von Neumann equation@14#

ṙ52
i

\
@H,r#1LD@r#, ~1!

where the dissipative LiouvillianLD@r# describes the influ-
ence of the environment on the system. The most gen
dissipative functional that guarantees positivity of the evo
tion, i.e., the probabilistic interpretation of the matrix el
ments ofr is the Lindblad functional@6#

LD@r#5 (
k51

K

gkS VkrVk
†2

1

2
@Vk

†Vk ,r#1D . ~2!

A functional like this can be derived in several ways. O
@15,16# employs second-order perturbation theory and
rotating wave approximation. In the case of an environm
at 0 K this leads to a dissipative Liouvillian of Lindbla
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form. Another approach is to use the argument of comp
positivity and then choose the operatorsVk on the grounds of
phenomenological reasoning. Both methods result in
sameequation of motion, if an interaction Hamiltonian be
tween system and bath of the form

HInt5(
n

lnabn
† ~3!

is used, witha annihilation operator of the system,bn
† cre-

ation operator of the bath, and the assumption that the ba
at 0 K. In this case one findsV5a. Dissipation of energy is
thus naturally described by raising or lowering operat
~RLOs!. The use of Harmonic RLOs is then equivalent to
coupling, or interaction Hamiltonian, which is bilinear in th
system and bath coordinates. In Sec. II of this paper
derivation of generalized RLOs, which allow to model
large variety of coupling strengths, is presented. Also t
possibilities to extend the formalism to multidimension
problems are discussed. Section III presents a numerica
ample: the often used Lennard-Jones potential, which
seen in recent years a new revival in the field of Lenna
Jones liquids. Section IV gives a short summary of furth
properties of the RLOs, and Sec. V concludes this paper

II. GENERALIZED RLOs

The general idea behind supersymmetric~SUSY! quan-
tum mechanics~QM! is that not only the harmonic–
oscillator Hamiltonian can be written as the ‘‘square’’
some operator,H5\vb†b, but others as well. We will de-
note harmonic RLOs byb,b†, and the generalized ones b
a, a†, A, andA†. Here we will give only a short summary o
those facts that are important for the problem at hand. M
detailed introductions to SUSY QM and proofs can be fou
e.g., in Ref.@17#, and the excellent review paper of Coop
et al. @18#. Further, we will restrict ourselves to Hamiltonian
of the standard formH5p2/2m1V(x). It can then be
shown, that the operator that factorizes the Hamiltonian
the form

A5f~x!1
\

A2m

d

dx
, ~4!
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MATHIAS NEST PHYSICAL REVIEW A 65 052117
where the functionf(x) is called the superpotential and
related to the potentialV(x) by a Riccati differential equa
tion,

V~x!5f2~x!2
\

A2m

df

dx
. ~5!

Equation~4! contains the implicit assumption that the pote
tial V is shifted so that the energy of the ground stateC0
vanishes. The general form of the generalized RLOsA,A† is
not surprising, if one considers that the kinetic-energy par
the Hamiltonian does not change~thus the termd/dx as in
the harmonic case!, so that the potential is just the square
f, plus the commutator. It should be noted that the opera
A,A† no longer obey the standard Bose commutation re
tions. Instead,

@A†,A#52A2

m

df

dx
. ~6!

These operators will factorize the Hamiltonian:H5A†A.
Next, we will need the so-called partner HamiltonianHp ,

Hp[AA†5Ap
†Ap1E0

(p) . ~7!

It is constructed by simply reversing the order of the RLO
Of course,Hp can be rewritten in terms of a normal ord
product of RLOs, too. The only difference is now the ad
tional constantE0

(p) , because the zero-point energy was
ready fixed in the definition ofH. The crucial point for our
discussion is now that the eigenvalues of partner Hami
nians are intimately connected. In fact, one can show th

En115En
(p) , n50,1,2, . . . , ~8!

i.e., they are isospectral, with the exception that the gro
state ofH does not exist forHp . Although the eigenfunctions
of partner Hamiltonians are generally different, they are
ten quite similar. The reason for this is that the partner
tentials are often~harmonic oscillator, Coulomb potentia
Morse oscillator, etc.@18#!, but not always, shape invarian

V~x,a!5Vp„x, f ~a!…1R~a!. ~9!

This means their functional forms are the same, only
parameters have changed. And even for a large numbe
potentials that are not strictly shape invariant, at least v
similar partner potentials are found.

Only in the case of the harmonic oscillator do these
eratorsA and A† coincide with exact RLOs. This is due t
the fact of the equidistant eigenvalues. In the general c
one finds

ACn5~En2E0!1/2Cn21
(p) . ~10!

Therefore, the operatorA lowers the quantum numbern by
one, and annihilates one node in the wave function. The
ference to the harmonic case is that the new eigenfunc
05211
-

f

f
rs
-

.

