PHYSICAL REVIEW A, VOLUME 65, 043820
Motion-induced particle creation from a finite-temperature state
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We investigate the phenomenon of quantum radiation—i.e., the conversfuintoél) quantum fluctuations
into (rea) particles induced by dynamical external conditions—for an initial thermal equilibrium state. For a
resonantly vibrating cavity a rather strong enhancement of the number of generated péhtcidgnamical
Casimir effect at finite temperatures is observed. Furthermore we derive the temperature corrections to the
energy radiated by a single moving mirror and an oscillating bubble within a dielectric medium as well as the
number of created particles within the Friedmann-Robertson-Walker universe. Possible implications and the
relevance for experimental tests are addressed.
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I. INTRODUCTION radiation. In 1982, Ford and VilenkirY] succeeded in devel-
oping a method for the calculation of the radiation generated
Motivated by previously obtained resulis], we general- by a moving mirror in higher dimensions, i.e., without ex-
ize the canonical formalism adopted there towards the appliploiting the conformal invariance.
cation to further scenarios and establish the derivations in For the experimental verification of the phenomenon of
more detail: guantum radiation, the scenario of a closed cavity might be
One of the main consequences of quantum theory is the0st promising since one may exploit a resonance enhance-
existence of a nontrivial vacuum state. In contrast to thenent in this situation. The particle production inside a reso-
classical theory the quantum fields undergo fluctuations evehantly vibrating cavity has already been considered by sev-
in their state of lowest energgthe ground staje-the so- eral authors, see, e.[8—17 as well ag18,19 for reviews.
called vacuum fluctuations. These fluctuations have measur- However, most of the investigations of quantum radiation
able consequences: For example, if the fields are constrainédie restricted to the vacuum state, i.e., to zero temperature.
by the presence of external conditions, the energy associat&t in view of an experimental verification it is essential to
to these fluctuationéhe zero-point energymay change ow- study the finite-temperature effects. Realistic calculations of
ing to the imposed external conditions. As a result the quanthermal effects on quantum radiation within the framework
tum field may exert a force onto the external conditions inof quantum field theory of time-dependent systems at finite
order to minimize its energy. The most prominent exampleemperature are not yet available.
for such a force is the Casimiig] effect which predicts the The remedy of this deficiency is the main intention of the
attraction of two parallel perfectly conducting and neutralpresent paper: In Sec. Il, we set up the basic formalism for
plates(i.e., mirrorg placed in the vacuum of the electromag- the quantum treatment of external conditions at finite tem-
netic field. The prediction of this striking effect has beenperatures. The developed methods are applied in Sec. Il to
verified experimentally with relatively high accurafg,4]. the scenario of a trembling cavity. In Sec. IV, we focus on
A different—not less interesting—effect has not yet beerthe resonance case and derive the number of created par-
rigorously verified in an experiment: The impact of the ex-ticles. Another scenario giving rise to quantum radiation—a
ternal conditions may also induce a conversion of the virtuadynamical dielectric medium—is considered in Sec. V. In
quantum fluctuations of the field into real particles—the pheSec. VI, we demonstrate the flexibility of the canonical ap-
nomenon of quantum radiation. As examples for such exterProach presented in Sec. Il by calculating the finite-
nal conditions giving rise to the creation of particles we maytemperature corrections to the particle production in yet an-
consider moving mirrors, time-dependent dielectrics, orother example scenario—the Friedmann-Robertson-Walker
gravitational fields. universe. We shall close with a summary, some conclusions,
Various investigations have been devoted to this topid discussion, and an outlook.
during the last decades, here we mention only some of the Throughout this article natural units with
most important initial papers in chronological order: In 1970,
Moore[5] presented the first explicit calculation of the quan- h=c=Gny=kg=€p=pug=1 (1)
tum radiation on the basis of two+1-dimensional moving
mirrors. In this pioneering work he exploited the conformalwill be used. The signature of the Minkowski metric is cho-
invariance of the scalar field in11 dimensions. Based on sen according tg,,=diag(+1,—1,—1,—1).
this result, Fulling and Davigl6] presented a calculation of
the ra}dlatlon of a single moving mirrgagain in 1+1 di- _ Il GENERAL FORMALISM
mensions and pointed out the close analogy to the Hawking
The objective is to investigate quantized bosonic fields
obeying linear equations of motion under the influence of
*Electronic address: schuetz@theory.phy.tu-dresden.de external conditions. At asymptotic timég1e the external
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conditions, which are treated classicallyot quantizegl are  processes, etc. Measurements and relaxations would change
assumed to approach a stati-configuration, where the the probabilitiesv, of the statistical operator

asymptotic HamiltoniarH, can be diagonalized via a suit-
able particle definition. Initially the state of the quantum sys- (1) =Wp| WA N WAD)], (5)
tem is supposed to be described by thermal equilibrium at a
given_temperaturé’, which_ might be realized through the and can be incorporated into E¢) via an explicit time
coupling to a corresponding heat bath. However, the cou- . . -
pling to the heat bath has to be switched off before the exgerlvatlve 00l expi-
ternal conditions undergo dynamical changes in order to
avoid relaxation processdslosed system In general the B. Entropy
time dependence of the external conditions causes the state L -
of the quantum system to leave the initial thermal equilib-  ithout an explicit time-dependenced/dt) exp EQ. (4)
rium. Accordingly, the calculation of the expectation value of 9€N€rates a unitary time evolution and hence, the micro-
relevant observables, e.g., the number of particles, beforgcOPIC €ntropy remains constant in time
and after the dynamics may deviate. These differences can be A
interpreted as particles that are created or even annihilated by S=—Trie Ing}=const. ©®)
the dynamical external conditions.
Note, that a constant microscopic entropy arises also in clas-

