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Motion-induced particle creation from a finite-temperature state
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We investigate the phenomenon of quantum radiation–i.e., the conversion of~virtual! quantum fluctuations
into ~real! particles induced by dynamical external conditions–for an initial thermal equilibrium state. For a
resonantly vibrating cavity a rather strong enhancement of the number of generated particles~the dynamical
Casimir effect! at finite temperatures is observed. Furthermore we derive the temperature corrections to the
energy radiated by a single moving mirror and an oscillating bubble within a dielectric medium as well as the
number of created particles within the Friedmann-Robertson-Walker universe. Possible implications and the
relevance for experimental tests are addressed.
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I. INTRODUCTION

Motivated by previously obtained results@1#, we general-
ize the canonical formalism adopted there towards the ap
cation to further scenarios and establish the derivation
more detail:

One of the main consequences of quantum theory is
existence of a nontrivial vacuum state. In contrast to
classical theory the quantum fields undergo fluctuations e
in their state of lowest energy~the ground state!–the so-
called vacuum fluctuations. These fluctuations have mea
able consequences: For example, if the fields are constra
by the presence of external conditions, the energy assoc
to these fluctuations~the zero-point energy! may change ow-
ing to the imposed external conditions. As a result the qu
tum field may exert a force onto the external conditions
order to minimize its energy. The most prominent exam
for such a force is the Casimir@2# effect which predicts the
attraction of two parallel perfectly conducting and neut
plates~i.e., mirrors! placed in the vacuum of the electroma
netic field. The prediction of this striking effect has be
verified experimentally with relatively high accuracy@3,4#.

A different–not less interesting–effect has not yet be
rigorously verified in an experiment: The impact of the e
ternal conditions may also induce a conversion of the virt
quantum fluctuations of the field into real particles–the p
nomenon of quantum radiation. As examples for such ex
nal conditions giving rise to the creation of particles we m
consider moving mirrors, time-dependent dielectrics,
gravitational fields.

Various investigations have been devoted to this to
during the last decades, here we mention only some of
most important initial papers in chronological order: In 197
Moore @5# presented the first explicit calculation of the qua
tum radiation on the basis of two 111-dimensional moving
mirrors. In this pioneering work he exploited the conform
invariance of the scalar field in 111 dimensions. Based o
this result, Fulling and Davies@6# presented a calculation o
the radiation of a single moving mirror~again in 111 di-
mensions! and pointed out the close analogy to the Hawki
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radiation. In 1982, Ford and Vilenkin@7# succeeded in devel
oping a method for the calculation of the radiation genera
by a moving mirror in higher dimensions, i.e., without e
ploiting the conformal invariance.

For the experimental verification of the phenomenon
quantum radiation, the scenario of a closed cavity might
most promising since one may exploit a resonance enha
ment in this situation. The particle production inside a re
nantly vibrating cavity has already been considered by s
eral authors, see, e.g.@8–17# as well as@18,19# for reviews.

However, most of the investigations of quantum radiati
are restricted to the vacuum state, i.e., to zero tempera
But in view of an experimental verification it is essential
study the finite-temperature effects. Realistic calculations
thermal effects on quantum radiation within the framewo
of quantum field theory of time-dependent systems at fin
temperature are not yet available.

The remedy of this deficiency is the main intention of t
present paper: In Sec. II, we set up the basic formalism
the quantum treatment of external conditions at finite te
peratures. The developed methods are applied in Sec. I
the scenario of a trembling cavity. In Sec. IV, we focus
the resonance case and derive the number of created
ticles. Another scenario giving rise to quantum radiation
dynamical dielectric medium–is considered in Sec. V.
Sec. VI, we demonstrate the flexibility of the canonical a
proach presented in Sec. II by calculating the fini
temperature corrections to the particle production in yet
other example scenario–the Friedmann-Robertson-Wa
universe. We shall close with a summary, some conclusio
a discussion, and an outlook.

Throughout this article natural units with

\5c5GN5kB5e05m051 ~1!

will be used. The signature of the Minkowski metric is ch
sen according togmn5diag(11,21,21,21).

II. GENERAL FORMALISM

The objective is to investigate quantized bosonic fie
obeying linear equations of motion under the influence
external conditions. At asymptotic timesutu↑` the external
©2002 The American Physical Society20-1
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conditions, which are treated classically~not quantized!, are
assumed to approach a staticĤ0-configuration, where the
asymptotic HamiltonianĤ0 can be diagonalized via a sui
able particle definition. Initially the state of the quantum sy
tem is supposed to be described by thermal equilibrium
given temperatureT, which might be realized through th
coupling to a corresponding heat bath. However, the c
pling to the heat bath has to be switched off before the
ternal conditions undergo dynamical changes in order
avoid relaxation processes~closed system!. In general the
time dependence of the external conditions causes the
of the quantum system to leave the initial thermal equil
rium. Accordingly, the calculation of the expectation value
relevant observables, e.g., the number of particles, be
and after the dynamics may deviate. These differences ca
interpreted as particles that are created or even annihilate
the dynamical external conditions.

A. Interaction picture

The following calculations are most suitably performed
the interaction representation. Accordingly, the dynamics
all operatorsX̂ corresponding to observables are governed
the undisturbed HamiltonianĤ0,

dX̂

dt
5 i @Ĥ0 ,X̂#1S ]X̂

]t
D

expl

. ~2!

This HamiltonianĤ0 describes the complete dynamics of t
system at asymptotic times and can be diagonalized v
suitable particle definition

Ĥ~ utu↑`!5Ĥ05(
I

v I N̂I1E05v I N̂I1E0 , ~3!

whereE0 denotes the~divergent! zero-point energy. In mos
of the following formulas we make use of a generalized s
convention and drop the summation signs by declaring
one has to sum over all indices that do not occur at both s
of the equation. Equations with the same index appearin
both sides are valid for all possible values of this index.

The indexI contains a complete set of quantum numb
labeling the different particle modes, e.g.,I 5$k% or I
5$v,l ,m% etc. The particle energies are given byv I . For a
thermodynamical consideration we have to describe the s
of the field by the statistical operator%̂. In the interaction
picture the time evolution of this density matrix is given b
the von Neumann equation

d%̂

dt
52 i @Ĥ1 ,%̂#. ~4!

The perturbation HamiltonianĤ1 governs the influence o
the variation of the external conditions upon the quantiz
field. Note, that this equation describes the time evolution
a closed quantum system, i.e., no measurements, etc.,
place during the dynamics. It leads to a unitary time evo
tion operator and therefore also does not contain relaxa
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processes, etc. Measurements and relaxations would ch
the probabilitieswA of the statistical operator

%̂~ t !5wAuCA~ t !&^CA~ t !u, ~5!

and can be incorporated into Eq.~4! via an explicit time
derivative (]%̂/]t)expl.

B. Entropy

Without an explicit time-dependence (]%̂/]t)expl Eq. ~4!
generates a unitary time evolution and hence, the mic
scopic entropy remains constant in time

S52Tr$%̂ ln %̂%5const. ~6!

Note, that a constant microscopic entropy arises also in c
sical mechanics where the time evolution is governed by
Liouville equation. By virtue of Liouville’s theorem the tota
time derivative of the phase-space density% vanishes and
thus the classical microscopic entropy*dG% ln % remains
constant as well. But introducing the Boltzmann equation
averaging over multiparticle correlations, it is possible to d
fine an effective entropy which increases in general (H theo-
rem!.

An analogous procedure can be performed in quan
theory: In practice, a complete knowledge about a giv
quantum system can never be achieved. Formally, this
striction defines a so-called observation levelG5$X̂% as a set
of possibly relevant observablesX̂ ~see@20#!, where an av-
eraging over all unknown and possibly irrelevant observab
is understood. With respect to a given observation leveG
one can introduce an effective statistical operator%̂ $G% such
that it yields the correct expectation values^X̂&5Tr$%̂ $G%X̂%
5Tr$%̂X̂% for all operatorsX̂PG. The effective statistical
operator%̂ $G% averages over all irrelevant observablesX̂P” G
in order to maximize the effective entropy which is defin
asS$G%52Tr$%̂ $G%ln %̂$G%%. This effective entropyS$G% refer-
ring to a given observation level in general increases w
time.

