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Model for dissipative quantum dynamics and nonlinear coupling: Lennard-Jones potential
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In this paper a method is developed further that makes it possible to tailor the position dependence of the
coupling strength between a system and a bath in a very flexible way. To do so, generalized raising/lowering
operators from supersymmetric quantum mechanics are used, together with the Lindblad approach to dissipa-
tion. A one-dimensional numerical example illustrates the application of the method to a problem with poly-
nomial position dependence, and the extension to problems of higher dimension is discussed.
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[. INTRODUCTION form. Another approach is to use the argument of complete
positivity and then choose the operatdfison the grounds of
Open system quantum dynamics is a rapidly developingghenomenological reasoning. Both methods result in the
field, which has applications in many areas of physics. It issameequation of motion, if an interaction Hamiltonian be-
impossible to give here a comprehensive overview, butween system and bath of the form
among many others nuclear magnetic resonance spectros-
copy [1], driven dissipative tunnelin§2], and reactions on
surfaceq 3—-5] should be mentioned. This paper will espe- H.m=2 )\nabg ©)
cially be concerned with the dynamics of open system den- "
sity matrices within the dynamical semigroup—Lindblad
[6—9] approach. Until recent years, mo&hsdze had the is used, witha annihilation operator of the systerh; cre-
serious limitation of being only applicable to a system-bathation operator of the bath, and the assumption that the bath is
coupling bilinear in the coordinates. For many situations,at O K. In this case one findé=a. Dissipation of energy is
aside from simple model systems, this is unphysical. Fothus naturally described by raising or lowering operators
example, if the bath are the electronic and phononic degred&®L0Os). The use of Harmonic RLOs is then equivalent to a
of freedom of a surface, then the coupling strength shouldoupling, or interaction Hamiltonian, which is bilinear in the
decrease with the distance from the surface, and not increasgystem and bath coordinates. In Sec. Il of this paper the
This situation is of special interest for catalytic reactipfs  derivation of generalized RLOs, which allow to model a
as well as matter wave optics on atom chipf]. An early  large variety of coupling strengths, is presented. Also two
attempt to account for this has been made in IREf]. Re-  possibilities to extend the formalism to multidimensional
cently, two suggestions have been made how to treat nonlirproblems are discussed. Section Il presents a numerical ex-
ear coupling[12,13 more fundamentally. This paper will ample: the often used Lennard-Jones potential, which has
present further developments of of#S] of them. The time seen in recent years a new revival in the field of Lennard-
evolution of the reduced density matrix is governed by theJones liquids. Section IV gives a short summary of further
Liouville—von Neumann equatiofi4] properties of the RLOs, and Sec. V concludes this paper.

C
p=—7[H.pl+Lolp], 1) IIl. GENERALIZED RLOs

o . _ _ The general idea behind supersymmet®JSY) quan-
where the dissipative Liouvilliarfp[ p] describes the influ-  tym mechanics(QM) is that not only the harmonic—
ence of the environment on the system. The most genergscillator Hamiltonian can be written as the “square” of
dissipative functional that guarantees positivity of the evolu-some operatotd =% wb'b, but others as well. We will de-

tion, i.e., the probabilistic interpretation of the matrix ele- note harmonic RLOs by, b, and the generalized ones by

ments ofp is the Lindblad functionaf6] a, a’, A, andA'. Here we will give only a short summary of
K 1 those facts that are important for the problem at hand. More
_ t_ Tyt detailed introductions to SUSY QM and proofs can be found,
Lolp] kzl 7| Vi Vi Z[V"Vk’p]+ ' @ e.g., in Ref[17], and the excellent review paper of Cooper

et al.[18]. Further, we will restrict ourselves to Hamiltonians
A functional like this can be derived in several ways. Oneof the standard formH=p?/2m+V(x). It can then be
[15,16 employs second-order perturbation theory and theshown, that the operator that factorizes the Hamiltonian has
rotating wave approximation. In the case of an environmenthe form
at 0 K this leads to a dissipative Liouvillian of Lindblad

