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Minimum-error discrimination between subsets of linearly dependent quantum states
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A measurement strategy is developed for a different kind of hypothesis testing. It assigns, with minimum
probability of error, the state of a quantum system to one or the other of two complementary subsets of a set
of N given nonorthogonal quantum states occurring with givena priori probabilities. A general analytical
solution is obtained forN states that are restricted to a two-dimensional subspace of the Hilbert space of the
system. The result for the special case of three arbitrary but linearly dependent states is applied to a variety of
sets of three states that are symmetric and equally probable. It is found that, in this case, the minimum-error
probability for distinguishing one of the states from the other two is only about half as large as the minimum-
error probability for distinguishing all three states individually.
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I. INTRODUCTION AND BASIC EQUATIONS

Due to their nonvanishing mutual overlaps, nonorthog
nal quantum states cannot be perfectly distinguished. H
ever, stimulated by the rapid developments in quantum in
mation theory@1#, the question as to how to discrimina
between nonorthogonal states in an optimum way has ga
renewed interest@2#. In particular, in quantum communica
tion protocols several secure schemes have been sugg
based on communicating via nonorthogonal quantum sta
As a result, optimum discrimination between them beca
an inherent part of these schemes. For studying state
crimination, it is assumed that a quantum system is prepa
in one of theN pure states,uck&, that belongs to a given se
of nonorthogonal states,$uc1&,uc2&, . . . ,ucN&%, and that the
a priori probabilitieshk for the preparation of either one o
the statesuck& are also known. In order to devise an optimu
state-discriminating measurement, strategies have been
veloped with respect to various criteria@2,3#. The earliest
and simplest of these criteria is the requirement that
probability of getting a wrong result be as small as possib
with inconclusive results being forbidden and all states be
individually distinguished. A minimum-error strategy of th
kind has been developed for the case when only two st
are given@4# and forspecific Nstate problems@5–8#, includ-
ing N symmetric@6# and multiply symmetric@8# states. Re-
cently the optimum strategy has also been found for th
states exhibiting a mirror symmetry@9# but still no exact
solution has been known forN.2 arbitrary states. Using the
polarization states of a single photon, minimum-error d
crimination has been experimentally realized for up to fo
symmetric nonorthogonal states@10#.

In this paper we are concerned with a minimum-er
strategy that involvesN.2 arbitrary linearly dependent
quantum states, by considering the following problem:
want to devise a measurement that allows us to decide,
the smallest possible error and without inconclusive answ
whether the actual state of the system belongs to the su
of states$uc1&, . . . ,ucM&%, or to the complementary subs
of the remaining states$ucM11&, . . . ,ucN&% with M,N. For
1050-2947/2002/65~5!/050305~4!/$20.00 65 0503
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three given states the task reduces to distinguishing the
uc1& from the set of states$uc2&,uc3&% and can be referred to
as quantum-state filtering with respect to the stateuc1&. This
task has recently been investigated for the particular opti
zation strategy that yields unambiguous discrimination at
expense of allowing inconclusive results to occur, the pr
ability of which is minimized@11#.

To treat our general minimum-error problem, we follo
the standard lines and introduce two positive Hermit
quantum detection operators,P0 andP1 @2,4#. We define the
operatorP1 by the property that̂ ckuP1uck& accounts for
the probability to infer, from performing the measureme
the system to be in one of the states$uc1&, . . . ,ucM&%, if it
has been prepared in the stateuck&. Obviously, this inference
is incorrect if k.M . Similarly, given again the preparatio
of the stateuck&, the quantitŷ ckuP0uck& denotes the prob-
ability for inferring the state of the system to belong to t
subset of states$ucM11&, . . . ,ucN&%, which is an erroneous
result if k<M . Clearly, the relation

P01P151̂ ~1!

has to be obeyed, where 1ˆ is the unit operator. From the
definition of the detection operators it follows that the pro
ability to get a correct result reads

PM (N)5 (
k51

M

hk^ckuP1uck&1 (
k5M11

N

hk^ckuP0uck&. ~2!