Introducing the internal energyE5^:Ĥ0 :& as observation
level the corresponding effective entropySE may increase
under the influence of the dynamical external conditions
flecting the fact that particles have been created. The ph
cal meaning ofSE , respectively, its changeDSE may be-
come evident, if one assumes some energy-conser
relaxation process, e.g., mediated via a measurement
the dynamics has taken place, which thermalizes the sys
again at some higher, in principle, measurable tempera
TE5T1DT. For a photon gas we find in the limit of hig
temperatures, respectively, of large volumes* the following
relations between the energyE, the effective entropySE , and
the effective temperatureTE : E5*TE

4p2/15 and SE

5*TE
34p4/45. For small disturbances the relative increase

the effective temperature, the energy and the effective
tropy behaves asDE/(4E)'DTE /TE'DSE /(3SE).
0-2
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MOTION-INDUCED PARTICLE CREATION FROM A . . . PHYSICAL REVIEW A65 043820
C. Time evolution

Within our approach the influence of the dynamics of t
external conditions is represented by the perturbation Ha
tonian Ĥ1(t) governing the time evolution of the statistic
operator in Eq.~4!. By means of the time-ordering operatorT
this equation can be integrated formally

%̂~ t↑`!5Û%̂~ t↓2`!Û†

5T FexpS 2 i E dt8Ĥ1~ t8! D G %̂~ t↓2`!

3T †FexpS i E dt9Ĥ1~ t9! D G . ~7!

The chronological operatorT acting on two bosonic and self
adjoint operatorsX̂(t) and Ŷ(t8) is defined by

T @X̂~ t !Ŷ~ t8!#5X̂~ t !Ŷ~ t8!Q~ t2t8!1Ŷ~ t8!X̂~ t !Q~ t82t !,
~8!

and so on for more operators. Due to the Hermitian con
gation of the unitary time evolution operatorÛ in Eq. ~7!, for
which the position of all operators changes, it is conveni
to introduce the antichronological operatorT † ~cf. @21#! as
well

T †@X̂~ t !Ŷ~ t8!#5~T @X̂~ t !Ŷ~ t8!# !†

5Ŷ~ t8!X̂~ t !Q~ t2t8!1X̂~ t !Ŷ~ t8!Q~ t82t !.

~9!

Combining both equations one obtains for two bosonic a
self-adjoint operators

$X̂~ t !,Ŷ~ t8!%5T @X̂~ t !Ŷ~ t8!#1T †@X̂~ t !Ŷ~ t8!#

5Ŷ~ t8!X̂~ t !1X̂~ t !Ŷ~ t8!. ~10!

As we shall see below this property simplifies the calculat
of the quadratic response of the number operator.

D. Canonical ensemble

As stated in Sec. II, we assume the quantum field to
initially at thermal equilibrium corresponding to some no
vanishing temperatureT51/b.0. For reasons of simplicity
we restrict our further consideration to particles, that do
exhibit another conserved quantity than their energy.1 This
assumption is correct for photons, but not for charged pio
for instance. We consider only bosons. For that reason
chemical potential vanishes and the energyE is the only one
observable that has a fixed expectation value. Minimizing
microscopic entropy with this constraint generates the
nonical ensemble

1Otherwise, one may start with a grand canonical ensemble.
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%̂05%̂~ t↓2`!5
exp~2bĤ0!

Tr$exp~2bĤ0!%
. ~11!

There are several examples in quantum field theory wh
the canonical ensemble is not capable of describing the t
mal equilibrium correctly, usually in combination with infi
nite volumes. In order to also treat such cases, we assum
system to be confined into a finite volume where the cano
cal ensemble applies, calculate the expectation values~i.e.
the trace!, and consider the infinite volume limit afterward

E. Response theory

In general, the final expectation value of an observabl

^X̂&5Tr$X̂%̂~ t↑`!%5Tr$X̂Û%̂~ t↓2`!Û†% ~12!

cannot be calculated explicitly for nontrivial interactio
terms Ĥ1 owing to the complicated structure of the corr
sponding time-evolution operatorÛ. For that purpose one
has usually to introduce some approximations. One poss
ity is given by the perturbation expansion with respect
powers of the disturbanceĤ1. Assuming the perturbation
Hamiltonian Ĥ1 to be small it is possible to expand th
above expression in powers ofĤ1. Neglecting all terms of
third and higher order inĤ1, one obtains the quadratic re
sponse

^X̂&5Tr$X̂%̂0%1TrH X̂F %̂0 ,i E dtĤ1~ t !G J
1TrH X̂E dtĤ1~ t !%̂0E dt8Ĥ1~ t8!J
2

1

2
TrH X̂T F E dtĤ1~ t !E dt8Ĥ1~ t8!G %̂0J

2
1

2
TrH X̂%̂0T †F E dtĤ1~ t !E dt8Ĥ1~ t8!G J 1O~Ĥ1

3!.

~13!

Focusing on the investigation of the particle production
relevant observable is the number operatorX̂5N̂I . Due to

@N̂I ,%̂0#50 the linear response vanishes and with the aid
Eq. ~10! the quadratic response simplifies to

^N̂I&5Tr$N̂I %̂0%1TrH N̂IF E dtĤ1~ t !,%̂0G E dtĤ1~ t !J
1O~Ĥ1

3!

5^N̂I&01DNI1O~Ĥ1
3!. ~14!

The first term^N̂I&0 of the above expression denotes t
initial particle content in the canonical ensemble which
given by the Bose-Einstein distribution. The second te
0-3
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R. SCHÜTZHOLD, G. PLUNIEN, AND G. SOFF PHYSICAL REVIEW A65 043820
DNI describes the particle creation or annihilation due to
presence of dynamical external conditions and will be cal
lated in the following.

F. Particle production

For quasifree quantum fields obeying linear equations
motion the perturbation Hamiltonian can be expressed–u
an irrelevant constant–as a bilinear form of the fields. E
panding the fields into the time-independent creati
annihilation operators representing particles in
asymptotic regions the disturbanceĤ1 can be cast into the
rather general form

E dtĤ1~ t !5
1

2
~SJKâJ

†âK
† 1SJK* âJâK!1UJKâJ

†âK1C.

~15!

The introduced matrices have to fulfill the conditionsSJK

5SKJ andUJK5UKJ* becauseĤ1 is self-adjoint. TheS term
could be interpreted as a generator for a multimode squ
ing operator and theU term as a hopping operator. Now th
matricesS andU contain all information about the dynamic
external conditions that are relevant for the quadratic
sponse. Inserting the general form of the disturbance in
~15! into Eq. ~14! after evaluating the traces the quadra
response of the number operator takes the form

DNI5uS IJu2~11^N̂J&01^N̂I&0!1uU IJu2~^N̂J&02^N̂I&0!.
~16!

Note, that there is still a summation over the indexJ. One
observes that merely theS term governs the production o
particles and contains the vacuum contribution~first addend!.
The U term does not increase the total number of partic
since it has the same structure as a classical master equ
~e.g., used for the derivation of theH theorem!, but it trans-
forms particles from one mode into another and thereby a
increases the energy. Investigating the high-temperature
pansion of the Bose-Einstein distribution entering the eq
tion above

^N̂I&05
1

exp~bv I !21
5

1

bv I
2

1

2
1O~b!, ~17!

one observes that the temperature-independent contribu
~the term21/2) cancel. The same occurs in the static C
simir effect @22–24# and may be interpreted as a cons
quence of the scale invariance in the classical limit. In
high-temperature limit the expectation value^N̂I&0 is linear
in T. But special care is required for evaluating the num
of created particles in Eq.~16! due to the remaining mod
summation. Since the expansion in Eq.~17! has a finite ra-
dius of convergence its insertion into Eq.~16! may cause
some problems in performing the mode summation. The
fore the resulting number of produced particles or the to
radiated energy may possibly display another behavior
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shown in Eq.~17!. As we shall see later in Secs. III C an
V A, the radiated energy may be proportional to even hig
powers inT.

G. Correlations

The expectation valuêN̂I& of the number operator afte
the dynamical period does not, in general, display the Bo
Einstein distribution because the field is no longer in t
thermodynamic equilibrium. But for certain dynamics th
expectation value could still behave as a thermal distribut
corresponding to some effective temperatureTeff . If particles
are created during the dynamics this effective tempera
will be larger than the initial temperatureT. Such a phenom-
enon may occur even for a vanishing initial temperatureT
50. This effect can be explained within the thermofie
@25,26# formalism: Measuring only single-particle obser
ables does not reveal the complete information about
quantum system under consideration. Formally, this rest
tion defines an observation levelG @20# including all these
single-particle observables~see the remarks in the previou
section!. The effective density-matrix%̂ $G% may indeed be
equal to the statistical operator of a canonical ensemble
responding to some effective temperatureTeff . However, the
real density-matrix%̂ cannot be equal to this effective stati
tical operator %̂ $G% because the microscopic entropyS5

2Tr$%̂ ln %̂% is conserved during a unitary time evolutio
while the effective entropyS$G%52Tr$%̂ $G%ln %̂$G%% has been
increased forT,Teff . Within the investigation of only
single-particle observables one can never distinguish
tween the two statistical operators%̂ and %̂ $G% and therefore
one can never find out whether the measured tempera
represents a real one~T! or an effective one (Teff). For this
purpose it is necessary to consider many-particle obs
ables. One suitable candidate is given by the two-part
correlation defined as

CJK5^N̂JN̂K&2^N̂J&^N̂K& for JÞK. ~18!

