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Four qubits can be entangled in nine different ways
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We consider a single copy of a pure four-partite state of qubits and investigate its behavior under the action
of stochastic local quantum operations assisted by classical communication~SLOCC!. This leads to a complete
classification of all different classes of pure states of four qubits. It is shown that there exist nine families of
states corresponding to nine different ways of entangling four qubits. The states in the generic family give rise
to Greenberger-Horne-Zeilinger-like entanglement. The other ones contain essentially two-or three-qubit en-
tanglement distributed among the four parties. The concept of concurrence and 3-tangle is generalized to the
case of mixed states of four qubits, giving rise to a seven-parameter family of entanglement monotones.
Finally, the SLOCC operations maximizing all these entanglement monotones are derived, yielding the optimal
single-copy distillation protocol.
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One of the open questions in the field of quantum inf
mation theory is to understand the different ways in wh
multipartite systems can be entangled. As the concept of
tanglement is related to the nonlocal properties of a st
local quantum operations cannot affect the intrinsic nature
entanglement. It is therefore natural to define equivale
classes of states generated by the group of reversible sto
tic local quantum operations assisted by classical comm
cation ~SLOCC! operations@1,2#. In this paper we are con
cerned with SLOCC operations on one copy of a state, wh
means that we are considering actions under LOCC op
tions on one copy of a state without imposing that they c
be achieved with unit certainty. Two states belonging to
same class are able to perform the same quantum info
tion processing~QIP! tasks, although with a different prob
ability.

In the case of a single copy of an entangled pure stat
two qubits, it is well known that it can be converted to t
singlet state by SLOCC operations@3#. In the case of three
entangled qubits, it was shown@2,4,5# that each state can b
converted by SLOCC operations either to the GHZ-st
(u000&1u111&)/&, or to the W-state (u001&1u010&
1u100&)/), leading to two inequivalent ways of entanglin
three qubits. The GHZ state is generally considered as
state with the genuine three-partite entanglement, while
W state has the peculiar property of having the maximal
pected amount of two-partite entanglement if one party
traced out@2#. In this paper, we extend these results to
case of four qubits. Furthermore the widely celebrated
tanglement measures concurrence@6# and 3-tangle@2,7#,
characterizing the amount of genuine two-and three-qubit
tanglement, are generalized to the case of four qubits, giv
rise to a seven-parameter family of entanglement monoto
The SLOCC filtering operations maximizing all these e
tanglement monotones are derived, and it is shown that th
are the unique operations@8# ~up to local unitaries! bringing
a state into a locally stochastic form~i.e., bringing all local-
density operators equal to the identity!. Following Gisin and
1050-2947/2002/65~5!/052112~5!/$20.00 65 0521
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Bechmann-Pasquinucci@9#, we claim that these operation
maximize the true four-partite entanglement.

Interestingly, we found that there exist eight families
pure four-qubit states that cannot be brought into local s
chastic form by finite SLOCC operations. These states
have the peculiar property that they have the maxim
amount of two-and/or three-qubit entanglement shared
tween all four parties. In some sense their entanglemen
maximally robust against the loss of one or two qubits.

An interesting feature about entanglement that emer
out of the results of this paper is the fact that a quantum s
has only a finite susceptibility for entanglement. This will b
illustrated by the fact that the operations maximizing the t
four-partite entanglement are precisely the operations
destroy all local correlations~i.e., the local-density operator
are made stochastic! and that also destroy the three-part
entanglement~i.e., the three-qubit entanglement of the sta
obtained by tracing out one party becomes equal to ze!.
The states having maximal two- or three-partite entang
ment shared among the four parties on the other hand
exactly the states having zero genuine four-partite entan
ment ~i.e., the four concurrences are all equal to zero!.

Before developing the mathematical formalism, it shou
be noted that the study of states of four qubits is particula
interesting as the current experimental state of the art all
us to entangle four photons@10–12# or ions @13#. Further-
more SLOCC operations can relatively easily be imp
mented on photons, and it is therefore of interest to imp
ment the optimal SLOCC operations such as to yield a s
with maximal four-partite entanglement.