h

d
A=p(X)+ =T, (4)
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where the functionp(x) is called the superpotential and is “belongs” to another Hamiltonian. But because of the
related to the potentiaV(x) by a Riccati differential equa- (maybe approximajeshape invariance they are at least simi-
tion, lar,

d¢ Vo=, (1D
ax )
v2m and have the same number of nodes. This suggests the use of

. . o ) A and A" as approximate RLOSA similar line of thought
Equation(4) contains the implicit assumption that the pOte”'justifies the use oA as approximate raising operafd9].)

tial Vis shifted so that the energy of the ground st:l'.tg In the remainder of this section we will show a fast and
vanishes. The general form of the generalized REQS" is  efficient way to derive them, and the following two sections

not surprjsing, if one considers that the kinetic-energy part ofwill provide examples to show that they produce physically
the Hamiltonian does not changthus the termd/dx as in the most sensible results.

the harmonic cageso that the potential is just the square of e found that the easiest derivation uses the ground-state
¢, plus the commutator. It should be noted that the operatorgaye function ofH. There are a variety of methods to obtain
A,AT no longer obey the standard Bose commutation relaq,o; for example, the propagation in imaginary time method.
tions. Instead, Once the ground state is known, the superpotential is ob-

5 dg tained via
[AT,A]=— \[E& (6)

These operators will factorize the HamiltoniaH:=ATA.
Next, we will need the so-called partner Hamiltonidp,

V(x)= ¢%(X) —

Wo(X)/Wo(x), (12

h
¢(X):_\/ﬁ

where the prime denotes differentiation with respecixto
And this is all that is needed for the derivation of the ap-
proximate RLOs.

At last it should be noted thah and A" carry the unit
square root of energy.” Usually, dimensionless operators
are used =% wb'b). This can be achieved by defining

Ho=AAT=ATA +E{. 7

It is constructed by simply reversing the order of the RLOs..
Of course,H, can be rewritten in terms of a normal order
product of RLOs, too. The only difference is now the addi-

tional constanEgp), because the zero-point energy was al- +
ready fixed in the definition oH. The crucial point for our a=—— and at=——. (13
discussion is now that the eigenvalues of partner Hamilto- Vi N0

nians are intimately connected. In fact, one can show that
The choice ofw is not unambiguous for anharmonic prob-

E,..=EP, n=012..., (8)  lems. The choices of

i.e., they are isospectral, with the exception that the ground w=(E;—Ep)/h
state ofH does not exist foH , . Although the eigenfunctions
of partner Hamiltonians are generally different, they are of-and
ten quite similar. The reason for this is that the partner po-
tentials are often(harmonic oscillator, Coulomb potential, ®=\V"(Xo)/m, (14)
Morse oscillator, etc[18]), but not always, shape invariant, . o ) )
Xo position of the minimum of the potential, both give good

V(% @) =Vy(x,f(@))+R(). (9) results. o
The generalization of these results to several degrees of
This means their functional forms are the same, only thdréedom can be done in different ways. A crude approxima-
parameters have changed. And even for a large number &N could make the assumption that all degrees are indepen-

potentials that are not strictly shape invariant, at least verglent. In this case, it is possible to write a two-dimensional
similar partner potentials are found. operator as a sum of, e.g., a harmonic RLO and an RLO of

Only in the case of the harmonic oscillator do these Op_exponential form{ 13]. But there is another possibility, which

eratorsA and A" coincide with exact RLOs. This is due to Shall be presenter now.
the fact of the equidistant eigenvalues. In the general case, 1he RLOSA,A" can be taken to be vectors of operators

one finds with elements
AV = (E,—Eo) "2, (10) 1 (0 a0, )
" Ai_ \/ﬁ &_X| 5Xi — \I’o(Xl, . vXN) .
Therefore, the operatdk lowers the quantum number by (15)

one, and annihilates one node in the wave function. The dif-
ference to the harmonic case is that the new eigenfunctiomhus, one finds a superpotential
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0.006 T T T =ip. For later application it is advantageous toditx) to an
= 0004 1 analytical expression. A least-squares fit gives
§ 0002 -
" ol 2 a9

