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Semiclassical quantization for the spherically symmetric systems
under an Aharonov-Bohm magnetic flux

W. F. Kao* P. G. Luan, and D. H. Lih
Institute of Physics, Chiao Tung University, Hsin Chu 30043, Taiwan
(Received 1 January 2002; published 17 April 2002

The semiclassical quantization rule is derived for a system with a spherically symmetric pot&ndial
~r’(—2<wv<®) and an Aharonov-Bohm magnetic flux. Numerical results are presented and compared with
known results for models witlr= —1,0,2¢. It is shown that the results provided by our method are in good
agreement with previous results. One expects that the semiclassical quantization rule shown in this paper will
provide a good approximation for all principle quantum numbers, including the large principle quantum
numbemn>1. The rule is even derived in the large principal quantum number fignit. We also discuss the
power parameter dependence of the energy spectra pattern in this paper.
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[. INTRODUCTION of the approximated energy spectra for this set of parameters.
The distribution tendency of the energy spectra on different
In the past 20 years, the Aharonov-BoliB) effect, a  values of the parameter will also be given. By comparing
topological nonlocal physical effect at the quantum level, hagvith the known results, including the models with=
been of much interest in the studies of cosmic stfiig ~ —1,0,2, we find that our method agrees with these exact
(2+1)-dimensional gravity theorief2], and especially in results. In addition, for the exactly solvable model with
the context of anyofi3], which has shed light on the under- =, the difference between the exact and semiclassical re-
standing of the phenomenon of the fractional quantum Halpults will be shown to be very small from a numerical com-
effect [4—7], superconductivity7,8], repulsive Bose gases Putation. Therefore, we are confident in that our formulas
[9], and so forth. There are only a few models coupled tgwill also provide a good approximation for the two ranges of
different potentials along with an AB magnetic flux that canParameters mentioned above where —1,0,2¢. ,
be solved exactly. For the system with both an AB magnetic Th|s Paper 1S orgqmzed as'folllows. In Sec. Il, we wil
flux and a spherically symmetric potential of the fokfr) derive the sem_lclassmal quantization _rule of the_AB effect
—\r¥(—2<v<w), the solvable models known to us in- undgr a sp_herlcally symmetric potential. In particular, W'e
clude the cases with the parameter — 10,2 [10-12,18, will first derive the nonintegrable phase factor of the Green'’s

. ' function due to the AB effect in a spherically symmetric
Here) is a constant parameter. Note that when—1, itis gy gtem The corresponding radial Satirmer equation will

a system with both an AB magnetic flux and a Coulombgis, he derived accordingly. The semiclassical wave func-
potential ABC) [10-12. This system describes the relative jons will also be derived according to the semiclassical con-
motion of two charged particles, with one of them carryingsideration of the Bohr’s corresponding principle. Conse-
electric charge and magnetic flux-@,—®/Z), while the  quently, the quantization rule can thus be obtained by
other one carriesZq,®). Here Z(#0) is a nonvanishing comparing with the well-known WKB phase. We will also
real number. This system is of much interest in many differ-study the distribution dependence of energy spectra in vari-
ent areag12]. ous models in Sec. Ill. The effect of magnetic flux will also
In the past three decades, much progress has been madeyi# discussed and emphasized in this section. Finally, in Sec.
the semiclassical methods toward the understanding of thesg, some conclusions will be drawn. In order to provide a
systems. These kinds of semiclassical methods provide Uself-contained information, we will show the WKB matching

with a powerful approximation tool in different areas in or- condition of the semiclassical wave functions in the Appen-
der to extract useful information from various unsolved (ix.

problems including the quantization of the classical chaotic
systems[13], deformed atomic nuclei, asymmetric fission

nuclei[14], semiclassical quantum dots, and weak localiza-||. SEMICLASSICAL QUANTIZATION RULE OF THE AB

tion in mesoscopic Systenﬁﬂ‘.S]. In this paper, we will con- EFFECT WITH A SPHERICALLY SYMMETRIC

sider a generalized system with both an AB magnetic flux POTENTIAL

and a spherically symmetric potential of the form mentioned

above. The set of the parameteks #) will be discussed in The fixed-energy Green's functio®’(rr’;E) for a