This paper is organized as follows. First we derive
simple way of determining whether two pure four-qub
states are connected by local unitary operations. Next s
advanced linear algebra is used to determine the orbits
erated by SLOCC operations. This leads to nine differ
families of states, corresponding to nine essentially differ
ways of entangling four qubits, although only one family
generic. This analysis gives rise to seven independent
tanglement monotones characterizing the four-partite
©2002 The American Physical Society12-1
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tanglement. Finally, the optimal SLOCC operations are
rived such as to maximize all these entanglement monoto

Let us now first consider the problem to determi
whether two pure four-qubit states are equivalent up to lo
unitary operations. Therefore, the following accident in L
group theory can be exploited:

SU~2! ^ SU~2!.SO~4!.

Here, SO~4! denotes the family of real orthogonal matric
with determinant equal to one. More specifically, it holds th
;U1 , U2PSU(2): T(U1^ U2)T†PSO(4) where

T5
1

& S 1 0 0 1

0 i i 0

0 21 1 0

i 0 0 2 i

D . ~1!

A pure state of four qubits is parametrized by a four ind
tensorc i i i 2i 3i 4

with i jP$1,2%. This tensor can be rewritten a

a 434 matrix c̃ by concatenating the indices (i 1 ,i 2) and
( i 3 ,i 4). Next we define the matrixR as

R5Tc̃T†. ~2!

It is then straightforward to show that a local unitary tran
formation uc8&5U1^ U2^ U3^ U4uc& results in a transfor-
mation R85O1RO2 with O1 , O2PSO(4) and O15
T(U1^ U2)T†, O25T(U3^ U4)TT†. A normal form under
local unitary operations can now be imposed as follow
make the~1, 1! entry of R real by multiplying the whole
matrix with the appropriate phase, and useO1 and O2 to
diagonalize the real part ofR through the unique real singu
lar value decomposition. This procedure eliminates all
degrees of freedom of the local unitary operations, and
states are therefore equivalent up to local unitary operat
if they have the same normal form.

Next we move to the central problem of this pap
namely, characterizing the local orbits generated by SLO
operations of the form

uc8&5A1^ A2^ A3^ A4uc& ~3!

with $Ai% full rank and therefore invertible 232 matrices.
There is no restriction in choosing$Ai%PSL(2,C), and then
a useful accident arises

SL~2,C! ^ SL~2,C!.SO~4,C!. ~4!

SO~4, C! denotes the noncompact group of complex ortho
nal matrices OTO5I 4 . Again it holds that ; A, B
PSL(2,C): T(A1^ A2)T†PSO(4,C) with T given in Eq.~1!,
and SLOCC-operations therefore correspond to left and r
multiplication of R ~2! with complex orthogonal matrices
The challenge is now to exploit the two times 12 degrees
freedom of these complex orthogonal matrices to bringA
into an unique normal form with maximal 8 real degrees
freedom left. This will be possible using some advanc
techniques of linear algebra.
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We will now state a technical theorem that is a gener
zation of the singular value decomposition to complex
thogonal matrices.

Theorem 1. Given a complexn3n matrix R, then there
always exist complex square orthogonal matricesO1 andO2
such thatR85O1RO2 is a unique direct sum of blocks of th
form

~1! m3m blocks of the form (l j I m1Sm) being symmet-
ric Jordan blocks~see, for example,@14# 4.4.9!, andl j is a
complex parameter~note that the casem51 corresponds to
the scalar case!;

~2! m3m blocks consisting of an upper left (m111)
3m1 part being the matrix obtained by taking the odd ro
and even columns of an (2m111)3(2m111) symmetric
Jordan block, and a lower right (m2m121)3(m2m1) part
being the transpose of the matrix obtained by taking the
rows and even columns ofa @2(m2m1)21#3@2(m2m1)
21# symmetric Jordan block.

Proof. Consider the 2n32n complex symmetric matrix

P5S 0 R

RT 0 D . ~5!

