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Four qubits can be entangled in nine different ways
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We consider a single copy of a pure four-partite state of qubits and investigate its behavior under the action
of stochastic local quantum operations assisted by classical communi(BitoCO. This leads to a complete
classification of all different classes of pure states of four qubits. It is shown that there exist nine families of
states corresponding to nine different ways of entangling four qubits. The states in the generic family give rise
to Greenberger-Horne-Zeilinger-like entanglement. The other ones contain essentially two-or three-qubit en-
tanglement distributed among the four parties. The concept of concurrence and 3-tangle is generalized to the
case of mixed states of four qubits, giving rise to a seven-parameter family of entanglement monotones.
Finally, the SLOCC operations maximizing all these entanglement monotones are derived, yielding the optimal
single-copy distillation protocol.
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One of the open questions in the field of quantum infor-Bechmann-Pasquinuc®], we claim that these operations
mation theory is to understand the different ways in whichmaximize the true four-partite entanglement.
multipartite systems can be entangled. As the concept of en- Interestingly, we found that there exist eight families of
tanglement is related to the nonlocal properties of a statgure four-qubit states that cannot be brought into local sto-
local quantum operations cannot affect the intrinsic nature othastic form by finite SLOCC operations. These states do
entanglement. It is therefore natural to define equivalenclbave the peculiar property that they have the maximal
classes of states generated by the group of reversible stochasnount of two-and/or three-qubit entanglement shared be-
tic local quantum operations assisted by classical communitween all four parties. In some sense their entanglement is
cation (SLOCO operationg1,2]. In this paper we are con- maximally robust against the loss of one or two qubits.
cerned with SLOCC operations on one copy of a state, which An interesting feature about entanglement that emerges
means that we are considering actions under LOCC oper&ut of the results of this paper is the fact that a quantum state
tions on one copy of a state without imposing that they car!@s only a finite susceptibility for entanglement. This will be
be achieved with unit certainty. Two states belonging to théllustrateq by the fact that the operations maX|m|2|ng.the true
same class are able to perform the same quantum informiour-partite entanglement are precisely the operations that

tion processingQIP) tasks, although with a different prob- destroy all local cor_relatlonét.e., the local-density operators
ability. are made stochasji@and that also destroy the three-partite

In the case of a single copy of an entangled pure state ogggaﬂgrgeng:&’irfheot:tr%en'guba'ltrtenéaergﬁggné (ﬂcgrfoiaeti)s
two qubits, it is well known that it can be converted to the y 9 party q

. . The states having maximal two- or three-partite entangle-
singlet Ist;\te Ey SI.‘OCC ohperaatlzﬁS].hln the ﬁase of thres ment shared among the four parties on the other hand are
entangled qubits, it was s ov{{., X t'at each state can be exactly the states having zero genuine four-partite entangle-
converted by SLOCC operations either to the GHZ-stalgnentje. the four concurrences are all equal to zero

(1000 +[11D))/vV2, or to the W:state (001)+[010) Before developing the mathematical formalism, it should
+|100))/v3, leading to two inequivalent ways of entangling pe noted that the study of states of four qubits is particularly
three qubits. The GHZ state is generally considered as thiteresting as the current experimental state of the art allows
state with the genuine three-partite entanglement, while thgs to entangle four photorfd0-17 or ions[13]. Further-

W state has the peculiar property of having the maximal exmore SLOCC operations can relatively easily be imple-
pected amount of two-partite entanglement if one party isnented on photons, and it is therefore of interest to imple-
traced ouf2]. In this paper, we extend these results to thement the optimal SLOCC operations such as to yield a state
case of four qubits. Furthermore the widely celebrated enwith maximal four-partite entanglement.

tanglement measures concurreri@& and 3-tangle[2,7], This paper is organized as follows. First we derive a
characterizing the amount of genuine two-and three-qubit ensimple way of determining whether two pure four-qubit
tanglement, are generalized to the case of four qubits, givingtates are connected by local unitary operations. Next some
rise to a seven-parameter family of entanglement monotoneadvanced linear algebra is used to determine the orbits gen-
The SLOCC filtering operations maximizing all these en-erated by SLOCC operations. This leads to nine different
tanglement monotones are derived, and it is shown that thesamilies of states, corresponding to nine essentially different
are the unique operatiofi8] (up to local unitariesbringing  ways of entangling four qubits, although only one family is

a state into a locally stochastic forfne., bringing all local- generic. This analysis gives rise to seven independent en-
density operators equal to the identitiFollowing Gisin and  tanglement monotones characterizing the four-partite en-
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tanglement. Finally, the optimal SLOCC operations are de- We will now state a technical theorem that is a generali-

rived such as to maximize all these entanglement monotonegation of the singular value decomposition to complex or-
Let us now first consider the problem to determinethogonal matrices.

