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Finite-precision measurement does not nullify the Kochen-Specker theorem
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It is proven that any hidden variable theory of the type proposed by Meyer@Phys. Rev. Lett.83, 3751
~1999!#, Kent @ibid. 83, 3755~1999!#, and Clifton and Kent@Proc. R. Soc. London, Ser. A456, 2101~2000!#
leads to experimentally testable predictions that are in contradiction with those of quantum mechanics. There-
fore, it is argued that the existence of dense Kochen-Specker-colorable sets must not be interpreted as a
nullification of the physical impact of the Kochen-Specker theorem once the finite precision of real measure-
ments is taken into account.
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I. THE KOCHEN-SPECKER THEOREM

The Kochen-Specker~KS! theorem@1–3# shows one of
the most fundamental features of quantum mechanics~QM!:
measurements do not reveal preexisting values. More
cisely, it asserts that any hidden variable theory that satis
QM must becontextual ~i.e., the predefined results mu
change depending on which other compatible measurem
are performed!.

Its original mathematical proof@3# is based on the obser
vation that, for a physical system described in QM by
Hilbert space of dimensiond>3, it is possible to find a set o
n projection operatorsPi which represent yes-no question
about the physical system so that none of the 2n possible sets
of ‘‘yes’’ or ‘‘no’’ answers is compatible with the sum rule o
QM for orthogonal resolutions of the identity~i.e., if the sum
of a subset of mutually orthogonal projection operators is
identity, one and only one of the corresponding answ
ought to be ‘‘yes’’! @4#. Yes-no questions can also be repr
sented by the vectorsv̂ i onto whichPi projects.v̂ i can be
assumed to belong toSd21, the unit sphere inRd. If there are
predefined noncontextual yes-no answers, then there will
ist a functionf : Sd21→$0,1% such that

(
i 51

d

f ~ v̂ i !51 whenever(
i 51

d

Pi51, ~1!

where$Pi% i 51
d is a set of orthogonal projectors and1 denotes

the identity, f ( v̂ i)51 means that the predefined answer
the yes-no question represented byPi is ‘‘yes,’’ and f ( v̂ j )
50 means that the answer toPj is ‘‘no.’’ If such a function
exists for a given set of vectors, it is said that the set is ‘‘K
colorable;’’ if it does not exist, then it is said that the set
‘‘KS-uncolorable’’ and serves as a proof of the KS theore
The original proof@3# consists of a KS-uncolorable set o
117 vectors inS2. The smallest proofs currently known hav
31 vectors inS2 @5# and 18 vectors inS3 @6#.

A simple physical interpretation of the projection opera
Pi onto v̂ iPS2 can be given in terms of the spin componen
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along v̂ i of a spin-1 particle. Using a suitable representat
for Jx , Jy , andJz @7#, the relation

Pi512
Ji

2

\2 ~2!

defines a one-to-one correspondence between the proj
Pi onto v̂ i and the square of the spin component alongv̂ i ,
denoted byJi

2 . Therefore, a measurement ofPi represents
the yes-no question ‘‘does the square of the spin compon
along v̂ i equal zero?’’ The eigenvalue 1 corresponds to
answer ‘‘yes,’’ and the degenerate eigenvalues 0 to the
swer ‘‘no.’’ The operatorsJx

2 ,Jy
2 ,Jz

2 ~or any other three
squares of spin components along three orthogonal di
tions! commute, so that the corresponding observables
be measured simultaneously. In addition, since

Jx
21Jy

21Jz
252\21, ~3!

then QM predicts that the results of measuring observa
Jx

2 ,Jy
2 ,Jz

2 must be one 0 and two\2. Analogously, the pro-
jectorsPx ,Py ,Pz commute, so that the corresponding yes-
questions can be measured simultaneously. Using Eq.~2!,
Eq. ~3! becomes

Px1Py1Pz51. ~4!

Therefore, according to QM, the answers toPx ,Py ,Pz must
be one ‘‘yes’’~represented by 1! and two ‘‘no’’ ~represented
by 0!.