Due to Theorem 5 in Chap. XI of@15#, there exists a com-
plex orthogonalQ such thatP5QP8QT with P8 a direct
sum of symmetricm3m Jordan blocksJi with eigenvalue
l i . Next we observe that whenever@v1 ;v2# ~v1 andv2 both
haven rows such that@v1 ;v2# has 2n rows! is the eigens-
pace ofP corresponding to a symmetric Jordan blockJi ,
then @v1 ;2v2# is the eigenspace ofP corresponding to a
Jordan block2Ji . Due to the uniqueness of the Jordan c
nonical decomposition, these eigenspaces will be either
early independent~this holds, for example, for sure if th
corresponding eigenvalue is different from zero!, or equal to
each other~which implies that the corresponding eigenval
is equal to zero!. If the first case applies, bothv1 andv2 are
orthogonal matrices.

The second degenerated case however is more difficul
this case, it holds that@v1 ;v2#5@v1 ;2v2#Q for some or-
thogonalQ. Let us first calculate the standard nonsymmet
Jordan canonical formJ̃ of the symmetric Jordan block
with eigenvalue 0:J5U†J̃U with U unitary and symmetric.
If we define @x1 ;x2#5@v1 ;v2#U† and Q̃5U†QU, the
following identities hold:Q̃TASipQ̃5ASip , Q̃J̃52 J̃Q̃ and
@x1 ;x2#T@x1 ;x2#5ASip ~the matrixASip is defined as the ma
trix permuting all vectors@x1 ,x2¯xn# to @xn ,xn21¯x1#).
The conditions onQ̃ imply that Q̃ is equal to the matrix
Q̃i j 56(21)id i j . Therefore@x1 ;x2# is either of the form

S x1

x2
D5S a1 0 b1 0 c1 ¯

0 a2 0 b2 0 ¯

D ~6!

or

S x1

x2
D5S 0 a1 0 b1 0 ¯

a2 0 b2 0 c2 ¯

D . ~7!
2-2
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FOUR QUBITS CAN BE ENTANGLED IN NINE . . . PHYSICAL REVIEW A 65 052112
Due to the constraint@x1 ;x2#T@x1 ;x2#5ASip , the row di-
mension of@x1 ;x2# and therefore ofJ has to be odd, as
otherwise the upper rightmost entry cannot be equal to o
Retransforming to the original picture with the unitaryU, it
holds that this structure is preserved, and the eigensp
@v1 ;v2# is of a form ~6! or ~7!.

As the dimension of aJi giving rise to the degenerate
case has to be odd, it is compulsory that there is an e
number of degenerated cases~indeed, the nondegenera
cases give rise to two times a similar block and the to
dimension is even!. More precisely, for each@v1 ;v2# j of the
form ~6!, there has to exist a@v1 ;v2#k of the form~7! ~even-
tually of different dimension!. The eigenstructure of suc
pairs of degenerate cases can then be brought into the f

S a1
i b1

i
¯a1

k b1
k

¯ 0 0 ¯ 0 0 ¯

¯ 0 0 ¯ 0 0 ¯a2
i b2

i
¯ a2

k b2
k

¯

D
by right multiplication with a permutation matrixW. The
effect onJi andJk is to transform them as

WTS Ji 0

0 Jk
DW5S 0 0 Ki 0

0 0 0 Kk
T

Ki
T 0 0 0

0 Kk 0 0

D
whereKn represents the matrix obtained by taking the o
rows and even columns of the symmetric Jordan blockJn .

Collecting all the pieces, it is now easily verified that t
canonical form obtained is exactly of the form stated in
theorem. This completes the proof. j

Due to the equivalence of SL(2,C) ^ SL(2,C), and
SO~4,C!, the normal forms arising in the above lemma w
immediately yield a natural representative state for each c
of four-qubit states connected by SLOCC operations. T
normal form encodes the genuine non-local properties of
state, while the SLOCC operators needed to bring the s
into normal form characterize the local information. The fo
lowing classification is obtained:

Theorem 2. A pure state of four qubits can, up to perm
tations of the qubits, be transformed into one of the follo
ing nine families of states by determinant one SLOCC
erations~3!:

Gabcd5
a1d

2
~ u0000&1u1111&)1

a2d

2
~ u0011&1u1100&)