. . | ! d(X)=Ci— ——— 18
5 0003 ' ' ' . b st ex®—cox®?
L 1_ _
‘% os with parametersc,=0.0E%2, ¢,=995.FEL?, cy=25.29,
= gng . — —
§ . . . cs=1a, " andcs=1.094x 10" "a, *2. Please note that these
g 0 ' ! ' are only four independent parameters,cass only used to
g Un 1 obtain simpler units. The parameter [see Eq.(13)] was
& o} 4 calculated from a harmonic approximation of the potential
g . . . minimum. This concludes the derivation afanda.

02, 6 8 10 12 These approximate RLOs can now be used to propagate
position [a ] the reduced density matrix with the Liouvillian of Eq4)

and(2), with K=1 (one dissipative channel
The interesting quantity now is the coupling strength be-
tween system and environment as a function of the position,

derivative of it divided by the wave function leafig to prefactors €.g., the dIStan.(:e from a surface. It can be_measured by the
. ; . . U energy relaxation rate of a narrow Gaussian wave packet
to the superpotential, shown in the lower pafial units ofEHz).

The thick line shows the part that was calculated numerically, theceni[er(':‘d ako‘.The change of this rate witko is ther_1 the
thin line shows the fifEq. (18)]. de_slred quannty. There are two ways Fo perfo.rm this calcu-
lation. One is to propagate the density matrix for a short
time, and monitor the change ¢H)(t). This method was
bi(Xq, - . Xn) used in Refs[13,19. However, recently we found a better

1 aWo(x, X) way, which dpes_ not require to actqally perform a propaga-

L / Wo(Xy, Xn) tion. The derivative of the expectation value of the Hamil-

V2m IXi tonian can be computed directly:

FIG. 1. Upper panel: Lennard-Jones potenfial units of the
Hartree energy E,,)]. Middle panel: ground-state wave function
(units of a; /%), obtained by propagation in imaginary time. The

(16)
Y

Tr{H}J}=Tr( H

apa— %[aTa,pL) ] (19

which depends on all coordinates. The Hamilton operator is
then obtained by the scalar produtt-A. This is a some-
what more accurate approach, but for numerical efficiency a — yoTr{atataap} - ZTI’{HZp} (20)
fit of the numerically obtained superpotential to an analytic w

function is required, which can be quite difficult to obtain for

the multidimensional case. An application of this is in prepa- 2
ration. =yoTr a’| aa'~ \/—¢' |ap
Mw
1. EXAMPLE _ ZTr{HZp} 21)
As a numerical example we have chosen the Lennard- @
Jones potentialFig. 1) :
- — = rapal
g y\[mTr{qS apa'l. (22)
V(x)=4e[(—) ™ 17

To come from EQq.(20) to Eq. (21) one has to apply the
commutation relatior6). Equation(22) suggests yet another
with parameterse=10"°E,, s=5a,, andm=5x10'm..  approach to anharmonic coupling strength functions. In prin-
Atomic units (z=m=a,=1) will be used from now on. ¢jple this equation can be inverted, so thlt(x,) can be
This system has been chosen bgcause it shows a polynomj termined for arbitrary, given {"ﬂb}(xo)- This could turn
dgcay for largex .The exponential case has' already bee ut to be an easier and even more flexible way to determine
discussed, also with other approa_ches, €.g. n ReR13. . the approximate RLOs, making the calculatiorof unnec-
Also, contrary to the Morse potential, and in accordance Wltf'bssary_ A paper about this method is in preparation.

