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Optical spiral waves supported by competing nonlinearities
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Four-phase spiral waves are predicted to exist in a nonlinear optical cavity with competing quadratic~i.e.,
x (2)) and cubic~i.e.,x (3)) nonlinearities. These spatial structures are found in the mean-field model of a doubly
resonant type-II frequency-degenerate optical parametric oscillator with an intracavityx (3) isotropic medium.
Degenerate four-wave mixing of signal and idler fields induced by thex (3) medium breaks the phase invari-
ance of the down-conversion process, producingnonlinear phase locking with four possible phase states. A
parametrically forced Ginzburg-Landau equation is derived to explain the existence of multiphase spiral waves.
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The study of spatial-temporal structures of light intera
ing with nonlinear quadratic media both in traveling-wa
configurations and in optical cavities has attracted conti
ous interest in recent years. Such interest has been m
motivated, on the one hand, by the possibility of achieving
nonlinear optics a rich ‘‘laboratory’’ for the study of the ge
eral laws underlying the formation of spatiotemporal stru
tures in spatially extended nonlinear systems. On the o
hand, the existence of localized states and spatial mult
bility in x (2)-based nonlinear optical devices may be of p
tential relevance in applications such as all-optical con
and processing of light. In the cavityless case, great atten
has been devoted to the analysis ofx (2) cascading processe
and to the study of spatial~or temporal! propagative solitons
~see, e.g.,@1#!; in particular, the effects of competingx (2)

and x (3) nonlinearities have been investigated in detail@2#.
The inclusion of an optical cavity allows for the formation
dissipative spatial structures. The formation of patterns,
main walls, and localized structures~cavity solitons! in par-
ticular has been investigated theoretically for the opti
parametric oscillator~OPO! model ~see, e.g.,@3# and refer-
ences therein!, and the experimental observation of some
these structures has been recently reported@4#. Of particular
relevance is the class of phase-locked OPOs, in which
generated signal and idler fields have fixed values for th
phase@5,6#. These devices, in addition to being of extrem
importance for applications in frequency metrology a
quantum optical studies, have attracted some interest als
the study of the spatial-temporal dynamics of multipha
systems@7–15#. In most previously studied phase-locke
OPO systems, spatially self-organized structures arise fro
phase bistabilitydue to degeneracy of the idler and sign
waves. Ising-like domain walls that separate two equival
phase states were predicted earlier for degenerate ty
OPOs@16#, and a detailed and comprehensive study of
dynamics of domain walls was recently given in@17#. In @18#
it was shown that type-II frequency-degenerate OPOs
which phase bistability is induced by cavity birefringenc
enable a richer dynamics, predicting the existence of Bl
domain walls, the Ising-Bloch transition, and spiraling d
fects. The occurrence of multistability amongn.2 different
phase states allows for further interesting phenomena,
most notable one being the formation of multiphase sp
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waves@9–14#. Such structures generally arise when a s
tially extended system near a Hopf biurcation is parame
cally forced at a frequencyn times the Hopf bifurcation fre-
quency @7#. Although the study of general properties
multiphase spiral waves and patterns has been worked
within normal-form amplitude equations@7,14,15# and inter-
esting phase front instabilities have been predicted and
served in then54 case@10–12#, there are to date very few
explicit examples of nonlinear systems displayingn53 or
n54 phase multistability, the most notable one being
parametrically forced Belousov-Zhabotinsky reaction syst
@10–13#. In such systems the occurrence of the phase mu
stability is artificially realized by periodic modulation of
control parameter. The existence of three-armed spiral wa
supported by the bulk nonlinearity of the system, i.e., wi
out the need for periodic modulation of parameters, was
cently predicted in nonlinear optics in a special class of n
degnerate self-phase-locked OPOs as a result of a mult
x (2) process@19#. Nevertheless,n54 phase multistability
seems unlikely inpurely quadratic optical devices, such a
the device considered in@19#, and the search for an optica
system displaying a dynamical scenario typical ofn54 mul-
tiphase systems, until now realized solely in a chemical
action system, appears thus of a certain relevance.