-
-

-

d

-
-

e
of

ry

-

e,

if-
n

‘‘belongs’’ to another Hamiltonian. But because of th
~maybe approximate! shape invariance they are at least sim
lar,

Cn'Cn
(p) , ~11!

and have the same number of nodes. This suggests the u
A and A† as approximate RLOs.~A similar line of thought
justifies the use ofA† as approximate raising operator@19#.!
In the remainder of this section we will show a fast a
efficient way to derive them, and the following two sectio
will provide examples to show that they produce physica
the most sensible results.

We found that the easiest derivation uses the ground-s
wave function ofH. There are a variety of methods to obta
C0; for example, the propagation in imaginary time metho
Once the ground state is known, the superpotential is
tained via

f~x!52
\

A2m
C08~x!/C0~x!, ~12!

where the prime denotes differentiation with respect tox.
And this is all that is needed for the derivation of the a
proximate RLOs.

At last it should be noted thatA and A† carry the unit
‘‘square root of energy.’’ Usually, dimensionless operato
are used (H5\vb†b). This can be achieved by defining

a5
A

A\v
and a†5

A†

A\v
. ~13!

The choice ofv is not unambiguous for anharmonic pro
lems. The choices of

v5~E12E0!/\

and

v5AV9~x0!/m, ~14!

x0 position of the minimum of the potential, both give goo
results.

The generalization of these results to several degree
freedom can be done in different ways. A crude approxim
tion could make the assumption that all degrees are inde
dent. In this case, it is possible to write a two-dimensio
operator as a sum of, e.g., a harmonic RLO and an RLO
exponential form@13#. But there is another possibility, whic
shall be presented now.

The RLOsA,A† can be taken to be vectors of operato
with elements

Ai5
1

A2m
S ]

]xi
2

]C0~x1 , . . . ,xN!

]xi
Y C0~x1 , . . . ,xN! D .

~15!

Thus, one finds a superpotential
7-2
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f i~x1 , . . . ,xN!

52
1

A2m

]C0~x1 , . . . ,xN!

]xi
Y C0~x1 , . . . ,xN!,

~16!

which depends on all coordinates. The Hamilton operato
then obtained by the scalar productAW †

•AW . This is a some-
what more accurate approach, but for numerical efficienc
fit of the numerically obtained superpotential to an analy
function is required, which can be quite difficult to obtain f
the multidimensional case. An application of this is in prep
ration.

III. EXAMPLE

As a numerical example we have chosen the Lenna
Jones potential~Fig. 1!

V~x!54eF S s

xD 12

2S s

xD 6G ~17!

with parameterse51023EH , s55a0, and m553104me .
Atomic units (\5me5a051) will be used from now on.
This system has been chosen because it shows a polyno
decay for largex. The exponential case has already be
discussed, also with other approaches, e.g., in Refs.@12,13#.
Also, contrary to the Morse potential, and in accordance w
most physically realistic potentials, it is not analytical
treatable. To derive the approximate RLOs for this proble
the first thing to be done is to find the ground-state wa
function. This has been done on a very fine grid in posit
space. Then the derivative@see Eq.~12!# has been calculate
with the fast Fourier method, employing the identityd/dx

FIG. 1. Upper panel: Lennard-Jones potential@in units of the
Hartree energy (EH)#. Middle panel: ground-state wave functio
~units of a0

21/2), obtained by propagation in imaginary time. Th
derivative of it divided by the wave function leads~up to prefactors!
to the superpotential, shown in the lower panel~in units of EH

1/2).
The thick line shows the part that was calculated numerically,
thin line shows the fit@Eq. ~18!#.
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5ip. For later application it is advantageous to fitf(x) to an
analytical expression. A least-squares fit gives

f~x!5c12
c2

c31c4x62c5x12
~18!

with parametersc150.03EH
1/2, c25995.7EH

1/2, c3525.29,
c451a0

26, andc551.09431027a0
212. Please note that thes

are only four independent parameters, asc4 is only used to
obtain simpler units. The parameterv @see Eq.~13!# was
calculated from a harmonic approximation of the poten
minimum. This concludes the derivation ofa anda†.

These approximate RLOs can now be used to propa
the reduced density matrix with the Liouvillian of Eqs.~1!
and ~2!, with K51 ~one dissipative channel!.

The interesting quantity now is the coupling strength b
tween system and environment as a function of the posit
e.g., the distance from a surface. It can be measured by
energy relaxation rate of a narrow Gaussian wave pac
centered atx0. The change of this rate withx0 is then the
desired quantity. There are two ways to perform this cal
lation. One is to propagate the density matrix for a sh
time, and monitor the change of^H&(t). This method was
used in Refs.@13,19#. However, recently we found a bette
way, which does not require to actually perform a propa
tion. The derivative of the expectation value of the Ham
tonian can be computed directly:

Tr$H ṙ%5TrH HFgS ara2
1

2
@a†a,r#1D G J ~19!