A. Interaction picture sical mechanics where the time evolution is governed by the
_ . . ._Liouville equation. By virtue of Liouville’s theorem the total
T_he folloyvmg calculatlor_]s are most_sunably perform_ed iNtime derivative of the phase-space densityanishes and
the interaction representation. Accordingly, the dynamics Oihus the classical microscopic entroggl'e Ino remains

all operatorsX corresponding to observables are governed by.onstant as well. But introducing the Boltzmann equation via

the undisturbed HamiltoniaH averaging over multiparticle correlations, it is possible to de-
R fine an effective entropy which increases in generalijeo-
ax . . rem.
E:'[HO'X]“L ot 2) An analogous procedure can be performed in quantum

expl theory: In practice, a complete knowledge about a given

This Hamiltonianﬂo describes the complete dynamics of the uantum system can never be achieved. Fo[mally, this re-
system at asymptotic times and can be diagonalized via 8lriction defines a so-called observation legel{X} as a set
suitable particle definition of possibly relevant observableés (see[20]), where an av-
eraging over all unknown and possibly irrelevant observables
3) is understood. With respect to a given observation l&yvel

one can introduce an effective statistical opere@tg}} such

whereE, denotes thédivergenj zero-point energy. In most that it yields the correct expectation valuge) =Tr{¢q X}

of the following formulas we make use of a generalized sum™ 111€X; for all operatorsXe . The effective statistical

convention and drop the summation signs by declaring tha@peratoro g averages over all irrelevant observableé G

one has to sum over all indices that do not occur at both sidei order to maximize the effective entropy which is defined

of the equation. Equations with the same index appearing ais S, = —Tr{é{g}ln é{g}}. This effective entropysyg, refer-

both sides are valid for all possible values of this index.  ring to a given observation level in general increases with
The indexI contains a complete set of quantum numbersime.

labeling the different particle modes, e.d.+={k} or I Introducing the internal energy=(:H,:) as observation
={w,l,m} etc. The particle energies are givendy. For a |eye| the corresponding effective entrog may increase
thermodynamical consideration we have to describe the staigger the influence of the dynamical external conditions re-
of the field by the statistical operat@r. In the interaction flecting the fact that particles have been created. The physi-
picture the time evolution of this density matrix is given by cal meaning ofSg, respectively, its changd Sg may be-
the von Neumann equation come evident, if one assumes some energy-conserving
relaxation process, e.g., mediated via a measurement after
LA A the dynamics has taken place, which thermalizes the system
E:_'[Hl*g]' (4) again at some higher, in principle, measurable temperature
Te=T+AT. For a photon gas we find in the limit of high
The perturbation Hamiltoniafi; governs the influence of temperatures, respectively, of large volunethe following
the variation of the external conditions upon the quantized€lations between the energythe effective entrope , and
field. Note, that this equation describes the time evolution ofhe effective temperatureTeg: E=uTgw?/15 and Sg
a closed quantum system, i.e., no measurements, etc., takeUTE47r4/45. For small disturbances the relative increase of
place during the dynamics. It leads to a unitary time evoluthe effective temperature, the energy and the effective en-
tion operator and therefore also does not contain relaxatiotropy behaves adE/(4E)~ATg/Tg~ASc/(3Sg).

H(MTOO):HO:EI o N+ Eo= N, +Eq,
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(11)

C. Time evolution o exq—,quo)
Within our approach the influence of the dynamics of the Qo=0(t| —»)= m-
external conditions is represented by the perturbation Hamil- 0
tonian I:|1_(t) governing the time evglution of .the statistical There are several examples in quantum field theory where
operator in Eq(4). By means of the time-ordering opera®r  he canonical ensemble is not capable of describing the ther-

this equation can be integrated formally mal equilibrium correctly, usually in combination with infi-
nite volumes. In order to also treat such cases, we assume the

p —05(t1 —eo\(IT
e(tfe)=Ue(t] —=)U system to be confined into a finite volume where the canoni-
R ~ cal ensemble applies, calculate the expectation values
=7 exp{ —if dt’Hl(t’)”Q(tl — ) the tracg, and consider the infinite volume limit afterwards.

Tt . @ E. Response theory

exp( i J dt’AH(t")

The chronological operatdfacting on two bosonic and self-
adjoint operator(t) andY(t') is defined by

In general, the final expectation value of an observable
(X)=Tr{Xe(t1=)}=Tr{X0e(t| ==)0"}  (12)

A A . . cannot be calculated explicitly for nontrivial interaction
T[X(t)Y(t’)]zX(t)Y(t’)@(t—t’)+Y(t’)X(t)®(t'—tz,s) termsH; owing to the complicated structure of the corre-
sponding time-evolution operatdd. For that purpose one
and so on for more operators. Due to the Hermitian conju1@s usually to introduce some approximations. One possibil-
gation of the unitary time evolution operatdrin Eq. (7), for Ity is given by the perturbation expansion with respect to

which the position of all operators changes, it is convenienPOWers (_)f the disturbancbll..A.ssuming the perturbation
to introduce the antichronological operatdt (cf. [21]) as  Hamiltonian H; to be small it is possible to expand the

well above expression in powers bf;. Neglecting all terms of
o o third and higher order i, one obtains the quadratic re-
TIXOYA)]=(T[XOYHDT sponse

=YHXO(t—t)+ XY (Ot —t). i L I A
©) <X>=TF{XQO}+TY[X[QOJJ' dtHl(t)“

Combining both equations one obtains for two bosonic and +Tr[5(f d“:'l(t)éof dt’ﬂl(t’)]
self-adjoint operators

{X(), YU} =T[XOYA)]+TTXO)Y(t)] _ETr{XT[fdtHl(t)fdt,Hl(tl)}QO]

=Y(t)X(t)+X(t)Y(t). (10) 1 (.. A . .
——Tr{XQOTTUdtHl(t)f dt’Hl(t’)”ﬂLO(Hf).

N

As we shall see below this property simplifies the calculation
of the quadratic response of the number operator. (13

Focusing on the investigation of the particle production the

. . relevant observable is the number operatet N, . Due to
As stated in Sec. Il, we assume the quantum field to be . P !

D. Canonical ensemble

initially at thermal equilibrium corresponding to some non-LNi:€0]=0 the linear response vanishes and with the aid of
vanishing temperaturg=1/8>0. For reasons of simplicity E9- (10 the quadratic response simplifies to

we restrict our further consideration to particles, tgat do not

exhibit another conserved quantity than their energis S\ TRy A < o ~ o
assumption is correct for photons, but not for charged pions, <N'>_Tr{N'Q°}+Tr[ N'“ dtHy (1), 00 f dtHl(t)]
for instance. We consider only bosons. For that reason the -3

chemical potential vanishes and the enelfgg the only one +O(HY)

observable that has a fixed expectation value. Minimizing the N 3
microscopic entropy with this constraint generates the ca- =(Np)o+AN;+O(H). (14)
nonical ensemble R

The first term(N,)o of the above expression denotes the

initial particle content in the canonical ensemble which is
lOtherwise, one may start with a grand canonical ensemble.  given by the Bose-Einstein distribution. The second term
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AN, describes the particle creation or annihilation due to theshown in Eq.(17). As we shall see later in Secs. Il C and
presence of dynamical external conditions and will be calcuV A, the radiated energy may be proportional to even higher
lated in the following. powers inT.

