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Pseudopotential approximation in a harmonic trap
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We construct the pseudopotential for two particles subjected to an isotropic harmonic trapping potential
while interacting through a hard-sphere potential, and demonstrate that this trap pseudopotential reduces to the
standard “zero range” interaction when the ratio of the hard-sphere diameter and the oscillator length is small.
We also show that the standard approximation, even when applied to tight traps, is surprisingly accurate.
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The pseudopotential methdd,2] is an important tool for oz
the study of interacting particles. The key idea is to replace <p(r):E 2 A mli(kr)—tan(7)n(kr) Y, n(d, @)
the actual, possibly complicated interaction potential by a 1=0 m=-1
much simpler pseudopotential operator, such that the exact @

energy eigenvalues of the interacting system are reproduc
at least to the lowest few orders in a suitable expansion p yotential on thdth partial wave. Restricting oneself to low

rameter. This apprqach NOw 1S Of. cent_ral importance for th nergiesk—0, so that onlys-wave scattering matters, this
theoretical description of Bose-Einstein condensaBesh)|, LS
OSImp|IerS to

where the approximate pseudopotential mimics the real two-
body interaction solely through itswave scattering length. .
However, the condensates are subjected to a trapping poten- <P(9 - ﬂ M ta no)cos{kr)
tial, and one expects some influence of this external potential Vaml kr kr
on the pseudopotential at least with tight traps, i.e., when the
distance over which the trapping potential varies signifi-for r>a, where we have insertef,(kr)=sin(kr)/(kr) and
cantly becomes comparable to the scattering length. In thigg(kr) = —coskr)/(kr).
paper we investigate the influence of the trap in detail fora The decisive step of the pseudopotential methb®]
hard-sphere interaction potential, and quantify the accuracgow consists of taking this “outer” wave functiofd) for all
of the standard pseudopotential approximation in an isotropi¢, even though the actual wave function is affected by the
harmonic trap. potential, and therefore differs from the functigb) for

Let us briefly recapitulate the essence of the pseudopotemi<<a. When extending the outer functia®) to r<a, the
tial approacH 2] for two identical particles of masmwhich  term proportional to tanfy), that is, the term which actually
interact, in the absence of an additional external trappingfeels” the potential, becomes singular. It is this singularity
potential, via a finite-range potential(|r|) without two- vyhich gives rise to the pseudopqtential: Since the outer func-
body bound states, so that the Hamiltonian is given by ~tion solves the Helmholtz equation for al-0, andr =0 is
dealt with by the relatio’V2(1/r)= —4748(r), the extended
wave function obeys the operator equation

qgr r>a. Here, »,= (k) is the phase shift inflicted by the

©)

N h? I
H(rl,rz)z—ﬁ(V§+V§)+V(|r2—rl|). (1)
- .. - Ao tarf no(k)] _ -
Introducing center-of-mass coordinatés=3(r,+r,) and (V2+k2)¢(r):_477m—k ar). (6
relative coordinates =r,—r,, and separating off the free

center-of-mass motion, the eigenvalue equation for the relarhe further observation that E¢) implies
tive motion becomes

AO,O

h? - - - —_— = r
- 5 VAT () =Eel), @ Jam art" 0] "

r—0

whereu=m/2 is the reduced mass of the two particles. Writ-2/lows one to eliminate the amplitudi, , from Eq. (6) by
ing E= (4k)2/(21), and denoting the finite range of the in- reintroducing the wave function itself, leading to

teraction potential ag, one encounters the Helmholtz equa- tar] 7o(K)] p
tion in the “outer” range, (V2+k2)¢(;): iy 7o 5(F)E[F<P(F)] :

N k r—0
(V2+k?o(r)=0 for r>a. ®) (8)