the following ranges(i) (A<0,—2<w»<0) and (i) (»  charged particle with masa propagating fronr tor’ satis-
>0,r>0). We will derive a semiclassical quantization rule fies the Schrdinger equation
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[E—Ho(r,?—VHGO(r,r’;E)=b€(r—r’), (1)
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where the system Hamiltonian is given b= —#%2V2/2m  with integer valuesn corresponding the winding number.
+V(r) as usual. In the spherically symmetric cases, the anfhe magnetic interaction is therefore purely topological.
gular decomposition of the Green'’s function can be writtenTherefore the nonintegrable phase factor becomes
as o-ino(2nm) ®)
% |
GorrE)=> > GYr,r;E)Yu(6,0)Yi(6 '), With the help of the equality between the associated Leg-
1=0 k=—1 endre polynomialP“(z) and the Jacobi functiof{**)(z)
(@ [19,20, we find that

with Y the well-known spherical harmonics. As a result, the (I +k+1)

left- hand side of the E¢(1) can be brought to the following ~ P¥(cos#) = (—1)k—————
form: Fa+1

6  0\*
co%sin—) P*N(cosh).
2 I—k
9

—V(r)] Therefore the angular part of the Green’s function in the

#2 [ d?> 2d)\ 1(+1)4K?
a2 rar) ame

2mr expression(3) can be turned into the following form:

0 . * roor
XGl(r!r !E)Ylk(0!¢)Y|k(0 P ) (3) kzl Y|k(6,§D)Yﬁ((6,,@,)

For a charged particle in a magnetic field, the Green’s func-
tion G is related toG° by the following equation: 20+1 T(1—k+1)

& 4n T(+k+1)

\M_

)

G(rr"E)=G°(rr"E)ex;{i—efrA(F)-d?
n n hel

X PK(cos) Pf(cosg’)ek(¢—#")

with a globally path-dependent nonintegrable phase factor I
[17,18 given above. Here we have used the vector potential =>

A(r) to represent the magnetic field. For the Aharonov- k=-l

21+ 1 T(I—k+ DI +k+1)
4m I2(1+1)

Bohm magnetic flux under consideration, the vector potential 06 0 o 0\k
can be written as X | coSz €c0S—-Sin- sin
2 2 272
1 ~ " Al ’
5Boe,  (p<e) x PR (coso) P} (cost e (p—¢'). (10
Ax)= 1 €2, P . (5 In order to include the nonintegrable phase factor due to the
> ?eq,:me(p (p>e), AB effect, we will change the indekinto g related by the

definition| —k=q. As a result one can rewrite the Eg) as
where the two-dimensional radial length is defined p&s

o 2 [ 42
=x?+y? as usual. Moreoveéq, is the unit vector of coor- { E-> > |- ﬁ_(d_+ 2 i)
dinate ¢ and e is the radius of region where magnetic field d=0 k=== | 2midr2 rdr
exists. Hence the total magnetic flux is given dy= 7€?B. 5
Note that the associated magnetic field lines are confined (q+k)(q+k+1)% v GO (1 E)
inside a tube, with radiug, along thez axis. Along the 2mr? arkiiet o

region without magnetic field, the path-dependent noninte-

grable phase factor is given by 2(q+k)+1I'(g+1)I'(g+2k+1)

X

X 4 r?(q+k+1)
exg —i d\"o(N") |, 6
F{ MOJ'P o )} (6) 0 o ok
X COSECOSTSIHESIH?
where we have used the subscripto represent the path-
dependent nature of phase factor and we have denoted (k,k) (k,k) N aik (o=@’
P P X PY (cosg) PYY (cose’)el* (¢ ¢, (11)

o(N")=de/d\’. Also, ug=—2eghc is a dimensionless
number defined byp =4g. The minus sign is a matter of In addition, the nonintegrable phase in Ef§) can now be
convention. According to the discussion in REE8], only  included with the help of the Poisson’s summation formula
phase factors with closed-loop contour are considered wher@. 124,[21])

the description of electromagnetic phenomenon are com-
plete. Hence, we have

[’
[

2 f(k)=f_mdyn:2_m e2™if(y). (12)

1 )
n=—J d\"@(N\), (7) . .
2w Jp Therefore, the expressidil) can be written as
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©

{E—q}j,o dz 2

=—o

hZ
- 2m

2 2
d L2 d)+(q+z)(q+z+1)h v

dr2 rdr

2mr?

