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Pseudopotential approximation in a harmonic trap
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~Received 6 December 2001; published 15 April 2002!

We construct the pseudopotential for two particles subjected to an isotropic harmonic trapping potential
while interacting through a hard-sphere potential, and demonstrate that this trap pseudopotential reduces to the
standard ‘‘zero range’’ interaction when the ratio of the hard-sphere diameter and the oscillator length is small.
We also show that the standard approximation, even when applied to tight traps, is surprisingly accurate.
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The pseudopotential method@1,2# is an important tool for
the study of interacting particles. The key idea is to repla
the actual, possibly complicated interaction potential by
much simpler pseudopotential operator, such that the e
energy eigenvalues of the interacting system are reprodu
at least to the lowest few orders in a suitable expansion
rameter. This approach now is of central importance for
theoretical description of Bose-Einstein condensates@3–5#,
where the approximate pseudopotential mimics the real t
body interaction solely through itss-wave scattering length
However, the condensates are subjected to a trapping po
tial, and one expects some influence of this external poten
on the pseudopotential at least with tight traps, i.e., when
distance over which the trapping potential varies sign
cantly becomes comparable to the scattering length. In
paper we investigate the influence of the trap in detail fo
hard-sphere interaction potential, and quantify the accur
of the standard pseudopotential approximation in an isotro
harmonic trap.

Let us briefly recapitulate the essence of the pseudopo
tial approach@2# for two identical particles of massm which
interact, in the absence of an additional external trapp
potential, via a finite-range potentialV(urWu) without two-
body bound states, so that the Hamiltonian is given by

H~rW1 ,rW2!52
\2

2m
~¹1

21¹2
2!1V~ urW22rW1u!. ~1!

Introducing center-of-mass coordinatesRW 5 1
2 (rW11rW2) and

relative coordinatesrW5rW22rW1, and separating off the fre
center-of-mass motion, the eigenvalue equation for the r
tive motion becomes

S 2
\2

2m
¹21V~ urWu! Dw~rW !5Ew~rW !, ~2!

wherem5m/2 is the reduced mass of the two particles. Wr
ing E5(\k)2/(2m), and denoting the finite range of the in
teraction potential asa, one encounters the Helmholtz equ
tion in the ‘‘outer’’ range,

~¹21k2!w~rW !50 for r .a. ~3!

This equation is solved by the familiar linear combination
spherical Bessel functionsj l(kr) and spherical Neuman
functionsnl(kr) @6#,
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w~rW !5(
l 50

`

(
m52 l

l

Al ,m@ j l~kr !2tan~h l !nl~kr !#Yl ,m~q,w!

~4!

for r .a. Here,h l5h l(k) is the phase shift inflicted by the
potential on thel th partial wave. Restricting oneself to low
energies,k→0, so that onlys-wave scattering matters, thi
simplifies to

w~rW !5
A0,0

A4p
Fsin~kr !

kr
1tan~h0!

cos~kr !

kr G ~5!

for r .a, where we have insertedj 0(kr)5sin(kr)/(kr) and
n0(kr)52cos(kr)/(kr).

The decisive step of the pseudopotential method@1,2#
now consists of taking this ‘‘outer’’ wave function~5! for all
r, even though the actual wave function is affected by
potential, and therefore differs from the function~5! for
r ,a. When extending the outer function~5! to r ,a, the
term proportional to tan(h0), that is, the term which actually
‘‘feels’’ the potential, becomes singular. It is this singulari
which gives rise to the pseudopotential: Since the outer fu
tion solves the Helmholtz equation for allr .0, andr 50 is
dealt with by the relation¹2(1/r )524pd(rW), the extended
wave function obeys the operator equation

~¹21k2!w~rW !524p
A0,0

A4p

tan@h0~k!#

k
d~rW !. ~6!

The further observation that Eq.~5! implies

A0,0

A4p
5

]

]r
@rw~rW !#U

r→0

~7!

allows one to eliminate the amplitudeA0,0 from Eq. ~6! by
reintroducing the wave function itself, leading to

~¹21k2!w~rW !524p
tan@h0~k!#

k
d~rW !

]

]r
@rw~rW !#U

r→0

;

~8!

this equation now holds for allr. In effect, the actual inter-
action potential has thus been replaced, fors-wave scattering,
by the pseudopotential operator
©2002 The American Physical Society02-1
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Upp~rW !52
4p\2

m

tan@h0~k!#

k
d~rW !

]

]r
r , ~9!

where we have reinserted the actual particle massm52m. In
the special case of a hard-sphere interaction of diametera,

V~ urWu!5H 0 for urWu.a

` for urWu<a,
~10!

one hash0(k)52ka @6#. Therefore, neglecting terms of th
orderO@(ka)3#, and observing that the differential operat
(]/]r )r may be replaced by unity when acting on functio
which are well behaved atr 50 @1,2#, one obtains from Eq
~9! the commonly quoted effective ‘‘zero range’’ interactio
@5#

Upp~rW !5
4pa\2

m
d~rW !. ~11!

