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Optical spiral waves supported by competing nonlinearities
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Four-phase spiral waves are predicted to exist in a nonlinear optical cavity with competing qua@ratic
x®) and cubidi.e., y*) nonlinearities. These spatial structures are found in the mean-field model of a doubly
resonant type-1l frequency-degenerate optical parametric oscillator with an intrag&itgotropic medium.
Degenerate four-wave mixing of signal and idler fields induced byyfiemedium breaks the phase invari-
ance of the down-conversion process, producinglinear phase locking with four possible phase states. A
parametrically forced Ginzburg-Landau equation is derived to explain the existence of multiphase spiral waves.
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The study of spatial-temporal structures of light interact-waves[9—14]. Such structures generally arise when a spa-
ing with nonlinear quadratic media both in traveling-wavetially extended system near a Hopf biurcation is parametri-
configurations and in optical cavities has attracted continueally forced at a frequency times the Hopf bifurcation fre-
ous interest in recent years. Such interest has been mainfuency [7]. Although the study of general properties of
motivated, on the one hand, by the possibility of achieving inmultiphase spiral waves and patterns has been worked out
nonlinear optics a rich “laboratory” for the study of the gen- within normal-form amplitude equatio%,14,13 and inter-
eral laws underlying the formation of spatiotemporal struc-esting phase front instabilities have been predicted and ob-
tures in spatially extended nonlinear systems. On the othegerved in then=4 case[10—-12, there are to date very few
hand, the existence of localized states and spatial multistaexplicit examples of nonlinear systems displayimg 3 or
bility in x(?-based nonlinear optical devices may be of po-n=4 phase multistability, the most notable one being the
tential relevance in applications such as all-optical controparametrically forced Belousov-Zhabotinsky reaction system
and processing of light. In the cavityless case, great attentiofl0—13. In such systems the occurrence of the phase multi-
has been devoted to the analysisydf) cascading processes stability is artificially realized by periodic modulation of a
and to the study of spati&br temporal propagative solitons control parameter. The existence of three-armed spiral waves
(see, e.g.[1]); in particular, the effects of competing!®  supported by the bulk nonlinearity of the system, i.e., with-
and x® nonlinearities have been investigated in defajl ~ out the need for periodic modulation of parameters, was re-
The inclusion of an optical cavity allows for the formation of cently predicted in nonlinear optics in a special class of non-
dissipative spatial structures. The formation of patterns, dodegnerate self-phase-locked OPOs as a result of a multistep
main walls, and localized structurésavity solitons in par-  x'?) process[19]. Neverthelessn=4 phase multistability
ticular has been investigated theoretically for the opticalseems unlikely inpurely quadratic optical devices, such as
parametric oscillatofOPQO) model (see, e.g.[3] and refer-  the device considered ii9], and the search for an optical
ences thereinp and the experimental observation of some ofsystem displaying a dynamical scenario typicahef4 mul-
these structures has been recently repddédOf particular  tiphase systems, until now realized solely in a chemical re-
relevance is the class of phase-locked OPOs, in which thaction system, appears thus of a certain relevance.
generated signal and idler fields have fixed values for their In this Brief Report we investigate theoretically the ef-
phase[5,6]. These devices, in addition to being of extremefects of an isotropic cubic nonlinearity in the process of op-
importance for applications in frequency metrology andtical parametric oscillation for a type-Il interaction and show
quantum optical studies, have attracted some interest also fthat the competing/® nonlinearity leads to an=4 phase
the study of the spatial-temporal dynamics of multiphasemultistability and to the existence of four-phase spiral waves.
systems[7—-15). In most previously studied phase-locked We consider a doubly resonant type-Il OPO in a ring cavity
OPO systems, spatially self-organized structures arise fromwith flat mirrors containing both a birefringegt? nonlinear
phase bistabilitydue to degeneracy of the idler and signal crystal, pumped by a nonresonant pump wave at frequency
waves. Ising-like domain walls that separate two equivalenw, and an isotropigy® nonlinear mediuniFig. 1(a)]. The
phase states were predicted earlier for degenerate typepump field is assumed to be linearly polarized along, e.g., the
OPOs[16], and a detailed and comprehensive study of theextraordinaryy axis of the nonlinear crystal, whereas bire-
dynamics of domain walls was recently giveniv]. In[18]  fringent phase matching and cavity tuning are accomplished
it was shown that type-ll frequency-degenerate OPOs, itfior efficient generation of frequency-degeneraiequaside-
which phase bistability is induced by cavity birefringence,generatgsignal and idler fields at frequeney linearly po-
enable a richer dynamics, predicting the existence of Blocliarized along the ordinary, and extraordinaryy, axes of the
domain walls, the Ising-Bloch transition, and spiraling de-crystal, respectivelysee Fig. 1b)]. In the spirit of the mean-
fects. The occurrence of multistability among-2 different  field limit, the signal and idler waves suffer small changes
phase states allows for further interesting phenomena, thafter each round-trip propagation, and their enveldpeand
most notable one being the formation of multiphase spiraB, can be taken approximately uniform along the cavity axis
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FIG. 1. (a) Schematic of a doubly resonant OPO in a ring cavity Where is the wavelengthin vacuum of signal and idler
with a @ nonlinearity;(b) type-Il phase matching in the birefrin-  Waves;no is the (linean refractive index of the cubic me-