06 6 6 0 ZP(ZZ)
COSECOS7SII'I§SII’1? q

2(q+2)+1T'(g+1)I'(g+2z+1)
Am Ir%(q+z+1)

X Ggy(r,r";E)

X (cosf) P2 (cost’ ) exili (z— po) (@ + 2km— @)1, (13

where the superscript 0 @g+k has been suppressed to reflect the inclusion of the AB effect. The summation over all indices
k forcesz= uy modulo an arbitrary integer number. Therefore, one has

o #2[d?2 2 d +|k+ + K+ ol +1)%2
{E_ s __(_+__+<q| pol)(F K+ ol +1)
4=0 k== rdr

N ){[2(q+|k+ﬂo|)+1] I'(q+1)T(2]k+ ol +q+1)

2

—V(r)]

2mr

2m\ dr2
X G r,r’;E elk(e—¢")
ar el 4 T2([k+ ol +0+ 1) }

X (c0s6/2 cosd' /2 sinbl2 sine’/Z)‘””O‘PSH”OHH“OD(COSH)PSH“OHH”OD(COSQ’). (14

Note that the influence of the AB effect to the radial Green’swith the definitionsk=y2mE/#%? and the reduced potential
function is to replace the integer quantum numberith a  U(r)=2mV(r)/#2. For simplicity, we have writteriRy,(r)

fractional quantum numbeq+|k_+,u0|. Analogously the instead OfRy, q.(r) in which each set™{,q,k) denotes a
same procedure can be applied to the delta functiogyantum state. Hence the AB effect reflects itself by the cou-
8°(r—r') in the rhs of the Eq(1) with the help of the fol-  pjing to the angular momentum in radial Green's function,
lowing solid angle representation of tidefunction: which turns the integer quantum number into a fractional
one.
) - . To find the semiclassical quantization rule, let us first con-
(-0 ):20 kzl Yi(0,0)Yi(0",¢"). (15 sider the asymptotic form of the bound-state wave functions
of a charged particle moving in a spherically symmetric po-
tential of the formV(r)=Ar"(A<0,—2<w<0) under an
AB magnetic flux for the energy limiE—0. Due to the
Bohr corresponding principle, this stands for the semiclassi-
- cal approximation since there are infinitely densed energy
h ( = 2d ) levels nearE—0~. According to Eq.(17), the asymptotic

Therefore, for the set of the fixed quantum numbaersk)
one can show that the radial Green’s function satisfies

[E_

| —=t == : ; -
2m\ qr2 r dr wave equation reads, in tle—0" limit,

(q+[k+ pol) (a+ [k+ pol + 1)A? 2 d? . h7 y(y+1) B
+ o2 —-V(r) 2mdr2u7(r) AT +2m 2 u,(r)=0. (19
X Gy [k+ ol (F T SE)=8(r=r"). (16)  We can also perform the following transformations:
As a result, the corresponding radial wave equation reads 2m|\ | e
' p=r 2 ,u(r)=W(p). (20)
h? d? 12 y(y+1) .
%Fu'y(r)_F E-|V(N+5 2 uy(r)=o0, Consequently, E¢19) yields
(17) d2
W +1
- 7(”2 w=o, 21)
where we have sety=q+|k+ uo|, and u,(r)=rRy,[(r). dp p

Obviously, Ry, satisfies the spherical Bessel equation ) ) )
which can be further reduced with the help of the following

5 change of variables:
d
a2 rdr '

y(y+1)

k>=U(r)— " )]R;,y(r)=0

(18) 7= —> p(V+2)/2, W(p) — Zl/(v+2)v(z). (22)
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As a result, Eq(21) becomes v om T
__p—vi4 _ _ — -
u(r)~r co{ fo \/ -2 [E-V(D]=1175 4)

dzv+1dv+ 2y+1\21 o 23
dz2 zdz v+2 | 72 v A r[2m T T
~r sin fo E[E—V(I’)]—V]_E‘FZ

This is exactly the Bessel's equation of integral order

=(2y+1)/(v+2). The boundary conditio(BC) of the (30

functionu(r) in the Eq.(17) is simply u(0)=0. Therefore, L B .

the corresponding BC af(z) in the Eq.(23) is v(0)=0. v_vhereV(r)—)\r (A <0, 2<V<.0)' If we take _the integra-
tion upper bound as the classical turning point,, where

The Bessel function of the first kind is known to be the
solution of the Bessel’s equation. Therefore, by imposing thé/(r‘:)_ E , the phase ofi(r) can be shown to be the WKB

BC appropriately, one can show that phase(see the Appendix for detajls

L3
T2

v(z)=JV1(z) (24 u(re)oe sin 77} (31

is the solution of the Eq(23) with the prescribed boundary Consequently, from comparing the Eq80) and (31), one
condition. Therefore, the solution of the radial wave equatiorcan extract the following quantization condition
nearE—0 becomes

e B 2y+v+3
u(r) =W(p)=2"+*23, (2). (25) fo N2mMLE=V(N]=|n+ 5| 7
for n=0,1,23... . (32