This equation is solved by the familiar linear combination ofthis equation now holds for atl. In effect, the actual inter-
spherical Bessel functiong(kr) and spherical Neumann action potential has thus been replaced sferave scattering,
functionsn,(kr) [6], by the pseudopotential operator
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- 47h? tar] 70(K)] . d relative motion even in the presence of the harmonic trap-
Uper)=— (f)gr, (9)  ping potential. The Schrdinger equation for the center-of-
mass wave functiorx(ﬁ) simply is an equation for an un-

where we have reinserted the actual particle mas®2u. In  perturbed harmonic oscillator with particle madswhereas
the special case of a hard-sphere interaction of diansgter the relative motion is governed by

N 2
0 for |r[>a 19 —j—v2+ %Mw2FZ+V(|F|) o(N=Eo(r). (14)
w for |r|=<a, 'u

m k

V(Ir)=

] Employing the dimensionless radial coordinafe=r/L,
one hasny(k) = —ka [6]. Therefore, neglecting terms of the \yhere

orderO[ (ka)®], and observing that the differential operator

(alar)r may be replaced by unity when acting on functions L=VAl(uw) (15
which are well behaved at=0 [1,2], one obtains from Eq.

(9) the Commomy quoted effective “zero range" interaction is the “oscillator Iength” associated with the reduced mass
[5] ., and again focusing oswaves(states with relative angu-
lar momentuml =0) only, the ansatz(&)=u(&)/& imme-
diately leads to the radial equation

1% 1
It should be noted, however, that this delta potential does not ( T242 + &= 8) u§)=0 for &>a, (16
lead to a proper self-adjoint Hamiltoni@r]; it is rather to be

used as a starting point for perturbative analysis. In the casgjth a=a/L, and scaled energg=E/(fiw). The hard-
of a general interaction potential, the hard-sphere dianzeter sphere interaction then translates into the boundary-condition
has to be replaced by the correspondsgave scattering y(£)=0 for é<a.

length. S _ ) A set of fundamental solutions to this equation is provided
When considering, instead of free particles which scatteby the parabolic cylinder functionsU(—e,v2¢) and

from each other, cold atoms confined by some trapping pOV(—s,\/Eg), using the notation of Ref8]. Since the latter

tential, the above reasoning is in jeopardy. The trapped tWog,,(ion increases exponentially with increasing particle dis-

palrtltc_:le stjltes:ﬂt]hen d?. no longer confortr)’r; tg tthe ticatttermganceg [8], it has to be discarded; the relative wave function
solutions(4) with a continuous wave-numbér but rather to thus has to be constructed from the former solution alone.

bound states _W'th discrete ener&y Therefore, the proper Therefore, the hard-sphere boundary condition leads to the
pseudopotential for trapped particles has to be constructe antization condition

from the two-particle eigenstates provided by the trapping

potential, and some effect of the trap should make itself felt U(—g,,v2a)=0 (17)
when the two relevant length scales, the interaction range

and the trap sizé, are of the same order of magnitude. In for the discrete energies, of the relative motion, and the
order to assess the accuracy of the standard approximati@orresponding eigenfunctions take the form

(11) in the presence of a trapping potential, and to study the N

influence of the trap on the proper pseudopotential, we now Zy_ np

treat two particles stored in an isotropic harmonic trap with enl£)= ¢ U(—ennf26) for ¢>a, (18
angular frequencyn. The particles are assumed to interact | o )

through the hard-sphere potentiél0), and thus are de- with normalization constanthl,. Figure 1 shows a plot of

2

U (1) = 8(r). (11)

m

scribed by the Hamiltonian the lowest three eigenvalues,, as functions of the scaled
hard-sphere diameter. We remark that only for particular
2 DT T S I numerical values ofe,, namely, when g,=n+1/2
H=— 5 (Vi+ V) + 5me(ri+13) +V([rz=ryf). (n=0,1,2 ... ) coincides with an eigenvalue of a usual one-

(12) dimensional harmonic oscillator, the above solutions become
elementary and can also be obtained from a Sommerfeld

Again introducing center-of-mass coordinaRsind relative ~ Polynomial ansat£9]. _
coordinates . this Hamiltonian takes the form We now exploit the knowledge of the exact relative wave

functions (18) for constructing the associated pseudopoten-
2 1 B2 1 R R tial. To this end, we again extend these functions to the re-

