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A measurement strategy is developed for a different kind of hypothesis testing. It assigns, with minimum
probability of error, the state of a quantum system to one or the other of two complementary subsets of a set
of N given nonorthogonal quantum states occurring with gieepriori probabilities. A general analytical
solution is obtained foN states that are restricted to a two-dimensional subspace of the Hilbert space of the
system. The result for the special case of three arbitrary but linearly dependent states is applied to a variety of
sets of three states that are symmetric and equally probable. It is found that, in this case, the minimum-error
probability for distinguishing one of the states from the other two is only about half as large as the minimum-
error probability for distinguishing all three states individually.
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|. INTRODUCTION AND BASIC EQUATIONS three given states the task reduces to distinguishing the state
|41) from the set of statef ,),|3)} and can be referred to
Due to their nonvanishing mutual overlaps, nonorthogo-as quantum-state filtering with respect to the sfétg. This
nal quantum states cannot be perfectly distinguished. Howtask has recently been investigated for the particular optimi-
ever, stimulated by the rapid developments in quantum inforzation strategy that yields unambiguous discrimination at the
mation theory[1], the question as to how to discriminate expense of allowing inconclusive results to occur, the prob-
between nonorthogonal states in an optimum way has gaineability of which is minimized[11].
renewed interesi2]. In particular, in quantum communica-  To treat our general minimum-error problem, we follow
tion protocols several secure schemes have been suggestbe standard lines and introduce two positive Hermitian
based on communicating via nonorthogonal quantum stateguantum detection operatoid, andIl; [2,4]. We define the
As a result, optimum discrimination between them becameperatorIl, by the property that,|114|¢) accounts for
an inherent part of these schemes. For studying state dighe probability to infer, from performing the measurement,
crimination, it is assumed that a quantum system is prepareitie system to be in one of the stafgg,), ... |gn)}, if it
in one of theN pure states|#), that belongs to a given set has been prepared in the stagg). Obviously, this inference
of nonorthogonal state$|i),|#»), . .. .|¢¥n)}, and that the is incorrect ifk>M. Similarly, given again the preparation
a priori probabilities, for the preparation of either one of of the statd ¢, ), the quantity( 4 |I1o|¢,) denotes the prob-
the state$y, ) are also known. In order to devise an optimum ability for inferring the state of the system to belong to the
state-discriminating measurement, strategies have been daibset of state ¢y 1), - - . ,|#n)}, Which is an erroneous
veloped with respect to various criterf2,3]. The earliest result if k<M. Clearly, the relation
and simplest of these criteria is the requirement that the )
probability of getting a wrong result be as small as possible, My+I1;=1 (&N
with inconclusive results being forbidden and all states being
individually distinguished. A minimum-error strategy of this has to be obeyed, where i4 the unit operator. From the
kind has been developed for the case when only two stategefinition of the detection operators it follows that the prob-
are given(4] and forspecific Nstate problem§5—8|, includ-  ability to get a correct result reads
ing N symmetric[6] and multiply symmetrid8] states. Re-
. M N
cently the optimum strategy has also been found for three M)
states exhibiting a mirror symmetfg] but still no exact P =k§1 Wk<l/’k|ﬂl|'/fk>+k:%+l 7l ol ). (2)
solution has been known fdd> 2 arbitrary states. Using the
polarization states of a single photon, minimum-error dis-in order to devise the desired minimum-error measurement
crimination has been experimentally realized for up to fourscheme, we have to determine the particular detection opera-
symmetric nonorthogonal statgs0]. tors IT, andI1; that maximize the right-hand sidehs) of
In this paper we are concerned with a minimum-errorgq. (2) under the constrain{l). In general, the error-

strategy that involvesN>2 arbitrary linearly dependent minimizing optimization problem is a highly nontrivial task.
guantum states, by considering the following problem: We

want to devise a measurement that aIIc_st us to_demde, with Il. SOLUTION IN TWO DIMENSIONS