It should be noted, however, that this delta potential does
lead to a proper self-adjoint Hamiltonian@7#; it is rather to be
used as a starting point for perturbative analysis. In the c
of a general interaction potential, the hard-sphere diameta
has to be replaced by the correspondings-wave scattering
length.

When considering, instead of free particles which sca
from each other, cold atoms confined by some trapping
tential, the above reasoning is in jeopardy. The trapped t
particle states then do no longer conform to the scatte
solutions~4! with a continuous wave-numberk, but rather to
bound states with discrete energyE. Therefore, the prope
pseudopotential for trapped particles has to be constru
from the two-particle eigenstates provided by the trapp
potential, and some effect of the trap should make itself
when the two relevant length scales, the interaction ranga
and the trap sizeL, are of the same order of magnitude.
order to assess the accuracy of the standard approxim
~11! in the presence of a trapping potential, and to study
influence of the trap on the proper pseudopotential, we n
treat two particles stored in an isotropic harmonic trap w
angular frequencyv. The particles are assumed to intera
through the hard-sphere potential~10!, and thus are de
scribed by the Hamiltonian

H52
\2

2m
~¹1

21¹2
2!1

1

2
mv2~rW1

21rW2
2!1V~ urW22rW1u!.

~12!

Again introducing center-of-mass coordinatesRW and relative
coordinatesrW, this Hamiltonian takes the form

H52
\2

2M
¹RW

2
1

1

2
Mv2RW 22

\2

2m
¹ rW

2
1

1

2
mv2rW21V~ urWu!,

~13!

with the reduced massm5m/2, and the total massM52m.
Therefore, writing the wave function as a productc(rW1 ,rW2)
5w(rW)x(RW ), the center-of-mass motion separates from
05210
ot

se

r
o-
o-
g

ed
g
lt

ion
e
w

t

e

relative motion even in the presence of the harmonic tr
ping potential. The Schro¨dinger equation for the center-of
mass wave functionx(RW ) simply is an equation for an un
perturbed harmonic oscillator with particle massM, whereas
the relative motion is governed by

S 2
\2

2m
¹21

1

2
mv2rW21V~ urWu! Dw~rW !5Ew~rW !. ~14!

Employing the dimensionless radial coordinatej5r /L,
where

L5A\/~mv! ~15!

is the ‘‘oscillator length’’ associated with the reduced ma
m, and again focusing ons waves~states with relative angu
lar momentuml 50) only, the ansatzw(jW )5u(j)/j imme-
diately leads to the radial equation

S 2
1

2

d2

dj2
1

1

2
j22« D u~j!50 for j.a, ~16!

with a5a/L, and scaled energy«5E/(\v). The hard-
sphere interaction then translates into the boundary-cond
u(j)50 for j<a.

A set of fundamental solutions to this equation is provid
by the parabolic cylinder functionsU(2«,A2j) and
V(2«,A2j), using the notation of Ref.@8#. Since the latter
function increases exponentially with increasing particle d
tancej @8#, it has to be discarded; the relative wave functi
thus has to be constructed from the former solution alo
Therefore, the hard-sphere boundary condition leads to
quantization condition

U~2«n ,A2a!50 ~17!

for the discrete energies«n of the relative motion, and the
corresponding eigenfunctions take the form

wn~jW !5
Nn

j
U~2«n ,A2j! for j.a, ~18!

with normalization constantsNn . Figure 1 shows a plot of
the lowest three eigenvalues«n , as functions of the scaled
hard-sphere diametera. We remark that only for particula
numerical values of «n , namely, when «n5n11/2
(n50,1,2, . . . ,! coincides with an eigenvalue of a usual on
dimensional harmonic oscillator, the above solutions beco
elementary and can also be obtained from a Sommer
polynomial ansatz@9#.

We now exploit the knowledge of the exact relative wa
functions ~18! for constructing the associated pseudopot
tial. To this end, we again extend these functions to the
gime j,a. Since the parabolic cylinder functionU(2«,x)
can be represented in the form@8#

U~2«,x!5cos~pb«!Y1~2«,x!2sin~pb«!Y2~2«,x!,

~19!

with b«51/42«/2, and~see Ref.@8# for higher-order terms!
2-2
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PSEUDOPOTENTIAL APPROXIMATION IN A HARMONIC TRAP PHYSICAL REVIEW A65 052102
Y1~2«,x!5
1

Ap

G~1/41«/2!

21/42«/2 F12«
x2

2
1O~x4!G ~20!

and

Y2~2«,x!5
1

Ap

G~3/41«/2!

221/42«/2 Fx2«
x3

3!
1O~x5!G , ~21!

the behavior of the relative wave functions for small d
tancesj is given by

wn~jW !5AnF12cot~pb«n
!
G~1/41«n/2!

G~3/41«n/2!

1

2jG1O~j!.

~22!

In analogy to the previous Eq.~7!, the overall amplitudesAn
are related to the wave functions at smallj through

An52Nn sin~pb«n
!
G~3/41«n/2!