In this Brief Report we investigate theoretically the e
fects of an isotropic cubic nonlinearity in the process of o
tical parametric oscillation for a type-II interaction and sho
that the competingx (3) nonlinearity leads to ann54 phase
multistability and to the existence of four-phase spiral wav
We consider a doubly resonant type-II OPO in a ring cav
with flat mirrors containing both a birefringentx (2) nonlinear
crystal, pumped by a nonresonant pump wave at freque
2v, and an isotropicx (3) nonlinear medium@Fig. 1~a!#. The
pump field is assumed to be linearly polarized along, e.g.,
extraordinaryy axis of the nonlinear crystal, whereas bir
fringent phase matching and cavity tuning are accomplis
for efficient generation of frequency-degenerate~or quaside-
generate! signal and idler fields at frequencyv linearly po-
larized along the ordinary,x, and extraordinary,y, axes of the
crystal, respectively@see Fig. 1~b!#. In the spirit of the mean-
field limit, the signal and idler waves suffer small chang
after each round-trip propagation, and their envelopesB1 and
B2 can be taken approximately uniform along the cavity a
©2002 The American Physical Society02-1
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z. The mean-field equation for the intracavity amplitudesB1
andB2 then has the general form~see, e.g.,@20#!

] tB1,25~DB1,2
L 1DB1,2

NL!/T1,2
R , ~1!

whereDB1,2
L andDB1,2

NL are the small changes of signal an
idler amplitudes in one cavity round-trip due to linear a
nonlinear propagation effects, respectively, andT1,2

R are the
cavity round-trip times for the two fields. The first term
Eq. ~1!, DB1,2

L , accounts for both cavity effects and diffra
tion in the paraxial approximation, and reads

DB1,2
L 5T1,2

R g1,2@2~11 iD1,2!B1,21 ia1,2¹
2B1,2#, ~2!

whereg1,2, D1,2, anda1,2 are the cavity decay rates, detu
ing parameters, and diffraction coefficients for the two fiel
respectively, defined as in Ref.@21#. The second term in Eq
~1!, DB1,2

NL , comprises the changes of signal and idler wa
due to the nonlinear interaction in both the quadratic a
cubic media, i.e.,DB1,2

NL5DB1,2
quadratic1DB1,2

cubic . The ex-
plicit expressions forDB1,2

quadratic can be derived by integra
tion of the nonlinear wave equations for signal, idler, a
pump waves in thex (2) crystal after elimination of the pump
field from the dynamics as detailed, e.g., in@20#; one obtains

DB1,2
quadratic5 i

vx (2)Epl

2n1,2c0

exp~ iDkl !21

iDkl
B2,1*

2
v2x (2)2l 2r

4n1,2n3c0
2

uB2,1u2B1,2, ~3!

where n1 , n2, and n3 are the refractive indices of signa
idler, and pump waves in thex (2) crystal, respectively;l is
the crystal length;x (2) is the relevant element of the secon
order susceptibility tensor involved in the type-II interactio
Ep is the electric-field amplitude of the incident plane-wa
pump beam;Dk5ky(2v)2kx(v)2ky(v) is the residual
wave vector mismatch of the parametric interaction; andr
522$1/(iDkl)1@exp(iDkl)21#/(Dkl)2% is a dimensionless
complex coefficient that accounts for saturation andx (2) cas-
cading effects (r→1 for Dkl→0; see @20#!. Finally, the
propagation of the frequency-degenerate signal and i
waves through thex (3) medium introduces self-phase mod

FIG. 1. ~a! Schematic of a doubly resonant OPO in a ring cav
with a x (3) nonlinearity;~b! type-II phase matching in the birefrin
gent crystal for degenerate down-conversion.
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lation, cross-phase modulation, and degenerate four-w
mixing terms in the mean-field equation, which read~see,
e.g.,@22#!

DB1,2
cubic5 i

3pLx (3)

4n0l F ~ uB1,2u21AuB2,1u2!B1,2

1
B
2

B2,1
2 B1,2* G , ~4!

wherel is the wavelength~in vacuum! of signal and idler
waves;n0 is the ~linear! refractive index of the cubic me
dium at frequencyv; L is the length of the cubic medium
x (3)[xxxxx

(3) ; and A5@xxxyy
(3) 1xxyxy

(3) #/xxxxx
(3) and B

52xxyyx
(3) /xxxxx

(3) are the Maker-Terhune coefficients for th
nonlinear x (3) medium (A1B/251 for an isotropic me-
dium!. Substitution of Eqs.~2!–~4! into Eq.~1! allows one to
write the mean-field equations for the intracavity signal a
idler waves. After introduction of the normalized envelop
A1,2[B1,2/q1,2, where q15q2@n2T2

Rg2 /(n1T1
Rg1)#1/2 and

q25(n1n3g1T1
Rl2)1/2/(px (2)l ), and with a suitable choice

of the phase of the pump waveEp , the mean-field equation
can be cast in the following form:

] tA15g1F2~11 iD1!A11 ia1¹2A11mA2* 2ruA2u2A1

1 is1S uuA1u2A11AuA2u2A11
B
2

A2
2A1* D G , ~5a!