F. Particle production G. Correlations

For quasifree quantum fields obeying linear equations of The expectation valuéN,) of the number operator after
motion the perturbation Hamiltonian can be expressed—up tthe dynamical period does not, in general, display the Bose-
an irrelevant constant—as a bilinear form of the fields. ExEinstein distribution because the field is no longer in the
panding the fields into the time-independent creationthermodynamic equilibrium. But for certain dynamics this
annihilation operators representing particles in theexpectation value could still behave as a thermal distribution
asymptotic regions the disturbangg can be cast into the corresponding to some effective temperaflige. If particles
rather general form are created during the dynamics this effective temperature

will be larger than the initial temperatufie Such a phenom-
N 1 Atnt ~ A ~ga enon may occur even for a vanishing initial temperaftire
J dtH; (1) = 5 (Sikayax + Sik@sa) +Uskasaxk +C. =0. This effect can be explained within the thermofield
(15) [25,26 formalism: Measuring only single-particle observ-
ables does not reveal the complete information about the
quantum system under consideration. Formally, this restric-
tion defines an observation levgl[20] including all these
smgle particle observabldsee the remarks in the previous

Section. The effective density- matrng{g} may indeed be

The introduced matrices have to fulfill the conditioSg¢

=Sk andUyk=U, because}:l1 is self-adjoint. TheS term
could be interpreted as a generator for a multimode squeez
ing operator and théf term as a hopping operator. Now the
matricesS andZ/ contain all information about the dynamical equal to the statistical operator of a canonical ensemble cor-
external conditions that are relevant for the quadratic rerespondlng to some effective temperatlig. However, the
sponse. Inserting the general form of the disturbance in Eq€al density- matm@ cannot be equal to this effective statis-
(15) into Eq. (14) after evaluating the traces the quadratictical operatorg{g} because the microscopic entroi8=

response of the number operator takes the form —~Tr{e Ing} is conserved during a unitary time evolution

while the effective entrop;g=—Tr{@gIn 0} has been
AN =18 1521+ (NgYo+ (N o) 11151 2((N3)o— (N} o). increased forT<Tg. Within the investigation of only
(16) single-particle observables one can never distinguish be-
tween the two statistical operatopsand é{g} and therefore
Note, that there is still a summation over the indexOne  one can never find out whether the measured temperature
observes that merely th& term governs the production of represents a real or{@) or an effective oneT ). For this
particles and contains the vacuum contributifirst addengl purpose it is necessary to consider many-particle observ-
The U term does not increase the total number of particlesbles. One suitable candidate is given by the two-particle
since it has the same structure as a classical master equaticorrelation defined as
(e.g., used for the derivation of th¢ theorem, but it trans- L o
forms particles from one mode into another and thereby also Cik=(N3N )= (Nj){Ng) for J#K. (18
increases the energy. Investigating the high-temperature ex-
pansion of the Bose-Einstein distribution entering the equaThis quantity is particularly appropriate since it vanishes in

tion above the thermodynamic equilibrium
() 1 1 1 an (N3N o=(Ny)o(Ni)o for J#K. (19
Np)o=orm 7 51t0(B), 1
expfw) =1 B, 2 The quadratic response of the correlation function can be

evaluated as follows
one observes that the temperature-independent contributions
(the term—1/2) cancel. The same occurs in the static Ca- N
simir effect [22—24 and may be interpreted as a conse- CJK:<JdtH1(t)
guence of the scale invariance in the classical limit. In the
high-temperature limit the expectation val{ig, ), is linear —(Nk)oAN;+O(H3). (20
in T. But special care is required for evaluating the number
of created particles in Eq16) due to the remaining mode As a simple example we may consider the vacuum case with
summation. Since the expansion in Efj7) has a finite ra- T=0,
dius of convergence its insertion into E@.6) may cause
some problems in performing the mode summation. There- N N N A
fore the resulting number of produced particles or the total CJK:<O|f dtHl(t)NJNKf dtHy(1)|0)+O(H?),
radiated energy may possibly display another behavior as (21

NJNKvJ dtHl(t)D —(N;)oANk
0
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where the correlation is positiv@t least in lowest order in generating the equation of motion is given by
Hy). L
But at finite temperatures the correlation may also assume B 3 L
negative values: For example, in the case of a completely A= Ef dthd r(9,®)(o"®)= | dtL. (29)
diagonal perturbation Hamiltonian we arrive at

e . ~3 The Hamiltonian governing the dynamics of this system can
Cok=—(N3)oANk=(Ni)oAN;+O(H1). (22 he obtained in the following way: For every fixed tirheve
construct a complete and orthonormal sete@enfunctions
H. Bogoliubov transformation of the Laplacian inside the time-dependent don@{n) sat-
It might be illuminating to consider the relation of the |sfy|ng the required Dirichlet bqgndary conditions. Ovyl_ng to
9 9 the time dependence of the Dirichlet boundary conditions at

previous investigations to the formalism based on the Bogo&G 0 thi tor b ime d dent I H
liubov transformation. The initial and final creation and an- (1) this operator becomes time dependent as well. Hence

nihilation operators are connected through the BogoliubO\fJIISO the propee_ig_enfunctio_nsare time-_dep(_anderfq=f,(t)_.
coefficients via We assume a finite domai@(t) resulting in a purely dis-

crete spectrum. The insertion of the expansion of the field

OTé\]O:aJKéK‘i‘ﬂJKé&. (23)
Switching from the interaction picture to the Heisenberg rep- Cb(t’r):Z Qi) (30
resentation the expectation value of the number operator
N IR A mgn N into the Lagrangian in Eq29) reveals
(N)Yy=Tr{eN;}=Tr{eoUTN,Ul=(U'N,U0), (24
. . - 1. .
can be expressed in terms of the Bogoliubov coefficients L= E(le_wlz(t)le)+QlMIJ(t)QJ
(N3 =1B3kl?+ (Ni)o(| ey >+ Bkl ). (25 1
+ §Q|M|J(t)MJK(t)QK- (3D