In order to devise the desired minimum-error measurem
scheme, we have to determine the particular detection op
tors P0 and P1 that maximize the right-hand side~rhs! of
Eq. ~2! under the constraint~1!. In general, the error-
minimizing optimization problem is a highly nontrivial task

II. SOLUTION IN TWO DIMENSIONS

To enable simple analytical solutions, we restrict o
selves to the case when theN linearly dependent states spa
only a two-dimensional Hilbert space. We note that f
©2002 The American Physical Society05-1
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ULRIKE HERZOG AND JÁNOS A. BERGOU PHYSICAL REVIEW A65 050305~R!
three linearly dependent states this is always the case. F
we show that in the two-dimensional case it is possible
represent the two detection operatorsP1 and P0 by two
projection operators onto orthonormal statesum& and un&,
respectively. To see this, we start from the expressionP1
5l1uv1&^v1u1l2uv2&^v2u, with uv1& and uv2& being the or-
thonormal eigenstates that belong to some non-negative
genvaluesl1 and l2. Expanding a particular stateuc& as
uc&5cosbuv1&1sinbuv2&, where a possible relative phas
factor has been included into the definition ofuv2&, we arrive
at

^cuP1uc&5u^muc&u2, ~3!

provided that we defineum&5Al1uv1&6 iAl2uv2&. With the
help of the relation 1ˆ 5uv1&^v1u1uv2&^v2u, we obtain in the
same way the representation

^cuP0uc&5^cu1̂2P1uc&5u^nuc&u2, ~4!

provided that un&5A12l1uv1&6 iA12l2uv2&. Now we
require that u^muck&u21u^nuck&u251 for an arbitrary
state, uck&5cosbkuv1&1eigk sinbkuv2&, which implies that
um&^mu1un&^nu51̂ has to be fulfilled. This only holds true
when in the representations ofum& andun& opposite signs are
chosen and when in additionl2512l1, leading to the or-
thonormality conditions^mum&5^nun&51 and ^mun&50.
Therefore, in a two-dimensional Hilbert space the optimi
tion problem posed by Eqs.~1! and~2! can be reduced to th
problem of finding the specific normalized stateum& that
maximizes the expression

PM (N)5 (
k51

M

hku^muck&u21 (
k5M11

N

hk ~12u^muck&u2!,

~5!

which follows whenP15um&^mu and P051̂2um&^mu are
substituted into Eq.~2!. Comparing this to the spectral rep
resentation of the detection operators, introduced before
~3!, we are led to identifyum& with uv1& and un& with uv2&
since the representation is unique. Thenl151 and l250
follows. Once the optimum detection state is known,
maximum achievable probability of correctly assigning
quantum state to one of the two subsets, as well as the
detection operators necessary to perform the optimized m
surement, are uniquely determined.

To solve the optimization problem, it is convenient
write the overlaps between the given states as

^ckuc l&[Akl5uAklueiakl, ~6!

and to introduce the auxiliary state vector

uv&5
1

A12uA12u2
~ uc2&2A12uc1&). ~7!

For Eq.~5! to be valid, we have to assume that allN given
states lie in a two-dimensional subspace, spanned by
statesuc1& and uc2&, or uc1& and uv&, respectively. Since
05030
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^vuv&51 and^c1uv&50, the statesuc1& and uv& provide a
suitable orthonormal basis for representing any state,uck&, as

uck&5A1kuc1&1eigkA12uA1ku2uv&, ~8!

with

eigk5
A2k2A21A1k

A12uA12u2A12uA1ku2
. ~9!

The last equation can be verified by calculating the over
^c2uck&, taking into account thatg250 because of the spe
cific definition of the stateuv&. Similarly, we represent the
detection stateum& as

um&5coswuc1&1eix sinwuv&, ~10!

and obtain

^muck&5A1k cosw1ei (gk2x)A12uA1ku2sinw. ~11!

Equation ~10! accounts for all possible states in the tw
dimensional Hilbert space of interest provided that bothw
and x are variables in the interval@0,p). The error-
minimization problem is then reduced to finding those valu
of w and x in Eq. ~11! that maximize the probability
PM (N)(w,x) in Eq. ~5!.