This quantity is particularly appropriate since it vanishes
the thermodynamic equilibrium

^N̂JN̂K&05^N̂J&0^N̂K&0 for JÞK. ~19!

The quadratic response of the correlation function can
evaluated as follows

CJK5 K E dtĤ1~ t !F N̂JN̂K ,E dtĤ1~ t !G L
0
2^N̂J&0DNK

2^N̂K&0DNJ1O~Ĥ1
3!. ~20!

As a simple example we may consider the vacuum case
T50,

CJK5^0u E dtĤ1~ t !N̂JN̂KE dtĤ1~ t !u0&1O~Ĥ1
3!,

~21!
0-4



m
te

e
go
n
o

ep
r

th

te
re

d
ra

e-
ua
di

a

an

to
at

nce

ld

dre

In

a-

MOTION-INDUCED PARTICLE CREATION FROM A . . . PHYSICAL REVIEW A65 043820
where the correlation is positive~at least in lowest order in
Ĥ1).

But at finite temperatures the correlation may also assu
negative values: For example, in the case of a comple
diagonal perturbation Hamiltonian we arrive at

CJK52^N̂J&0DNK2^N̂K&0DNJ1O~Ĥ1
3!. ~22!

H. Bogoliubov transformation

It might be illuminating to consider the relation of th
previous investigations to the formalism based on the Bo
liubov transformation. The initial and final creation and a
nihilation operators are connected through the Bogoliub
coefficients via

Û†âJÛ5aJKâK1bJKâK
† . ~23!

Switching from the interaction picture to the Heisenberg r
resentation the expectation value of the number operato

^N̂J&5Tr$%̂N̂J%5Tr$%̂0Û†N̂JÛ%5^Û†N̂JÛ&0 ~24!

can be expressed in terms of the Bogoliubov coefficients

^N̂J&5ubJKu21^N̂K&0~ uaJKu21ubJKu2!. ~25!

If we assume a completely diagonal HamiltonianĤ5Ĥ0

1Ĥ1 the associated time-evolution operatorÛ factorizes

Û5)
I

Û I . ~26!

Accordingly, the Bogoliubov coefficients simplify toaJK
5aJdJK andbJK5bJdJK , respectively. Utilizing the unitary
relation, which assumes for the diagonal coefficients
simple formua I u2511ub I u2, we arrive at

^N̂I&5^N̂I&01ub I u2~112^N̂I&0!. ~27!

Hence–for a diagonal Hamiltonian–the number of crea
particles at finite temperature is simply given by the cor
sponding vacuum expression times a thermal factor

DNv
T5DNv

T50S 11
2

exp~bv!21D . ~28!

It should be mentioned here that this result is not restricte
a particular order perturbation theory–it holds for the gene
case of a diagonal Hamiltonian.

III. TREMBLING CAVITIES

Now we are in the position to apply the formalism pr
sented in the previous section to a special system of a q
tum field under the influence of dynamical external con
tions. We consider a massless and neutral scalar fieldF
confined in an arbitrary and weakly time-dependent dom
G(t) ~a trembling cavity! with Dirichlet boundary conditions
F50 at ]G(t), see also Refs.@11# and @17#. The action
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generating the equation of motion is given by

A5
1

2E dtE
G

d3r ~]mF!~]mF!5E dtL. ~29!

The Hamiltonian governing the dynamics of this system c
be obtained in the following way: For every fixed timet we
construct a complete and orthonormal set ofeigenfunctions
of the Laplacian inside the time-dependent domainG(t) sat-
isfying the required Dirichlet boundary conditions. Owing
the time dependence of the Dirichlet boundary conditions
]G(t) this operator becomes time dependent as well. He
also the propereigenfunctionsare time-dependentf I5 f I(t).
We assume a finite domainG(t) resulting in a purely dis-
crete spectrum. The insertion of the expansion of the fie

F~ t,r!5(
I

QI~ t ! f I~ t,r! ~30!

into the Lagrangian in Eq.~29! reveals

L5
1

2
~Q̇I

22v I
2~ t !QI

2!1QIMIJ~ t !Q̇J

1
1

2
QIMIJ~ t !MJK~ t !QK . ~31!

Since the time derivative of the fieldF may also include the
explicit time derivative of theeigenfunctions, we obtain an
additional antisymmetric intermode coupling matrix

MIJ~ t !5E
G(t)

d3r f I ḟ J . ~32!

Furthermore, theeigenvaluesof the Laplace operatorv I
2(t)

are time dependent in general. By means of a Legen
transformation we obtain the Hamiltonian

H5
1

2
~PI

22v I
2~ t !QI

2!1QIMIJ~ t !PJ , ~33!

wherePJ andQK are the canonical conjugated variables.
the following the undisturbedeigenvalues~frequencies! are
denoted byv I

2(utu↑`)5v I
2 and their variation byDv I

2(t)
5v I

2(t)2v I
2 . After the canonical quantization and the sep

ration of the undisturbed part

Ĥ05
1

2
~ P̂J

21vJ
2Q̂J

2! ~34!

the perturbation Hamiltonian may be cast into the form

Ĥ1~ t !5DÊ~ t !1Ŵ~ t !

5
1

2
Q̂J

2~ t !DvJ
2~ t !1Q̂J~ t !MJK~ t !P̂K~ t !. ~35!
0-5
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R. SCHÜTZHOLD, G. PLUNIEN, AND G. SOFF PHYSICAL REVIEW A65 043820
The term includingDvJ
2(t), i.e., DÊ(t), arises from the

change of the shape of the domainG(t). This termDÊ(t) is
called squeezing contribution. The intermode coupl
MJK(t) contained inŴ(t) –the velocity contribution–arise
from the motion of the boundaries. Of course, the und
turbed Hamiltonian can be diagonalized through a part
definition Ĥ05vJ(N̂J11/2) employing the usual creation
annihilation operators

âJ5A 1

2vJ
~vJQ̂J1 i P̂J!. ~36!

With the aid of the equations above it is now possible
calculate the expectation value of the number operator
ploying the results of the previous section. The evaluation
the trace Tr$•••% is most suitably performed in the basis
the Ĥ0 eigenkets. One obtains a nonvanishing trace only
those terms that contain the same number of creation
annihilation operators for every mode. Inserting the parti
lar interaction HamiltonianĤ1(t)5DÊ(t)1Ŵ(t) into Eq.
~14! generates at a first glance four terms. However, owing
the antisymmetry of the matrix governing the intermode c
pling MJJ50 the mixing terms vanish

Tr$N̂I@DÊ~ t !,%̂0#Ŵ~ t8!%50,

Tr$N̂I@Ŵ~ t8!,%̂0#DÊ~ t !%50. ~37!

Consequently the squeezing and the velocity contribution
couple on the level of the quadratic response

DNI5TrH N̂IF E dtDÊ~ t !,%̂0G E dtDÊ~ t !J
1TrH N̂IF E dtŴ~ t !,%̂0G E dtŴ~ t !J

5DNI
S1DNI

V . ~38!

ExpressingĤ1(t)5DÊ(t)1Ŵ(t) with the aid of the matri-
cesS andU as done in Eq.~15! one observes that the squee
ing effect manifests in the diagonal elements of the matri
S andU while the velocity effect generates off-diagonal e
ments only.

A. Squeezing

The diagonal form of the squeezingDÊ(t) part of the
perturbation HamiltonianĤ1(t) indicates the highly resonan
character of this contribution. This fact simplifies the calc
lation of DNI because only one mode–the modeI –survives
in the trace. With the abbreviation

Q I
S5

1

2v I
E dtDv I

2~ t !exp~2iv I t !5
1

2v I
Dv I

2̃~2v I !,

~39!

the squeezing partS S of the matrixS5S S1S V can be cast
into the form
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S JK
S 5Q I

Sd IJd IK . ~40!

Of course, the squeezing partU S of the matrixU5U S1U V is
also strictly diagonal and hence does not contribute toDNI
@see Eq.~14!# with the result that only theS S term is respon-
sible for particle production. Therefore the squeezing con
bution to the number of particles reads

DNI
S5uQ I

Su2~112^N̂I&0!5uQ I
Su2S 11

2

exp~bv I !21D .