If we assume a completely diagonal Hamiltonigh=H,

+H, the associated time-evolution operatrfactorizes . ) L . .
! P Since the time derivative of the fiell may also include the

explicit time derivative of thesigenfunctionswe obtain an

U =1_|[ U;. (26)  additional antisymmetric intermode coupling matrix
Accordingly, the Bogoliubov coefficients simplify te;x _ 3¢
= a0k andBix= B35;k, respectively. Utilizing the unitary M) fG(t)d ity (32
relation, which assumes for the diagonal coefficients the
simple form|e|*=1+|B|?, we arrive at Furthermore, thesigenvaluef the Laplace operaton?(t)
. R . are time dependent in general. By means of a Legendre
(N =(Npot[Bi[2(1+2(N))o). (27)  transformation we obtain the Hamiltonian

Hence—for a diagonal Hamiltonian—the number of created 1
particl_es at finite temperature i_s simply given by the corre- H :E(Plz_wlz(t)Q|2)+QIMIJ(t)PJ’ (33
sponding vacuum expression times a thermal factor

whereP; andQk are the canonical conjugated variables. In
W ' (28 the following the undisturbeéigenvaluegfrequenciey are
denoted byw?(|t|1=)=w? and their variation byA w?(t)
It should be mentioned here that this result is not restricted te= w,z(t) — wlz . After the canonical quantization and the sepa-
a particular order perturbation theory—it holds for the generafation of the undisturbed part
case of a diagonal Hamiltonian.

ANL=ANL°(1+

1
AP D2 2A2
IIl. TREMBLING CAVITIES Ho= E(PJ+‘DJQJ) (34

Now we are in the position to apply the formalism pre- ) o )
sented in the previous section to a special system of a quaie perturbation Hamiltonian may be cast into the form
tum field under the influence of dynamical external condi-

tions. We consider a massless and neutral scalar ffeld Hi(t)=AE(t) +W(t)

confined in an arbitrary and weakly time-dependent domain 1

G(t) (a trembling cavity with Dirichlet boundary conditions _TA2 200y 4 € B

®=0 at 9G(t), see also Refg[11] and[17]. The action 7 AMAOFQOM(VPK®). (39
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The term includingA w?(t), i.e., AE(t), arises from the S3=9076361k . (40)
change of the shape of the dom&ift). This termA E(t) is
called squeezing contribution. The intermode coupllngalso strictly diagonal and hence does not contribut kg

M(t) contained inW(t)—the velocity contribution—arises [see Eq(14)] with the result that only th&'S term is respon-

from the motion of the boun_darles. .Of course, the un(?I'S'sible for particle production. Therefore the squeezing contri-
turbed Hamiltonian can be diagonalized through a particl

AR . ) i %ution to the number of particles reads
definition Hy= w;(N;+ 1/2) employing the usual creation/
annihilation operators

Of course, the squeezing patt of the matrix/=uS+U" is

ANP=|QFA(1+2(N)o) =] Q|S|2< 1+ W)
a,= Y, Zi(wJQJ_’_“SJ)- (36) (41
Wy

In accordance to the results of Sec. Il H the particle produc-
With the aid of the equations above it is now possible totion rate at temperaturg equals the rate at zero temperature
calculate the expectation value of the number operator entimes the thermal distribution factor.
ploying the results of the previous section. The evaluation of
the trace T¥- - -} is most suitably performed in the basis of B. Velocity

the H, eigerkets. One obtains a nonvanishing trace only for pe to the more complicated structure of the velocity

those terms that contain the same number of creation and, je. the off-diagonal elements, the calculation of the
annihilation operators for every mode. Inserting the particuy,ymber of created particles involves an additional summa-

lar interaction Ham!ltoniarﬂl(t)=AE(t)+\7V(t) into Eq.  tion. Hence, the velocity contribution may not be cast into
(14 generates at a first gIanqe four terms. Hoyvever, owing tqch a simple form as the squeezing term. Weart of the
the antisymmetry of the matrix governing the intermode coUpertyrhation Hamiltonian can be expanded with the aid of the

pling M;;=0 the mixing terms vanish matrices
TH{N[[AE(),00]W(t)}=0, L, , w;  [ox
o Sik= Ef dtM; i (t)expli[ @+ wk]t) o Vo,
T{RI[W(t"), 0] AE(1)} =0. (37 (42

Consequently the squeezing and the velocity contribution degng
couple on the level of the quadratic response

v i o att] /224 /%)
AN,=Tr[N| f dtAE(t), 00 f thE(t)} Usk 2] dtMk(texplif o, wK]t)( o Vo,
(43)
+Tr[ N.U dtW(t),éOU dt\?V(t)] In this case both terms, th&" and thel/V matrices contrib-
ute. Thel/V term may even decrease the number of particles
=AN,S+AN,V. (39) !n a given mode, see El4). Nevertheless, the total energy
increases.

ExpressingH, (t) = AE(t) + W(t) with the aid of the matri-
cesS andl/ as done in Eq(15) one observes that the squeez- C. Moving mirror
ing effect manifests in the diagonal elements of the matrices |n order to illustrate the velocity effect we consider the
S and/ while the velocity effect generates off-diagonal ele- most simple example of a single mirror in+1l dimensions.
ments only. This scenario has already been investigated by several au-
thors, e.g.[6,7], at zero temperature. In this case the domain
A. Squeezing G takes the formG(t)=[ »(t),] where 5(t) denotes the

. L a time-dependent position of the mirror withy(t] —«)
The diagonal form of the squeezingE(t) part of the =n(tT+%)=0. The index| can be identified with the

perturbation Hamiltoniaii ;(t) indicates the highly resonant wave-numberl —k=w, which assumes all positive real

character of this contribution. This fact simplifies the calcu-pympers. As the shape of the dom&iit) does not change
lation of AN, because only one mode—the mddesurvives iy the velocity-effect contributes. The intermode coupling

in the trace. With the abbreviation matrix is given by(cf. [11,17))
0S=——| dtAw?(t)exp2iwt)= isz(zw ) -2 '
' 20, ! 20 T Mi3(0) = Mige (O =n(t) —P ————= 1, (44)
(39 ke—k
the squeezing pa® of the matrixS=SS+SY can be cast WhereP denotes the principal value. The Fourier transform
into the form of a time-dependent function is denoted by a tildes 77
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[see Eq(39)]. Using this notation the matrices for the evalu-
ation of the particle number read

NN
NETNON

Inserting these expressions into E6) yields the following
results for the expectation values of the number operator:

—77(k+k )

k—k’ 49

and

—77( —k").