The solution to this optimization problem is straightfo
ward. We begin by inserting Eq.~11! into Eq. ~5! and, by
making use of the fact that thea priori probabilities of the
states fulfill the relation(k51

N hk51, we readily arrive at

PM (N)5
1

2
1R cos~2w!1uQusin~2w!cos~x2xQ!, ~12!

whereR andQ are defined as

R5 (
k51

M

hkS uA1ku22
1

2D2 (
k5M11

N

hkS uA1ku22
1

2D , ~13!

and

Q[uQueixQ5 (
k51

M

hk

A2kAk12A21uA1ku2

A12uA12u2

2 (
k5M11

N

hk

A2kAk12A21uA1ku2

A12uA12u2
. ~14!

The conditions for an extremum,]PM (N)/]w50 and
]PM (N)/]x50, hold for w5we and x5xe , with sin(2we)
5uQu/AR21uQu2, cos(2we)5R/AR21uQu2, andxe5xQ, re-
spectively. Note that cos(2we) and R have the same sign
while sin(2we) is always positive. This choice ofxe andwe
corresponds to the maximum ofPM (N) and, from Eq.~12!,
we obtain

PM (N)~we ,xe!5Pmax
M (N)5

1

2
1AR21uQu2. ~15!
5-2
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The corresponding detection state, onto which a projec
has to be performed in a measurement scheme achievin
maximum probability, is determined byume&5coswe uc1&
1eixe sinweuv&.

As applications of this general expression, we discuss
special cases. First, the solution can be cast to a conside
simpler form when the states arereal. Real states have bee
considered before@12# in a different context. In this case th
parameters of the optimum detection state,um&, can be cal-
culated very easily. BothR andQ are real, yieldingxe50 if
Q>0 or p if Q,0. The maximum probability of determin
ing correctly to which of the two complementary subset
state belongs is given in this case by Eq.~15! with

R5 (
k51

M

hkS A1k
2 2

1

2D2 (
k5M11

N

hkS A1k
2 2

1

2D , ~16!

and

Q5 (
k51

M

hkA1kA12A1k
2 2 (

k5M11

N

hkA1kA12A1k
2 , ~17!

where, in the last step, we made use of the relation resu
from Eq. ~9! with gk50 and all the overlaps are assum
real.

As our second example, we consider the case of th
arbitrary but linearly dependent states,N53. ChoosingM
51 and takingh11h21h351 into account in Eq.~13!, we
readily obtain

R5
1

2
2h2uA12u22h3uA13u2. ~18!

The evaluation ofuQu is greatly facilitated if we notice tha
the first sum on the rhs of Eq.~14! has only one term and thi
term vanishes. A straightforward evaluation of the remain
two terms from the second sum yields

uQu25h2
2uA12u2~12uA12u2!1h3

2uA13u2~12uA13u2!

12h2h3~ReA12A23A312uA12u2uA13u2!. ~19!

For this case the parameters of the optimum detection s
um& can be seen to bexe5xQ and tan(2we)5uQu/R, with
uQu andR substituted from the above equations. We do
give here a more explicit expression forxe because it is
slightly involved and enters only the detection states but
the final result for the maximum probability. Inserting th
above values ofuQu andR into the general expression for th
optimum probability finally gives

Pmax
1(3)5

1

2
1

1

2 F124(
k52

3

hk~12hk!u^c1uck&u2

18 h2h3 Re~^c1uc2&^c2uc3&^c3uc1&!G1/2

.

~20!
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This expression describes the maximum attainable proba
ity of correctly distinguishing the stateuc1& from the set of
states$uc2&,uc3&%. The minimum-error probability then fol-
lows asPError

1(3)512Pmax
1(3) . As expected, the result is indepe

dent of the individual phase factors of the given states,
for h350 it reduces to the pioneering formula@4# for
minimum-error discrimination between only two nono
thogonal states.

III. DISCUSSION

With respect to possible applications, the question ari
how the maximum probability for getting a correct result
quantum-state filtering compares to the maximum proba
ity for correctly discriminating, by means of a different me
surement strategy, between all the given states individua
In the following we shall explore this question for a varie
of symmetric states.

Let us investigate the set of three symmetric states

uck&5cosbuu1&1ei (2p/3)(k21) sinbuu2&, ~21!

with k51,2,3, and 0,b<p/4, which are assumed to occu
with equal a priori probability. Hereuu1& and uu2& denote
any two orthonormal basis states. Obviously the states
linearly dependent and nonorthogonal. Due to their symm
try, the mutual overlaps are equal and we get 4uAklu254
23 sin2(2b) if kÞ l , where we again used the abbreviatio
Akl5^ckuc l&. Moreover, we obtain that 8 Re(A12A23A31)
5829 sin2(2b). By substituting these expressions into E
~20! and taking into account thathk51/3, we find the
minimum-error probability for quantum state filtering wit
respect to the stateuc1&,

PError
1(3)~b!5

1

6
@32A113 sin2~2b!#. ~22!