223/42«n/2Ap
5

]

]j
@jwn~jW !#U

j→0

.

~23!

Thus, the wave functions~18! exhibit the same type of sin
gularity for j→0 as their free-space counterpart~5!. This
fact, which stems from the occurrence of the Laplacian
both Eq.~2! for the free case, and Eq.~14! for the trapped
motion, now allows us to directly determine the desired~di-
mensionless! trap pseudopotential

ypp~jW !5pcot~pb«n
!
G~1/41«n/2!

G~3/41«n/2!
d~jW !

]

]j
j. ~24!

Taken in this form, the usefulness of the pseudopotentia
limited: It depends explicitly on the still unknown eigenva
ues«n , so that the corresponding Schro¨dinger equation has
to be solved self-consistently. However, the quantizat
condition~17! and the representations~20! and~21! combine
to yield

FIG. 1. Lowest three exacts-wave energy eigenvalues«n

5En /(\v) ~full lines! compared to the first-order perturbativ
pseudopotential approximations~29! ~dashed lines!, as functions of
the dimensionless hard-sphere diametera5a/L. The full circles
indicate parameters for which the exact solutions~18! become el-
ementary@9#.
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cot~pb«n
!5

Y2~2«n ,A2a!

Y1~2«n ,A2a!

5
G~3/41«n/2!

G~1/41«n/2! F2a1
4

3
«na31O~a5!G ,

~25!

so that, to the lowest order ina5a/L, the s-wave pseudo-
potential~24! pertaining to the harmonic trap is independe
of the energy«n:

ypp~jW !52pad~jW !
]

]j
j1O~a3!. ~26!

Moreover, replacing the dimensionless variablej by the
physical distancer 5Lj, re-installing the unit of energy\v,
and omitting terms of orderO@(a/L)3#, we find

\vypp~rW !5
2pa\2

m
d~rW !

]

]r
r . ~27!

Hence, recallingm5m/2, to leading order the proper tra
pseudopotential~24! equals its free-space precursor~11!. As
seen in the derivation, this is a consequence of the fact th
both cases the leading-order term of the pseudopotenti
determined by the singular solution of the Laplace equat
¹2w50.

Writing the exact relatives-wave eigenfunctions for non
interacting, harmonically trapped particles in terms of L
guerre polynomialsLn

(1/2)(j2) @10#,

wn~jW !5
1

A2p3/4
@Ln

(1/2)~0!#21/2e2j2/2Ln
(1/2)~j2!, ~28!

corresponding to scaled energy eigenvalues«n52n13/2
with n50,1,2, . . . , theapproximate pseudopotential~27! al-
lows one to calculate the effect of the hard-sphere interac
perturbatively; to lowest order ina, one immediately finds
the energy shifts

D«n5
a

Ap
Ln

(1/2)~0!5
a

Ap

~2n11!!

~2nn! !2
. ~29!

In particular,D«05a/Ap for the ground-staten50. As wit-
nessed by Fig. 1, this approximation, which is tantamoun
simply employing the familiar free-space pseudopoten
~11!, yields a quite good description of the true eigenvalu
The error is only of orderO(a3), so that even fora50.2,
that is, when the hard-sphere diametera already amounts to
20% of the oscillator lengthL, the actual ground-state shift i
underestimated by less than 1%. The relative error of
lowest-order pseudopotential approximation to the grou
state energy«0 is depicted in detail in Fig. 2, as a functio
of a.

If the pseudopotential~27! is taken at face value, i.e., if i
is not taken as a substitute for a hard-sphere potential
employed as the starting point for a perturbative calculati
but if instead the Schro¨dinger equation for the relative mo
2-3
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MARTIN BLOCK AND MARTIN HOLTHAUS PHYSICAL REVIEW A 65 052102
tion is solvedexactlywith this potential, an interesting ob
servation is made. In that case, the quantization condi
takes the form@10#

G~3/42«n/2!

G~1/42«n/2!
5

1

a
, ~30!

to be contrasted to the condition~17! or ~25! for the hard-
sphere interaction eigenvalues. Under the assumption th
small diametera leads to an energy that differs only by
small amountD«n from an unperturbed eigenvalue, so th
«n52n13/21D«n , the Gamma function in the numerato
of Eq. ~30! is evaluated close to a pole,

GS 2n2
D«n

2 D'
~21!n11

n!

2

D«n
, ~31!

whereas the denominator is smooth and can therefore be
proximated by neglecting the shiftD«n , yielding

GS 2n2
1

2D5~21!n11
22n11n!Ap

~2n11!!
. ~32!

With these approximations, which capture those states w
evolve continuously witha from the unperturbed states~28!,
the exact quantization condition~30! for the pseudopotentia
~27! reduces precisely to the result~29! of the perturbative
calculation, as it should. There is, however, an additio
possibility to satisfy Eq.~30!: Since, by Stirling’s formula,
G(z11/2)/G(z);Az for large,positive z, the condition~30!
also admits a solution« that decreases without bound whe
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trapping potential and interact through a hard-sphere po
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