Y (46)

= kK~ . <
ANy= fo dK' — | 7(k+ k') AL+ (Ni)o+(Nido)
an

= kk' - - ,\
+f dk'— [ 7(k—k")[*((Nir)o—(Ni)o)- (47)
0 T

Already for the most simple example the velocity contribu-

PHYSICAL REVIEW A65 043820

24|\ 1
)
R=—| +msM(AD)+P| — NG )24
5| mmPan-P| )5(21‘—';‘”5)
B
+ | mimahan - p{ Dml‘—f”ﬁ)
at? B
| —msan e o )5(21_—';‘”'3)
m At® B
+— - —imrsV(AY)+P Dw
7T At ,83

(51)

The five terms above correspond directly to the five terms in
Eq. (47). As one can easily check in E¢8), only the sym-
metric part Reyn{ At)=[R(At)+R(—At)]/2 of the re-
sponse functioriR(At) contributes to the radiated energy.
Symmetrizing the response function a lot of cancellations
occur and all divergent terms of the structur&tly disap-

tion cannot be cast into a form being as simple as the squeeP€ar- The resulting expression reads
ing term. But the formula above allows us to calculate the

number of created particles within the quadratic response for

arbitrary dynamicszn(t) and temperatures. Deriving the
total radiated energy from E¢47)

E:J:dkkANsz dtf dt’ (t) p(tYR(t—t"),
(48)

Reyml At) =E5<4>(At)— ;5(2)T25(2)(At), (52)

with the Riemann zeta-functioti(n) that is related to the
Hurwitz zeta function{(n,m) via £(n,1)=¢(n). Rewriting
this expression into the total radiated energy yields

1 .
E= - dtn?(t)+= Tzf dty(t). (53

whereR denotes the quadratic response function, we obtain
a more elucidative formula. For that purpose we have torhe first term describes the vacuum contribution and was

perform integrations involving Bose-Einstein distribution

functions entering ir{Nk>o. If we insert the usual expansion
for those functions

oo

=X e

n=1

(Nigo= e (49

exp(,Bk) 1

the wave-number integratid@1 leads to Hurwitz zeta func-
tions

17=> " dk KMexd ik(t—t’)—npk]
n=1J0

m! m!

- 2 Bm+l

=1 (np—ift—)™

¢

+11 't_t,)
m A= .
B

(50

In terms of these functions the response functigh
=R(At)=R(t—t") yields after thek andk’ integrations

originally obtained by Fulling and David$] using the con-
formal invariance of the scalar field i1l dimensions and

has been later calculated by Ford and VilenKihvia a more
flexible method of perturbations of Green’s functions. In
both approaches the radiated energy was deduced by means
of the point-splitting renormalization technique. The relevant
contributions of the Green’s functions used in Rd#,7]
correspond to the vacuum part of the response function
R(At) in our derivation.

The second term is a pure temperature effect and gener-
alizes the vacuum results in Ref$6,7] to the density matrix
corresponding to the canonical ensemble. The relation be-
tween the finite-temperature correction to the radiated energy
and the vacuum contribution is of the ord@(T27%) where
7 denotes a characteristic time scale of the dynamics of the
mirror.

IV. RESONANTLY VIBRATING CAVITY

Let us now investigate the finite-temperature effects on
the dynamical Casimir effect in a resonantly vibrating cavity.
In order to allow for an experimental verification the number
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of motion-induced particles should be as large as possibleyrbances, i.e.Aw,Z(t) (squeezing and M,(t) (velocity).
One way to achieve this goal is to exploit the phenomenon of; he squeezing term the resonance condition reads
parametric resonance. It occurs in the case of periodicall. | 2nd for the velocity termw,+ wy|=2w, respectively.
time-dependent perturbations characterized by some frégeqqrdingly, the squeezing effect always creates particles
quencyo. W[th|n t_he q“adf?t'c response the _numbeMl of ith the frequencyw provided this cavity mode does exist.
created par'ugles IS pr(_)poruonal to the Fourle( transform Olye restrict our further consideration to the situation, where
the perturbatlpn _functyorﬁsee Eq.(39)]. A;summg a har- the oscillation frequencw corresponds to the lowest cavity
monically oscillating disturbance the Fourier transform POS"ode. ie. to the fundamental resonance
sesses a pronounced maximum at the resonance frequency. =

As a result particles with a mode frequency corresponding to o=minfo}=o;. (55)
o will be produced predominantly. Obtaining large numbers

may indicate that one has left the region, where second-ordgthe fundamental resonance frequeney is determined by

perturbation theory does apply. the characteristic siz& of the cavityw;~ 1/A. For the low-
est model=1 the resonance condition for squeezing
A. Rotating-wave approximation =w,;=w is satisfied automatically. Although the condition

In the case of oscillating disturbances, however, it is pos0" the S term of the velocity effectw,+ wi| =2w could be
satisfied forJ=K=1 (we assume a nondegenerate ground-

sible to evaluate the time evolution operatérin all orders state| =1), this term does not contribute since(,,=0

of H; analytically employing yet another approximation, the — s, | Whether the resonance condition for fiiéerm of the
so-called rotating-wave approximatio(RWA, see, €.9., yelocity effect |w,—wx|=2w can be satisfied or not de-
[10)). The main consequence of the RWA consists in the fachends on the spectrum of the particular cavity under consid-
that it allows for the derivation of a time-independent effec-gration. For a one-dimensional cavity te@enfrequencies
tive HamiltonianH$" after performing the integration over «, are proportional to integers and thus it can be satisfied
time leading to an additional velocity contribution. For most cases
of higher-dimensional cavities this condition cannot be ful-
dti ~THe" 54 filled. (Sge also th AppendixThus the velocity effect does
j ! ! 64 not contribute within the RWAcf. Ref.[8]).