From the asymptotic behavior of the Bessel function near

—0, or equivalentlyp—0 andz—0, one can show that Heren is the radial quantum number. Although E&O) is

obtained in the limiE— 0, or equivalently in the large quan-
tum number where>1, above result can still be extended
to all possible values af. In fact, the integral in Eq(32) can

) _ be written in an analytic form. Indeed, with the help of the
On the other hand, from the asymptotic behavior of thefollowing change of variables:

Bessel function approaching— o,

N
5 wr Er”=c58§, (33
J.(2)— ECOS{Z—T—Z>, (27)

one can rewrite the above integral as

forcx/Zm(E—V(r) =— %(;

l/(v+2)z(2'y+ 1)/(v+2) _ Z(2'y+2)/(v+ 2) _ r y+ 1.
(26)

u(r)~z

one can show that 1y

2

Varle] |

0
2 T T
1U(v+2
u(r)~z"r2 ECOS( 2= vy~ z) X co@£(sing) 2" 2dg. (34)
2 T In addition, with the help of the following formulésee, for
—vl4 v+2)/2
P CO{ V+2p( . T Z)' (28 example, Ref[23], p. 8:
oo 2 oo I'(p)I'(q)
Note that one can also compute the following integral, near co2i 1zgiP lzdz= ————— (35)
the limit E—0, and show that the following identities hold: 0 2I'(p+a)
one has
fr /Zm[E Vi (2m|)\|)1’7r 2
—1E—=V(r)]dr= redr Uy
2 2 re 2(E
oV f ° f J2ZmE- V(1) =——<—) J2m[E]
112 0 VA
_ 2miA| 2 p(v+2)02
#2 v+2 Tl - 1_ E
\/; v 2
2 X— (36)
_ (v+2)/2 (29) 4 1
v+2F ' Ir'l1- -
It follows that, in the limitE—0 andr—oo, Inserting the result of the E@36) into Eq.(32), one has
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ﬁ2 vl(v+2) hz d2 r\ 2 1\ 2
E—_ Az/(wz)(_) R S N BN B L
A 5m o o+ M) HES) e
p
o 2 | ) ) -
2(q+|k+ o) +v+3 “omP | YWY > Ta2\5 ] T2
X 2|V|\/;(n+ 5ord o
Xp2+V +2v /szo_ (42)
1 2vl(v+2) If we choosev’' = —2v/(2+v), the above equation reduces
F 1—; to
XT ) 37
g _5_5) W e g =y s u=0, 43
P “Np" ="y v=0,
2m ¢p2 2mp?

where the ranges of the parameters ar&<0,—2<v
<0,n,g=0,1,2 ..., and—»<k<w, For example, with the
potential of the formV(r)=—e?/r, one has

with the following relations linking different parameters:

, 2v
, (24w
2 ¢ 38)
nak 2[n+q+|k+ mo| + 112 i (v’)z
V 1

Here a=e?/fc denotes the fine structure constant. This

agrees with the exact result given in REE1]. We see that v'\?

the AB effect has changed the splitting of energy levels al- N= _E( ) ,

though the electron moves in the absence of the magnetic

field. In addition, when the flux is quantized, namelyrg!

=(2mhcle) X integer,|k+ uo| is an integer and hence the Y =—

spectrum is the same as the energy spectrum of the pure

hydrogen atom. o

To obtain the semiclassical quantization rule for all posi-Note that the structure of the Egd.7) and (43) is similar

tive powersy>0 of the potentiaM(r)=A\r?, one can per- €XCept the signs of the parameters. Accordingly, the eigen

form the fo”owing Change Of Variab'e: SO|U'[i0nS fOI’)\,V,E>O can be found frOM’,V’ ,E,<0. In-
serting the relation$44) into Eq. (37), one thus finds that

oo — . (44)

p=r*u(r)=pPu(p) (39
2\ vr+2) (q+[k+ o) 3

and can show that Eq17) becomes E=)\2’(”2)(%) 2v\/;(n+ %Jr 7

2 2

d_u:a2p2+ﬂ—2/aM+a2(2ﬂ+1_l) 1 3\ 72v0+2)

dr? dp? a r=+=

v 2 45
dv(p) 1 1 :
1+B—2la 2 _ | B2l
Xp dp +a B(B a)p v(p). F(;