gent crystal for degenerate down-conversion. dium at frequencyw; L is the length of the cubic medium;
XO=xGi and  A=[xQ+ XDl X and B
z The mean-field equation for the intracavity amplitullas = 2x\y/ X« are the Maker-Terhune coefficients for the
andB, then has the general forfsee, e.g.[20]) nonlinear x'*> medium (4+ B/2=1 for an isotropic me-
dium). Substitution of Eqs(2)—(4) into Eq.(1) allows one to
0tBl,2:(ABIi,z"_AB?,E)/T?b 1) write the mean-field equations for the intracavity signal and

idler waves. After introduction of the normalized envelopes
whereAB}, and AB}S are the small changes of signal and A12=B1.2/012, Where qlzqz[nzTSV?/(”lT§71)]1/2 and
idler amplitudes in one cavity round-trip due to linear andd2=(N1N3y TTA?) Y% (mx 1), and with a suitable choice
nonlinear propagation effects, respectively, ait are the ~ Of the phase of the pump wa#, the mean-field equations
cavity round-trip times for the two fields. The first term in €an be cast in the following form:
Eq. (1), ABiZ, accounts for both cavity effects and diffrac-
tion in the paraxial approximation, and reads 9 AL = 71[ —(1+iAp) A +ia, VA, + uA% — p|Asl2A,

A B&,zz T?,z?’l,z[ —(1+iA1)Byo+ia;,VB1ol, (2

i 2 2 B 2p%
+|O'1 6|A1| A1+A|A2| A1+ _AZAl

AL (5a

wherey; ,, A;,, anda, , are the cavity decay rates, detun-
ing parameters, and diffraction coefficients for the two fields,
respectively, defined as in R¢21]. The second term in Eq. ol ; ; 2 *_ 2
(1), ABTE, comprises the changes of signal and idler waves KAz 72[ (118 Ar 182V Az + AL —plAl™A2
due to the nonlinear interaction in both the quadratic and 1 B
cubic media, i.e.,ABY5=ABJ4 "+ ABSYC. The ex- +io-2(—|A2|2A2+ AlALPA+ — AZAS ” (5b)
plicit expressions fon B{3*"2"° can be derived by integra- Y 2

tion of the nonlinear wave equations for signal, idler, and
pump waves in thg(?) crystal after elimination of the pump
field from the dynamics as detailed, e.g.[20]; one obtains

where

p=(mx@|EN)|sinAKD/(AKD /TN (y1 ¥, TETEN N,) Y]

wx@E | expliAkl) -1

ABguadratic_ B* is the dimensionless parametric gairg=(n,T5y,)/

2Mmgo  TAKL R (N TRy, and oy ,=[3n, g /(4mng) J(LI (N X

w222, [x'?]? measures the relative strength of third-order versus
- —2|Bz,1|2|31,2, (3)  second-order nonlinearities. The order of magnituder pf

