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Finite-precision measurement does not nullify the Kochen-Specker theorem
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It is proven that any hidden variable theory of the type proposed by M@leys. Rev. Lett83, 3751
(1999, Kent[ibid. 83, 3755(1999], and Clifton and KenfProc. R. Soc. London, Ser. 466, 2101(2000]
leads to experimentally testable predictions that are in contradiction with those of quantum mechanics. There-
fore, it is argued that the existence of dense Kochen-Specker-colorable sets must not be interpreted as a
nullification of the physical impact of the Kochen-Specker theorem once the finite precision of real measure-
ments is taken into account.
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. THE KOCHEN-SPECKER THEOREM alongo; of a spin-1 particle. Using a suitable representation

for Jy, Jy, andJ, [7], the relation
The Kochen-SpeckeKS) theorem[1-3] shows one of ,
J

the most fundamental features of quantum mechai@ds): i

measurements do not reveal preexisting values. More pre- Pi=1- %2 @)
cisely, it asserts that any hidden variable theory that satisfies

QM must becontextual (i.e., the predefined results must defines a one-to-one correspondence between the projector
change depending on which other compatible measurements onto », and the square of the spin component along

are performef denoted byJ?. Therefore, a measurement Bf represents

Its original mathematical prod] is based on the obser- ¢ yesno question “does the square of the spin component
vation that, for a physical system described in QM by a ~ Y .
alongv; equal zero?” The eigenvalue 1 corresponds to the

Hilbert space of dimensiod= 3, it is possible to find a set of answer “ves.” and the deaenerate eigenvalues 0 to the an-
n projection operator$; which represent yes-no questions yes, 9 P g

“ ” 2 2
about the physical system so that none of tAh@@ssible sets swer -ho. Thg operatorsJ, ,Jy,J; (or any other threg
of “yes” or “no” answers is compatible with the sum rule of squares of spin components along three orthogonal direc-

QM for orthogonal resolutions of the identitie., if the sum  toNS commute, so that the corresponding observables can

of a subset of mutually orthogonal projection operators is thé)e measured simultaneously. In addition, since
identity, one and only one of the corresponding answers 24324 12=242] 3
ought to be “yes’) [4]. Yes-no questions can also be repre- X Ty ' &

sented by the vectors; onto whichP; projects.v; can be  then QM predicts that the results of measuring observables
assumed to belong ® 2, the unit sphere i®. If there are ~ J2 35,92 must be one 0 and twh?. Analogously, the pro-
predefined noncontextual yes-no answers, then there will ejectorsP, P, ,P, commute, so that the corresponding yes-no
ist a functionf: SY"1—{0,1} such that guestions can be measured simultaneously. Using(Hg.
Eq. (3) becomes
d

d
f(v;))=1 whenever), P;=1, (1) Py+Py+P,=1 (4)
=1 <1

I
Therefore, according to QM, the answersip, P, P, must

where{Pi}fL1 is a set of orthogonal projectors ahdenotes be one “yes’(represented by)land two “no” (represented

. . ~ . y V).
the identity, f(v;) =1 means that the predefined answer to ~ Thq tact that a functiori: S?-.10,1} satisfying the con-

the yes-no question represented Byis “yes,” and f(v;) dition (1) does not exist means that & (J%) cannot have

=0 means that the answer By is “no.” If such a function  predefined answer¢values compatible with relation(4)
exists for a given set of vectors, it is said that the set is “KS-[(3)].

colorable;” if it does not exist, then it is said that the set is
“KS-uncolorable” and serves as a proof of the KS theorem.
The original proof[3] consists of a KS-uncolorable set of
117 vectors irS?. The smallest proofs currently known have  Godsil and Zaks[8] have shown that the three-
31 vectors inS? [5] and 18 vectors irS® [6]. dimensional rational unit sphe8N()® can be colored using
A simple physical interpretation of the projection operatoronly three colors such that orthogonal vectors are differently
P, ontov; € $? can be given in terms of the spin componentscolored. A corollary of this result has been recently used by
Meyer [9] to show thatS*N ()% is KS-colorable. Therefore,
one can assign predefined answers if one is restricted to those

*Electronic address: adan@us.es P, which project ontaw; e SN (3. The set?N (3 is dense

II. PROOFS OF “NULLIFICATION”
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in S? and therefore vectors i$?N ()% cannot be distin- B=(cg,S5,0), (6)

guished from those i1$? by finite-precision measurements.

