
PHYSICAL REVIEW A, VOLUME 65, 044103
Quantum arrival-time distributions from intensity functions

Joachim J. Włodarz*
Chemical Physics, Department of Chemistry, Technical University of Denmark, DTU-207, DK-2800 Lyngby, Denmark

and Department of Theoretical Chemistry, Silesian University, Szkolna 9, PL-40006 Katowice, Poland
~Received 6 November 2000; published 2 April 2002!

The quantum time-of-arrival problem is discussed within the standard formulation of nonrelativistic quan-
tum mechanics with parametric time. It is shown that a general class of arrival-time probability distributions
results from the assumption that the arrival process of a quantum particle is similar in nature to other time-
dependent arrival-type processes occurring, e.g., in population biology or queue theory. A simple but illustra-
tive example related to the well-known Wigner discussion of the time-energy uncertainty relation is given and
the numerical results obtained are compared with Kijowski’s distribution@Rep. Math. Phys.6, 362 ~1974!# of
arrival times for a free quantum particle.
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All phenomena are described in physics as evolving
time, which is meant to be not only a formal evolution p
rameter, but also an operationally significant quantity,
fined locally in the neighborhood of any event. One cou
even prove that the mere existence of a locally defined t
is a necessary and sufficient condition for the possibility
physics as we know it~cf., e.g.,@1#!.

The time status in the standard nonrelativistic quant
mechanics is rather specific. Due to the well-known obj
tions made by Pauli@2# in the early days of quantum me
chanics, the incorporation of time as a dynamic variab
represented by a self-adjoint Hilbert space operator, has b
basically abandoned. Instead, the notion of an ‘‘exter
time’’ similar to the Newtonian global time of classical m
chanics has been adopted. In this formulation such quant
as expectation values or probabilities are well defined onl
a given time instant and hence questions related to time
tervals ~e.g., ‘‘when?,’’ ‘‘how long?’’! cannot be easily an
swered.

Many attempts have been made to extend the stan
formalism and define various time quantities which are
lored to a specific situation, such as the ‘‘dwell time,’’ ‘‘tra
versal time,’’ ‘‘time of tunneling,’’ etc. Recently, a particula
interest has been observed in the seemingly simplest q
tum time-of-arrival ~TOA! problem, stimulated mainly
through the papers by Muga, Brouard, and Macı´as @3# and
Grot, Rovelli, and Tate@4#.

Despite many research efforts in this field, as thoroug
summarized in a recent review by Muga and Leavens@5#,
there are still many controversies related to the quan
TOA problem, even in the simplest case of a free partic
Some of them seem to be related to differences in the
mulation of the problem and additional implicit assumption
For example, the question, ‘‘When will a particle released
point A arrive at pointB?’’ assumes implicitly that itwill
happen and we only do not know when. In classical mech
ics it is therefore assumed in this case that the particle mo
along a definite trajectory connecting both points. Unfor
nately, such assumptions cannot be generally transferre
the quantum realm.
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The Bohm or Bohm-like quantum theories do postula
that a particle is a two-component pointlike object, with
well-defined position and velocity at each time instant, qu
similar to the situation in classical mechanics. But, as sho
by Deotto and Ghirardi@6#, for systems with more than on
spatial dimension there are infinitely many Bohm-like the
ries possible, which are inequivalent from the point of vie
of the trajectories followed by the particles. Therefore, t
predictions made about the respective time quantities m
also be different for different Bohm-like theories, as demo
strated recently by Finkelstein@7#.

In the standard formulation of quantum mechanics, wh
particles are not supposed to move along definite trajecto
the definition of such time-interval-related quantities b
comes even more controversial. Moreover, at least in
Copenhagen interpretation, all properties including the ‘‘p
ticle’’ momentary position and the localization of the ‘‘a
rival point’’ should bemeasuredto be assumed as known.