~41!

In accordance to the results of Sec. II H the particle prod
tion rate at temperatureT equals the rate at zero temperatu
times the thermal distribution factor.

B. Velocity

Due to the more complicated structure of the veloc
term, i.e., the off-diagonal elements, the calculation of
number of created particles involves an additional summ
tion. Hence, the velocity contribution may not be cast in
such a simple form as the squeezing term. TheŴ part of the
perturbation Hamiltonian can be expanded with the aid of
matrices

S JK
V 5

i

2E dtMJK~ t !exp~ i @vJ1vK#t !SAvJ

vK
2AvK

vJ
D ,

~42!

and

U JK
V 5

i

2E dtMJK~ t !exp~ i @vJ2vK#t !SAvJ

vK
1AvK

vJ
D .

~43!

In this case both terms, theS V and theU V matrices contrib-
ute. TheU V term may even decrease the number of partic
in a given mode, see Eq.~14!. Nevertheless, the total energ
increases.

C. Moving mirror

In order to illustrate the velocity effect we consider th
most simple example of a single mirror in 111 dimensions.
This scenario has already been investigated by several
thors, e.g.,@6,7#, at zero temperature. In this case the dom
G takes the formG(t)5@h(t),`# where h(t) denotes the
time-dependent position of the mirror withh(t↓2`)
5h(t↑1`)50. The index I can be identified with the
wave-numberI→k5v I which assumes all positive rea
numbers. As the shape of the domainG(t) does not change
only the velocity-effect contributes. The intermode coupli
matrix is given by~cf. @11,17#!

MIJ~ t !→Mkk8~ t !5ḣ~ t !
2

p
PF kk8

k22k82G , ~44!

whereP denotes the principal value. The Fourier transfo
of a time-dependent function is denoted by a tilde:h̃5Fh
0-6
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@see Eq.~39!#. Using this notation the matrices for the eval
ation of the particle number read

Skk85
1

p SA k

k8
2Ak8

k D kk8

k2k8
h̃~k1k8! ~45!

and

Ukk85
1

p SA k

k8
1Ak8

k D kk8

k1k8
h̃~k2k8!. ~46!

Inserting these expressions into Eq.~16! yields the following
results for the expectation values of the number operato

DNk5E
0

`

dk8
kk8

p2
uh̃~k1k8!u2~11^N̂k8&01^N̂k&0!

1E
0

`

dk8
kk8

p2
uh̃~k2k8!u2~^N̂k8&02^N̂k&0!. ~47!

Already for the most simple example the velocity contrib
tion cannot be cast into a form being as simple as the squ
ing term. But the formula above allows us to calculate
number of created particles within the quadratic response
arbitrary dynamicsh(t) and temperaturesT. Deriving the
total radiated energy from Eq.~47!

E5E
0

`

dkkDNk5E dtE dt8h~ t !h~ t8!R~ t2t8!,

~48!

whereR denotes the quadratic response function, we ob
a more elucidative formula. For that purpose we have
perform integrations involving Bose-Einstein distributio
functions entering in̂N̂k&0. If we insert the usual expansio
for those functions

^N̂k&05
1

exp~bk!21
5 (

n51

`

e2nbk ~49!

the wave-number integrationI b
m leads to Hurwitz zeta func

tions

I b
m5 (

n51

` E
0

`

dk kmexp@ ik~ t2t8!2nbk#

5 (
n51

`
m!

~nb2 i @ t2t8# !m11
5

m!

bm11
zS m11,12 i

t2t8

b D .

~50!

In terms of these functions the response functionR
5R(Dt)5R(t2t8) yields after thek andk8 integrations
04382
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2

p2 S 1pd (4)~Dt !1P F 24i

Dt5G D 1

24

1
1

p2 S 2pd (2)~Dt !2P F 2i

Dt3G D z~2,12 iDt/b!

b2

1
2

p2 S 2 ipd (1)~Dt !2P F 1

Dt2G D z~3,12 iDt/b!

b3

1
1

p2 S 2pd (2)~Dt !1P F 2i

Dt3G D z~2,12 iDt/b!

b2

1
2

p2 S 2 ipd (1)~Dt !1P F 1

Dt2G D z~3,12 iDt/b!

b3
.

~51!

The five terms above correspond directly to the five terms
Eq. ~47!. As one can easily check in Eq.~48!, only the sym-
metric part Rsym(Dt)5@R(Dt)1R(2Dt)#/2 of the re-
sponse functionR(Dt) contributes to the radiated energ
Symmetrizing the response function a lot of cancellatio
occur and all divergent terms of the structure 1/Dtn disap-
pear. The resulting expression reads

Rsym~Dt !5
1

12p
d (4)~Dt !2

2

p
z~2!T2d (2)~Dt !, ~52!

with the Riemann zeta-functionz(n) that is related to the
Hurwitz zeta functionz(n,m) via z(n,1)5z(n). Rewriting
this expression into the total radiated energy yields

E5
1

12pE dtḧ2~ t !1
p

3
T2E dtḣ2~ t !. ~53!

The first term describes the vacuum contribution and w
originally obtained by Fulling and Davies@6# using the con-
formal invariance of the scalar field in 111 dimensions and
has been later calculated by Ford and Vilenkin@7# via a more
flexible method of perturbations of Green’s functions.
both approaches the radiated energy was deduced by m
of the point-splitting renormalization technique. The releva
contributions of the Green’s functions used in Refs.@6,7#
correspond to the vacuum part of the response func
R(Dt) in our derivation.

The second term is a pure temperature effect and ge
alizes the vacuum results in Refs.@6,7# to the density matrix
corresponding to the canonical ensemble. The relation
tween the finite-temperature correction to the radiated ene
and the vacuum contribution is of the orderO(T2t2) where
t denotes a characteristic time scale of the dynamics of
mirror.

IV. RESONANTLY VIBRATING CAVITY

Let us now investigate the finite-temperature effects
the dynamical Casimir effect in a resonantly vibrating cavi
In order to allow for an experimental verification the numb
0-7
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of motion-induced particles should be as large as poss
One way to achieve this goal is to exploit the phenomenon
parametric resonance. It occurs in the case of periodic
time-dependent perturbations characterized by some
quencyv. Within the quadratic response the numberDNI of
created particles is proportional to the Fourier transform
the perturbation function@see Eq.~39!#. Assuming a har-
monically oscillating disturbance the Fourier transform p
sesses a pronounced maximum at the resonance frequ
As a result particles with a mode frequency correspondin
v will be produced predominantly. Obtaining large numbe
may indicate that one has left the region, where second-o
perturbation theory does apply.

A. Rotating-wave approximation

In the case of oscillating disturbances, however, it is p
sible to evaluate the time evolution operatorÛ in all orders
of Ĥ1 analytically employing yet another approximation, t
so-called rotating-wave approximation~RWA, see, e.g.,
@10#!. The main consequence of the RWA consists in the f
that it allows for the derivation of a time-independent effe
tive HamiltonianĤ1

eff after performing the integration ove
time

E dtĤ1'TĤ1
eff . ~54!

Let us assume that the explicit time dependence of the
turbation HamiltonianĤ1(t) possesses an oscillatory beha
ior like « sin(2vt) during a sufficiently long timeT, such that
the conditionsvT@1, «!1 and«vT5O@1# hold. Expand-
ing the time evolution operatorÛ into powers of« andvT
the RWA neglects all terms of orderO@«n(vT)m# if n.m
holds. Since time integrations over oscillating functions
sult in smaller powers ofT than the same integrations ov
time-independent quantities, within the RWA all terms i
cluding oscillations were omitted. Accordingly, only tho
terms, where the oscillations due to the time dependenc
the operators~in the interaction picture governed byĤ0) and
the explicit time-dependent disturbances cancel–i.e., wh
are in resonance (n5m) –contribute in the RWA. This ap
proximation enables us to neglect the time-orderingT as
well. The difference between the time-ordered and the or
nal expression always contains commutators l

@Ĥ1(t),Ĥ1(t8)#. These quantities are always oscillating a
therefore can be neglected within the RWA.

B. Fundamental resonance

For a harmonically vibrating cavity the effective Ham
tonian Ĥ1

eff can easily be calculated from the interaction o
erator in Eq.~35!. Assuming harmonic time dependenc
;« sin(2vt) or ;« cos(2vt) for both, the squeezing
@Dv I

2(t)# and the velocity terms@MJK(t)#, only those terms
will survive, which match the resonance conditions. The
conditions are fulfilled if the oscillations of the operator
i.e., Q̂J(t) andP̂K(t), compensate the oscillations of the di
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turbances, i.e.,Dv I
2(t) ~squeezing! and MJK(t) ~velocity!.