The fact that a functionf : S2→$0,1% satisfying the con-
dition ~1! does not exist means that allPi (Ji

2) cannot have
predefined answers~values! compatible with relation~4!
@~3!#.

II. PROOFS OF ‘‘NULLIFICATION’’

Godsil and Zaks @8# have shown that the three
dimensional rational unit sphereS2ùQ3 can be colored using
only three colors such that orthogonal vectors are differen
colored. A corollary of this result has been recently used
Meyer @9# to show thatS2ùQ3 is KS-colorable. Therefore
one can assign predefined answers if one is restricted to t
Pi which project ontov̂ iPS2ùQ3. The setS2ùQ3 is dense
©2002 The American Physical Society01-1
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in S2 and therefore vectors inS2ùQ3 cannot be distin-
guished from those inS2 by finite-precision measurement
This leads Meyer to conclude that ‘‘finite-precision measu
ment nullifies the Kochen-Specker theorem’’@9#.

Kent @10# has shown that dense KS-colorable sets exis
any arbitrary finite-dimensional real or complex Hilbe
space. This leads him to conclude that ‘‘noncontextual h
den variable~NCHV! theories cannot be excluded by the
retical arguments of the KS type once the imprecision in r
world measurements is taken into account’’@10#. More re-
cently, Clifton and Kent@11# have constructed a NCHV
model for any finite-dimensional Hilbert space that th
claim is consistent with all thestatisticalpredictions of QM.
This allows them to conclude that ‘‘all the predictions
nonrelativistic QM that are verifiable to within any finit
precisioncan be simulated classically by NCHV theories
@11#.

In response, Ax and Kochen@12# have argued that the
study of the effect of finite-precision measurements on
KS theorem requires a different formalization which is s
missing. In@13# there is a criticism of the physical interpre
tation of the existence of KS-colorable sets. Havliceket al.
@14# have argued that any possible KS coloring of the ra
nal unit sphere is not physically satisfactory. Mermin@15#
has argued that the continuity of probabilities under sli
changes in the experimental configuration weighs agains
conclusions in@9,10#. Appleby has expanded on Mermin
discussion@16# and argued that in the models of Meye
Kent, and Clifton the very existence of an observable is c
textual @17# and measurements do not reveal preexist
classical information@18#.

In this paper I shall prove that any possible KS colori
of the rational unit sphere of the type proposed in@9# leads to
predictions which differ from those of QM and, therefor
that any NCHV theory which assigns definite colors to t
rational unit sphere can be discarded on experime
grounds even if finite-precision measurements are used
addition, I shall prove that any possible KS coloring of
dense set of the kind proposed by Clifton and Kent@11# also
leads to predictions that differ from those of QM, and the
fore explicit NCHV models like those in@11# can also be
discarded on experimental grounds.

Both proofs are inspired by a lesser known type of pro
of the KS theorem which does not require an entire K
uncolorable set but only one of its subsets@19#. In particular,
it is based on a proof by Stairs@20# which requires only eight
of the vectors of the 117-vector KS-uncolorable set in@3#.
This eight-vector set appears for the first time in@21#. Stairs’
proof was reformulated by Clifton@22# ~see also@23–25#!.

The strategy of both proofs is as follows. First we sho
that any NCHV theory cannot assign the value 1 to cert
vectors in the set which is assumed to have predefined
ues. We then show that the impossibility of such an ass
ment leads to an inequality valid for any NCHV theory b
which is violated by QM.

III. KS COLORINGS OF THE RATIONAL SPHERE ARE
INCOMPATIBLE WITH QM

Consider the following vectors of the rational unit sphe

Â5~0,cA ,2sA!, ~5!
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B̂5~cB ,sB,0!, ~6!

Ĉ5~cCcD1NcAsCsD ,NsAsCcD ,2cCsD1NcAsCcD!,
~7!

where si5(12ci
2)1/2, i being A, B, C, or D, N5@cA

2

1(sAcD)2#21/2, and$ci ,si ,N%PQ.
Lemma 1. There is no KS coloring~1! of the rational unit

sphereS2ùQ3 in which f (Â)5 f (B̂)5 f (Ĉ)51.
Proof via a reductio ad absurdum. Consider the following

additional vectorsv̂ iPS2ùQ3:

v̂15~1,0,0!, ~8!

v̂25N~cAsD ,sAcD ,cAcD!, ~9!

v̂35~0,0,1!, ~10!

v̂45N~sAcDsD ,2cA ,sAcD
2 !, ~11!

v̂55~0,1,0!, ~12!

v̂65~cD,0,2sD!. ~13!