] tA25g2F2~11 iD2!A21 ia2¹2A21mA1* 2ruA1u2A2

1 is2S 1

u
uA2u2A21AuA1u2A21

B
2

A1
2A2* D G , ~5b!

where

m5~px (2)uEpu l !usin~Dkl !/~Dkl !u/@l~g1g2T1
RT2

Rn1n2!1/2#

is the dimensionless parametric gain,u5(n2T2
Rg2)/

(n1T1
Rg1), and s1,2[@3n1,2n3 /(4pn0)#(L/ l )(l/ l )x (3)/

@x (2)#2 measures the relative strength of third-order ver
second-order nonlinearities. The order of magnitude ofs1,2
largely depends on material parameters and crystal leng
for instance, assuming ax (2) of the order of 1028 esu, typi-
cal values forx (3)/@x (2)#2 may range from;10 for fast
electronic nonlinearities to;103 for molecular orientation;
higher values ofx (3)/@x (2)#2 may be achieved using stronge
x (3) nonlinearities, such as by exploiting resonant electro
nonlinearities~e.g., excitonic semiconductor nonlinearities!,
saturated atomic absorption, or semiconductor-doped gla
@22#. For typical experimentally accessible values ofl andL
and at near-infrared or visible wavelengths, the dimensi
less parameterss1,2 may hence reach values of the order
;0.1–1 or even higher. The values ofA and B are deter-
mined by the nature of the isotropic nonlinearity; for i
stance, for the Kerr effect due to off-resonance fast electro
2-2
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BRIEF REPORTS PHYSICAL REVIEW A 65 045802
response one hasA5B52/3, whereas for the Kerr effect in
liquids one hasA51/4 andB53/2 @22#.

The zero solutionA15A250 of Eqs.~5!, corresponding
to the OPO being below threshold, undergoes a Hopf bi
cation with frequencyvc5g1g2(D22D1)/(g11g2) to a
spatially homogeneous state for signal and idler fields am
5m th[(11D2)1/2 when D.0, where D[(g1D1
1g2D2)/(g11g2) is the effective detuning parameter@21#.
In the absence of the competingx (3) nonlinearity, Eqs.~5!
are invariant under the phase transformationA1
→A1exp(if), A2→A2exp(2if), and phase locking is no
possible. The inclusion of thex (3) medium breaks the phas
invariance and may lead to phase locking of the homo
neous state. Analytical expressions for the homogene
phase-locked states and domain of existence cannot be
rived in a closed form; a simple inspection of Eqs.~5! nev-
ertheless reveals that the phase-locking mechanism, ind
by the B-resonant cubic term, is nonlinear and produce
phasemultiplicity of the uniform state withfour allowed
phases shifted byp/2 with respect to one another. It shou
be noted that theB term of cubic nonlinearity is resonan
when signal and idler fields are close to frequency deg
eracy, so that phase locking is effective when the Hopf f
quencyvc at the linear instability is close to zero, i.e., fo
D1.D2. For m.m th , homogeneous states with differe
phases, connected by domain walls, may grow and emerg
different spatial regions. We performed a numerical analy
of Eqs. ~5! using a pseudospectral split-step technique
study the phase-locking regime forD.0 and the dynamics
of domain walls above threshold. Starting from the zero
lution with a small random noise, shrinking or expansion
different phase domains may be observed after the lin
growth, leading to one dominant final phase state; howe
more complex dynamical behaviors can be observed. In
ticular, dynamical states corresponding to four-armed ro
ing spirals composed of four-phase domains coalescin
one point and rotating around it are possible. Spiral wa
are observed using both a plane-wave pump with perio
boundary conditions@see Fig. 2~a!#, and a super-Gaussia
pump m5m0exp@2(r/w)2m# with radial symmetry@see Fig.