whether two pure four-qubit states are equivalent up to local Theorem 1 Given a complexaxn matrix R, then there

unitary operations. Therefore, the following accident in Lie-always exist complex square orthogonal matriegsand O,

group theory can be exploited: such thaR’=0;R 0, is a unique direct sum of blocks of the
form
SU(2)®SU(2)=S04). (1) mxm blocks of the form ;1 ,+Sy) being symmet-

. .. ric Jordan blockgsee, for exampld,14] 4.4.9, and\; is a
Here, S@4) denotes the family of real orthogonal matrices complex parametenote that the case=1 corresponds to

with determinant equal to one. More specifically, it holds thatt
he scalar case
. t
VU1, UpeSU(2): T(U1@U2) TH = SO(4) where (2) mxm blocks consisting of an upper lefimg+1)
1 0 0 1 X my part being the matrix obtained by taking the odd rows
and even columns of an (2 +1)X(2m;+1) symmetric

T= i U 1) Jordan block, and a lower righit(—m;— 1) X (m—m;,) part
710 -1 1 O being the transpose of the matrix obtained by taking the odd
i 0 0 —i rows and even columns @& [2(m—m)—1]X[2(m—my)

—1] symmetric Jordan block.
A pure state of four qubits is parametrized by a four index Proof. Consider the 8x2n complex symmetric matrix

tensorys; i, With i; e {1,2. This tensor can be rewritten as 0 R
a 4x4 matrix ¥ by concatenating the indices,(i,) and P=| - ) (5)
(i3,i4). Next we define the matriR as R" 0

R=TTpTT. 2) Due to Theorem 5 in Chap. Xl dfL5], there exists a com-

plex orthogonalQ such thatP=QP’'Q" with P’ a direct
It is then straightforward to show that a local unitary trans-sum of symmetrianX m Jordan blocks); with eigenvalue
formation |’ )=U,0U,®@U30U,|#) results in a transfor- \;. Next we observe that whenever; ;v,] (v, andv, both
mation R"=0,R0O, with O;, 0,eS0O(4) and O;= haven rows such thafv;v,] has 21 rows) is the eigens-
T(U;®U,)TT, 0,=T(U3@U,)"T". A normal form under pace ofP corresponding to a symmetric Jordan blakk
local unitary operations can now be imposed as followsthen[v,;—v,] is the eigenspace d? corresponding to a
make the(1, 1 entry of R real by multiplying the whole Jordan block—J;. Due to the uniqueness of the Jordan ca-
matrix with the appropriate phase, and U3¢ and O, to  nonical decomposition, these eigenspaces will be either lin-
diagonalize the real part & through the unique real singu- early independentthis holds, for example, for sure if the
lar value decomposition. This procedure eliminates all 13orresponding eigenvalue is different from Zemr equal to
degrees of freedom of the local unitary operations, and tweach othefwhich implies that the corresponding eigenvalue
states are therefore equivalent up to local unitary operationis equal to zerp If the first case applies, both, andv, are
if they have the same normal form. orthogonal matrices.

Next we move to the central problem of this paper, The second degenerated case however is more difficult. In
namely, characterizing the local orbits generated by SLOCGhis case, it holds thdtv;;v,]=[v;;—v,]Q for some or-
operations of the form thogonalQ. Let us first calculate the standard nonsymmetric
Jordan canonical form of the symmetric Jordan block
with eigenvalue 03=UJU with U unitary and symmetric.
with {A;} full rank and therefore invertible 22 matrices. If we define [X1:%2]=[v1;v,]UT and 0=uU'Qu, the
There is no _restrictic_)n in choosifd\;} e SL(2,), and then  following identities hOId:QTASipé:ASipi 0J=-J30 and
a useful accident arises [X1;%2]"[X1;%,]=As;p (the matrixAg;, is defined as the ma-