If f (Â)51⇒ f ( v̂1)5 f ( v̂2)50, if f (B̂)51⇒ f ( v̂3)50, and
if f (Ĉ)51⇒ f ( v̂4)50. In addition, if f ( v̂1)5 f ( v̂3)
50⇒ f ( v̂5)51 and if f ( v̂2)5 f ( v̂4)50⇒ f ( v̂6)51. How-
ever, f ( v̂5)51 is incompatible withf ( v̂6)51 sincev̂5 and

v̂6 are orthogonal. j
Let us consider an ensemble of spin-1 particles and le

assume that any particle has a definite color~1 or 0! for every
vector of the rational unit sphere and in particular forÂ, B̂,
andĈ. Let P(B) be the probability of finding a particle with
f (B̂)51 in such an ensemble,P(A`B`C) be the probabil-
ity of finding f (Â)5 f (B̂)5 f (Ĉ)51, P(A`B`¬C) be the
probability of finding f (Â)5 f (B̂)51 and f (Ĉ)50, and
P(AuB) be the probability of findingf (Â)51 if f (B̂)51.
Note that such probabilities make sense in a NCHV the
but not in QM. From the point of view of a NCHV theory
P(AuB) can be obtained by means of two alternative b
equivalent methods@22,25#: either preparing the particles i
a quantum eigenstate of the square of the spin compo
along B̂ with eigenvalue 0@7#, measuring the square of th
spin alongÂ, and counting the number of events in whic
the eigenvalue 0 has been obtained, or preparing the part
in pairs in the singlet state, measuring the square of the
along B̂ in one of the particles and the square of the s
along Â in the other, and counting the number of events
which both results are 0.

Lemma 2.There is no KS coloring~1! of the rational unit
sphereS2ùQ3 compatible with all the statistical prediction
of QM.

Proof. The following inequality must be satisfied in an
NCHV theory:
1-2
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FINITE-PRECISION MEASUREMENT DOES NOT . . . PHYSICAL REVIEW A 65 052101
P~B!>P~A`B`¬C!1P~¬A`B`C!. ~14!

Lemma 1 shows that

P~A`B`C!50. ~15!

Therefore, the inequality~14! can be written as

P~B!>P~A`B!1P~B`C!, ~16!

which is equivalent to

P~B!>P~B!P~AuB!1P~B!P~CuB!. ~17!

Inequality ~17! can be simplified to

1>P~AuB!1P~CuB!. ~18!

Let us define

FNCHV5P~AuB!1P~CuB!. ~19!

Then, according to inequality~18!, any NCHV theory will
predict

FNCHV<1. ~20!

On the other hand, in QM the equivalent of Eq.~19! is

FQM5 z^ÂzB̂& z21 z^ĈuB̂& z2. ~21!

In particular, if we choose

cA5
104

185
, ~22!

cB5
10 209 400 000

12 605 796 209
, ~23!

cC5
490 231

789 769
, ~24!

cD5
105

137
, ~25!

then we obtain

FQM51.108, ~26!

which contradicts the prediction of NCHV theories given
inequality ~20! @26#. j

If all the particles of the ensemble have predefined ‘‘c
ors’’ along Â, B̂, andĈ, thenF has an ‘‘exact’’ value for that
ensemble. To check that value, we must perform tests a
Â and B̂, and alongĈ and B̂. When we perform tests alon
Â andB̂, their results reveal either the real colors ofÂ andB̂

or the colors ofÂ8 and B̂8 that are, respectively, infinitesi
mally close to them. In any NCHV theory in which measur
ments are assumed to reveal predefined colors and bec
of the own definition of ‘‘precision,’’ in a higher precision
test alongÂ and B̂, the number of results revealing the tru
05210
-

ng

-
use

colors of Â and B̂ is higher than in a lower precision tes
Therefore, successive tests with increasing precision
give us the true colors with a higher probability. Thus, th
will give us decreasing bounds around the exact value oF.
Therefore, even experiments with finite-precision can d
criminate between the prediction of NCHV theories~20! and
the prediction of QM~26!.