This leads Meyer to conclude that “finite-precision measure- &= +N N _ +N

ment nullifies the Kochen-Specker theoref#. (CcCotNCaScSp ,NSaScCo, ~CeSp CASCCD)'(7)
Kent[10] has shown that dense KS-colorable sets exist in

any arbitr_ary finite-_dimensional real or complex Hilbe_rt where si=(1—ci2)1’2,i being A, B, C, or D, N=[c,§

space. This leads him to conclude that “noncontextual h'd'+(sAcD)2]*1’2 and{c,,s, ,N} e ()

den variable(NCHV) theories cannot be excluded by theo- ' Lo s . :

retical arguments of the KS type once the imprecision in real ;ergg?\ (1);I'herehl§ :?(lz? c?l(cg;ngiz g ; thf rational unit

world measurements is taken into accoufit0]. More re-  SPher 07 In-whic = = =1

cently, Clifton and Kent[11] have constructed a NCHV Proof viaaredyctio ad absurdunConsider the following

model for any finite-dimensional Hilbert space that theyadditional vectors); e SN(°:

claim is consistent with all thetatisticalpredictions of QM.

This allows them to conclude that “all the predictions of 0,=(1,0,0), (8)

nonrelativistic QM that are verifiable to within any finite

precisioncan be simulated classically by NCHV theories”

[11]. v2=N(CaSp ,SaCp ,CACD). 9
In response, Ax and Kochel2] have argued that the ~

study of the effect of finite-precision measurements on the v3=(0,0,1), (10

KS theorem requires a different formalization which is still

missing. In[13] there is a criticism of the physical interpre- 54:N(SACDSD ,—Ca ’SAC%), (12)

tation of the existence of KS-colorable sets. Havlietlal.
[14] have argued that any possible KS coloring of the ratio-

nal unit sphere is not physically satisfactory. Mernhitb] vs=(0,1,0), (12)
has argued that the continuity of probabilities under slight .
changes in the experimental configuration weighs against the ve=(Cp,0,—Sp). (13

conclusions in[9,10]. Appleby has expanded on Mermin’s

diSCUSSiOﬂ[lG] and argued that in the models of Meyer, If f(A):lﬁf(lA)l)zf(lA)z)zo, if f(é)zlﬁf({)g)=0, and

Kent, and Clifton the very existence of an observable is con- - ~ . . ~ -

textual [17] and measurements do not reveal preexisting! (€)=1=f(va)=0. In addition, if f(vy)=f(vs)

classical informatiorf18]. =0=f(vs)=1 and if f(vy)=Tf(vs)=0=Tf(ve)=1. How-
In this paper | shall prove that any possible KS coloringever, f(;s): 1 is incompatible withf({;6)= 1 since{;5 and

of the rational unit sphere of the type proposefidhleads to ;)6 are orthogonal. u

predictions which differ from those of QM and, therefore, Let us consider an ensemble of spin-1 particles and let us

that any NCHV theory which assigns definite colors to the : -
rational unit sphere can be discarded on experimenta‘rilssume that any particle has a definite celoor 0 for every

grounds even if finite-precision measurements are used. Ifector of the rational unit sphere and in particular AorB,

addition, | shall prove that any possible KS coloring of aandC. Let P(B) be the probability of finding a particle with

Idelr:jsetset 01;| t_htE; kinotlhprfg%seti by Ct:]ifton a}p% hljl[éﬂﬂ 3'3:3 f(B)=1 in such an ensembl®(A/\B/\C) be the probabil-

eads to predictions that differ from those o , and there-. - e

fore expl?cit NCHV models like those ifll] can also be ity of f"f‘?"”g f('A.‘)_.f(B)Tf(C)fl' P(A/\BA:'C) be the

discarded on experimental grounds. probability of finding f(A)=f(B)=1 and f(C)=0, and
Both proofs are inspired by a lesser known type of proofP(A|B) be the probability of findingf(A)=1 if f(B)=1.

of the KS theorem which does not require an entire KS-Note that such probabilities make sense in a NCHV theory

uncolorable set but only one of its subski§]. In particular,  but not in QM. From the point of view of a NCHV theory,

it is based on a proof by Staif20] which requires only eight p(A|B) can be obtained by means of two alternative but

of the vectors of the 117-vector KS-uncolorable sef3h  equivalent methodi22,25): either preparing the particles in

proof was reformulated by Cliftof22] (see alsd23-25). A .
The strategy of both proofs is as follows. First we showalo_ng B with eigenvalue (7], measuring the square of the

that any NCHV theory cannot assign the value 1 to certairfPin alongA, and counting the number of events in which
vectors in the set which is assumed to have predefined vafhe eigenvalue O has been obtained, or preparing the particles
ues. We then show that the impossibility of such an assignin pairs in the singlet state, measuring the square of the spin
ment leads to an inequality valid for any NCHV theory but along B in one of the particles and the square of the spin
which is violated by QM. alongA in the other, and counting the number of events in
which both results are 0.

Lemma 2There is no KS coloringl) of the rational unit
sphereS?N ()% compatible with all the statistical predictions
Consider the following vectors of the rational unit sphere:0f QM.