the smallest possible error and without inconclusive answers,

whether the actual state of the system belongs to the subset To enable simple analytical solutions, we restrict our-
of states{|#1), . .. ,|m)}, Or to the complementary subset selves to the case when thelinearly dependent states span
of the remaining state§ ¥ 1), - . . ,|¥n)} with M<N. For  only a two-dimensional Hilbert space. We note that for
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three linearly dependent states this is always the case. Firsy|v)=1 and(;|v)=0, the states$y,) and|v) provide a
we show that in the two-dimensional case it is possible tasuitable orthonormal basis for representing any stéig, as
represent the two detection operatdis and Il by two _

projection operators onto orthonormal stafes and |v), | =And 1) + e 71— [Ay]?|v), (8)
respectively. To see this, we start from the expresdign )

=N 1|v )0 1]+ Na|v2)(v2], with [v1) and|v,) being the or-  With

thonormal eigenstates that belong to some non-negative ei-

genvalues\; and \,. Expanding a particular stafes) as o % A= AxAgk ©
| )= cosBlvy)+sinBv,), where a possible relative phase VI-[APVI=[AL?
factor has been included into the definition|of), we arrive
at The last equation can be verified by calculating the overlap
(5| ), taking into account thay,=0 because of the spe-
(I ]y =[(ul )1, (3 cific definition of the statdv). Similarly, we represent the
orovided that we defing) = yXylo 1) i Vhplv,). With the  G6tection statéu) as

help of the relation % |v)(v4|+|v,)(v,|, we obtain in the | ) =cose|y)+eXsing|v), (10
same way the representation

and obtain
| )= (| 1-T1| )= 2, (4) _
ATl =l =TT ) =1(v1) S e
provided that|v)=+\1—\{|Jvy)=iy1—Nyv,). Now we

require that |[(u|)|?+[(v|¢n)|?=1 for an arbitrary Equation(10) accounts for all possible states in the two-
state, |y )=cosBv)+esinBv,), which implies that dimensional Hilpert space of ir_lterest provided that beth

| )|+ |v)(v|=1 has to be fulfilled. This only holds true @nd x are variables in the interva]0,m). The error-
when in the representations |f) and|») opposite signs are minimization problem is then reduceq t.o finding those yalues
chosen and when in addition,=1— X\, leading to the or- OfM(‘{\’l) and y in Eq. (11 that maximize the probability
thonormality conditions(u|s)=(»|»)=1 and (u|p)=0. P _ (®:x) N EqQ.(S. o . _
Therefore, in a two-dimensional Hilbert space the optimiza- 1€ Solution to this optimization problem is straightfor-
tion problem posed by Eqél) and(2) can be reduced to the Ward- We begin by inserting Eq11) into Eq. (5) and, by

problem of finding the specific normalized stdie) that making use of the fact that thee priori probabilities of the
maximizes the expression states fulfill the relatior®}_, 7= 1, we readily arrive at

M N 1
PMN=X adulwd®+ 2 mc (A=Kl PM®M=2+Rcog2¢) +|Qlsin2¢)cosx ~ xo). (12
k=1 k=M -+1
)

which follows whenIl;=|u)(u| and y=1—|u)(u| are M
substituted into Eq(2). Comparing this to the spectral rep- R= 2 T
resentation of the detection operators, introduced before Eq. k=1
(3), we are led to identifyfu) with |v4) and|v) with |v,)

since the representation is unique. Thep=1 and\,=0 and

follows. Once the optimum detection state is known, the

whereR andQ are defined as

N
1 1
|ALl?— E) _k=2M:+1 77k( |Agl >~ 5), (13

maximum achievable probability of correctly assigning a B o M AgAs— AsllAgl?
guantum state to one of the two subsets, as well as the two Q=|Qle¥e= gl 7k m
detection operators necessary to perform the optimized mea- 12
surement, are uniquely determined. N AgAis— Agtl Agl?
To solve the optimization problem, it is convenient to — Mk (14
write the overlaps between the given states as k=M+1 V1-[Ay
(U )y =P = | Al €' ¥, (6) The conditions for an extremumgPM™/jp=0 and
aPMMN/9y=0, hold for o=, and x=x., With sin(2p,)
and to introduce the auxiliary state vector =|QUVRP+QJ%, cos(2)=RR*+[Q[?, and xe=xq. re-
spectively. Note that cos) and R have the same sign
B 1 while sin(2p,) is always positive. This choice of. and ¢,
lvy= —m(|‘!’2>_A12| 1)) () corresponds to the maximum &™) and, from Eq.(12),
we obtain