Additional ambiguities for systems with more than o
spatial dimension, similar to those found in the Bohmian a
Bohmian-like theories, seem also to be present in conv
tional quantum theory@7#. Therefore, the results obtained u
to now mainly for one-dimensional quantum systems can
be generally extended to systems with a higher spatial
mensionality.

In the present paper we discuss the quantum TOA pr
lem using the conventional notion of parametric time, lab
ing the consecutive quantum states during the system ev
tion. In contrast to the other approaches, we do not nee
make any assumptions about the spatial dimensionality,
existence of ‘‘virtual’’ or real spatial trajectories, or appropr
ately tailored time operators. In our approach, the TOA pr
ability distribution is obtained as an answer to the questi
‘‘When will a ‘‘particle,’’ described by the state vecto
ucp(t)& or, more generally, by a density operatorr̂p(t) at
each time instantt beginning fromt0, be registered by a
‘‘detector,’’ represented by the state vectorucd&?’’ We as-
sume in the following that the time evolution of the partic
state is Markovian, i.e., that the state att9>t8 depends only
on the state at timet8, but the evolution is not necessarily
unitary~i.e., Hamiltonian! one. In general, due to interaction
©2002 The American Physical Society03-1



en
a

o
o

h
e
o
a
o

w

th
o

c
a
,
a

-
y

p
e

b
cl

s
it
in

re

l

al

ity
es-

l
al

ed
e

-
c-
that

e

e
-

ob-
of
s of
to
ce

c-

-

ay
tate

BRIEF REPORTS PHYSICAL REVIEW A 65 044103
with the environment, the particle state will rather be giv
as a solution to an appropriate master equation. In any c
the sequence of consecutive particle states generated by
evolution law, labeled by the time parameter, gives an ‘‘ev
lution path,’’ which could be also viewed as a substitute f
the classical trajectory.

The final ‘‘arrival position’’ is represented in our approac
by the detector stateucd&. Because we need only indicat
that the particle was discovered by the detector or not,
detector is supposed to act as a two-state counter only, w
ing to be triggered by the approaching particle. The act
detection marks the end of the part of the evolution path
are interested in while discussing the TOA problem.

Our approach was motivated by the observation that
quantum TOA problem is very close in nature to the ‘‘time
death’’ of a living being~cf., e.g.,@8#! or the ‘‘time of ser-
vice’’ when waiting in a queue~cf., e.g., @9#!. These pro-
cesses consist of a series of ‘‘failure’’-type events~e.g., ‘‘I’m
still alive,’’ ‘‘somebody else is being served’’! which is ter-
minated by a single ‘‘success’’ event. The probability of su
ceeding in the next time interval is usually not constant,
assumed in many decay processes discussed in physics
varying in time. Moreover, the probability of succeeding
all may be sometimes less than 1~e.g., ‘‘unfortunately, we
are successful in 70% of cases only’’!, which could reflect
the detector nonideality. It is well known that similar phe
nomena can be commonly described through Poisson-t
arrival processes~cf., e.g., @10,11#!. Suggestions that the
quantum arrival process is an inhomogeneous Poisson
cess have been made already in the context of event
hanced quantum theory@12,13# where some TOA models
have also been discussed@14,15#.

In order to proceed conveniently, let us find first the pro
ability P̄(t) that our detector has not registered the parti
during the whole time interval (t0 ,t), assuming for the mo-
ment that the intensity functionl(t) of the Poisson arrival
process is already known. The intensity function here ha
simple interpretation as the conditional probability dens
that the detection process will be completed in the next
finitesimal time interval, provided that it hasnot been com-
pleted yet until the time instantt. To keep the derivation
simple, we will apply a formal discretization procedure he
dividing the interval (t0 ,t) into n arbitrarily small parts, each
of length Dt5(t2t0)/n. The approximate probability of
triggering the detector in thekth time interval would then be
pk5l(tk21)Dt, wheretk5t01kDt.

