PHYSICAL REVIEW A, VOLUME 65, 044103
Quantum arrival-time distributions from intensity functions
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The quantum time-of-arrival problem is discussed within the standard formulation of nonrelativistic quan-
tum mechanics with parametric time. It is shown that a general class of arrival-time probability distributions
results from the assumption that the arrival process of a quantum particle is similar in nature to other time-
dependent arrival-type processes occurring, €.g., in population biology or queue theory. A simple but illustra-
tive example related to the well-known Wigner discussion of the time-energy uncertainty relation is given and
the numerical results obtained are compared with Kijowski's distribtiep. Math. Phys6, 362 (1974)] of
arrival times for a free quantum particle.
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All phenomena are described in physics as evolving in The Bohm or Bohm-like quantum theories do postulate
time, which is meant to be not only a formal evolution pa-that a particle is a two-component pointlike object, with a
rameter, but also an operationally significant quantity, dewell-defined position and velocity at each time instant, quite
fined locally in the neighborhood of any event. One couldgjmjjar to the situation in classical mechanics. But, as shown
even prove that the mere existence of a locally defined timg, peoto and Ghirardi6], for systems with more than one
is a necessary and sufficient condition for the possibility o spatial dimension there are infinitely many Bohm-like theo-

physics as we know ifcf., e.g.,[1]). : . . . . . .
The time status in the standard nonrelativistic quantun{Ies possible, which are inequivalent from the point of view

mechanics is rather specific. Due to the well-known objec®f the trajectories followed by the particles. Therefore, the

tions made by Pauli2] in the early days of quantum me- Predictions made about the respective time quantities may
chanics, the incorporation of time as a dynamic Variab|e,a|SO be different for different Bohm-like theories, as demon-

represented by a self-adjoint Hilbert space operator, has bestrated recently by Finkelstefi7].

basically abandoned. Instead, the notion of an “external In the standard formulation of quantum mechanics, where
time” similar to the Newtonian global time of classical me- particles are not supposed to move along definite trajectories,
chanics has been adopted. In this formulation such quantitiege definition of such time-interval-related quantities be-

as expectation values or probabilities are well defined only a¢omes even more controversial. Moreover, at least in the

? gian time j”-;ta”g?}"]% henlce q?liestions tretl)ated t('jl time incopenhagen interpretation, all properties including the “par-
ervals(e.g., “when?,” *how long?’) cannot be easily an- ticle” momentary position and the localization of the “ar-

swered. ival point” should bemeasuredo be assumed as known
Many attempts have been made to extend the standafd’ - T . '
Additional ambiguities for systems with more than one

formalism and define various time quantities which are tai- S . _— . :
lored to a specific situation, such as the “dwell time,” “tra- spatial dimension, similar to those found in the Bohmian and

versal time,” “time of tunneling,” etc. Recently, a particular Bohmian-like theories, seem also to be present in conven-

interest has been observed in the seemingly simplest quafional quantum theory7]. Therefore, the results obtained up
tum time-of-arrival (TOA) problem, stimulated mainly t© now mainly for one-dimensional quantum systems cannot
through the papers by Muga, Brouard, and faa¢B] and be ge_nera_lly extended to systems with a higher spatial di-
Grot, Rovelli, and Taté4]. mensionality. _

Despite many research efforts in this field, as thoroughly [N the present paper we discuss the quantum TOA prob-
summarized in a recent review by Muga and Leavigis !em using the copventlonal notion of parametric time, label-
there are still many controversies related to the quantunf’d the consecutive quantum states during the system evolu-
TOA problem, even in the simplest case of a free particlefion. In contrast to the other approaches, we do not need to
Some of them seem to be related to differences in the forMake any assumptions about the spatial dimensionality, the
mulation of the problem and additional implicit assumptions.existence of “virtual” or real spatial trajectories, or appropri-
For example, the question, “When will a particle released a@tely tailored time operators. In our approach, the TOA prob-
point A arrive at pointB?” assumes implicitly that itwill ability d|s§r|but|on |s_obta|ned as an answer to the question,
happen and we only do not know when. In classical mechan-Vhen will a “particle,” described by the state vector
ics it is therefore assumed in this case that the particle mové%(t)) or, more generally, by a density operajgy(t) at
along a definite trajectory connecting both points. Unfortu-each time instant beginning fromt,, be registered by a
nately, such assumptions cannot be generally transferred toetector,” represented by the state vectary)?” We as-
the quantum realm. sume in the following that the time evolution of the particle

state is Markovian, i.e., that the stateta=t’ depends only
on the state at tim&', but the evolution is not necessarily a
*Electronic address: jjw@tkemi2.klb.dtu.dk unitary (i.e., Hamiltonian one. In general, due to interactions
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with the environment, the particle state will rather be givenwhich leads directly to the expression for the time of arrival
as a solution to an appropriate master equation. In any casprobability densityp(t) itself:
the sequence of consecutive particle states generated by the
evolution law, labeled by the time parameter, gives an “evo- d — —
lution path,” which could be also viewed as a substitute for ()= a[l_ PO]=MOP(). )
the classical trajectory.
The final “arrival position” is represented in our approach Therefore, the results obtained so far for the TOA probability

by the detector staté)). Because we need only indicate density can be summarized in the following general expres-
that the particle was discovered by the detector or not, ougjon:

detector is supposed to act as a two-state counter only, wait-

ing to be triggered by the approaching particle. The act of t

detection marks the end of the part of the evolution path we p(t)=)\(t)exp< _Jt )\(t')dt']- 4
are interested in while discussing the TOA problem. 0