FIG. 2. Rotating four-phase spiral waves obtained from num
cal simulations of Eq.~1!, from initial noise conditions, for a plane
wave pump~a! and for a super-Gaussian pump~b!. The figures
show the intensity~left side! and phase~right side! of the signal
field at times t56000. Parameter values arem51.8, s1

50.4, Dkl50, D151, D251.1, A5B52/3 in ~a!, and m0

52.7, w544, m54, s150.2, Dkl520.1, D152,D252.2, A
51/4, B53/2 in ~b!. The other parameter values areg15g2

51, a151.05, a251, u51, ands251.1s1. In ~a! the inte-
gration domain is 1803180 wide. A spatial grid of 1283128 points
was used; time stepdt50.02.
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2~b!#. Spirals with different ordered phase states rotate
opposite directions; annihilation of spirals may occur; ho
ever, long-lived bound states of counterrotating spirals m
be observed. As an example, a stable bound state for a su
Gaussian pump is shown in Fig. 3~a!. The tendency to spi-
raling for domain walls turns out to be very sensitive to t
value of cavity detuning imbalanceD22D1 and strengths1,2
of the competing nonlinearity. Although a detailed analy
of dynamical behaviors in parameter space goes beyond
scope of the present work, we nevertheless notice that la
scale numerical simulations indicate that four-phase spi
can be observed under a wide variety of operational con
tions. For instance, if we consider parameter values as in
2~b!, spirals are observed fors1 varying between;0.12 and
;0.5; at larger values of competing nonlinearity large spir
and target patterns are typically observed@see Figs. 3~b! and
3~c!, respectively#, with the appearance of turbulent stru
tures at even higher values of nonlinearity. We also not
that spiral waves may be observed for either off-resona
electronic nonlinearities@Fig. 2~a!# or for cubic nonlineari-
ties due to molecular orientation@Figs. 2~b! and 3#.

In order to get some analytical insights into the existen
of multiphase spirals and to understand the role of the
tropic cubic nonlinearity, we derived an order parame
equation close to threshold forD.0 by a weakly nonlinear
analysis of Eqs.~5!. By setting m5m th1e2, where the
smallness parametere measures the distance from the bifu
cation point m th , and assumingvc;O(e2) to allow for
phase locking, the amplitude equation can be derived a
solvability condition in a multiple-scale asymptotic expa
sion by an extension of the analysis described in@21,23#. At
leading order, one finds that (A1 ,A2)T5„1,(1
2 iD)/m th…

Tc(x,y,t)1O(e2), where the amplitudec;e
satisfies the following equation:

] tc5c1c1c2¹2c2c3ucu2c2c4c* 3, ~6!

where we have set

i-

FIG. 3. ~a! Bound state of counterrotating spirals. Parame
values are the same as in Fig. 2~b!; the stability of the bound state
was checked up to timet520 000.~b! and ~c! formation of large
rotating spirals and target patterns from small random noise
s150.6 @the other parameter values are the same as in Fig. 2~b!#.
2-3
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c15g1g2

2m th~m2m th!1 i ~D22D1!~11 iD!

g11g21 i ~g12g2!D
, ~7a!

c25
ig1g2@a12a22 iD~a11a2!#

g11g21 i ~g12g2!D
, ~7b!

c35g1g2

2Re~r!12DIm~r!1 is2~11 iD!~A11/u!2 is1~12 iD!~A1u!

g11g21 i ~g12g2!D
, ~7c!

c45
Bg1g2

2
A~s22s1!21D2~s21s1!2

~g11g2!21D2~g12g2!2
. ~7d!
t
to
rs
fo

se
li
la
at
y
th

t

bic
ity
r-
al-
ial

een
en
in a
om-
he
of
and
d of
The amplitude equation~6! is a parametrically forced
Ginzburg-Landau equation that describes quite generally
nonlinear dynamics of a spatially extended system close
Hopf bifurcation under periodic modulation of paramete
@7#. The existence and stability of four-phase spiral waves
such a model equation has been extensively studied
@7,10,11#. It is remarkable that in our optical system the
structures are spontaneously supported by the bulk non
earity of the system, without the need for temporal modu
tion of parameters. Finally, it is important to point out th
the n54 phase multistability arises due to frequenc
degenerate four-wave mixing of signal and idler waves in
isotropicx (3) medium@see the last term in Eq.~4!#, not from
self-phase or cross-phase modulation terms. This means
um
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the existence of four-phase spirals requires a ‘‘true’’ cu
nonlinear medium, not an equivalent third-order nonlinear
induced by, e.g.,x (2) cascading effects. For this reason fou
phase spirals seem unlikely in purely quadratic media,
thoughn53 phase multistability is possible in some spec
cases@19#.