For Eq.(5) to be valid, we have to assume that Mligiven 1
states lie in a two-dimensional subspace, spanned by the M(N) _ pM(N) _

; } P Xe)=P ==+ JR°+ . 15
states|#1) and |i,), or |¢) and|v), respectively. Since (¢e:Xe) = Pmax 2 Ql (15
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The corresponding detection state, onto which a projectiofhis expression describes the maximum attainable probabil-
has to be performed in a measurement scheme achieving tiitg of correctly distinguishing the statey,) from the set of
maximum probability, is determined byju.)=cosge|yy)  states{|i,),|¢s)}. The minimum-error probability then fol-
+eXesin gv). lows asPE3)=1—- P8 As expected, the result is indepen-
As applications of this general expression, we discuss twaelent of the individual phase factors of the given states, and
special cases. First, the solution can be cast to a consideralfyr 7,=0 it reduces to the pioneering formula] for
simpler form when the states areal. Real states have been minimum-error discrimination between only two nonor-
considered beforgl2] in a different context. In this case the thogonal states.
parameters of the optimum detection stage), can be cal-
culated very easily. BotR andQ are real, yieldingy,=0 if
Q=0 or 7 if Q<0. The maximum probability of determin-
ing correctly to which of the two complementary subsets a With respect to possible applications, the question arises
state belongs is given in this case by Ebp) with how the maximum probability for getting a correct result in
quantum-state filtering compares to the maximum probabil-
M 1 N 1 ity for correctly discriminating, by means of a different mea-
R=> Wk( Al — 5) - > 77k<A§k_ E)’ (16)  surement strategy, between all the given states individually.
k=1 k=M+1 . . : :
In the following we shall explore this question for a variety
of symmetric states.
Let us investigate the set of three symmetric states

M N
_ i(2m/3)(k—1) o
Q:kzl WkAlle_Aik_k:%+l ALV AL, (17 |9 =cospluy)+e sinp|uz). (21)

_ . ~with k=1,2,3, and &< 8= /4, which are assumed to occur
where, in the Igst step, we made use of the relation resultingith equala priori probability. Here|u;) and|u,) denote
from Eq. (9) with y,=0 and all the overlaps are assumedany two orthonormal basis states. Obviously the states are

Ill. DISCUSSION

and

real. linearly dependent and nonorthogonal. Due to their symme-
As our second example, we consider the case of thregy, the mutual overlaps are equal and we geA4?=4
arbitrary but linearly dependent statel=3. ChoosingM  —3 sir?(2p) if k#1|, where we again used the abbreviation
=1 and takingn, + 7,+ 73=1 into account in Eq(13), we  A,,=(yy/ ). Moreover, we obtain that 8 RA(,A3A3,)
readily obtain =8—-9sird(2p). By substituting these expressions into Eq.

(20) and taking into account thaip,=1/3, we find the
minimume-error probability for quantum state filtering with

1
- 2_ 2
R 72| A1zl “— 773| Argl”. (18) respect to the statay;),

2

The evaluation ofQ| is greatly facilitated if we notice that 13) 1 :
the first sum on the rhs of E¢L4) has only one term and this Perol B)=5[3—V1+3 SirF(2)]. (22)
term vanishes. A straightforward evaluation of the remaining

two terms from the second sum yields Because of the symmetry, the same expression holds for dis-

s 2 5 5 9 5 5 tinguishing any other state from the remaining two states.

|QI"= 72| Ad (1~ As2l) + 73] Ard (1~ |Asg*) For comparison, we now consider individual discrimination