1
b1c

2
~ u0101&1u1010&)1

b2c

2
~ u0110&1u1001&),

Labc2
5

a1b

2
~ u0000&1u1111&)1

a2b

2
~ u0011&1u1100&)

1c~ u0101&1u1010&)1u0110&,

La2b2
5a~ u0000&1u1111&)1b~ u0101&1u1010&)1u0110&

1u0011&,
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5a~ u0000&1u1111&)1

a1b

2
~ u0101&1u1010&)

1
a2b

2
~ u0110&1u1001&)1

i

&
~ u0001&1u0010&

1u0111&1u1011&),

La4
5a~ u0000&1u0101&1u1010&1u1111&)1~ i u0001&

1u0110&2 i u1011&),

La203% 1̄
5a~ u0000&1u1111&)1~ u0011&1u0101&1u0110&),

L05% 3̄
5u0000&1u0101&1u1000&1u1110&,

L07% 1̄
5u0000&1u1011&1u1101&1u1110&,

L03% 1̄03% 1̄
5u0000&1u0111&.

The complex parametersa, b, c, dare the unique eigenvalue
of P ~5! with nonnegative real part, and the indicesLab¯ are
representative for the Jordan block structure ofP ~e.g.,
La203% 1̄

means that the eigenstructure ofP consists of two

232 Jordan blocks with eigenvalues a and2a, and a de-
generated pair of dimension, respectively, 3 and 1!.

Proof. If Theorem 1 is applied to a 434 R, it is easily
checked that 12 different families arise where a family
defined as having Jordan and degenerated Jordan bloc
specific dimension. Note however that the orthogonal ma
ces obtained by application of the theorem can have de
minant equal to21, while the SLOCC operations correspon
to an orthogonal matrix with determinant11; this is how-
ever not a problem as these operations correspond to SLO
operations followed by a permutation of the qubits (1↔2)
or (3↔4). One can proceed by checking that permutatio
of qubits (2↔3) or (1↔4) transform different families into
each other. It is indeed true thatR5J1(a) % J1(b) % K3% 1̄
transforms intoR85J2(a) % J2(b) if qubit 2 and 3 are per-
muted. This also happens in the caseJ1(a) % K5% 1̄→J4(a).
Moreover it can be shown thatJ1(a) % K3% 3̄ is equivalent to
J1(a) % J3(0). Therefore only nine essentially different no
mal forms are retained. j

A generic pure state of four qubits can always be tra
formed to theGabcd state. This state is peculiar in the sen
that all local-density operators, obtained by tracing out
parties but one, are proportional to the identity. As shown
@8#, this is the unique state~up to local unitary operations!
with this property of all states connected by SLOCC ope
tions. In the light of the results of Gisin and Bechman
Pasquinuca@9# and Nielsen and Nielsen and Kenpe abo
majorization @16,17#, we claim that this is the state with
maximal four-partite entanglement on the complete or
generated by SLOCC operations: the more entanglement
more local entropy. In a later section, this argument will
made hard by showing that a whole class of entanglem
monotones are indeed maximized for the locally stocha
state.
2-3
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It is interesting to note that the 3-tangle@2# of the mixed
states obtained by tracing out one party of thisGabcd state is
always equal to zero. Indeed, if the right-unitary matrixU

U5
1

A2~11ubu2!
S 1 b 1 2b

b 1 2b 1 D ,
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q58a2d218b2c224a2b224a2c224d2b224d2c2,

r 5~a22d2!~b22c2!,

is applied to the 832 matrix
S a1d 0 0 a2d 0 b1c b2c 0

0 b2c b1c 0 a2d 0 0 a1dD T
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being the square root of the density operator obtained
tracing out the first qubit, four three-qubitW states are ob-
tained. If we define the mixed 3-tangle as the convex roo
the square root of the three-qubit entanglement, this quan
is clearly equal to zero. Therefore the SLOCC operatio
maximizing the four-partite entanglement result in a loss
all true three-partite entanglement. This is reminiscent to
case of three qubits where the two-qubit state obtained
tracing out one particle of a GHZ state is separable.