(40)
with the ranges of the parametera,v,E>0,n,q

=0,1,2..., and —<k<o, As a realization, the three-
dimensional simple harmonic oscillator moving in the pres-
ence of the AB magnetic flux can be described by the model
with the parameters=2 and\ =mw?/2. Hence we can cal-
culate the energy eigenvalue from the E4p) that gives us
the following result:

Note that the different ranges>0 andv<<0 can be properly
adjusted when the parametersand 8 are chosen appropri-
ately[22]. In addition, if we set

—/. (41

En,q,k:[2n+(q+|k+ﬂo|)+%]ﬁw- (46)

the termduv/dp in Eq. (40) disappears. Inserting this back Another example is given by the model with an infinitely
into Eq.(39) and then Eq(17), one has deep potential
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w for r=a . g+ |k+ ol L 2 51)
V(r)=ar"= . 4 k<Nt ————>+
(r) 0 for r<a. “7 na 2

Similarly, Eq. (45) implies the following energy spectra:
ﬁ2772 2

2ma?

a+ [k+ wol

+
> 1

(48)

En,q,k:

Here we have replacech § y/2+ 3/4) with (n+ y/2+1) ac-
cording to the matching condition of the WKB approxima-
tion given in the Appendix. The analytic energy spectra of

this system are then given by the zeros of the modified

Bessel function in E¢3.28 of the Ref.[16]

@Ea>zo.

f
The numerical analysis shown in Figl (for g+ |k+ o
=2.5) indicates that the res#t8) is in good agreement with
the exact result49). In addition, Fig. 1b) exhibits the dif-
ference between the exact and approximate results.

|q+|k+}l,0|+l/2< (49)

Ill. THE » DEPENDENCE OF THE DISTRIBUTION OF
THE ENERGY SPECTRA

Note that Eq.(45) indicates that

q+|k+M0| 3 2vl(v+2)
—t

2 4 (50

En,q,koc n+

For example, for the model with an infinitely deep potential
(i.e., v—»), one has

05210

On the other hand, from E(q37) one has(when —2<w

<0)

2vl(v+2)

2(q+ K+ pol) + v+3
(q+|k+ po|) + v (52

2v+4

[+

In addition, we can calculate their derivatives with respect to
n and find that

En,q,kOC -

IEn,q.k
an

>0 (53
for all considered models. Thus one expects that the energy
levels E, 4 Will monotonically increase as increases
monotonically. Theg and|k+ | dependence of the energy
eigenvaluek, ,  can be found by the Hellmann-Feynman
formula (e.g.,[24])

<\Pn,q,k

where the Hamiltonian is given by

oM
aq

IEn gk B

a9

(54)

ﬁ2
AT +%

h? d?

~2m dr2+

><(q+|k"‘#«o|)(q+|k"‘,Uuo|‘HI-)

: (55)

r

Thus, we can derive the following results:
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+ mo/=0.5. The unit of the energy
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(n+0a+|k+pol+1)*

 Will monotonically

increase as any one of the quantum numbers in the set
(n,q,k) increases monotonically. Therefore the ground state

0. The details can be obtained by ConsequentlyE,, , , tends to increase and saturate gradually

analyzing the tendency d, 4« with respect to the change as anyone of the parameters in the setq(|k+ wol) in-

k=

q:

will be given byn

creases. It implies the bending curve as shown in Fig). 2
The unit of the energy eigenvalue in FigaRis chosen as

of the parametep.

mc2a?/2.
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The energy spectra for a charged particle moving in the
three-dimensional harmonic potential and an AB flux is
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This means tha,, ,  will linearly increase as any one of the (a) (b) . ) .. i
parameters in the seh(q,|k+ uo|) increases. The details is V() V(%)
shown in Fig. Zc) with the unit of energy given by w.
E
D. Distribution tendency of the energy spectra fory=« a /b
According to Eq.(48), we obtain the first- and second-
order derivatives with respect 8, q «
X X
a b
aEn,q,k w*h? (q+|k+MO|) . . -
= 5 + +1|>0, FIG. 4. WKB wave function matching boundary conditions for
an ma 2 three cases of potentials.
PEpqk  mHh? (d) Whenv=—1, its energy spectra have the properties,
I ma2>o’ (68)  9E/on:9Elaq=1:1,  JE/In:9Eld|k+pue/=1:1, and

JEI9q:9E/d|k+ ug|=1:1. They are also related to the
closeness of the classical orbits. For models with negative