Our approach was r_notlvated by _the observanorL Fhat th‘%)ne can easily check tha(t) defined above has the formal
quant}'Jm TOA_probIe_m Is very close in natur(E to the “time of properties that are usually expected from a time-of-arrival
d_eat"h of a I|V|ng be_mg(cf., e.g.,[8]) or the “time of ser- probability density(cf., e.g.,[7,16]). Notice that if [5\(t)
vice” when waiting in a queudct., €.g.,[9). These pro- < then the probability that the particle may not be detected

ggﬁsaelilgc’)n‘sslg';nog&zergzg fisfggLiJr:e ;tgﬁlzgyv\?ri‘iic?”is Itrenr_ at all is greater than zero, indicating the “nonideality” of the
' y 9 detection process.

minated by a single "success” event. The probability of suc- The intensity function\ (t) of the arrival process, which

ceeding in the next time interval is usually not constant, asdettermines the time-of-arrival probability distribution, de-

assu_me(_j in many decay processes d|§cussed n phygcs, tﬁ‘)ténds obviously on the particle “evolution path,” the detec-
varying in time. Moreover, the probability of succeeding at

. w tor state chosen, and the coupling between them. Notice that
all may be sometimes less than(d.g., “unfortunately, we : N
. e due to the assumed Markovian time evolutioft) may be
are successful in 70% of cases onlyWwhich could reflect seen here as an ordinary detection probability densit
the detector nonideality. It is well known that similar phe- y P y Y-

nomena can be commonly described through Poisson-typt%a-[?h%“ﬁt:n:{nF;Engtlijér']"iftrstgaeaesxample’ let us assume
arrival processescf., e.g.,[10,11]). Suggestions that the y 9

guantum arrival process is an inhomogeneous Poisson pro-
cess have been made already in the context of event en-
hanced quantum theofy12,13 where some TOA models

N(t) = Nol{ gl (D)7, (5)

have also been discussgt 15, yvhere)\OB.O is a constant multiplier. This choice reflects the
T e interpretation ofA(t)dt as the probability of successful de-

In order to proceed conveniently, let us find first the prob-, . o o S o

= , _ tection within the next infinitesimal time intervelt, which is
ability P(t) that our detector has not registered the particleget here as proportional to the instantaneous transition prob-
during the whole time intervaltg,t), assuming for the mo-  4pility evaluated according to the probabilistic postulates of
ment that the intensity function(t) of the Poisson arrival  conventional quantum mechanics. One of the advantages of
process is already known. The intensity function here has g intensity function is that it could be directly translated to
simple interpretation as the conditional probability densityi,e Weyl-Wigner-Moyal or other well-behaving phase-space
that the detection process will be completed in the next i”'representation of quantum mechanisse, e.g17] and ref-
finitesimal time interval, provided that it hawt been com-  grences therejnOn the other hand, non-normalizable detec-

Eple, e il apply 5 formal discrotisation prosedura hre, O SIIES! ) are preferred here, because otheraRie:)
pie, PPl p >0 and we will have to take into account the detector im-

dividing the interval {y,t) into n arbitrarily small parts, each perfectness.

of length At=(t~to)/n. The approximate probability of Searching for an “ideal” arrival probability distribution

"'996“”9 the detector m_thleth time interval would then be with absolute precision of the position localization, one may

me=MU-1) At whergtk—t0+ kAt. o further assume that the detector state is a position eigenstate
Hence, the approximate probabiliBj,(t) that the detec- placed atx=Xx,, i.e., that| ) = |Xo), which gives

tor will not be triggered at all during the whole time interval

(to.t) is M) =Nl ¢rp(X0, D)%, ®)

_ n i.e., the intensity functioi (t) is in this case proportional to
Pa)=T1 (1—my). (1)  the probability density for thpresencef the particle ak, at
k=1 the time instant.
The ideal TOA probability density Ed4) becomes then
In the limit of infinite n we then get that

Py (1) =No| (X0, 1) [?
P(t)= lim En(t)zexp{—jt)\(t’)dt’l, 2
n to

— 00

t
XGX4—)\0J; |¢p(X0:t,)|2dt,]' (7)
0
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This result may be directly compared with the probability

densityp,(t)o|(u]¥(t))[? postulated in 1972 by Wign¢i.8]

to get the time-energy uncertainty relation, whéue de-
notes “any state vector{ [18], pp. 240-241; see also a
recent discussion ifL9]). With the position eigenvectdx,)
substituted fofu), it becomes exactly/(xq,t)|? and it co-
incides with our intensity function Eq6).