A Proof. The following inequality must be satisfied in any
A=(0,ca,—Sp), (5) NCHYV theory:

Ill. KS COLORINGS OF THE RATIONAL SPHERE ARE
INCOMPATIBLE WITH QM
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P(B)=P(A/AB/A\-C)+P(=AAB/\C). (14)  colors of A and B is higher than in a lower precision test.
Therefore, successive tests with increasing precision will
Lemma 1 shows that give us the true colors with a higher probability. Thus, they
P(AABAC)=0. (15) will give us decreasmg_bounds a}rour_w! the exact vaIuE.of_
Therefore, even experiments with finite-precision can dis-
Therefore, the inequalityl4) can be written as criminate between the prediction of NCHV theori@§) and
the prediction of QM(26).
P(B)=P(A/AB)+P(B/\C), (16)
IV. CLIFTON AND KENT'S NCHV MODEL IS
INCOMPATIBLE WITH QM

P(B)=P(B)P(A[B)+P(B)P(C|B). 17 Clifton and Kent's NCHV model11] is based on the
existence of dense KS-colorable sétswith the remarkable
property that every projector i belongs to only one reso-

which is equivalent to

Inequality (17) can be simplified to

1=P(A|B)+P(C|B). (18) lution of the identity. Moreover, the functiohdefined over

D and satisfying conditioril) must be “sufficiently rich to

Let us define recover the statistics of any quantum stgtg1]. They claim
that the existence db “defeats the practical possibility of
Fcrv=P(A[B)+P(C|B). (19 falsifying NCHV on either nonstatistical or statistical

grounds”[11].
Let us outline a proof that shows that such a claim is not
correct. Consider a particul? dense inS? and two vectors
Frenv<1. (200 A’,B’eD. Suppose thatA’ is infinitesimally close to
_ _ _ (1/43)(1,1,1) and B’ is infinitesimally close to
On the other hand, in QM the equivalent of Ef9) is (13)(1,1-1).

Lemma 3 Given an ensemble of systems such that each

Then, according to inequality18), any NCHV theory will
predict

Fou=I(AIB)+C[B)*. (2 system is described b, the probability of finding an indi-
In particular, if we choose vidu:ill system in which a KS coloringl) satisfiesf(A’)
=f(B’)=1 is infinitesimally close to zero if such coloring
CA=1—O4 22) must simulate the predictions of QM. i i
185’ Proof. Consider six additional vectots e D such thaw ;
10209 400 000 :i\nd {ié are bf)th infinitesimally close to being orthogonal to
Ce= 17605 796 209 (23) A5 v3 andAvleareAboth infinitesimally close to beirAlg or-
thogonal toB’; v, v, andv; are mutually orthogonal;,
490231 v,, ando are mutually orthogonal;; ando are infinitesi-
Cc=789769 (249 mally close to being orthogondPR7]. The fact that eight
vectors with the above properties existZire S? is not ex-
105 cluded in[11]. Sincef must simulate the predictions of QM,
Co=137" (25 if f(A")=1, then the probability off(v;)=1 must be
[(v1|A"Y?, that is, infinitesimally close to zero, becaué
then we obtain and v} are infinitesimally close to being orthogonal. The
Fow=1.108, (26)  same argument states thatfi(A’)=1, the probability of

f(ﬁé)z 1 must be infinitesimally close to zero. Therefore, if

f(A')=1, thenf(v})=f(v4) =0 for almost every system of
If all the particles of the ensemble have predefined “col-21 €nsemble. Using the same reasoning(B') =1, then

ors” alongA, B, and®, thenF has an “exact” value for that | (va)=f(v4)=0 for almost every system of an ensemble. In

ensemble. To check that value, we must perform tests alongddition, if f(v1)=f(v3)=0=f(vg)=1 and if f(v))

A andB, and alongC andB. When we perform tests along = f(v4)=0="f(v¢)=1. Sincef must simulate the predic-

A andB, their results reveal either the real colorshofindB  tions of QM, if f(v{)=1, then the probability of (vg)=1

or the colors ofA’ and B’ that are, respectively, infinitesi- must bel(vg|v5)[?, that is, infinitesimally close to zero, be-

mally close to them. In any NCHV theory in which measure-causev andv are infinitesimally close to being orthogonal
ments are assumed to reveal predefined colors and becayse]. [

of the own definition of “precision,” in a higher precision Lemma 4 There is no KS coloringl) of De S? compat-
test alongA andB, the number of results revealing the true ible with all the statistical predictions of QM.

which contradicts the prediction of NCHV theories given by
inequality (20) [26].
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Proof. | will use the same notation used in the proof of the existence of KS-colorable sets that are dense in the cor-

Lemma 2. According to Lemma 3, in any NCHV theory

P(A’/AB")~0. (27

However, according to QM,
KA B~ 5. @8
|

V. CONCLUSION

The reason why dense sets [i8—11 do not lead to

responding Hilbert spaces, like thosd #+-11], does not lead

by itself to a NCHV theory capable of eluding statistical
KS-type proofs, and must therefore not be interpreted as a
nullification of the physical impact of the KS theorem once
the finite-precision of measurements is taken into account.
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