272
IEngk _ THh N (q+ [k+ wol) +1}>0 power of v,(—2<v<0), the WKB approximation given by

aq 2ma? 2 the Eq.(37) implies that
PEn g mh? [ [y etk o) + vt 3) 22
— = ——>0, (69) 20+ 4
aq dma
d This hence implies that JE/dn:9E/9q=v+2,0E/
an an: JEI9|K+ wo|=v+2, and JE/9q:IEI3|K+ ol = v+ 2
252 are all equal. This relation does not hold for the exact result
9En,qk _m h (gt [k+ pol) +1/>0 for the same reason.
dlk+mol  2ma? 2 ’ (e) The increase in the intensity of the magnetic flux will
change the slope of the energy distribution in both the mod-
PE, o mh? els with —2<p<0 and the models with €@ v<<e. More
L 5= 5 (70 explicitly, when v<<2, increasing the flux will depress the
d|k+pmol®  4ma slope; whereas when>2, increasing the flux will lead to

. - the increase in the slope. In addition, the model with2 is

for the model withy—ce. Note thatEnqk will increase  aging in the sense that the slope of the energy distribution
monotonically when any one of the parameters in the el not pe affected by the change of the flux. For details, see
(n,,[K+pol) increases. The rate of increase is, howeveryne gifference shown in the Figs. 2 and 3. Note that
faster than the modeb=2 since the curve climbs up as |, s set as 0.5 and 12 in Figs. 2 and 3, respectively.
shown in Fig. 2d) with the unit chosen a&?m?/2ma’.

In summary, all these results imply the following rules for
a charged particle moving in the spherically symmetric po-
tential V(r) =Ar*(—2<v<e) and an AB magnetic flux. The semiclassical quantization rule is presented for a

(@) The energy spectra of the bound states depend on thgharged particle moving in a system with a general central
quantum numberr(,q,k) and increase monotonically as any force described by the potentisd(r)=\r”, with —2<v
one of the quantum numbers increases. <, and an AB magnetic flux. The formulas obtained in this

(b) Whenv=2, the energy spectia, , x depend linearly  paper are in good agreement with the energy levels with all
on any parameter in the set,,k); whenv>2, the energy  known exactly solvable models with some specific values of
curve bends up as any one of the quantum numbesK) . Furthermore, we have presented numerical resultsfor
increases. On the other hand, wher 2, the curve bends = which are also in good agreement with the exact result.
down as any one of the quantum numbers increases. Therefore, one expects that the semiclassical quantization

(© When v=2, we have JE/dn:dE/dq=2:1, rules will also be in good agreement with the models pre-
9E/on:9Eld|k+ uo|=2:1, and 9E/3q:9E/d|k+ uol=1:1,  scribed by a large ranges ofeven the results shown in this
which are related to the closeness of the classical orbits anghper are more reliable for the case with large principle
whether the model is exactly solvable or not. For the casguantum numben.
with positive power ofv,

EN[(” (@t lk+ud) 3

IV. CONCLUSION

2vl(v+2) APPENDIX

2 4

The WKB wave function for a charged particle moving in
a smooth potential well near the neighborhooda(x>a),
Although we still have the same ratio of derivatives, thewherex=a,b are the intersection points of the horizonal line
above relation does not hold for the exact solution. y=E and the curvey=V(x) as shown in Fig. &), can be

052108-9
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expressed in terms of the classical momenfuas (see, for 1
example, Ref[24] for detail9 é pdx=|n+ > h,n=0,1,2,3.... (A4)
W (x) = Esin EJXpdx+ T Esina(x) (A1) For the half-infinite potential well as shown in Fighb4, one
Vp o 1f)a 4] \p ' has
whereC is constant. Analogously, near the neighborhaod - 3 -
~b (X<b) we have de— n-+ Z h,n=0,1,2,3.... (AB)

C" |1y®b ™ " Analogously, the matching rule of the wave functions gives
Y(x)= ﬁs'{gﬂ pdx+ 7= \/_BS'”B(X)' (A2) " the quantization rule for the system with an infinitely deep
square-well potential as illustrated in Figich Indeed, one
These two wave functions must be consistent. This meandas
that near the neighborhoodsb of X,

1 (b - § pdx=(n+1)h,n=0,1,2,3.... (AB)
a(X)+B(X)= %f pdx+ §=(n+ 1)m,n=0,1,2,3....
2 (A3) The argument leading to the same result for a more general
condition beyond the above examples can be found with the
Or equivalently, help of the Maslov index shown in R5].
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