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We show that entanglement is a useful resource to enhance the mutual information of the depolarizing
channel when the noise on consecutive uses of the channel has some partial correlations. We obtain a threshold
in the degree of memory above which a higher amount of classical information is transmitted with entangled
signals.
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The classicql cgpacity Qf guantum chan'nels, ie., t,h%ngleqr around axe,y,Z with probability p, Py P, On the
amount of classical information that can be reliably transmit- bit state, or the identity with probability,
ted by quantum states in the presence of a noisy enwronmeﬁym the si,mplest scenario the transmitteroc.:an send one qubit
rr:%sir: ech)gLVSeedS rc?fnserclzidiArt]é?(;i?tismtr:gcsiﬂzjyéoﬁf}g(r?tgi Oltamgnt at a time along the channel. In this case the codewords will
Y 9 e restricted to be the tensor products of the states of the

ﬁ]ggggm tﬁs?ﬁ‘;%?yt%sggigiilﬂfOﬂﬁﬁg%é@?&ﬂs fr?eﬁag;xdmduql nglts. Quantum me(_:hanlcs, however, allows also
entangiing multiple uses of the channel, a larger amount o}h? possibility to entangle multlple uses of the channel. For
classical information per use can be ,reliably transmitted his more general §trategy it has been shc_)wn that the amount

) ) o . of reliable information that can be transmitted per use of the
This property is known as superadditivitp more precise channel is given by]
definition will be provided later in the textAttention so far
has been paid to memoryless channels, i.e., channels in 1
which independent noise acts on each use. The absence of Co=rSuR1n(E), 3
superadditivity has been first proved analytically for the case
of two entangled uses of the depolarizing char{@) and ~ where&={P; ,;} with P;=0, ZP;=1 is the input ensemble
then extended to a broader class of memoryless chaf8iels of statess;, transmitted witha priori probabilitiesP;, of
A different related problem, which we will not consider here, n—generally entangled—qubits, ahg(£) is the mutual in-
is the entanglement-assisted classical capacity4]nt has  formation
been shown that prior entanglement between sender and re-
ceiver can increase the classical capacity of some noisy _
memoryless quantum channels. In(S)—S(p)—Ei PiS(pi), @)

In this paper we will turn our attention to a different class
of channels, in which correlated noise acts on consecutivihere the index stands for the number of uses of the chan-
uses, i.e., to channels with partial memory. For such channeRel. In the above equation
our results show that a higher mutual information can indeed _
be achieved above a certain memory threshold by entangling S0 =~Tr(xlogz x) ®
two consecutive uses of the channel. In the following, eachis the von Neumann entropy; = ®(;) are the density op-
use of the channel will be a qubit, i.e., it will be a quantumerators describing the output states, ame=;P;p;. The ad-
state belonging to a two-dimensional Hilbert space. The acvantage of the expressidd) is that it includes an optimiza-
tion of transmission channels is described by Kraus operatoigon over all possible POVMs(positive operator value
[5] A, satisfyingEiArAi=1, such that if we send through measuresat the output, including collective ones. Therefore
the channel a qubit in a state described by the density operao explicit maximization procedure for the decoding at the
tor 7, the corresponding output state is given by the map output of the channel is needed.

The interest for the possibility of using entangled states as
channel inputs is motivated by the fact that it cannot gener-
ally be excluded that, () is superadditive in the presence
of entanglement, i.e., we might havg,,>1,+1,, and,

An interesting class of Kraus operators acting on individuatherefore,C,>C;. In this scenario, the classical capacily
qubits can be expressed in terms of the Pauli operatpys, ~ of the channel is defined as

A= pior, @ C= m Co- ©

with 2;p;=1, i=0x,y,z andoy=1. A noise model for these So far the main objects of investigation have been memory-
Kraus operators is, for instance, a random rotation of aness channels. By definition, a channel is memoryless when

w—><1>(w)=§i‘, AmA. (1)
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its action on arbitrary signals,, consisting ofn qubits(in- 1
cluding entangled ongsis given by V.)= E{|01>i|10>},