For the squeezing term the resonance condition readsv I
5v and for the velocity termuvJ6vKu52v, respectively.
Accordingly, the squeezing effect always creates partic
with the frequencyv provided this cavity mode does exis
We restrict our further consideration to the situation, whe
the oscillation frequencyv corresponds to the lowest cavit
mode, i.e., to the fundamental resonance

v5min$v I%5v1 . ~55!

The fundamental resonance frequencyv1 is determined by
the characteristic sizeL of the cavityv1;1/L. For the low-
est modeI 51 the resonance condition for squeezingv I
5v15v is satisfied automatically. Although the conditio
for theS term of the velocity effectuvJ1vKu52v could be
satisfied forJ5K51 ~we assume a nondegenerate groun
state I 51), this term does not contribute sinceMJJ50
5SJJ . Whether the resonance condition for theU term of the
velocity effect uvJ2vKu52v can be satisfied or not de
pends on the spectrum of the particular cavity under con
eration. For a one-dimensional cavity theeigenfrequencies
v I are proportional to integers and thus it can be satis
leading to an additional velocity contribution. For most cas
of higher-dimensional cavities this condition cannot be f
filled. ~See also the Appendix.! Thus the velocity effect does
not contribute within the RWA~cf. Ref. @8#!.

C. Squeezing operator

In the following calculations we assume a case for wh
only the squeezing term contributes~i.e., the rather genera
case!. The effective Hamiltonian can be derived immediate
from the only contributingDv I

2 terms

E dtĤ15E dt
Dv I

2~ t !

4v I
~ âI

†eiv I t1âIe
2 iv I t!2

5
v I«

2 E
0

T
dt sin~2vt !~ âI

†eiv I t1âIe
2 iv I t!2

'
iv«T

4
@~ â1

†!22~ â1!2#5TĤ1
eff . ~56!

Therefore the time evolution operatorÛ coincides in the
RWA with a squeezing operatorŜ1 for the lowest modeI
51,

Û5T FexpS 2 i E dtĤ1~ t ! D G
'expS v«T

4
@~ â1

†!22~ â1!2# D5Ŝ1 , ~57!

with a squeezing parameterJ5v«T/2. This confirms the
notion of theDv I

2 terms in the perturbation Hamiltonian~35!
as squeezing contribution. Having derived a closed exp
sion for the approximate time-evolution operatorÛ'Ŝ1 we
0-8
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MOTION-INDUCED PARTICLE CREATION FROM A . . . PHYSICAL REVIEW A65 043820
are able to calculate the expectation value for the num
operator to all orders inĤ1

eff within the RWA

^N̂I&'Tr$%̂0Ŝ1
†N̂I Ŝ1%

5^N̂I&01d I1sinh2S v«T

2 D ~112^N̂1&0!. ~58!

This nonperturbative result states that also at finite temp
ture the number of photonsDN1 created resonantly in th
lowest cavity mode increases exponentially. The vacuum
ation rateDN1

T505sinh2(v«T/2) ~see Ref.@8,9#! gets en-
hanced by a thermal distribution factor. Since the effect
Hamiltonian becomes diagonal in the resonance case su
behavior is consistent with the results in Sec. II H.

D. Local quantities

So far we have considered merely the expectation va
of global observables such as particle number and ene
But the canonical formalism developed here is also capa
of investigating local quantities. As an example we may c
sider the two-point function

^F̂~r!F̂~r8!&5Tr$%̂F̂~r!F̂~r8!%. ~59!

According to the results of the previous sections within
RWA the time evolution operator appears as a squeezing
erator for the lowest modeI 51. Expanding the fieldF̂(r)
into the modesf I yields

^F̂~r!F̂~r8!&5(
IJ

Tr$%̂0Ŝ1
†Q̂IQ̂JŜ1% f I~r! f J~r8!. ~60!

For IÞJ the trace above vanishes and forI 5JÞ1 it coin-
cides with the undisturbed~thermal! expression. Hence th
only interesting case isI 5J51. In this situation the ampli-
tudesQ̂1 are squeezed by the time-evolution operatorŜ1. As
a result the change of the correlation function induced by
dynamics of the cavity can be cast into the form

D^F̂~r!F̂~r8!&5~e2J21!Tr$%̂0Q̂1
2% f 1~r! f 1~r8!

5~e2J21!~112^N̂1&0! f 1~r! f 1~r8!/~2v1!

5~e2J21!S 11
2

exp~bv1!21D
3 f 1~r! f 1~r8!/~2v1!, ~61!

whereJ again denotes the squeezing parameter. In comp
analogy one obtains the change of the correlation of the fi
momenta

D^P̂~r!P̂~r8!&5~e22J21!S 11
2

exp~bv1!21D
3 f 1~r! f 1~r8!v1/2. ~62!
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Note, that the canonical variablesQ̂I and the momentaP̂I

transform in an opposite way under squeezing:Q̂I→eJQ̂I

whereasP̂I→e2JP̂I .
These ingredients enable us to calculate the expecta

values of the energy-momentum tensorTmn5]mF]nF
2gmn]rF]rF/2. The expression for the change of the e
ergy density reads

D^T̂00&5
1

4 S 11
2

exp~bv1!21D
3@~e2J21!~¹ f 1!2/v11~e22J21! f 1

2v1#.

~63!

The stress tensorTi j consisting of purely spatial componen
of Tmn can be calculated in a completely analog manner–
would obtain additional terms like] i f 1] j f 1. This quantity
can be used to deduce the mechanical properties, e.g.
pressure, of the radiation field inside the cavity. The exp
tation value of the energy flux densityT0i vanishes within
the RWA, since the change of the energy is always o
power of the vibration timeT lower than the energy itself.

The above expression can be used to deduce the sp
distribution of the energy created by the dynamical pertur
tion of the cavity. Since the squeezing parameterJ is pro-
portional to the vibration timeT, the first term at the right-
hand side dominates for large time durationsT. In this
situation the produced energy density behaves as (¹ f 1)2. For
Dirichlet boundary conditions theeigenfunctions vanish at
the boundary but their derivatives usually reach their ma
mum value there. In the center of the cavity the lowesteigen-
function assumes its maximum and–consequently–its
rivative vanishes. Ergo, the energy density is concentra
near the boundaries of the cavity in the case under consi
ation.

However, this assertion crucially depends on the impo
boundary conditions. For Neumann conditions the behav
is actually opposite.

E. Electromagnetic field

As we have observed above, the spatial distribution of
created energy density crucially depends on the impo
boundary conditions. In the case of the experimentally m
relevant photon field, however, these conditions are m
complicated than pure Dirichlet or Neumann-type ones.
the components of the dual field strength tensorFmn* they
may be expressed in the Lorentz covariant form

nmFmn* uS(t)50, ~64!

wherenm denotes the~spacelike! unit vector orthogonal to
the dynamical hypersurface of the boundaryS(t). Although
the general formalism presented in Sec. II does also appl
the electromagnetic~EM! field we have restricted our con
siderations to a scalar field inside a trembling cavity so f

Let us briefly discuss the main differences and comm
properties of the scalar and the EM field, respectively:
electromagnetism is a gauge field theory its quantizat
0-9
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R. SCHÜTZHOLD, G. PLUNIEN, AND G. SOFF PHYSICAL REVIEW A65 043820
comes along with constraints~see Sec. V!, which are absen
for the scalar field. Due to the two polarizations~e.g., TE and
TM, cf. @27#! the character of the boundary conditions f
EM fields is more complicated and the derivation of its tim
dependent instantaneouseigenmodes within a dynamica
cavity is less straightforward. The same holds for the expl
calculation of the velocity effect@overlap of the time-
dependenteigenmodes, cf. Eq.~32!#.

However, the calculation of the squeezing contributi
requires the knowledge of the~instantaneous! eigenfrequen-
cies only. These quantities are well known for rectangu
spherical, or cylindical cavities, see, e.g.,@27#. Since for an
appropriate resonantly vibrating cavity merely the squeez
effect is relevant, our results in Sec. IV can be transfer
almost one-to-one to the EM field. In particular the therm
enhancement–one of the main results of our calculation,
Eq. ~58!–carries over directly.

F. Discussion

In order to indicate the experimental relevance of the c
culations above one may specify the characteristic par
eters. For room temperature'290 K, which corresponds to
thermal wavelengths of about 50mm and considering a cav
ity of a typical sizeL'1 cm one obtains a thermal facto
(112^N̂1&0)5O(103). As a consequence the number
photonsDN1 created by the dynamical Casimir effect~after
the vibration timeT) at the given temperatureT will be
several orders of magnitude larger in comparison with
pure vacuum effect atT50, see@1#.