most physically realistic potentials, it is not analytically We imol ted Ea(22) with the initial it
treatable. To derive the approximate RLOs for this problem, e implemented Eq22) with the initial condition

the first thing to be done is to find the ground-state wave o2

function. This has been done on a very fine grid in position  ,t—g)=|w)(W|, W(x)xexy — M+ikox ,
space. Then the derivatiyeee Eq(12)] has been calculated 20°

with the fast Fourier method, employing the identdydx (23
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10 T T T T T T T ) 25
Th=—=——=
0 > - " ')’(En_EO)
-10- _

if one assumes for the moment that the RLOs were exact.
=20 - This relation is a generalization of the well-known result for
the harmonic oscillatot,= 1/(yn). Numerical studie$13]

dissipation dE/dt [meV/ps]

-301 7] have shown that Eq25) is indeed obeyed for the lifetimes
40 _ of the lower bound states. The lifetime of the higher excited
states are longer than expected.
-501- n (b) Quality of approximationif one appliesa) to an en-
-60 | [ L L | L ergy eigenfunctiodn) and compares the energy expectation
5 6 7 8 9 10 11 12 13 value of the resulting wave function with the one of the next
position [a] lower eigenfunction, one finds differences of typically be-

S _ _ tween 1% and 5%, depending on the similarity of the partner
FIG. 2. Dissipation rate calculated by E@2) (pointg, and fit potentials.

[Eq. (24)] (line). (c) ThermalizationThe Liouvillian

with 0=0.585 and y=1/500 fs. The parametés, was for 1

each positionx, adjusted, so thatH)=2x10"*E,. As a Llp]l=v| bpbT= =[b'b,p].
result(see Fig. 2we find a coupling strength functiqagain 2
least-squares jit

1
bpb—>[bb',p].
(26)

+0

is used in Ref[6] to describe a harmonic oscillator coupled

d C, bilinearly to a heat bath at temperature
d_<H>|X0: 6 12° (24)
t C2_C3X0_C4Xo
w
= ikan(4/9)" @7
with parametersC,=2.113x10° meV/ps, C,=8942, C, sIn(¥/8)

=1a,°, and C,=4.772x10 "a, *2. Again, only three of

them are independent. The paramet@rsiepend on the pa- Using the approximate RLOs for a model system represent-
rameterss andk,. The width of the wave function has to be ing an argon atom in front of a copper surface at 20 K, we
chosen small enough so that the potential varies only slowljound [19] that they lead to the relaxation to thermal equi-
in that region, and large enough to prevent an unwantetibrium, too.

broadening of the wave packet in momentum space. By defi- (d) Free to bound transitionsBecause the approximate
nition, Ko(X,) was chosen to keep the total energy of theRLOs were derived using only discrete, bound states, it is
wave packet the same at different center positions. A counot obvious that they are able to describe transitions between
pling strength function that keeps the momentum expectatiothe free states in a continuum and bound stéteapping”).
value constant instead could as well be used. It should bt Ref.[13] we were able to show this by applying the dis-
mentioned that Eqg18) and(24) have unphysical singulari- Sipative Liouvillian of Eq.(2) to the inelastic scattering or
ties, but they occur in regions that are, at least for this studyadsorption of oxygen molecules on a platinum surface.

of no interest. Otherwise they could be shifted by small
changes in the fit parameter, without significant deterioration
of the quality of the fit.

To summarize, the approximate RLOs together with the The formalism of the description of dissipation with gen-
Liouvillian of Eqg. (2) lead to a position dependent coupling eralized RLOs was applied to the Lennard-Jones potential. It
strength that imitates the polynomial form of the potential.was found that the polynomial decay of the potential at large
The route of their derivation via the ground-state wave funcdistances transforms into an analog position dependence of
tion can be followed also for potentials which are not anathe coupling strength. The method can easily be adapted to
lytically solvable, as for example those stemming from denther potentials in order to tailor coupling strength functions
sity functional theory studies. for different problems. There are different possibilities to ex-

tend the formalism to the multidimensional case, which still
have to be explored.

V. SUMMARY

IV. OTHER PROPERTIES

Other properties of these operators have been examined in
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