O(m)= > (A @ - QA )aAl©- @A), (7) ae .eigenstates of the operatéys and, therefore,. will pass _
PEER P ! ! " undisturbed through the channel. If used as equiprobable sig-
) ~nal states they maximize, as we will havel ,=2. Further-
In the case of Pauli channels a more general situation ifore, it is immediate to verify that the vallig=2 cannot be

described by Kraus operators of the following form: achieved by any ensemble of tensor product input states.
This situation is reminiscent of the so-called noiseless codes,
Ay k= VPR -k Tk e O (8 where collective states are used to encode and protect quan-
tum information against collective noi$6].
with =, Pr.  « =1.The quantityp, |, can be in- In the following we will concentrate our attention to the
1ok PRy kg s

terpreted as the probability that a given random sequence §f€Polarizing channel, for whiclpo=1-p and p;=p/3, i
rotations of an angler along axe;, . ..k, is applied to the ~ =X¥:Z- We will consider an ensemble of orthogonal input

sequence of qubits sent through the channel. For a memo-States parametrized as follows
rerSS Channe|pk1 3 -kn= pklpkz. .. pkn' An interesting gen- |7Tl>:C0319|00>+Sin19|11>
eralization is described by Markov chains defined as
) =sin¥|00) — cos?|11),
Pi; .. .k, = Py Picylky w + Pi ko2 €) I 100 Iy
| 7m3) = cos®|01) + sin 9| 10),
wherepkn‘kW1 can be interpreted as the conditional probabil-
ity that a rotation around thé, axis is applied to thath | 7m4) =sin§|01) — cosd|10). (14)
qubit given that arr rotation around thd,, ; axis was ap- o o . L .
plied on the 6— 1)th qubit. Here we will consider the case Although it is nota priori certain that this is the optimal

of two consecutive uses of a channel with partial memorychoice for all values ofu, we know that it maximize<,
ie., we will assumep, = (1—p)py +pmd 4 . This with 9=0 for x=0 (uncorrelated noige and with 9= 7/4
means that with robanbilnif1 the same Irjotatior?’isn:':{L lied to for =1 (fully correlated noisg We will, therefore, opfi-

P " P mize the ansatzl4) by looking for the valued(u), which

both qubits while with probability + « the two rotations are L .
uncorrelated maximizesl, as a function ofw.
. o . L . S We will now show that there is a threshold value for
This noise model can describe situations in which time , . = - B
. . . which 1,(9=m/4,u)=1,(0=0,u;). Below the threshold
correlations are present in the system. For instapceould lue, 1(9=0, 1< )1 (9= 1/4, u< ), while above
depend on the time lapse between the two channel uses.i\{ | (,9:2 4 g :;Lt>| (szo 7T>, M) /1% ,this soal, it is
the two qubits are sent at a very shorp time int.ervall, the sezful to usé ":Lhe 'LELStIoch 2repres’eﬁtatfg’:} .for the input étates
properties of the channel, which determine the direction ot

the random rotations, will be unchanged, and it is, therefore,

1
reasonable to assume that the action on both qubits will take =7 191+19 >, 8P+ >, BYo@I
the form k k
AE: \/ﬂO’kUk . (10) + % Xk|0'k® (O (15)

If on the other hand, the time interval between the Channe\llvhere the Bloch vectors and tensor are defined, respectivel
uses is such that the channel properties have changed, then ~ ~ T . » TESPe Y:
the actions will be aspi=Tr(maoy), xij=Tr(7o;0;). We will express the action

of the channel in terms of the so-called shrinking fa¢&r
u _ [ n= 1- 4p/3.
Aky i = VP VPiG T Ty (11) It is straightforward to verify that fop.=0,

An intermediate case, as mentioned above, is described by + .
actions of the form kEk A, i 1B 0jA K, =71® 0,
1:R2

Aikl,kzz VP [(1= )P, + w1010k, (12)

kEK Akl'kzaj ®1Al1,k2: 7]0'J ®l,
It is straightforward to verify that the Bell states, defined in 12
the basig0),|1) of the eigenstates of the, operators as

> A,k Tk® 0-J'All,kzz oy ® oj, (16)
1 ki.ko
®.)=—={|00)=|1D)}, (13)
o ‘/§{| = while for u=1
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T 2 T T T T T T T T T
2 Akl!k2]® UJAkl,kZZ 7]]@ 0'] i 18 F m
ky.ka . Max. entangled states
Product states -------
1.6 [
AR
k§(2 Akl,kza-j(g)lAkl,kz_ 770']®1, 1.4
o2
T
k§(2 Akl'k20k® UJAkl,kZ_ 5kja-k® (Tj + (1_ 6kj) 770'k® O'j . 1
17 0.8
It is interesting to note that both far=0 and foru=1, the o6r ]
components of the Bloch vectogy of the input states are 0 01 02 03 04 05 06 07 0.8 0.9 1
shrunk isotropically by the shrinking facter. The difference 18

between the two cases is the action on the Bloch tegsor
The input stater; is transformed by the action of the depo-
larizing channel with partial memory defined in E2) into