Let us assume that the explicit time dependence of the per-

turbation HamiltoniarH (t) possesses an oscillatory behav- _ ] )
ior like & sin(2wt) during a sufficiently long timd, such that In the following calculations we assume a case for which
the conditionssT>1, e<1 andewT=0[1] hold. Expand- ©Only the squeezing term contributése., the rather general

case. The effective Hamiltonian can be derived immediately

from the only contributingﬁwl2 terms

C. Squeezing operator

ing the time evolution operatdﬁ into powers ofe andwT
the RWA neglects all terms of ord®@[e"(wT)™] if N>m
holds. Since time integrations over oscillating functions re- Aw?(t)

sult in smaller powers of than the same integrations over f dtﬂl:f dt ('u (é;‘eiwI‘Jr ale*iwlt)Z

time-independent quantities, within the RWA all terms in- 4o

cluding oscillations were omitted. Accordingly, only those we (T L o

terms, where the oscillations due to the time dependence of = TJ dtsin(2wt)(ae' ' +ae '1t)?

the operatorsin the interaction picture governed lﬁyo) and 0

the explicit time-dependent disturbances cancel-i.e., which iweT . . ~

are in resonancen=m)—contribute in the RWA. This ap- ~—2 [(a])?—(a)?]=THS". (56)

proximation enables us to neglect the time-orderih@s
well. The difference between the time-ordered and the origi-
nal expression always contains commutators like”

[F1(t),A1(t")]. These quantities are always oscillating andRWA with a squeezing operatd, for the lowest modd

therefore can be neglected within the RWA. -
exp(—if dtf—ll(t)”
For a harmonically vibrating cavity the effective Hamil-
tonian ﬂﬁﬁ can easily be calculated from the interaction op- %&;{ﬂ[(é’r)z—(é )2]
erator in Eq.(35. Assuming harmonic time dependences 4 ! !
~gsin(2wt) or ~gcos(t) for both, the squeezing

[Aw?(t)] and the velocity termpM (t)], only those terms  with a squeezing paramet& = weT/2. This confirms the
will survive, which match the resonance conditions. Theseaotion of theAw,2 terms in the perturbation Hamiltonid&5)
conditions are fulfilled if the oscillations of the operators, as squeezing contribution. Having derived a closed expres-
ie., QJ(t) and I5K(t), compensate the oscillations of the dis- sion for the approximate time-evolution operatbrS,; we

herefore the time evolution operattﬁl coincides in the

B. Fundamental resonance U=7

= él! (57)
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are able to calculate the expectation value for the numbexote, that the canonical variabl€ and the moment#,
operator to all orders if$" within the RWA transform in an opposite way under squeezifg:—e=Q,
) . e whereasP,—e =P, .
(N)~Tr{QoS;N;S;} These ingredients enable us to calculate the expectation
values of the energy-momentum tensdt,,=d,®d,P
(1+2(Ny)g).  (58) —0,,0,P3°®/2. The expression for the change of the en-
ergy density reads

weT

=(N)o+ 5llsinhz( >

This nonperturbative result states that also at finite tempera- A 1 2

ture the number of photon&N; created resonantly in the A<T00>:Z 1+ expfwy)—1

lowest cavity mode increases exponentially. The vacuum cre- _ _

ation rateAN] °=sinf(weT/2) (see Ref.[8,9]) gets en- X[(e22=1)(Vi) Y w+ (e —1)ffw].

hanced by a thermal distribution factor. Since the effective (63)

Hamiltonian becomes diagonal in the resonance case such a

behavior is consistent with the results in Sec. Il H. The stress tensaF;; consisting of purely spatial components

of T, can be calculated in a completely analog manner—one

D. Local quantities would obtain additional terms like;f,d;f,. This quantity

So f h idered v th tati yesan be used to deduce the mechanical properties, e.g., the
0 farwe have considered merely the expectation valu€z,qqq . ra  of the radiation field inside the cavity. The expec-

of global observables such as particle number and energy, .-\ 2iue of the energy flux densifly; vanishes within

But the canonical formalism developed here is also capablﬁ1e RWA, since the change of the energy is always one

of Investigating Ipcal quantiies. As an example we may Con'power of the vibration tim& lower than the energy itself.
sider the two-point function

The above expression can be used to deduce the spatial
distribution of the energy created by the dynamical perturba-
tion of the cavity. Since the squeezing paraméets pro-

According to the results of the previous sections within theportlonal o the vibration timd, the first term at the right-

. . . hand side dominates for large time duratiofis In this
RWA the time evolution operator appears as a squeezing ORtuation the produced energy density behaves/ds)e. For

erator for the lowest mode=1. Expanding the field>(r)  pjrichlet boundary conditions theigerfunctions vanish at
into the moded, yields the boundary but their derivatives usually reach their maxi-
mum value there. In the center of the cavity the lovwegen-
AAAAA function assumes its maximum and-—consequently—its de-
rivative vanishes. Ergo, the energy density is concentrated
near the boundaries of the cavity in the case under consider-

For | #J the trace above vanishes and forJ#1 it coin-  ation.

cides with the undisturbe@herma) expression. Hence the =~ However, this assertion crucially depends on the imposed
only interesting case is=J=1. In this situation the ampli- boundary conditions. For Neumann conditions the behavior

is actually opposite.

(@MD(r))=Tr{ed(nd(r)}. (59)

tudesQ, are squeezed by the time-evolution oper&garAs
a result the change of the correlation function induced by the o
dynamics of the cavity can be cast into the form E. Electromagnetic field

As we have observed above, the spatial distribution of the

AD(D(r'))=(e2F—1)Tr{eoQ2 () f4(r) created energy_density crucially depends on the imposed
boundary conditions. In the case of the experimentally most
= (e = 1)(1+2(Np)o)f1(Nf1(r')/(2wy) relevant photon field, however, these conditions are more
complicated than pure Dirichlet or Neumann-type ones. For
=(eZ-1) 1+ 2 the components of the dual field strength tenEng they
expBwy)—1 may be expressed in the Lorentz covariant form
X1 (NF1(r")/(2wy), (61) n“F* | =0, (64)

whereE again denotes the squeezing parameter. In completehere n* denotes thespacelike unit vector orthogonal to
analogy one obtains the change of the correlation of the fielthe dynamical hypersurface of the boundarft). Although
momenta the general formalism presented in Sec. Il does also apply to
the electromagneti¢CEM) field we have restricted our con-
.. = 2 siderations to a scalar field inside a trembling cavity so far.
AII(NIL(r"))=(e" 2 ~1)| 1+ exp o) —1 Let us briefly discuss the main differences and common
! properties of the scalar and the EM field, respectively: As
X (N f(r)wy/2. (620  electromagnetism is a gauge field theory its quantization
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comes along with constrain{see Sec. ¥, which are absent comes feasible—there will be a strong enhancement of the

for the scalar field. Due to the two polarizatiofesg., TE and dynamical Casimir effect at finite temperatures.