This enhancement occurring at finite temperatures co
be exploited in experiments to verify the phenomenon
quantum radiation as long as back-reaction processes~and
losses, etc.! can be neglected. Of course, one has also to t
into account the number of photons^N̂I&0 present at the tem
peratureT and their thermal variance

As0
2~NI !5A^N̂I

2&02^N̂I&0
25A^N̂I&01^N̂I&0

2

5^N̂I&0F11OS 1

NI
D G . ~65!

The latter quantity reflects the statistical uncertainty wh
measuring the number of photons at a given temperature
order to obtain a number of created particlesDN1 which is
not much smaller than the corresponding thermal varia
As0

2(N1) one has to ensure conditions that will lead to
significant vacuum effect as well. This implies that the arg
ment of the hyperbolic sine function in Eq.~58!, i.e., the
squeezing parameterJ5v«T/2 should be at least of orde
one. An estimate of the maximum value of the of the dime
sionless amplitude of the resonance wall vibration«max
,1028 is given in Ref.@8#. For a characteristic size of th
cavity of about 1 cm corresponding to a fundamental f
quencyv'150 GHz the squeezing parameterJ approaches
one after several milliseconds. It still remains as a challe
whether or not the requirementJ5O@1# could be achieved
in a realistic experiment. But–provided an experimental
vice for generating a considerable vacuum contribution
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comes feasible–there will be a strong enhancement of
dynamical Casimir effect at finite temperatures.

V. DIELECTRIC MEDIA

The previous sections were devoted to the investigation
a scalar field confined in a trembling cavity with Dirichle
boundary conditions simulating perfect conductors. Althou
the effect of quantum radiation has not yet been verifi
conclusively in an according experiment, a resonantly vibr
ing cavity is expected to provide one of the most promis
scenarios for this aim. Of course, the assumption of perfe
conducting walls of the cavity is an idealization. One po
sible step towards a more realistic description is to consid
dielectric medium with a finite permittivitye. Of course, one
may also take into account the permeability, see, e.g.,@28#.
But for reasons of simplicity we restrict our further consi
erations to a purely dielectric medium.

The quantum radiation generated by a moving body w
a finite refractive index was studied in Ref.@29#, for ex-
ample. More generally, one may consider a medium with
arbitrary changing permittivitye(t,r) and a local velocity
field v(t,r). Again these properties of the medium are trea
classically, i.e., as an external background field. As the qu
tum field propagating in this background we consider
electromagnetic field. For nonrelativistic velocities of th
medium the Lagrangian density governing the dynamics
the electromagnetic field is given by~see, e.g.,@28,30#!

L5
1

2
~eE22B2!1~e21!v•~E3B!. ~66!

The particle definition for this vector field requires addition
considerations. Since it is described by a gauge invar
theory, it possesses primary and secondary constraints,
e.g., @31#. In Ref. @28# these gauge problems are solved
virtue of the reduction of variables. However, other proc
dures, e.g., the Dirac quantization, lead to the same res
@32#.

There have been various efforts to discover effects
quantum radiation for such dynamical dielectrics: One int
esting idea goes back to Schwinger@33#, who suggested to
explain the phenomenon of sonoluminescence by
mechanism. Sonoluminescence means the conversion
sound into light. In an according experiment one genera
sound waves in a liquid~water! in such a way that tiny os-
cillating bubbles emerge. Under appropriate conditions th
bubbles emit light pulses, see, e.g.,@34# and references
therein. In spite of the considerable amount of work and
controversial discussions in order to clarify the relevance
quantum radiation with respect to sonoluminescence,
e.g.,@30,35,36# and also@19#, there are still open questions
since the dynamics of the bubble and the behavior in
interior are not known sufficiently. We shall return to th
point later on.

In view of the Lagrangian density in Eq.~66! the dynami-
cal properties of the medium enter in two terms: In analo
to the cavity example we may distinguish between
squeezing effect due to a varying permittivitye(t,r) and the
0-10
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MOTION-INDUCED PARTICLE CREATION FROM A . . . PHYSICAL REVIEW A65 043820
velocity effect governed byv(t,r). In the following we con-
sider situations where the squeezing term gives the domi
contribution~see Ref.@28#, Sec. V! and neglect the velocity
field (v50). In contrast to the cavity example the squeez
term of the perturbation Hamiltonian will not be diagonal
general

Ĥ1~ t !5E d3r
1

2 S 1

e~ t,r!
2

1

e`
D P̂2~ t,r!

5E d3ru~ t,r!P̂2~ t,r!. ~67!

P̂5Ê denotes the canonical momentum density associate
the vector potentialÂ, see, e.g.,@28# and @17#. u(t,r) sym-
bolizes the deviation of the permittivitye(t,r) from its
asymptotic valuee`5e(utu↑`,r)5e(t,uru↑`).

The diagonalization of the undisturbed Hamiltonian via
particle definition can be achieved with photons labeled
I 5$kn% wherek denotes the wave vector of the photon a
n counts the two possible polarizations. Within this basis
S andU matrices assume the form

Skn,k8n852
Avkvk8

*
~ekn•ek8n8!

3E d4xu~x!exp~ i ~k1k8!x!

52
Avkvk8

*
~ekn•ek8n8!ũ~k1k8!, ~68!

where* denotes the quantization volume, and

Ukn,k8n85
Avkvk8

*
~ekn•ek8n8!ũ~k2k8!, ~69!

respectively. In complete analogy to the cavity we may c
culate of the quadratic response of the number operator

DNkn5 (
k8n8

uSkn,k8n8u
2~11^N̂k8n8&01^N̂kn&0!

1 (
k8n8

uUkn,k8n8u
2~^N̂k8n8&02^N̂kn&0!. ~70!

It is again possible to recognize the thermal corrections
the vacuum effect(k8n8uSkn,k8n8u

2. In Ref. @28# we gave a
general proof that for massless and not self-interac
bosonic fields at zero temperature the spectral energy de
e(v) created by smooth and localized disturbances beha
as e(v);v4 for small v. As one can easily check in th
equation above this is no longer valid in general at fin
temperatures due to the Boltzmann distribution function t
becomes singular with 1/v for small v.

A. Small R expansion

The structure of Eq.~70! is too complicated for a genera
discussion of the physical properties of the induced quan
04382
nt

g

to

y

e

l-

o

g
ity
es

t

m

radiation by means of simple expressions. For that purpos
is necessary to use some approximations. One possibili
to assume that the region where the permittivitye(t,r) dif-
fers from its asymptotic valuee`5e(utu↑`,r)5e(t,uru↑`)
is very small. This assumption can be used to expand
Fourier transform of the perturbation functionu(t,r) in pow-
ers ofR, whereR denotes a characteristic length scale of t
disturbance

ũ~k!5E dt eivtE d3reik•ru~ t,r!5u0E dteivtV~ t !1O~R4!

5u0Ṽ~v!1O~R4!. ~71!

For the lowest~volumeV;R3) term of this expansion it is
possible to calculate the associated radiated energy in c
analogy to the moving mirror example. But in the case un
consideration the evaluations have to be accomplished
11 dimensions which leads to additional scale factorsk2

andk82 due to thed3k andd3k8 integrations. This results in
the occurrence of Hurwitz zeta functions of higher ord
z@4,12 i (t2t8)/b# andz@5,12 i (t2t8)/b# and therefore in
higher powers of the temperatureT. After some calculations
the lowest-order terms inR andT of the total radiated energy
yield

E5S e`

2p D 3 u0
2

33537 S E dt V •••21z~4!
8!

2!4!
T4E dtV̈2D .

~72!

In analogy to the moving mirror example in Sec. III C th
first term describes the~lowest! vacuum contribution, which
was already obtained in Ref.@28#, whereas the second term
represents the~lowest! temperature correction. But in con
trast to the moving mirror in 111 dimensions the lowes
thermal correction increases withT4 in this scenario owing
to the additionalk,k8 integrations.

If we would have the exact data for the oscillating bubb
we were able to evaluate the number of photons generate
the quantum radiation and so we could quantify the con
bution of this mechanism to the phenomenon
sonoluminescence–under the assumptions made. Bu
these data are not known yet with sufficient accuracy, t
question remains unsolved at this stage.

In addition, within the presented formalism we are able
take into account a space-time-dependent permittivitye –but
not effects of relaxation, dispersion, and absorption~or am-
plification!, etc., see also Sec. II. Since these effects mi
well be relevant for the scenario of sonoluminescence,
provides another limitation of the direct applicability of E
~72!.