FIG. 1. Mutual information for product states and for maximally
entangled states as a function of the degree of memory of the chan-

the output density operater,, nel, for »=0.8.
1 have used so far theaxis as the axis of quantization for the
p1:Z{H®H+ 7¢08 20(1® 0, + 0,@ 1) +[u+(1— u) n°] system; however, due to the symmetry of the channel, we
would have obtained the same results usimy y as the axis
X[0,@ 0,+5iN 29 (0@ oy~ oy®@ o) 1}, (18  of quantization.
Notice that so far we have restricted our attention to input
whose eigenvalues are states of the forn{14). We will now show that the product
states that are less deteriorated when transmitted through the
)\1225(1_“)(1_ 7), (19) chqnnel are the eigensjtateswzflazg OF 010y O Ty10%p.
<4 This suggests that no different choice of product signal states

can achieve a highdy, than our ansatzl4). From Eqs.(16)
N :}{lJr + 21— p) and (17) it follows that the output density operator corre-
3474 kT K sponding to an arbitrary input product state takes the form

+25?coS 29+ n?(1— )+ u]? siré 29},

(20 I®l+7n

1
‘I’(W)ZZ 1®Ei ﬁzi(fzi"'Ei :81i0'1i®1>

Notice that the first two eigenvalues are degenerate and do

not depend ord. The same eigenvalues are obtained for the +(M+(1—M)772)Z B1iB2i01i® 05
output statep,,ps,ps. The von Neumann entrop$(p;) is

minimized as a function off when the term under the square )

root in the expression fok g4 is maximum. The mutual in- Hunt(1-u)7y ); B1iB2j01i® 02
formation is then maximized for equiprobable statgscor- :

responding to the minimum von Neumann entropy. ThereA measure of the degree of purity of the state at the output of

2 2 -_ 2 I 1 I . . . .
fore_forl ”f>[7’ (1 Ml)ﬂé] the m_utual |Ef|ormfat|0n > the channel is given by Tpf). It is straightforward to show
maximal for uncorrelated states)=0, while for 7% that for the above state we have

<[7*(1—u)+ x]? it is maximal for the Bell states. The
threshold valueu; is a function of the shrinking factor and 1
for 0< <1 takes the form TP ()%= 7 1+2772+[M+(1_M)7]2]22i B3B3,

. (22

__7_ 1)
Moy Hunt(-w P2 Bipy . @3
Therefore, for channels withu<u, the most convenient
choice within the ansatz14) corresponds to uncorrelated The above expression is maximized when both Bloch vectors
states, while foru> u;, to maximally entangled states. At point in the same, y, or z direction. It is straightforward to
the threshold value, any set of states of the foid) leads to  verify that these states maximize also the fidelity, defined as
the same value for the mutual information. As an exampleTr[ #®(#)]. Moreover, we have numerical evidence that for
the behavior of the mutual information is plotted in Fig. 1. It any value ofu and#, the input product states that maximize
is interesting to notice that, within the ansafz}), for any  the mutual information are still of this form. Therefore, no
value of u, the mutual information is optimized by either better choice of product states leads to a higher mutual in-
maximally entangled or completely unentangled states. Wéormation than that achieved by the anséld). Finally we
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would like to point out that for input product states, the mu-sical capacity of quantum channels with time correlated

tual informationl , is larger foru=1 than foru=0, noise. This problem is of great interest not only from the
1 theoretical viewpoint but also from the experimental one as

l(p=1, 9=0)=1+ ={(1+ p)logy(1+ 7) time cc_)rrglated noise is not rare in r_eal physical quantum
2 transmission channels. For the specific case of a quantum

depolarizing channel with collective noise, we have shown

+(1=n)log(1- 7}, that the transmission of classical information can be en-

B o hanced by employing maximally entangled states as carriers
l2(u=0, 9=0)={(1+ n)logy(1+7) of information rather than product states. This result broad-
+(1— p)logy(1— 7))} ens the class of _eruatlon_s in which _the_use of er_ntanglem_ent

(24) enhances the efficiency in communications and information

processing.

This is due to the fact that the Bloch tengois multiplied by .
a larger shrinking factor when the noise is collective. In other. We would like to thank R. Jozsa for useful comments.

words, in the presence of perfect memory with two uses of NiS Work was supported in part by the EU under Contract

the channel, it is possible to achieve a higher mutual inforNO- 1IST-1999-11053-EQUIP, “Entanglement in Quantum In-

mation than in the case of memoryless channels even if wiormation Processing and Communication,” and by Minis-
restrict to product states. tero dell’'Universitae della Ricerca Scientifica e Tecnologica

In conclusion, in this paper we have analyzed for the firstinder the project “Quantum Information Transmission and
time, to the best of our knowledge, the problem of the clasProcessing: Quantum Teleportation and Error Correction.”
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