H=-— mv§+ SM w?’R?— 2—V§+ Eﬂw2r2+V(|r|), gime é<a. Since the parabolic cylinder functidd(— €,x)

m (13) can be represented in the fofi@

U(_S,X):Coiﬂﬁa)Yl(_S,X)_Sir(’ﬂ'ﬂa)Yz(_S,X),

with the reduced masg=m/2, and the total massl =2m. 19

Therefore, writing the wave function as a produx(lfl,Fz)
=¢(r)x(R), the center-of-mass motion separates from thewith 8,=1/4—¢/2, and(see Ref[8] for higher-order terms
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Yo(—&n,\20)
Yi(—&n,\20)
 [(3/4+e,/2)
F(1/4+s /2)

cot( 7B, )=

4
2+ = 3Ena 3+0(ad) ],

(25

so that, to the lowest order ia=a/L, the swave pseudo-
potential(24) pertaining to the harmonic trap is independent
of the energye,,:

“ vl €)=2ma8(€) — §+0(a3). (26)

FIG. 1. Lowest three exact-wave energy eigenvalues, o

=E,/(hw) (full lines) compared to the first-order perturbative Moreover, replacing the dimensionless varialileby the
pseudopotential approximatiof29) (dashed lines as functions of physical distance=L¢, re-installing the unit of energfw,
Fhe_ dimensionless hard- sphere diametera/L. _ The full circles 54 omitting terms of orde®[ (a/L)3], we find

indicate parameters for which the exact soluti¢h8) become el-

ementary[9]. . ( )= 2mah?
(J)Upp r

(r)—r (27)

x2 Ot
85‘*‘ (x™)

1 I'(1/4+¢el2)
Jm otz (200 Hence, recallingu=m/2, to leading order the proper trap
pseudopotential24) equals its free-space precurgad). As

and seen in the derivation, this is a consequence of the fact that in
both cases the leading-order term of the pseudopotential is
determined by the singular solution of the Laplace equation

, 21)  VvZp=0.

Writing the exact relatives-wave eigenfunctions for non-
interacting, harmonically trapped particles in terms of La-
guerre polynomials (*?(£2) [10],

Yi(—e&,x)=

1 I'(3/4+¢£/2)
\/_; o~ 14—2l2

the behavior of the relative wave functions for small dis-
tances¢ is given by

X
Yo(—e,X)= —8—+O(X

> F(1/4+8n/2) 1 2> 1 (1/2) —1/2— 2 /
- — ) = LM20)] Y272 (V2 (£2), (28
en(6)=A,1 Cot(ﬂ'ﬁgn)r(3/4+8n/2) 24+0(§). en(é) ﬁw%‘[ n (0)] no (€9, (28
(22
) ) corresponding to scaled energy eigenvalugs-2n+ 3/2
In analogy to the previous E€7), the overall amplitudes,  with n=0,1,2 .. ., theapproximate pseudopotenti@?) al-
are related to the wave functions at sm@through lows one to calculate the effect of the hard-sphere interaction

perturbatively; to lowest order ia, one immediately finds

['(3/4+en2) a9 the energy shifts

A = —N S|n(77ﬁa ) —3/4—¢ /2\/— &f

—=[&en( f)]

(—0
16 a (2n+1)!
(23 Ae,=—=L{"0)= ol )

N Jm (22
Thus, the wave function€l8) exhibit the same type of sin-
gularity for é&-0 as their free-space counterp@s). This In particular,A:-;o:a/\/;for the ground-statea=0. As wit-
fact, which stems from the occurrence of the Laplacian innessed by Fig. 1, this approximation, which is tantamount to
both Eq.(2) for the free case, and E¢l4) for the trapped Simply employing the familiar free-space pseudopotential
motion, now allows us to directly determine the desifdd  (11), yields a quite good description of the true eigenvalues:

(29

mensionlesstrap pseudopotential The error is only of ordeO(a?), so that even for=0.2,
that is, when the hard-sphere diameteslready amounts to
[(1/4+&,/2) 20% of the oscillator length, the actual ground-state shift is

upp(g) meot( 7B, )m € _gg' (24 ynderestimated by less than 1%. The relative error of the
lowest-order pseudopotential approximation to the ground-
Taken in this form, the usefulness of the pseudopotential istate energy, is depicted in detail in Fig. 2, as a function
limited: It depends explicitly on the still unknown eigenval- of «.
uese,, so that the corresponding Schieger equation has If the pseudopotentigR?) is taken at face value, i.e., if it
to be solved self-consistently. However, the quantizatioris not taken as a substitute for a hard-sphere potential and
condition(17) and the representatioi20) and(21) combine  employed as the starting point for a perturbative calculation,
to yield but if instead the Schobnger equation for the relative mo-
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FIG. 2. Relative error of the lowest-order pseudopotential ap-
proximation, based on the standard pseudopote(®@] to the ex-
act ground-state energy, for two harmonically trapped particles
with hard-sphere interaction.

FIG. 3. Exact lowest three eigenvalues of relative motion for the
pseudopotentiaf27) (dashed, compared to the exact eigenvalues
pertaining to the hard-sphere potentifD) (full lines). Note that the
pseudopotential, when diagonalized exactly, gives rise to an addi-

S . . . . ) tional bound state which is not met in the original hard-sphere prob-
tion is solvedexactlywith this potential, an interesting ob- |om.

servation is made. In that case, the quantization condition

takes the fornj10
"10) the (positive value of « approaches zerog— —« for

I'(3/4—e,/2) 1 a— 0+, as plotted in Fig. 3. It is clear that this additional
[ (1/4—&,/2) a2 (30) state, which is not present in the original hard-sphere prob-
lem and which cannot be obtained from the perturbative
to be contrasted to the conditidd?) or (25 for the hard-  treatment, is required for mathematical consistency: After the
sphere interaction eigenvalues. Under the assumption thatgbundary condition has been shifted from=a to r=0
small diametera leads to an energy that differs only by a through the introduction of the pseudopotentd), the ex-
small amountAe,, from an unperturbed eigenvalue, so thattended scattering solutions no longer form a complete set,
en=2n+3/2+ Ae,, the Gamma function in the numerator gnq therefore have to be supplemented by the additional

of Eqg. (30) is evaluated close to a pole, bound state. However, when the pseudopotential is regarded
n+1 as a convenient substitute for an actual hard-sphere potential,
Ae,\ (-1 2 o .
rf-n-—"jl~—"t = (31  the additional state is redundant.
2 nt  Ae, To summarize, we have constructed the pseudopotential

for two particles which are subjected to an external harmonic
af?apping potential and interact through a hard-sphere poten-
tial. When the ratiox of the hard-sphere diameter and the

whereas the denominator is smooth and can therefore be
proximated by neglecting the shifte,,, yielding

1 220+ in1 7 oscillator length is small, this trap pseudopotent2) prop-
'l =n— > =(- 1)n+1w (32) erly reduces to the familiar free-space pseudopote(itiBl

Exact diagonalization of this approximate pseudopotential
Rroduces a bound state not connected to an eigenstate of the
noninteracting system. Nonetheless, the approach works re-
liably, and with surprising accuracy, within lowest-order per-
turbation theory: For the lowest-lying state, the relative error

calculation, as it should. There is, however, an additionafhen exceeds 5% only whan>0.53, and 10% only when
possibility to satisfy Eq(30): Since, by Stirling’s formula, «=>0.82.

I'(z+1/2)/T'(z) ~ \z for large, positive z the condition(30) We thank M. Wilkens for informing us about R€fLO],
also admits a solutior that decreases without bound when and W. Zwerger for useful comments.

With these approximations, which capture those states whic
evolve continuously witlw from the unperturbed stat€28),

the exact quantization conditidB0) for the pseudopotential
(27) reduces precisely to the resR9) of the perturbative
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