4ny ;N3Cy largely depends on material parameters and crystal lengths;

for instance, assuming @2 of the order of 108 esu, typi-
wheren;, n,, andn; are the refractive indices of signal, cal values fory®/[x*]%2 may range from~10 for fast
idler, and pump waves in thg(® crystal, respectivelyt is  electronic nonlinearities te-10° for molecular orientation;
the crystal lengthy(? is the relevant element of the second- higher values of®/[ x(?]?> may be achieved using stronger
order susceptibility tensor involved in the type-Il interaction; y*) nonlinearities, such as by exploiting resonant electronic
&, is the electric-field amplitude of the incident plane-wavenonlinearities(e.g., excitonic semiconductor nonlineariies
pump beam;Ak=Kky(2w)—K,(w)—ky (o) is the residual saturated atomic absorption, or semiconductor-doped glasses
wave vector mismatch of the parametric interaction; and [22]. For typical experimentally accessible valued ahd £
=—2{1/(iAkl)+[exp(Akl)—1]/(Akl)?} is a dimensionless and at near-infrared or visible wavelengths, the dimension-
complex coefficient that accounts for saturation gffd cas-  less parameters, , may hence reach values of the order of
cading effects g—1 for Akl—0; see[20]). Finally, the ~0.1-1 or even higher. The values 4f and B are deter-
propagation of the frequency-degenerate signal and idlemined by the nature of the isotropic nonlinearity; for in-
waves through the® medium introduces self-phase modu- stance, for the Kerr effect due to off-resonance fast electronic
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(a) (b)

FIG. 2. Rotating four-phase spiral waves obtained from numeri-
cal simulations of Eq(1), from initial noise conditions, for a plane-
wave pump(a) and for a super-Gaussian punfip). The figures
show the intensityleft side and phasdright side of the signal
field at times t=6000. Parameter values ar@g=1.8, o;
=0.4, Akl=0, A;=1, A,=1.1, A=B=2/3 in (a8, and u,
=2.7, w=44, m=4, 0,=0.2, AkI=-0.1, A;=2A,=22, A
=1/4, B=3/2 in (b). The other parameter values ang= 1y, . .
=1, a,=1.05 a,=1, 6=1, ando,=1.10,. In (a) the inte- FIG. 3. (a) Bound stgte pf counterrotg_tlng spirals. Parameter
gration domain is 188 180 wide. A spatial grid of 128 128 points values are the same as in Fidgbp the stability of thg bound state
was used: time stept=0.02. was _check(_ed up to time=20000.(b) and (c) formation of Iarge

rotating spirals and target patterns from small random noise for

~ 01=0.6[the other parameter values are the same as in Fiy].2
response one had= 3= 2/3, whereas for the Kerr effect in

liguids one hasd=1/4 andB=23/2[22].
The zero solutiol;=A,=0 of Egs.(5), corresponding
to the OPO being below threshold, undergoes a Hopf bifur

2(b)]. Spirals with different ordered phase states rotate in
opposite directions; annihilation of spirals may occur; how-

. i ever, long-lived bound states of counterrotating spirals may
cation with frequencyw.=y172(A;—A1)/(y1+ 72) 10 @ e ghserved. As an example, a stable bound state for a super-
spatially homogeneous state for signal and idler fieldg at G5ssian pump is shown in Fig(a3 The tendency to spi-

= pn=(1+A%)" ~ when A>0, where A=(y1A1 rjing for domain walls turns out to be very sensitive to the
+7282)/(y1t 72) is the effective 3detun|ng paramet@l]. | a1ye of cavity detuning imbalanae,— A, and strengthr,