+2 ReA — 1A 2 A2, 190  between all three states. The general formula for minimum-
72773 12hoer [Aral T Asdl®) 19 error discrimination betweeN symmetric states, derived in

For this case the parameters of the optimum detection staffe'-[6], has been recently applied by one of 48] to %}e;t?e’:)s

|w) can be seen to bg.= xo and tan(2e) =|Q|/R, with oflthe form (21), yielding the maximum probability? ;.

|Q| and R substituted from the above equations. We do not™ §I(|lsinB|+|cos,8|)2 for correctly distinguishing each state
give here a more explicit expression fgr. because it is individually. From this result we obtain the minimum-error
slightly involved and enters only the detection states but noProbability

the final result for the maximum probability. Inserting the

above values ofQ| andR into the general expression for the (1.23) oy 1 _ (1,2,3):} o
optimum probability finally gives Peror (8)=1~Prax 3[2 Sin(2f)]- 23

vy L1 3 , The ratioPE®)(B)/PE:23) B) is found to vary between 0.5
Pnax=5 13 1_4g2 ML= ) (el | for B=0 or /4, and the maximum value 0.56 fq8
~q/12. When B approaches zero, the physical difference
between the states vanishes and the respective minimum-
+8 13 Re(( Y| o) Wal ha) (sl 1)) | - error probabilities, corresponding to random guessing, are

twice as large as those fg8= /4, when both kinds of
(20 minimume-error probabilities take their smallest possible val-
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ues. These values are equal to 1/3 when all three states drappens if, e.g., Eq2) is applied to three linearly indepen-
discriminated individually, and to 1/6 when only one of the dent states. Finally it is interesting to relate our results to the
states is distinguished. Helstrom bound Pg=3[(1—||wyp1—Wyp,|[)] for the
The same values of the respective minimum-error probminimum-error probability of discriminating between two
abilities also result for the set of equally probable real sym-density operatorg; andp, having thea priori probabilities
metric states|g)=|uy), )= —3(u)++3[uy)), and Wi andw,, respectively. Here the symb_ﬁl-|| Qenotes the
|h3)=—3(|u;)— \3|u,)) which are known as the trine fraceé —norm llo||=Tr{oo. NAfter inserting  Wyp;
states[10]. For the case thdu,) and|u,) refer to a single = k=17l 0¥l andWapp= iy a7 Y1)(¥, the ex-
photon and represent horizontal and vertical linear polarizaP"€SSIons ensuing frog for the cases we are interested in
tion, respectively, these states have been used to verify efdeed confirm our results, without yielding the optimum

perimentally the theoretical result 1/3 for the minimum-errordetection operators, however. o .
probability in individual state discriminatiofil0]. On the To summarize, we derived the measurement strategy that

other hand, from Eq(20) with 7,=1/3 we easily find that minimizes the error probability for discriminating between
the minimum-error probability for distinguishing the state two complementary sgbsets . a set N-fnonort_hogonal
|44,) alone is only 1/6. By using tang.)=|Q|/R and Eq. quantum states spanning a two—d_|menS|onaI Hilbert space.
(10) with x=0, the proper projection stati.), is found to The corresponding measurement is found to be a standard

be|u,). Hence the corresponding quantum-state-filtering ex~’ or:-l\ieu:ma;gnt rr?eaSLtl)reme;t,t pro;ecgn_g t?]nto two cxthono_r-
periment for single photons could be performed with the heldna stales that have been determined In the paper. Assuming

of a polarizing beam splitter that transmits the horizontalarbitrarya priori probabilities of theN linearly depenqent
component and reflects the vertical one, or vice versa, agonorthogonal states, we obtained a general analytical ex-

it is immediately expected in view of the symmetry of the pression fo.r the minimum error prqbgbility or, equivalently,
problem for the maximum probability of obtaining a correct result. As

In conclusion, we remark that it is straightforward to gen-s.peCiaI cases of this general result, we gave explicit expres-
eralize our basic Eq2) in order to account for discrimina- sions for the case o real states, Eq(15), and for three

tion between more than two subsets. However, since the d@_rbnrary states, EG20).
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