TM, cf. [27]) the character of the boundary conditions for

EM fields is more complicated and the derivation of its time- V. DIELECTRIC MEDIA

dependent instantaneolwsgemodes within a dynamical

cavity is less straightforward. The same holds for the explicit The previous sections were devoted to the investigation of

calculation of the velocity effec{overlap of the time- a scalar field confined in a trembling cavity with Dirichlet

dependeneigemmodes, cf. Eq(32)]. boundary conditions simulating perfect conductors. Although
However, the calculation of the squeezing contributionthe effect of quantum radiation has not yet been verified

requires the knowledge of thinstantaneoyseigerfrequen-  conclusively in an according experiment, a resonantly vibrat-

cies only. These quantities are well known for rectangularjng cavity is expected to provide one of the most promising

spherical, or cylindical cavities, see, e.[27]. Since for an  scenarios for this aim. Of course, the assumption of perfectly

appropriate resonantly vibrating cavity merely the squeezingonducting walls of the cavity is an idealization. One pos-

effect is relevant, our results in Sec. IV can be transferregible step towards a more realistic description is to consider a

almost one-to-one to the EM field. In particular the thermaldielectric medium with a finite permittivitg. Of course, one

enhancement—one of the main results of our calculation, se®ay also take into account the permeability, see, €8],

Eq. (58)—carries over directly. But for reasons of simplicity we restrict our further consid-
erations to a purely dielectric medium.
F. Discussion The quantum radiation generated by a moving body with

o ) a finite refractive index was studied in R¢R9], for ex-

In order to indicate the experimental relevance of the Ca"ample. More generally, one may consider a medium with an
culations above one may specify the _characterlstlc paramyrpitrary changing permittivitye(t,r) and a local velocity
eters. For room temperature290 K, which corresponds 10 fig|q y(t,r). Again these properties of the medium are treated
thermal wavelengths of about 5am and considering a cav- cjassically, i.e., as an external background field. As the quan-
ity of a typical sizeA~1 cm one obtains a thermal factor tym field propagating in this background we consider the
(1+2(N1)¢)=0(10%. As a consequence the number of electromagnetic field. For nonrelativistic velocities of the
photonsAN; created by the dynamical Casimir effédeffter ~ medium the Lagrangian density governing the dynamics of
the vibration timeT) at the given temperaturé will be  the electromagnetic field is given ligee, e.9.[28,30)
several orders of magnitude larger in comparison with the
pure vacuum effect at=0, see[1]. 1,

This enhancement occurring at finite temperatures could L=7(eE"=BY)+(e~1)v-(EXB). (66)
be exploited in experiments to verify the phenomenon of

lq“a”t“m rad'a“k?” as I'O”g 2 ]PaCk'reaC“O”hprOCT’&‘m The particle definition for this vector field requires additional
0SS€s, etg.can be neglected. Of course, one has also t0 takggsigerations. Since it is described by a gauge invariant
into account the number of photo(i¥, ), present at the tem-  theory, it possesses primary and secondary constraints, see,

peratureT and their thermal variance e.g.,[31]. In Ref.[28] these gauge problems are solved by
5 — — _ — virtue of the reduction of variables. However, other proce-
Va3 = V(R2)o— (N 2= V(R o+ (N} dures, e.g., the Dirac quantization, lead to the same results
[32].
=(N})o| 1+ 0 i) _ (65) There have been various efforts to discover effects of
N quantum radiation for such dynamical dielectrics: One inter-

esting idea goes back to Schwind&83], who suggested to
The latter quantity reflects the statistical uncertainty whenexplain the phenomenon of sonoluminescence by this
measuring the number of photons at a given temperature. ljhechanism. Sonoluminescence means the conversion of
order to obtain a number of created particlel; which is  sound into light. In an according experiment one generates
not much smaller than the corresponding thermal variancgound waves in a liquidwatep in such a way that tiny os-
Vog(N;) one has to ensure conditions that will lead to acillating bubbles emerge. Under appropriate conditions these
significant vacuum effect as well. This implies that the argu-bubbles emit light pulses, see, e.§34] and references
ment of the hyperbolic sine function in E¢8), i.e., the therein. In spite of the considerable amount of work and the
squeezing parametéf = weT/2 should be at least of order controversial discussions in order to clarify the relevance of
one. An estimate of the maximum value of the of the dimenquantum radiation with respect to sonoluminescence, see,
sionless amplitude of the resonance wall vibratiof.,, e.g.,[30,35,36 and alsd19], there are still open questions,
<10 8 is given in Ref.[8]. For a characteristic size of the since the dynamics of the bubble and the behavior in its
cavity of about 1 cm corresponding to a fundamental fredinterior are not known sufficiently. We shall return to this
guencyw~150 GHz the squeezing paramefiapproaches point later on.
one after several milliseconds. It still remains as a challenge In view of the Lagrangian density in E¢6) the dynami-
whether or not the requiremeft=O[ 1] could be achieved cal properties of the medium enter in two terms: In analogy
in a realistic experiment. But—provided an experimental deto the cavity example we may distinguish between the
vice for generating a considerable vacuum contribution besqueezing effect due to a varying permittiviggt,r) and the
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velocity effect governed by(t,r). In the following we con- radiation by means of simple expressions. For that purpose it
sider situations where the squeezing term gives the dominaft hecessary to use some approximations. One possibility is
contribution(see Ref[28], Sec. \J and neglect the velocity to assume that the region where the permittivity,r) dif-
field (v=0). In contrast to the cavity example the squeezingfers from its asymptotic value..= e(|t|1%,r)=e(t,|r[ 1)
term of the perturbation Hamiltonian will not be diagonal in is very small. This assumption can be used to expand the

general Fourier transform of the perturbation functi@(t,r) in pow-
ers of R, whereR denotes a characteristic length scale of the
- 1/ 1 1)\ disturbance
= 3. _ 2
A, (1) fd rz(e(t,r) Ex)H(t,r)

i B(k)= f dt eiwtf dire’®ro(t,r)= 00f dte“tv(t)+ O(R*)
= f d3ro(t,nII(t,r). (67) B

= 0,V(w)+O(R?Y). (72)
II=E denotes the canonical momentum density associated to

the vector potentiaA see, e.g.[28] and[17]. 6(t,r) sym- For the lowestvolumeV~R?) term of this expansion it is
bolizes the deviatio’n of,thé .permittivitys(f ) i‘rom its possible to calculate the associated radiated energy in close

asymptotic valuee,, = e([t|150,r) = (t,|r| 1), analogy to the moving mirror example. But in the case under

The diagonalization of the undisturbed Hamiltonian via aconS|derat|on the evaluations have to be accomplished in 3

particle definition can be achieved with photons labeled byle dimensions which leads to additional scale factcts