. . ) trix permuting all vectorg X4 ,Xs"*X,] t0 [X,,Xn—1°""X1])-
SL2L) 8 SL2L)=SA4L). @ The conditions onQ imply that Q is equal to the matrix
SO(4, C) denotes the noncompact group of complex orthogoQjj =+ (—1)'5;; . Therefore]x;;x,] is either of the form

nal matrices O'O=1,. Again it holds thatV A, B
e SL(20): T(A{®A,)TTe SO(4L) with T given in Eq.(1),

|4 ) =A1@ A0 Az Ayl ) )

Xl al 0 b]_ 0 Cl
and SLOCC-operations therefore correspond to left and right X, “lo a, 0 b, 0 (6)
multiplication of R (2) with complex orthogonal matrices.
The challenge is now to exploit the two times 12 degrees of
freedom of these complex orthogonal matrices to brng
into an unique normal form with maximal 8 real degrees of
freedom left. This will be possible using some advanced X1| _ 0 a 0 by O ) )
techniques of linear algebra. X2 a, 0 b, 0 ¢
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Due to the constrain@xl;xz]T[xl;xz]zAsip, the row di- a+b
mension of[x;;x,] and therefore of) has to be odd, as  Lab,=a(|0000 +[111D)+ ——(|010} +[1010)
otherwise the upper rightmost entry cannot be equal to one.

Retransforming to the original picture with the unitddy it a—b i

holds that this structure is preserved, and the eigenspace +T(|0110>+|1OO]>)+—(|000]>+|001Q
. H ‘/2

[vq;v,] is of a form(6) or (7).
As the dimension of a; giving rise to the degenerated +]0112)+|1011)

case has to be odd, it is compulsory that there is an even

number of degenerated caséadeed, the nondegenerate | —g(]0000 +|0101)+|1010+|1111)+ (i|0001)
cases give rise to two times a similar block and the total 4

dimension is even More precisely, for eacfw;v,]; of the +|0110 —i]1011),

form (6), there has to existf 1 ;v,], of the form(7) (even-

tually of different dimension The eigenstructure of such La,0,.7=2a(|0000 +[1113)+(|001)+|0103) +[0110),
pairs of degenerate cases can then be brought into the form -

i —= + + +
(a'l bll"'ali bli .0 0 0O O L05$3 /0000 +|0101) +|1000 +[1110),
00 -+ 0 0 --a, by~ a5 b - Lo, ;=10000 +|101)+|1103 +|1110),
by right multiplication with a permutation matri¥V. The L
effect onJ; andJy is to transform them as Losefosaal 0000 +[0113).
0 0 K, O The complex parametess b, c, dare the unique eigenvalues
- of P (5) with nonnegative real part, and the indideg;... are
A3 0y [0 0 0 Ky representative for the Jordan block structure Rf(e.g.,
0 J - KiT 0O 0O O Lazos@f means that the eigenstructure Bfconsists of two
0 K, 0 0O 2x2 Jordan blocks with eigenvalues a an@, and a de-

generated pair of dimension, respectively, 3 and 1

whereK , represents the matrix obtained by taking the odd Proof. If Theorem 1 is applied to aX4R, it is easily
Collecting all the pieces, it is now easily verified that the defined as having Jordan and degenerated Jordan blocks of

canonical form obtained is exactly of the form stated in theSPecific dimension. Note however that the orthogonal matri-

theorem. This completes the proof. m ces obtained by application of the theorem can have deter-
Due to the equivalence of SL@®SL(2C), and Minantequal to-1, while the SLOCC operations correspond

SO(4,C), the normal forms arising in the above lemma will to an orthogonal matrix with deter_mlnaﬁtl; this is how-
immediately yield a natural representative state for each clas@/er not a problem as these operations correspond to SLOCC
of four-qubit states connected by SLOCC operations. Th@perations followed by a permutation of the qubits+{2)
normal form encodes the genuine non-local properties of th@f (3—4). One can proceed by checking that permutations
state, while the SLOCC operators needed to bring the statef qubits (2—3) or (1—4) transform different families into
into normal form characterize the local information. The fol- €ach other. It is indeed true th&=J,(a)®J;(b) ®K3s1
lowing classification is obtained: transforms intoR" = J,(a) ® J,(b) if qubit 2 and 3 are per-
Theorem 2A pure state of four qubits can, up to permu- muted. This also happens in the cadgéa) ®Ksg1—Js(a).
tations of the qubits, be transformed into one of the follow-Moreover it can be shown thdf(a) ©K3.3 is equivalent to

ing nine families of states by determinant one SLOCC op-J1(@)®J3(0). Therefore only nine essentially different nor-
erations(3): mal forms are retained. [ |