Hence, the approximate probabilityP̄n(t) that the detec-
tor will not be triggered at all during the whole time interva
(t0 ,t) is

P̄n~ t !5)
k51

n

~12pk!. ~1!

In the limit of infinite n we then get that

P̄~ t !5 lim
n→`

P̄n~ t !5expH 2E
t0

t

l~ t8!dt8J , ~2!
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which leads directly to the expression for the time of arriv
probability densityp(t) itself:

p~ t !5
d

dt
@12 P̄~ t !#5l~ t !P̄~ t !. ~3!

Therefore, the results obtained so far for the TOA probabil
density can be summarized in the following general expr
sion:

p~ t !5l~ t !expH 2E
t0

t

l~ t8!dt8J . ~4!

One can easily check thatp(t) defined above has the forma
properties that are usually expected from a time-of-arriv
probability density~cf., e.g., @7,16#!. Notice that if *0

`l(t)
,` then the probability that the particle may not be detect
at all is greater than zero, indicating the ‘‘nonideality’’ of th
detection process.

The intensity functionl(t) of the arrival process, which
determines the time-of-arrival probability distribution, de
pends obviously on the particle ‘‘evolution path,’’ the dete
tor state chosen, and the coupling between them. Notice
due to the assumed Markovian time evolutionl(t) may be
seen here as an ordinary detection probability density.

To give a simple but illustrative example, let us assum
that the intensity function is given as

l~ t !5l0z^cducp~ t !& z2, ~5!

wherel0>0 is a constant multiplier. This choice reflects th
interpretation ofl(t)dt as the probability of successful de
tection within the next infinitesimal time intervaldt, which is
set here as proportional to the instantaneous transition pr
ability evaluated according to the probabilistic postulates
conventional quantum mechanics. One of the advantage
this intensity function is that it could be directly translated
the Weyl-Wigner-Moyal or other well-behaving phase-spa
representation of quantum mechanics~see, e.g.,@17# and ref-
erences therein!. On the other hand, non-normalizable dete
tor statesucd& are preferred here, because otherwiseP̄(`)
.0 and we will have to take into account the detector im
perfectness.

Searching for an ‘‘ideal’’ arrival probability distribution,
with absolute precision of the position localization, one m
further assume that the detector state is a position eigens
placed atx5x0, i.e., thatucd&5ux0&, which gives

l~ t !5l0ucp~x0 ,t !u2, ~6!

i.e., the intensity functionl(t) is in this case proportional to
the probability density for thepresenceof the particle atx0 at
the time instantt.

The ideal TOA probability density Eq.~4! becomes then

px0
~ t !5l0ucp~x0 ,t !u2

3expH 2l0E
t0

t

ucp~x0 ,t8!u2dt8J . ~7!
3-2
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BRIEF REPORTS PHYSICAL REVIEW A 65 044103
This result may be directly compared with the probabili
densitypu(t)} z^uuc(t)& z2 postulated in 1972 by Wigner@18#
to get the time-energy uncertainty relation, whereuu& de-
notes ‘‘any state vector’’~ @18#, pp. 240–241; see also
recent discussion in@19#!. With the position eigenvectorux0&
substituted foruu&, it becomes exactlyuc(x0 ,t)u2 and it co-
incides with our intensity function Eq.~6!.

It can be easily seen that for small values of the elap
time t2t0 the originally proposed Wigner density and E
~7! should remain in quite good agreement. But it is al
evident that for largert the Wigner density needs a dampin
correction term, which is provided by the exponential fact
in our Eq.~7!.

In order to get a better grasp of the introduced TOA pro
ability density, let us consider a Gaussian one-dimensio
wave packet ‘‘particle’’ described by

c~x,t !5
1

~A2pL2!1/4

1

A11 i\t/2mL2

3expH 2
~x2p0t/m!2

4L2~11 i\t/2mL2!