IV. CLIFTON AND KENT’S NCHV MODEL IS
INCOMPATIBLE WITH QM

Clifton and Kent’s NCHV model@11# is based on the
existence of dense KS-colorable setsD with the remarkable
property that every projector inD belongs to only one reso
lution of the identity. Moreover, the functionf defined over
D and satisfying condition~1! must be ‘‘sufficiently rich to
recover the statistics of any quantum state’’@11#. They claim
that the existence ofD ‘‘defeats the practical possibility o
falsifying NCHV on either nonstatistical or statistica
grounds’’@11#.

Let us outline a proof that shows that such a claim is
correct. Consider a particularD dense inS2 and two vectors
Â8,B̂8PD. Suppose thatÂ8 is infinitesimally close to
(1/A3)(1,1,1) and B̂8 is infinitesimally close to
(1/A3)(1,1,21).

Lemma 3. Given an ensemble of systems such that e
system is described byD, the probability of finding an indi-
vidual system in which a KS coloring~1! satisfies f (Â8)
5 f (B̂8)51 is infinitesimally close to zero if such colorin
must simulate the predictions of QM.

Proof. Consider six additional vectorsv̂ i8PD such thatv̂18

and v̂28 are both infinitesimally close to being orthogonal

Â8; v̂38 and v̂48 are both infinitesimally close to being or

thogonal toB̂8; v̂18 , v̂38 , andv̂58 are mutually orthogonal;v̂28 ,

v̂48 , andv̂68 are mutually orthogonal;v̂58 andv̂68 are infinitesi-
mally close to being orthogonal@27#. The fact that eight
vectors with the above properties exist inDPS2 is not ex-
cluded in@11#. Sincef must simulate the predictions of QM
if f (Â8)51, then the probability off ( v̂18)51 must be

z^v̂18uÂ8& z2, that is, infinitesimally close to zero, becauseÂ8

and v̂18 are infinitesimally close to being orthogonal. Th

same argument states that iff (Â8)51, the probability of
f ( v̂28)51 must be infinitesimally close to zero. Therefore,

f (Â8)51, thenf ( v̂18)5 f ( v̂28)50 for almost every system o

an ensemble. Using the same reasoning, iff (B̂8)51, then
f ( v̂38)5 f ( v̂48)50 for almost every system of an ensemble.

addition, if f ( v̂18)5 f ( v̂38)50⇒ f ( v̂58)51 and if f ( v̂28)

5 f ( v̂48)50⇒ f ( v̂68)51. Since f must simulate the predic

tions of QM, if f ( v̂58)51, then the probability off ( v̂68)51

must bez^v̂68uv̂58& z2, that is, infinitesimally close to zero, be

causev̂58 andv̂68 are infinitesimally close to being orthogon
@28#. j

Lemma 4. There is no KS coloring~1! of DPS2 compat-
ible with all the statistical predictions of QM.
1-3
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Proof. I will use the same notation used in the proof
Lemma 2. According to Lemma 3, in any NCHV theory

P~A8`B8!'0. ~27!

However, according to QM,

z^Â8uB̂8& z2'
1

9
. ~28!

j

V. CONCLUSION

The reason why dense sets in@9–11# do not lead to
NCHV theories that simulate QM can be summarized as
lows: most of the many possible KS colorings of these s
must be statistically irrelevant in order to reproduce some
the statistical predictions of QM. Then, the remaining sta
tically relevant KS colorings cannot reproduce some diff
ent statistical predictions of QM. I therefore conclude th
e
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the existence of KS-colorable sets that are dense in the
responding Hilbert spaces, like those in@9–11#, does not lead
by itself to a NCHV theory capable of eluding statistic
KS-type proofs, and must therefore not be interpreted a
nullification of the physical impact of the KS theorem on
the finite-precision of measurements is taken into accoun
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