In conclusion, four-phase rotating spiral waves have b
predicted to exist in a nonlinear optical system with brok
phase invariance. These structures have been found
type-II frequency-degenerate OPO and supported by a c
petingx (3) nonlinearity. The optical system considered in t
present work provides one of the few explicit examples
dynamical systems supporting four-phase spiral waves,
hence seems of particular relevance also beyond the fiel
nonlinear optics.
,

s.
@1# G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quant
Electron.28, 1691~1996!; L. Torner and G. I. Stegeman, Op
Photonics News12„6…, 36 ~2001!.

@2# A. V. Buryak, Y. S. Kivshar, and S. Trillo, Opt. Lett.20, 1961
~1995!; O. Bang, Y. S. Kivshar, A. V. Buryak, A. De Rossi, an
S. Trillo, Phys. Rev. E58, 5057~1998!.

@3# G.-L. Oppo, M. Brambilla, and L. A. Lugiato, Phys. Rev. A49,
2028 ~1994!; G. J. de Valcarcel, K. Staliunas, E. Roldan, a
V. J. Sanchez-Morcillo,ibid. 54, 1609~1996!; K. Staliunas and
V. J. Sanchez-Morcillo,ibid. 57, 1454~1998!; G.-L. Oppo, A.
J. Scroggie, and W. J. Firth, J. Opt. B: Quantum Semiclass
Opt. 1, 133 ~1999!; M. Le Berre, D. Leduc, E. Ressayre, an
A. Tallet, ibid. 1, 153 ~1999!.

@4# V. B. Taranenko, K. Staliunas, and C. O. Weiss, Phys. R
Lett. 81, 2236 ~1998!; M. Vaupel, A. Maitre, and C. Fabre
ibid. 83, 5278 ~1999!; S. Ducci, N. Treps, A. Maitre, and C
Fabre, Phys. Rev. A64, 023803~2001!.

@5# E. J. Mason and N. C. Wong, Opt. Lett.23, 1733 ~1998!; C.
Fabre, E. J. Mason, and N. C. Wong, Opt. Commun.170, 299
~1999!.

@6# A. Douillet and J.-J. Zondy, Opt. Lett.23, 1259 ~1998!; J. J.
Zondy, A. Tallet, E. Ressayre, and M. LeBerre, Phys. Rev
63, 023814~2001!.

@7# P. Coullet and K. Emilsson, Physica D61, 119 ~1992!.
@8# L. S. Tsimring and I. S. Aranson, Phys. Rev. Lett.79, 213

~1997!.
al

v.

@9# V. Petrov, Q. Ouyang, and H. L. Swinney, Nature~London!
388, 655 ~1997!.

@10# C. Elphick, A. Hagberg, and E. Meron, Phys. Rev. Lett.80,
5007 ~1998!.

@11# C. Elphick, A. Hagberg, and E. Meron, Phys. Rev. E59, 5285
~1999!.

@12# A. L. Lin, A. Hagberg, A. Ardelea, M. Bertram, H. L. Swinney
and E. Meron, Phys. Rev. E62, 3790~2000!.

@13# A. L. Lin, M. Bertram, K. Martinez, H. L. Swinney, A. Arde-
lea, and G. F. Carey, Phys. Rev. Lett.84, 4240~2000!.

@14# R. Gallego, D. Walgraef, M. San Miguel, and R. Toral, Phy
Rev. E64, 056218~2001!.

@15# H.-K. Park, Phys. Rev. Lett.86, 1130~2001!.
@16# S. Trillo, M. Haeltermann, and A. Sheppard, Opt. Lett.22, 970

~1997!; S. Longhi, Phys. Scr.57, 611 ~1997!.
@17# G.-L. Oppo, A. J. Scroggie, and W. J. Firth, Phys. Rev. E63,

066209~2001!.
@18# G. Izus, M. San Miguel, and M. Santagiustina, Opt. Lett.25,

1454 ~2000!.
@19# S. Longhi, Phys. Rev. E63, 055202~2001!; Eur. Phys. J. D17,

57 ~2001!.
@20# S. Longhi, J. Mod. Opt.43, 1089 ~1996!; P. Lodahl and M.

Saffman, Phys. Rev. A60, 3251~1999!.
@21# S. Longhi, Phys. Rev. A53, 4488~1996!.
@22# See, for instance, R. W. Boyd,Nonlinear Optics~Academic

Press, New York, 1992!.
@23# Z. H. Musslimani, Physica A249, 141 ~1998!.
2-4