5gvTr$a†a†aar%2
g

v
Tr$H2r% ~20!

5gvTrH a†S aa†2A 2

mv2
f8D arJ

2
g

v
Tr$H2r% ~21!

52gA2

m
Tr$f8ara†%. ~22!

To come from Eq.~20! to Eq. ~21! one has to apply the
commutation relation~6!. Equation~22! suggests yet anothe
approach to anharmonic coupling strength functions. In p
ciple this equation can be inverted, so thatf8(x0) can be
determined for arbitrary, given Tr$H ṙ%(x0). This could turn
out to be an easier and even more flexible way to determ
the approximate RLOs, making the calculation ofC0 unnec-
essary. A paper about this method is in preparation.

We implemented Eq.~22! with the initial condition

r~ t50!5uC&^Cu, C~x!}expS 2
~x2x0!2

2s2
1 ik0xD ,

~23!

e
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MATHIAS NEST PHYSICAL REVIEW A 65 052117
with s50.5a0 and g51/500 fs. The parameterk0 was for
each positionx0 adjusted, so that̂H&5231024EH . As a
result~see Fig. 2! we find a coupling strength function~again
least-squares fit!:

d

dt
^H&ux0

5
C1

C22C3x0
62C4x0

12
, ~24!

with parametersC152.1133106 meV/ps, C258942, C3

51a0
26, and C454.77231027a0

212. Again, only three of
them are independent. The parametersCi depend on the pa
rameterss andk0. The width of the wave function has to b
chosen small enough so that the potential varies only slo
in that region, and large enough to prevent an unwan
broadening of the wave packet in momentum space. By d
nition, k0(x0) was chosen to keep the total energy of t
wave packet the same at different center positions. A c
pling strength function that keeps the momentum expecta
value constant instead could as well be used. It should
mentioned that Eqs.~18! and~24! have unphysical singulari
ties, but they occur in regions that are, at least for this stu
of no interest. Otherwise they could be shifted by sm
changes in the fit parameter, without significant deteriorat
of the quality of the fit.

To summarize, the approximate RLOs together with
Liouvillian of Eq. ~2! lead to a position dependent couplin
strength that imitates the polynomial form of the potenti
The route of their derivation via the ground-state wave fu
tion can be followed also for potentials which are not an
lytically solvable, as for example those stemming from de
sity functional theory studies.

IV. OTHER PROPERTIES

Other properties of these operators have been examine
earlier papers@5,19#. For the sake of completeness, we w
give here a very short overview.

(a) Lifetimes of bound states. This dissipative model lead
to lifetimes

FIG. 2. Dissipation rate calculated by Eq.~22! ~points!, and fit
@Eq. ~24!# ~line!.
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g~En2E0!
, ~25!

if one assumes for the moment that the RLOs were ex
This relation is a generalization of the well-known result f
the harmonic oscillatortn51/(gn). Numerical studies@13#
have shown that Eq.~25! is indeed obeyed for the lifetime
of the lower bound states. The lifetime of the higher excit
states are longer than expected.

(b) Quality of approximation. If one applies(a) to an en-
ergy eigenfunctionun& and compares the energy expectati
value of the resulting wave function with the one of the ne
lower eigenfunction, one finds differences of typically b
tween 1% and 5%, depending on the similarity of the part
potentials.

(c) Thermalization. The Liouvillian

L@r#5gS brb†2
1

2
@b†b,r#1D1dS b†rb2

1

2
@bb†,r#1D

~26!

is used in Ref.@6# to describe a harmonic oscillator couple
bilinearly to a heat bath at temperature

T5
v

kB ln~g/d!
. ~27!

Using the approximate RLOs for a model system repres
ing an argon atom in front of a copper surface at 20 K,
found @19# that they lead to the relaxation to thermal equ
librium, too.

(d) Free to bound transitions. Because the approximat
RLOs were derived using only discrete, bound states, i
not obvious that they are able to describe transitions betw
the free states in a continuum and bound states~‘‘trapping’’ !.
In Ref. @13# we were able to show this by applying the di
sipative Liouvillian of Eq.~2! to the inelastic scattering o
adsorption of oxygen molecules on a platinum surface.

V. SUMMARY

The formalism of the description of dissipation with ge
eralized RLOs was applied to the Lennard-Jones potentia
was found that the polynomial decay of the potential at la
distances transforms into an analog position dependenc
the coupling strength. The method can easily be adapte
other potentials in order to tailor coupling strength functio
for different problems. There are different possibilities to e
tend the formalism to the multidimensional case, which s
have to be explored.
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