B. Large R limit

Now we consider the opposite situation and assume
the permittivity changes over very large volumes in the sa
way. In such a scenario the disturbance functionu becomes
nearly position-independentu(t,r)'u(t). In this limit it is
also possible to simplify Eq.~70! since thed3r integrations
in Eqs. ~68! and ~69! produced3(k6k8) distributions and
0-11
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therefore the mode integrations break down. As a result,
expression for the quadratic response of the number ope
obeys a structure similar to the squeezing term in the ca
example

DNkn5uSkn,(2k)nu2~112^N̂kn&0!. ~73!

To establish the analogy once more we note that a pertu
tion like u(t,r)5« sin(2vt) generates also a generalize
squeezing operator

Û~J!5expS J

2 (
n,uku5v

~Âkn
† Â(2k)n

† 2H.c.! D , ~74!

similar to the resonantly vibrating cavity, see also@37#. How-
ever, there is a crucial difference between the medium
the cavity: In a closed cavity there exist only particles w
special discrete frequencies~eigenvalues of the Laplace op
erator!. In contrast, for the dielectric medium without boun
ary conditions all positive frequencies are occupied by p
tons. Hence one has to vibrate a~finite! cavity with a special
~resonance! frequency in order to create particles while in
medium the frequency may be arbitrary.

Investigating the two-photon correlationCkn,k8n8 at zero
temperature one observes that in this case the photons
most probably emitted back-to-back:Ckn,k8n8(T50);d(k
1k8)dnn8 . At finite temperatures, the second term in E
~20! gives raise to an additional negative correlation which
isotropic, i.e., it does not depend on the directions of pro
gation of the two photons. However, the anisotropic a
temperature-independent back-to-back correlation repres
one possibility to distinguish between the photons aris
from the quantum radiation and the purely thermal radiati
This observation~see@35#! might perhaps be used to clarif
the origin of the photons~i.e., the underlying mechanism!
within the phenomenon of sonoluminescence.

VI. FRIEDMANN-ROBERTSON-WALKER METRIC

In the previous sections we focused our attention on m
rors represented by Dirichlet boundary conditions and
dielectric media. Now we are going to apply the canoni
formalism developed there to yet another scenario–where
gravitational field generates quantum radiation.

According to the commonly suggested scenario the c
mological evolution starts at a stage of high temperature
is generally believed that the back reaction of the cosmolo
cal particle production onto the gravitational sector yield
potentially significant contribution. Consequently, it will b
important to calculate the temperature effects that could
fect the cosmological dynamics at very early stages.

Let us consider the minimally coupled massless sc
field propagating in the conformally flat Friedman
Robertson-Walker space-time; see, e.g., Ref.@38# for a re-
lated calculation at zero temperature.

The Friedmann-Robertson-Walker metric represents a
lution of Einstein’s equations for a homogeneous and iso
pic distribution of matter and describes an expanding~or
contracting! universe. Depending on the density% of the
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matter ~if we omit the cosmological constant! there exist
three different branches of this solution: For densities% ex-
ceeding the critical density%c one obtains the closed ellipti
cal universe, which eventually recollapses. For%,%c one is
led to the open hyperbolic universe and for%5%c we get the
open conformally flat Friedmann-Robertson-Walker spa
time. In contrast to the first case (%.%c) the other scenarios
(%<%c) imply an eternally expanding universe.

In order to specify the correct value of the density% one
has to deal with the problem of the unknown dark matter.
view of the present status of the observations it might well
possible that the density% is indeed close or equal to th
critical value%c , which is connected to the Hubble consta
In any case, for small space-time domains the conform
flat Friedmann-Robertson-Walker space-time should b
good approximation. In terms of the conformal coordina
(t,r) the corresponding metric is given by

ds25V2~ t !~dt22dr2!, ~75!

whereV2(t) denotes the scale factor governing the Hub
expansion. It describes the change of the measure of le
and time scales during the cosmological evolution, e.g.,
ducing the cosmological redshift.

However, the following calculations will become easier
we introduce a slightly different time coordinatet→t with

dt5V22dt, ~76!

see also Ref.@38#. In terms of the time coordinatet the
metric can be cast into the form

ds25V6~t!dt22V2~t!dr2. ~77!

The action of a minimally coupled massless scalar fi
propagating in this particular curved space-time reads

A5
1

2E d4xA2g]mFgmn]nF

5
1

2E dtE d3r @Ḟ22V4~¹F!2#. ~78!

As the advantage of the time coordinatet we observe the
cancellation of the scale factor in front of theḞ2 term. Con-
sequently the equation of motion assumes the simple for

]2F

]t2
5V4~t!¹2F. ~79!

After the usual canonical quantization procedure the Ham
tonian can be cast into the form

Ĥ~t!5
1

2E d3r @P̂21V4~t!~¹F̂!2#. ~80!

One observes a close similarity to the largeR limit in Sec.
V B. As we shall see below, this similarity holds also for th
number of created particles.
0-12
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In complete analogy to Sec. III it is possible to diagon
ize this time-dependent Hamiltonian by an expansion of

field F̂ into a complete set of orthogonaleigenfunctions of
the Laplace operator. Owing to the spatial homogeneity
isotropy of the space time there is an ambiguity concern
the selection of such a basis set. Here we choose theeigen-
functions to be completely time independent,f I5 f I(r). As a
consequence, adopting this expansion in Eq.~30!, i.e.,

F̂~ t,r!5(
I

Q̂I~ t ! f I~r!,

the resulting modesQ̂I(t) do not obey any intermode inter
action due to the spatial integration and the orthogonality
time independence of theeigenfunctionsf I . Hence, the time-
dependent Hamiltonian is diagonal

Ĥ~t!5
1

2 (
I

@ P̂I
2~t!1V4~t!v I

2Q̂I
2~t!#, ~81!

where2v I
2 denote the time-independenteigenvalues of the

Laplacian. Now we may use the outcome of Sec. II H and
arrive at

DNv
T5DNv

T50S 11
2

exp~bv!21D . ~82!

It should be mentioned here that the particle number ab
is–strictly speaking–merely a formal quantity since it do
not describe particles in a well-defined and unique sense.
Friedmann-Robertson-Walker space-time is not tim
translationally invariant and thus does not possess a co
sponding Killing vector. Ergo, the definition of energy nece
sitates additional considerations. It is not possible to defin
physical reasonableand conserved energy. Of course, th
fact is consistent with the permanent particle creati
Hence, the interpretation of the above quantityDNv is not
obvious–at zero as well as at finite temperatures, see
Ref. @39#. But here we are mainly interested in the influen
of finite ~initial! temperatures. Fortunately, the finit
temperature effects factorize out and the problems mentio
above concern the prefactorDNv

T50 only. In summary we
may draw the conclusion that–putting aside the problem
the interpretation of the vacuum termDNv

T50–the particle
creation in the Friedmann-Robertson-Walker space-time
finite ~initial! temperatures gets strongly enhanced by a th
mal factor in analogy to the resonantly vibrating cavity.

Note that the phenomenon of particle creation~quantum
radiation! in the conformally flat Friedmann-Robertso
Walker space-time can be observed merely for fields wh
are not conformally invariant. As counterexamples we m
quote the massless scalar field in 111 dimensions, the mass
less and conformally coupled scalar field in 311 dimensions
~see also Ref.@38#!, and–last but not least–the electroma
netic field in 311 dimensions. Obviously the absence of a
mass terms is essential for the conformal invariance.
these conformally invariant fields the equation of moti
does not lead to any mixing of positive and negative f
04382
-
e

d
g

d

e

e
s
he
-
e-
-
a

.

lso

ed

f

at
r-

h
y

-

or

-

quency solutions within the conformally flat Friedman
Robertson-Walker metric and thus no particles are create

In view of the above observation one might object that
results of this section are almost irrelevant, sinceDNv

T50

50 holds for all physical reasonable fields. However–
spite of the fact that no fundamental scalar field has b
definitely observed yet–there are scalar fields widely
lieved to exist~e.g., Higgs, inflaton, quintessence!. Since our
formalism is restricted to free and independently evolvi
fields it can only be applied after the cosmological period
which these fields decouple from the thermal bath of
remaining particles/fields.2

Hence, the temperature one has to insert in Eq.~82! is
exactly the temperature at which this phase transition t
place. In order to evaluate the importance of the fini
temperature effects in Eq.~82! one has to compare the typ
cal frequencies of the created particles with the decoup
temperature. For a very rough estimate one may assume
particles with frequencies of the same order of magnitude
the Hubble expansion parameter are produced predo
nantly. But after the Planck era the temperature of the u
verse is considerably larger than the Hubble expansion
rameter ~both in energy units!–except for the period of
inflation, where the temperature drops drastically. So o
would expect the finite-temperature effects in Eq.~82! to be
important if the scalar field under consideration does not
decouple during inflation.