1
ip0x

\
2

ip0
2t

2m\J , ~8!

which is the solution of the free particle Schro¨dinger equa-
tion with the initial state

c0~x!5
1

~A2pL2!1/4
expH 2

x2

4L2
1

ip0x

\ J , ~9!

i.e., a minimum uncertainty wave packet with^q̂&50, ^ p̂&
5p0 , Dq05L, andDp05\/2L, released att50 @20#. The
Wigner densityuc(x0 ,t)u2 in this case may be obtained ea
ily in a simple analytical form:

uc~x0 ,t !u25
1

A2psx
2~ t !

expH 2
~x02p0t/m!2

2sx
2~ t !

J , ~10!

where

sx
2~ t !5L2F11S \

2mL2D 2

t2G . ~11!

The resulting TOA probability densitypx0
(t), calculated ac-

cording to Eq.~7! for the arrival position atx055 a.u., nor-
malized to unity (l05Ap), is plotted in Fig. 1, together with
the Kijowski TOA density@5,16# for positive momenta,

PK@ t;x0 ;c0#5U E
0

`

dpS p

mhD
1/2

^puc0&

3expF2
2 ip2t

2m\ GexpF ipx0

\ G2

, ~12!
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calculated from the initial state Eq.~9!, and the original
Wigner densityuc(x0 ,t)u2 @Eq. ~10!#. For simplicity, all cal-
culations were performed assuming\5L5m5p051.

It could be seen that our calculated TOA probability de
sity remains in good agreement with the Kijowski densi
regarded as the closest quantum object to an ideal clas
arrival-time distribution@5#.

On the other hand, it is amazing how similar the origin
Wigner time distribution is to the other distributions depict
in Fig. 1, but for obvious reasons, it is usually rejected a
valid quantumTOA probability density. Nevertheless, in th
classical limit\→0 the time dependence drops out ofsx

2 in
Eq. ~10! and the quantity$uc(x0 ,t)u2%\50 becomes a perfec
candidate for aclassicalTOA density. But it can then reflec
only the imprecision of the initial particle position att50
‘‘transported’’ to the arrival position, because other para
eters are held fixed. In the ideal case of precise localizat
when L→0, we may recover the well-known classical pi
ture with a moving point particle, and the intensity functio
Eq. ~6! and the TOA probability density Eq.~7! are then both
proportional tod(x02p0t/m), as they should be.

Recently, Marchewka and Schuss, in their Feynman
jectory studies of a quantum particle impinging on an a
sorbing wall @21–23#, found expressions for the surviva
probability that are similar to our Eq.~2!. It seems therefore
plausible that the arrival process discussed above could
seen as a ‘‘common denominator’’ for several more spec
TOA models, each supplying its own recipe for the approp
ate intensity function. Knowing already a particular TO
probability densityp(t), it is possible, at least in principle, t
obtain the corresponding intensity function

l~ t !5p~ t !Y F12E
0

t

dt8p~ t8!G , ~13!

because of Eq.~4! and the following relation:

expH 2E
t0

t

l~ t8!dt8J 512E
t0

t

dt8p~ t8!. ~14!

FIG. 1. The ideal TOA densities for arrival atx055 a.u. com-
pared: the continuous line is the TOA probability density calcula
according to Eq.~7!, while the short-dashed and the long-dash
lines correspond to the Kijowski and Wigner densities, respectiv
~see the text for details!. All quantities are in atomic units.
3-3
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Moreover, the Poisson intensity function itself can also
directly estimated from experimental data in computationa
efficient ways~see, e.g.,@24#!, which may facilitate the com-
parison of theoretical predictions with experimental resul

As a final remark, notice that the intensity function o
tained from a given probability density via Eq.~13! cannot
always be cast into the simple form given by Eq.~5! or Eq.
~6! involving physically relevant states. This is evident, e.
in the case ofp(t)5l0 exp@2l0t#, wherel(t)5l05const,
c-
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nd

-
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and it indicates that in general more elaborate forms of
tensity functions may be necessary.
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