A generic pure state of four qubits can always be trans-
a+d a—d formed to theG,,.q State. This state is peculiar in the sense
Gabed= 5 (/0000 +[1118) + —— (/0011 +[1100) that all local-density operators, obtained by tracing out all
parties but one, are proportional to the identity. As shown in
[8], this is the unique stat@ip to local unitary operations
with this property of all states connected by SLOCC opera-
tions. In the light of the results of Gisin and Bechmann-
a+b a—b Pasquinucd 9] and Nielsen and Nielsen and Kenpe about
LabcfT(|0000>+|1113>)+T(|001D+|110@) majorization[16,17, we claim that this is the state with
maximal four-partite entanglement on the complete orbit
+¢(]0102)+|1010) +]0110, generated by SLOCC operations: the more entanglement, the
more local entropy. In a later section, this argument will be
Lazbzza(|000(>+|1113>)+b(|010]>+|101Q)+|OllQ made hard by showing that a whole class of entanglement
monotones are indeed maximized for the locally stochastic
+]0011), state.

b+c b—c
+T(|0101)+|101Q)+T(|011(}+|100]>),
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It is interesting to note that the 3-tan of the mixed
is i sting diz] ix f= /—q+ [—qz—r,

states obtained by tracing out one party of Bis,.4 State is

always equal to zero. Indeed, if the right-unitary matdix q=8ad? + 8b2c2— 4a2b?— 4a2C?— 4d%h?— 4d%c?,

1 1 8 1 -B r:(az_dz)(bz_cz),
B V2(1+1BJ?) (ﬁ 1 - 1 ) is applied to the & 2 matrix

atd O 0 a-d 0O b+c b-c 0 \T
0 b—c b+c 0 a—d 0 0 a+d

being the square root of the density operator obtained by The statel,_ is somehow a hybrid of both the four-
tracing out the first qubit, four three-quidiY states are ob-  qypit W state and.o. — Again a mixed 3-tangle of 1/2 is
tained. If we define the mixed 3-tangle as the convex roof m:)btained it qubit 2 73@10r 4 is traced out. a mixed 3-tanale
the square root of the three-qubit entanglement, this quantit qu L ’ . 9
is clearly equal to zero. Therefore the SLOCC operation qugl to zero if qubﬂ lis traqed out, but now the mixed state
maximizing the four-partite entanglement result in a loss olObta'ned b% ttraclz}gg O#.tl qtuhblt Zthar(G or 4 has a con(.:uk:-
all true three-partite entanglement. This is reminiscent to théen:e ?ﬁua_ ? t,'W Hta ¢ ebol er Cotnc':JhrrePCnej van_ltsh '
case of three qubits where the two-qubit state obtained by nother interesting state belongs 1o the tamitly, \{V'
tracing out one particle of a GHZ state is separable. a=0: [¢)=(|0003)+|0110+[1000)/v3. Its mixed

Let us next discuss some specific examples. A completely-tangle equals 2/3 in the case of tracing out qubit 1 or 4 and
separable state belongs to the famu)fboz with a=b=c  Vanishes otherwise. Moreover the concurrence vanishes ev-
~0. If only two qubits are entangled, an Einstein-PodoIsky-eryWhere if two qubits are traced out except in the case of

- ; - tracing out qubits 2 and 3, resulting in a concurrence of 2/3.
Rosen(EPR) state arises belonging to the famil th . .
(EPR ! ging ¥,0, W After this zoological survey, let us next move on to the