Unfortunately we cannot give a more quantitative es
mate of Eq.~82! and its consequences~e.g., the back reac
tion, see also@40#! here since the necessary data are
explicitly known yet.

VII. SUMMARY

Calculating the number of particles created by dynami
external conditions we found that for the case of a co
pletely diagonal Hamiltonian the number of produced p
ticle at finite temperature equals the analog quantity at z
temperature times a thermal factor.

Focusing on the scenario of a resonantly vibrating cav
we were able to derive within the RWA the effective pertu
bation Hamiltonian which turned out to be diagonal. As
consequence we observe an enhancement of the dynam
Casimir effect at finite temperatures as described above.

In contrast to this nonperturbative result the finite te
perature corrections to the energy radiated by a single m
ing mirror in 111 dimensions was calculated within re
sponse theory.

In close analogy we derived the energy of the photo
generated by a bubble with an oscillating radius within
dielectric medium.

2This decoupling can be understood in complete analogy to
phase transition of recombinatione21p1→H where the photon
field became effectively free and now can be observed as the
mic microwave background. In addition, the restriction of the fo
malism to free fields allows for treating only small fluctuatio
around the minimum of the~possibly nonlinear! potential.
0-13
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Finally we investigated the particle production with
the Friedmann-Robertson-Walker universe at fin
temperatures–where the Hamiltonian can again be cast
diagonal form.

VIII. CONCLUSION

As a main result of this paper we have presented a th
retical description of quantum radiation at finite temperatu
by generalizing the canonical approach developed ea
@11,17,28,41,42#. The major advantage of this formalism
its generality and flexibility.

Depending on the characteristic scales associated to
perturbation the effects of finite temperatures represent
tentially significant contributions to the quantum radiati
and hence should be taken into account for realistic esti
tions of this striking effect.

This observation may be interpreted in the following wa
Not only the vacuum fluctuations but also the thermal ex
tations are converted into real particles by the influence
the dynamical external conditions.

IX. DISCUSSION

For perhaps the most interesting scenario in view o
possible experimental verification of the dynamical Casim
effect–the resonantly vibrating cavity–we specified so
relevant parameters in Sec. IV F.

But as it became evident in Sec. V, a cavity filled with
dielectric medium with a resonantly oscillating permittivi
e(t)5e`1De sin(2vt) generates quite similar effects. Ide
tifying the dimensionless amplitude« of the vibration of the
cavity in the first case with the relative change of the perm
tivity De in the second case the set of relevant paramete
completely equivalent in both situations.

It turns out that the thermal factor enhancing the dyna
cal Casimir effect is of order 103. But this enormous ampli-
fication should be contrasted to the thermal variance of
number of particles present initially which may complica
the measurement of the number of produced particles.
the relevant temperature regions both terms are of the s
order of magnitude.

As a consequence the finite-temperature effects do
necessarily generate difficulties concerning the experime
verification of the dynamical Casimir effect. From our poi
of view there is no need to perform an experiment at l
temperatures–which might be much more involved than
at room temperature.
. A
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X. OUTLOOK

There are several possibilities to extend the presented
culations to more general scenarios: First, one may drop
idealization of a perfectly conducting cavity and take loss
into account@43#. In analogy, it would be interesting to stud
the effects of a nontrivial dispersion relation of a dielect
medium in view of the phenomenon of quantum radiatio
This might be especially interesting for the investigation
the dielectric black hole analogs; see, e.g.,@44#. The investi-
gation of the phenomenon of quantum radiation for intera
ing fields obeying nonlinear equations of motion is rath
challenging.
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APPENDIX

In the previous publication@1# we studied the possibility
of satisfying the resonance condition for the velocity te
~see Sec. IV B! and stated:For most cases of higher
dimensional cavities, e.g., a cubic one, this condition can
be fulfilled.Whereas the main statement is correct, the
ample of thecubiccavity is particularly unfortunate–since i
this special case the resonance conditioncanbe fulfilled, see
also @9#. For the rather general case of a rectangular~or cy-
lindric! cavity with transcendental ratios of the cavity dime
sions the resonance conditions for the squeezing and the
locity term cannot be matched simultaneously. With reg
to an experimental verification of the dynamical Casimir
fect it appears to be reasonable to utilize such a cavity w
the eigenfrequencies being well separated from the veloc
resonance conditions–instead of e.g., a cubic one–since
occurrence of the velocity term lowers the resonant part
creation rate in general.
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@17# R. Schützhold, Diploma thesis, Dresden, 1998; Ph.D. thes

Dresden, 2001.
@18# P.W. Milonni, The Quantum Vacuum: An Introduction t

Quantum Electrodynamics~Academic, Boston, 1994!.
@19# M. Bordag,Quantum Field Theory Under the Influence of E

ternal Conditions~Teubner, Stuttgart, 1996!; The Casimir Ef-
fect 50 Years Later~World Scientific, Singapore, 1999!.

@20# E. Fick and G. Sauermann,Quantenstatistik Dynamische
Prozesse~Harri Deutsch, Frankfurt/Main, 1983!; The Quantum
Statistics of Dynamic Processes~Springer, Berlin, 1983!.

@21# S.S. Schweber,An Introduction to Relativistic Quantum Fiel
Theory~Harber and Row, Evanston, 1961!.

@22# G. Plunien, B. Mu¨ller, and W. Greiner, Phys. Rep.134, 87
~1986!; Physica A145, 202 ~1987!.

@23# R. Balian and B. Duplantier, Ann. Phys.~N.Y.! 112, 165
~1978!.

@24# V.M. Mostepanenko and N.N. Trunov,The Casimir Effect and
its Applications~Clarendon, Oxford, 1997!.

@25# Y. Takahashi and H. Umezawa, Int. J. Mod. Phys. B10, 1755
~1996!; Collect. Phenom.2, 55 ~1975!.

@26# H. Umezawa,Advanced Field Theory: Micro, Macro, an
Thermal Physics~AIP, New York, 1993!.

@27# J.D. Jackson,Classical Electrodynamics~Wiley, New York,
1962!.
04382
,

@28# R. Schützhold, G. Plunien, and G. Soff, Phys. Rev. A58, 1783
~1998!.

@29# G. Barton and C. Eberlein, Ann. Phys.~N.Y.! 227, 222~1993!.
@30# C. Eberlein, Phys. Rev. Lett.76, 3842~1996!; Phys. Rev. A53,

2772 ~1996!; J. Phys. A32, 2583~1999!.
@31# M. Henneaux and C. Teitelboim,Quantization of Gauge Sys

tems~Princeton University, Princeton, 1992!.
@32# A. Calogeracos~private communication!.
@33# J. Schwinger, Proc. Natl. Acad. Sci. U.S.A.89, 4091 ~1992!;

89, 11118~1992!; 90, 958 ~1993!; 90, 2105 ~1993!; 90, 4505
~1993!; 90, 7285~1993!; 91, 6473~1994!.

@34# G.E. Vazquez and S.J. Putterman, Phys. Rev. Lett.85, 3037
~2000!; K.R. Weninger, C.G. Camara, and S.J. Putterman,ibid.
83, 2081~1999!; M. Dan, J.D.N. Cheeke, and L. Kondic,ibid.
83, 1870 ~1999!; J. Holzfuss, M. Ruggeberg, and R. Mettin
ibid. 81, 1961 ~1998!; R. Pechaet al., ibid. 81, 717 ~1998!;
M.J. Moran and D. Sweider,ibid. 80, 4987~1998!; S. Hilgen-
feldt, D. Lohse, and W.C. Moss,ibid. 80, 1332 ~1998!; 80,
3164 ~1998!; R.A. Hiller, S.J. Putterman, and K.R. Weninge
ibid. 80, 1090~1998!.

@35# F. Belgiornoet al., Phys. Lett. A271, 308 ~2000!; S. Liberati
et al., Phys. Rev. D61, 085023~2000!; 61, 085024~2000!; J.
Phys. A33, 2251~2000!; M. Visseret al., Phys. Rev. Lett.83,
678 ~1999!.

@36# C.S. Unnikrishnan and S. Mukhopadhyay, Phys. Rev. Lett.77,
4690~1996!; C. Eberlein,ibid. 77, 4691~1996!; A. Lambrecht,
M.T. Jaekel, and S. Reynaud,ibid. 78, 2267~1997!; C. Eber-
lein, ibid. 78, 2269 ~1997!; K.A. Milton and Y.J. Ng, Phys.
Rev. E57, 5504~1998!; V.V. Nesterenko and I.G. Pirozhenko
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