In the absence of the competing®) nonlinearity, Eqs(5)  of the competing nonlinearity. Although a detailed analysis
are invariant under the phase transformatiod; o gynamical behaviors in parameter space goes beyond the
—Aexp( ), .A2—>A'2exp(—|d>),3 and phase locking is not scope of the present work, we nevertheless notice that large-
possible. The inclusion of the® medium breaks the phase gscale numerical simulations indicate that four-phase spirals
invariance and may lead to phase locking of the homogegan pe observed under a wide variety of operational condi-
neous state. Analytical expressions for the homogeneougyns. For instance, if we consider parameter values as in Fig.
phase-locked states and domain of existence cannot be dge(b), spirals are observed for, varying between-0.12 and
rived in a closed form; a simple inspection of E@S) nev- g 5. 4t |arger values of competing nonlinearity large spirals
ertheless reveals that t_he phas_e-locklrjg mechanism, inducgg)q target patterns are typically obseryede Figs. &) and

by the B-resonant cubic term, is nonlinear and produces &;c), respectively, with the appearance of turbulent struc-
phasemultiplicity of the uniform state withfour allowed  tres at even higher values of nonlinearity. We also notice
phases shifted byr/2 with respect to one another. It should that spiral waves may be observed for either off-resonance
be noted that thé3 term of cubic nonlinearity is resonant glectronic nonlinearitie§Fig. 2(a)] or for cubic nonlineari-
when signal and idler fields are close to frequency degeries due to molecular orientatidiFigs. 2b) and 3.

eracy, so that phase locking is effective when the Hopf fre- | order to get some analytical insights into the existence
quencyw, at the linear instability is close to zero, i.e., for of multiphase spirals and to understand the role of the iso-
A;=A,. For u>py, homogeneous states with different tropic cubic nonlinearity, we derived an order parameter
phases, connected by domain walls, may grow and emerge Eyuation close to threshold far>0 by a weakly nonlinear
different spatia_tl regions. We performed a numerical a_malysisanawsis of Egs.(5). By setting u=ju+ €2, where the

of Egs. (5 using a pseudospectral split-step technique tsmgaliness parametermeasures the distance from the bifur-
study the phase-locking regime far>0 and the dynamics ation point uy,, and assumingws.~O(€?) to allow for

of _domqin walls above threshpld. Sta_rtin_g from the Zero sophase locking, the amplitude equation can be derived as a
lution with a small random noise, shrinking or expansion ofggyapility condition in a multiple-scale asymptotic expan-
different phase domains may be observed after the lineagjgn by an extension of the analysis describefPih23. At
growth, leading to one dominant final phase state; hOWGVGTeading order, one finds that A{,A,)T=(1,(1
more complex dynamical behaviors can be observed. In PAL= AY/ ) To(X,y,t) + O(€2), where the amplitudey~ e
ticular, dynamical states corresponding to four-armed rotats5isfies the following equation:

ing spirals composed of four-phase domains coalescing at

one point and rotating around it are possible. Spiral waves _ 5 5 .3

are observed using both a plane-wave pump with periodic dip=Crip+ CoV = Cal | “h— Cap*>, (6)
boundary conditiongsee Fig. 2a)], and a super-Gaussian

pump u= ueexd — (r/w)®™] with radial symmetry{see Fig. where we have set
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it y2+i(yi—v2)A
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The amplitude equationi6) is a parametrically forced the existence of four-phase spirals requires a “true” cubic
Ginzburg-Landau equation that describes quite generally theonlinear medium, not an equivalent third-order nonlinearity
nonlinear dynamics of a spatially extended system close to #duced by, e.g.x® cascading effects. For this reason four-
Hopf bifurcation under periodic modulation of parametersPhase spirals seem unlikely in purely quadratic media, al-
[7]. The existence and stability of four-phase spiral waves fof0ughn=3 phase multistability is possible in some special
such a model equation has been extensively studied iﬁases[19].

) : : In conclusion, four-phase rotating spiral waves have been
[7.10,11. It is remarkable that in our optical system these redicted to exist in a nonlinear optical system with broken

structures are spontaneously supported by the bulk r‘om"ghase invariance. These structures have been found in a
earity of the system, without the need for temporal modulayyne.|| frequency-degenerate OPO and supported by a com-
tion of parameters. Finally, it is important to point out that petingy(3) nonlinearity. The optical system considered in the
the n=4 phase multistability arises due to frequency-present work provides one of the few explicit examples of
degenerate four-wave mixing of signal and idler waves in thaelynamical systems supporting four-phase spiral waves, and
isotropic y(®) medium[see the last term in E@4)], not from  hence seems of particular relevance also beyond the field of
self-phase or cross-phase modulation terms. This means thadnlinear optics.
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