a=b=0. A state consisting of two EPR pairs belongs t0ypic of entanglement monotones. The complex eigenvalues
Gapca With (a=1;b=c=d=0) ora=b=c=d, depending 4 p (5) given by=(a,b,c,d), are the only invariants under
on the permutation. The clags, o, . consists of all three- 5| geterminant one SLOCC operatiofiiote that an eigen-
qubit GHZ states accompanied with a separable qubit, whilgalue zero is associated to the degenerated Jordan hidcks
the three-qubitV state belongs to the family, o - with  [8] it was proven that all real positive functions of the pa-
a=0. rameters of a pure state that are linearly homogeneops in
The four-qubit®,) state[18] belongs to the generic fam- and remain invariant under determinant one SLOCC opera-
ily, while the four qubitW state (0001 +|0010+|0100  tions, are entanglement monoton@s the case of mixed
+]1000)/2 belongs to the family o, with a=b=0. This states they are defined by the convex roof formalisthere-

can be shown to have a mixed 3-tangle equal to zero, but hi@rze X alzl 2rea| positive homogeneous  functions  of
a concurrence of 1/2 when whatever two qubits are tracef@ +P¢",d°) are entanglement monotones, such as
out. On the contrary the staeo has all concurrences

equal to zero if two qubits are traced out. This state is com-
pletely symmetric in the permutation of the qubits 2, 3, and
4. It has the property of having a mixed 3-tangle equal to 1/2
if particle 2, 3, or 4 is traced out. This can be proven by
considering the & 2 “square root”

M, (¥)=|a*+b%+c*+d%|?.

Taking into account one degree of freedom due to the phase,
this gives rise to a seven-parameter family of entanglement
monotones. All these entanglement monotones are maxi-
1. . . . . .47 mized by the operations making the density matrix locally
1 1 - stochastid 8] (meaning that the identity is obtained when all

qubits but one are traced guihe optimal single-copy dis-

tillation procedure for a generic pure state is therefore to
Some straightforward calculations show that the averagemplement the SLOCC operations bringing it into its normal
square root of the three-qubit entanglement of the vectorform G,,.4. This is in complete accordance with the results
obtained by multiplying this matrix with whatever>x of Nielsen on majorizatiofl6]. Note that all the other nor-
right-unitary matrix is equal to 1/2. Similar arguments showmal forms can only be brought into the local stochastic nor-
that only three-qubitW-type entanglementr=0) is retained mal form by a filtering procedure whose probability of suc-
if the first qubit is traced out. cess tends to zel@].

1
2
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In summary, we have identified all different families of operations represent the optimal single-copy distillation pro-
pure states of four qubits generated by SLOCC operationgocol. The eight other families correspond to states having
Only one family is generic, and all states in it can be madesome kind of degenerated four-partite entanglement and are
locally stochastic by SLOCC operations. The same SLOCGhe four-partite generalizations of the three-panititestate.

[1] C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, and A. V.[10] S. Gasparoni, G. Weihs, A. Zeilinger, J. Pan, M. Daniell, Phys.

Thapliyal, Phys. Rev. 43, 012307(2001). Rev. Lett.86, 4435(2001).
[2] W. Dur, G. Vidal, and J. I. Cirac, Phys. Rev. 82, 062314  [11] Harald Weinfurter and Marek Zukowski, Phys. Rev. 64,
(2000. 010102(2001).
[3] H. K. Lo and S. Popescu, Phys. Rev68 02230(2001). [12] A. Lamas-Linares, J. C. Howell, and D. Bouwmeester, Nature
[4] A. Acin, E. Jane, W. Dy and G. Vidal, Phys. Rev. Let65, (London 412, 887 (2001).
4811(2000. [13] C. A. Sackettet al, Nature(Londor) 404, 256 (2000).
[5] F. Verstraete, J. Dehaene, and B. De Moor, Phys. R&S5A  [14] R. Horn and C. JohnsoMatrix Analysis(Cambridge Univer-
032308(2002. sity, Cambridge England, 1985

[6] W. Wootters, Phys. Rev. Let®0, 2245(1998.

[7] V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev6 &
052306(2000.

[8] F. \erstraete, J. Dehaene, and B. De Moor, e-print
quant-ph/0105090.

[9] N. Gisin and H. Bechmann-Pasquinucci, Phys. Let24§, 1
(1998.

[15] F. R. GantmacherThe Theory of MatricegChelsea, New
York, 1959.

[16] M. Nielsen, Phys. Rev. LetB3, 436(1999.

[17] M. Nielsen and J. Kempe, Phys. Rev. L&i6, 5184(2001).

[18] H. J. Briegel and R. Raussendorf, Phys. Rev. L8&. 910
(200).

052112-5