It can be easily seen that for small values of the elapsec

time t—ty the originally proposed Wigner density and Eg.

(7) should remain in quite good agreement. But it is also

evident that for larget the Wigner density needs a damping

correction term, which is provided by the exponential factor

in our Eq.(7).
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In order to get a better grasp of the introduced TOA prob-
ability density, let us consider a Gaussian one-dimensional FIG. 1. The ideal TOA densities for arrival 8=5 a.u. com-

wave packet “particle” described by

1
C (\2al)Y 1+iat2m2

X exp{

ipox  ipgt
h 2mh|’

P(x,1)

(X—pot/m)?
4L2(1+iAt/2mL?)

8

which is the solution of the free particle Scdinger equa-
tion with the initial state

X2

X IPoX
412

—} , 9

h

1
ho(X) = WGXP{

i.e., a minimum uncertainty wave packet with)=0, (p)
=po, AQqp=L, andApy=7/2L, released at=0 [20]. The
Wigner densityl 4/(x,,t)|? in this case may be obtained eas-
ily in a simple analytical form:

] , (10

1 4
oy (t)
1y

2 2
2
i t2].
L

(Xo— Pot/m)?

2:
|¢(X01t)| 20’§(t)

where

1+

X
ox(t)=L? —

The resulting TOA probability densitpxo(t), calculated ac-
cording to Eq.(7) for the arrival position ak,=5 a.u., nor-

malized to unity § o= /), is plotted in Fig. 1, together with
the Kijowski TOA density[5,16] for positive momenta,

" p |12
HK[tJXoJl/fo]:fo dp(ﬁ) <p|‘/fo>

o 2

2

—ip2
Ip“t , (12)

2m#h

ipPXg

h

pared: the continuous line is the TOA probability density calculated
according to Eq(7), while the short-dashed and the long-dashed
lines correspond to the Kijowski and Wigner densities, respectively
(see the text for detailsAll quantities are in atomic units.

calculated from the initial state Eq9), and the original
Wigner densityl /(xo,t)|? [Eq. (10)]. For simplicity, all cal-
culations were performed assumifigeL=m=py=1.

It could be seen that our calculated TOA probability den-
sity remains in good agreement with the Kijowski density,
regarded as the closest quantum object to an ideal classical
arrival-time distribution5].

On the other hand, it is amazing how similar the original
Wigner time distribution is to the other distributions depicted
in Fig. 1, but for obvious reasons, it is usually rejected as a
valid quantumTOA probability density. Nevertheless, in the
classical limiti— 0 the time dependence drops outedf in
Eq. (10) and the quantity|(xo,t)|?};-o becomes a perfect
candidate for &lassicalTOA density. But it can then reflect
only the imprecision of the initial particle position &t 0
“transported” to the arrival position, because other param-
eters are held fixed. In the ideal case of precise localization,
whenL—0, we may recover the well-known classical pic-
ture with a moving point particle, and the intensity function
Eq. (6) and the TOA probability density E@7) are then both
proportional tos(xq— pot/m), as they should be.

Recently, Marchewka and Schuss, in their Feynman tra-
jectory studies of a quantum particle impinging on an ab-
sorbing wall [21-23, found expressions for the survival
probability that are similar to our E@2). It seems therefore
plausible that the arrival process discussed above could be
seen as a “common denominator” for several more specific
TOA models, each supplying its own recipe for the appropri-
ate intensity function. Knowing already a particular TOA
probability densityp(t), it is possible, at least in principle, to
obtain the corresponding intensity function

t
Mt)=p(t)/ 1—fodt’p(t’) ; (13)
because of Eq4) and the following relation:
t t
exp‘—f )\(t’)dt’]zl—f dt'p(t’). (14)
to to
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Moreover, the Poisson intensity function itself can also beand it indicates that in general more elaborate forms of in-

directly estimated from experimental data in computationallytensity functions may be necessary.

efficient ways(see, e.g.[24]), which may facilitate the com-

parison of theoretical predictions with experimental results. |t is a pleasure to thank Professor J. P. Dahl for extremely
As a final remark, notice that the intensity function ob-warm hospitality in Lyngby, and Professor J. G. Muga for

tained from a given probability density via EQL3) cannot  comments on the draft of this paper and for providing Ref.

always be cast into the simple form given by E§) or Eq.  [5] prior to its publication. Financial support received from

(6) involving physically relevant states. This is evident, e.g.,the Danish National Research Council and the Silesian Uni-

in the case ofp(t) =\ exd —\qt], where\(t)=\o=const, versity is also acknowledged.
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