Let us next discuss some specific examples. A comple
separable state belongs to the familyLabc2

with a5b5c

50. If only two qubits are entangled, an Einstein-Podols
Rosen~EPR! state arises belonging to the familyLa2b2

with

a5b50. A state consisting of two EPR pairs belongs
Gabcd with (a51;b5c5d50) or a5b5c5d, depending
on the permutation. The classL03% 1̄03% 1̄

consists of all three-
qubit GHZ states accompanied with a separable qubit, w
the three-qubitW state belongs to the familyLa203% 1̄

with

a50.
The four-qubituF4& state@18# belongs to the generic fam

ily, while the four qubitW state (u0001&1u0010&1u0100&
1u1000&)/2 belongs to the familyLab3

with a5b50. This
can be shown to have a mixed 3-tangle equal to zero, but
a concurrence of 1/2 when whatever two qubits are tra
out. On the contrary the stateLOr % 1̄

has all concurrence
equal to zero if two qubits are traced out. This state is co
pletely symmetric in the permutation of the qubits 2, 3, a
4. It has the property of having a mixed 3-tangle equal to
if particle 2, 3, or 4 is traced out. This can be proven
considering the 832 ‘‘square root’’

1

2 S 1 . . . . . . 1

. . . 1 . . 1 .D
T

.

Some straightforward calculations show that the aver
square root of the three-qubit entanglement of the vec
obtained by multiplying this matrix with whatever 23n
right-unitary matrix is equal to 1/2. Similar arguments sho
that only three-qubitW-type entanglement (t50) is retained
if the first qubit is traced out.
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The stateL05% 3̄
is somehow a hybrid of both the four

qubit W state andLO7% 1̄
. Again a mixed 3-tangle of 1/2 is

obtained if qubit 2, 3, or 4 is traced out, a mixed 3-tang
equal to zero if qubit 1 is traced out, but now the mixed st
obtained by tracing out qubit 1 and~3 or 4! has a concur-
rence equal to 1/2, while the other concurrences vanish.

Another interesting state belongs to the familyLa4
with

a50: uc&5(u0001&1u0110&1u1000&)/). Its mixed
3-tangle equals 2/3 in the case of tracing out qubit 1 or 4
vanishes otherwise. Moreover the concurrence vanishes
erywhere if two qubits are traced out except in the case
tracing out qubits 2 and 3, resulting in a concurrence of 2

After this zoological survey, let us next move on to th
topic of entanglement monotones. The complex eigenva
of P ~5!, given by6(a,b,c,d), are the only invariants unde
all determinant one SLOCC operations~note that an eigen-
value zero is associated to the degenerated Jordan block!. In
@8# it was proven that all real positive functions of the p
rameters of a pure state that are linearly homogeneousr
and remain invariant under determinant one SLOCC ope
tions, are entanglement monotones~in the case of mixed
states they are defined by the convex roof formalism!. There-
fore all real positive homogeneous functions
(a2,b2,c2,d2) are entanglement monotones, such as

Ma~c!5uaa1ba1ca1dau2/a.

Taking into account one degree of freedom due to the ph
this gives rise to a seven-parameter family of entanglem
monotones. All these entanglement monotones are m
mized by the operations making the density matrix loca
stochastic@8# ~meaning that the identity is obtained when a
qubits but one are traced out!. The optimal single-copy dis-
tillation procedure for a generic pure state is therefore
implement the SLOCC operations bringing it into its norm
form Gabcd. This is in complete accordance with the resu
of Nielsen on majorization@16#. Note that all the other nor-
mal forms can only be brought into the local stochastic n
mal form by a filtering procedure whose probability of su
cess tends to zero@8#.
2-4
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In summary, we have identified all different families
pure states of four qubits generated by SLOCC operatio
Only one family is generic, and all states in it can be ma
locally stochastic by SLOCC operations. The same SLO
. V

rin
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operations represent the optimal single-copy distillation p
tocol. The eight other families correspond to states hav
some kind of degenerated four-partite entanglement and
the four-partite generalizations of the three-partiteW state.
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