Because of the symmetry, the same expression holds for
tinguishing any other state from the remaining two stat
For comparison, we now consider individual discriminati
between all three states. The general formula for minimu
error discrimination betweenN symmetric states, derived in
Ref. @6#, has been recently applied by one of us@13# to states
of the form ~21!, yielding the maximum probabilityPmax

(1,2,3)

5 1
3 (usinbu1ucosbu)2 for correctly distinguishing each stat

individually. From this result we obtain the minimum-erro
probability

PError
(1,2,3)~b!512Pmax

(1,2,3)5
1

3
@22sin~2b!#. ~23!

The ratioPError
1(3)(b)/PError

(1,2,3)(b) is found to vary between 0.5
for b50 or p/4, and the maximum value 0.56 forb
'p/12. Whenb approaches zero, the physical differen
between the states vanishes and the respective minim
error probabilities, corresponding to random guessing,
twice as large as those forb5p/4, when both kinds of
minimum-error probabilities take their smallest possible v
5-3
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ues. These values are equal to 1/3 when all three state
discriminated individually, and to 1/6 when only one of th
states is distinguished.

The same values of the respective minimum-error pr
abilities also result for the set of equally probable real sy
metric states uc1&5uu1&, uc2&52 1

2 (uu1&1A3uu2&), and
uc3&52 1

2 (uu1&2A3uu2&) which are known as the trine
states@10#. For the case thatuu1& and uu2& refer to a single
photon and represent horizontal and vertical linear polar
tion, respectively, these states have been used to verify
perimentally the theoretical result 1/3 for the minimum-er
probability in individual state discrimination@10#. On the
other hand, from Eq.~20! with hk51/3 we easily find that
the minimum-error probability for distinguishing the sta
uc1& alone is only 1/6. By using tan(2we)5uQu/R and Eq.
~10! with x50, the proper projection state,ume&, is found to
be uu1&. Hence the corresponding quantum-state-filtering
periment for single photons could be performed with the h
of a polarizing beam splitter that transmits the horizon
component and reflects the vertical one, or vice versa
it is immediately expected in view of the symmetry of th
problem.

In conclusion, we remark that it is straightforward to ge
eralize our basic Eq.~2! in order to account for discrimina
tion between more than two subsets. However, since the
tection operators always have to resolve the identity, t
cannot be represented by projection operators onto orth
nal states if their number is larger than the dimensionality
the underlying Hilbert space. The measurement, theref
would be a generalized@14# measurement in this case. Th
same applies if the number of detection operators is sma
than the number of dimensions of the Hilbert space, a
n-

re

ry

f.

J.
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happens if, e.g., Eq.~2! is applied to three linearly indepen
dent states. Finally it is interesting to relate our results to
Helstrom bound PE5 1

2 @(12uuw1r12w2r2uu)# for the
minimum-error probability of discriminating between tw
density operatorsr1 andr2 having thea priori probabilities
w1 and w2, respectively. Here the symboluu•uu denotes the
trace norm uusuu[TrAs†s. After inserting w1r1
5(k51

M hkuck&^cku and w2r25(k5M11
N hkuck&^cku, the ex-

pressions ensuing fromPE for the cases we are interested
indeed confirm our results, without yielding the optimu
detection operators, however.

To summarize, we derived the measurement strategy
minimizes the error probability for discriminating betwee
two complementary subsets of a set ofN nonorthogonal
quantum states spanning a two-dimensional Hilbert spa
The corresponding measurement is found to be a stan
von-Neumann measurement, projecting onto two orthon
mal states that have been determined in the paper. Assum
arbitrary a priori probabilities of theN linearly dependent
nonorthogonal states, we obtained a general analytical
pression for the minimum error probability or, equivalent
for the maximum probability of obtaining a correct result. A
special cases of this general result, we gave explicit exp
sions for the case ofN real states, Eq.~15!, and for three
arbitrary states, Eq.~20!.
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