< andk’? due to thed®k andd®k’ integrations. This results in
| ={kv} wherek denotes the wave vector of the photon and . : .
. o o . the occurrence of Hurwitz zeta functions of higher order
v counts the two possible polarizations. Within this basis the§[4 1-i(t—t')/g] and {[5,1—i(t—t')/ 8] and therefore in
S andU matrices assume the form ' ’

higher powers of the temperatufe After some calculations

Voo the lowest-order terms iR andT of the total radiated energy
Sy kvt =" T(Qw' &) yield
e.\® 6 8! )
x [ otk E:(z sxsa| | 00 E @ g d“’z)-
(72)
=- @(Q@'%w)b(kﬂ’), (68  In analogy to the moving mirror example in Sec. lll C the

first term describes th@owes) vacuum contribution, which
was already obtained in R€R28], whereas the second term

whereu denotes the quantization volume, and X .
represents thélowes)d temperature correction. But in con-

Voo ~ trast to the moving mirror in £1 dimensions the lowest
Uy v == (B Bor) (k= K), (69  thermal correction increases wiflf in this scenario owing

to the additionak,k’ integrations.

respectively. In complete analogy to the cavity we may cal- If we would have the exact data for the OSCi”ating bubble

culate of the quadratic response of the number operator ~We were able to evaluate the number of photons generated by
the quantum radiation and so we could quantify the contri-

. N bution of this mechanism to the phenomenon of
ANkaZI |Sewiervr[2(1+(Nicr 1Yo+ (Ni)o) sonoluminescence—under the assumptions made. But as
! these data are not known yet with sufficient accuracy, this
- - guestion remains unsolved at this stage.
+k23, |Uher, i [2((Nir ) o= (Niw)o). - (70) In addition, within the presented formalism we are able to
take into account a space-time-dependent permittisitiput
It is again possible to recognize the thermal corrections taot effects of relaxation, dispersion, and absorptionam-
the vacuum effect,,/|Sy, «,/|%. In Ref.[28] we gave a plification), etc., see also Sec. Il. Since these effects might
general proof that for massless and not self-interactingvell be relevant for the scenario of sonoluminescence, this
bosonic fields at zero temperature the spectral energy densipyovides another limitation of the direct applicability of Eq.
e(w) created by smooth and localized disturbances behavd3?2).
as e(w)~ w* for small w. As one can easily check in the
equation above this is no longer valid in general at finite B. Large R limit
temperatures due to the Boltzmann distribution function that

becomes singular with & for small . Now we consider the opposite situation and assume that

the permittivity changes over very large volumes in the same
way. In such a scenario the disturbance functiobhecomes
nearly position-independersi(t,r)~ 6(t). In this limit it is
The structure of Eq(70) is too complicated for a general also possible to simplify Eq:70) since thed®r integrations
discussion of the physical properties of the induced quanturin Egs. (68) and (69) produces°(k+k’) distributions and

A. Small R expansion
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therefore the mode integrations break down. As a result, thenatter (if we omit the cosmological constanthere exist
expression for the quadratic response of the number operatthiree different branches of this solution: For densitiesx-
obeys a structure similar to the squeezing term in the cavitgeeding the critical densitg. one obtains the closed ellipti-
example cal universe, which eventually recollapses. b6t o one is
R led to the open hyperbolic universe and for o . we get the
AN, =[S~k 2(1+2(Ni, o). (73 open conformally flat Friedmann-Robertson-Walker space-
time. In contrast to the first cas@ o) the other scenarios
To establish the analogy once more we note that a perturbgp<p_) imply an eternally expanding universe.
tion like 6(t,r)=e sin(20t) generates also a generalized |n order to specify the correct value of the densitpne
squeezing operator has to deal with the problem of the unknown dark matter. In
view of the present status of the observations it might well be
possible that the densitg is indeed close or equal to the
critical valueg ., which is connected to the Hubble constant.
In any case, for small space-time domains the conformally
similar to the resonantly vibrating cavity, see a8@]. How-  flat Friedmann-Robertson-Walker space-time should be a
ever, there is a crucial difference between the medium angood approximation. In terms of the conformal coordinates
the cavity: In a closed cavity there exist only particles with(t.r) the corresponding metric is given by
special discrete frequenciésigervalues of the Laplace op-
e?atob. In contrast, fcé)r the die?ectric medium Withgut bouﬁd— ds’=Q3(t)(dt*—dr?), (79

ary conditions all positive frequencies are occupied by pho- .
tons. Hence one has to vibratéfmite) cavity with a special whereQ%(t) denotes the scale factor governing the Hubble

(resonancefrequency in order to create particles while in a €XPansion. It describes the change of the measure of length
medium the frequency may be arbitrary. and_ time scales durlng the cogmologlcal evolution, e.g., in-
Investigating the two-photon correlatidfy,, ./, at zero ducing the cosmologlc_al redshift. . . L

temperature one observes that in this case the photons are However, the following calculations will become easier if
most probably emitted back-to-backy, ., (T=0)~s(k W€ introduce a slightly different time coordinate> = with
+k’)é,, . At finite temperatures, the second term in Eq.
(20) gives raise to an additional negative correlation which is
isotropic, i.e., it does not depend on the d|rect|_ons of_propa- ee also Ref[38]. In terms of the time coordinate the
gation of the two photons. However, the anisotropic an etric can be cast into the form

temperature-independent back-to-back correlation represents

one possibility to dis'_[in_guish between the photons a_ris_ing d=08(7)d2— Q%(r)dr2 (77)
from the quantum radiation and the purely thermal radiation.

This observatiorsee[35]) might perhaps be used to clarify The action of a minimally coupled massless scalar field

the origin of the photonsi.e., the underlying mechanism propagating in this particular curved space-time reads
within the phenomenon of sonoluminescence.

ot
et

T =2 = AT AT —
U(H)_ex;{z V%zw(AkvA(,k)y He)|, (74

dr=0Q"2dt, (76)

1
—_ 4 _ wv
VI. FRIEDMANN-ROBERTSON-WALKER METRIC A ZJ d*x g(?MCI)g 9P
In the previous sections we focused our attention on mir- 1 3 o 4 5
rors represented by Dirichlet boundary conditions and on :EJ de dr[®°—Q%(VP)“]. (78
dielectric media. Now we are going to apply the canonical
formalism developed there to yet another scenario—where thgs the advantage of the time coordinateve observe the

gra}&/::tgt;rc:jr;?l f;ilihgeezgﬁa?sn?uasr:un;srzadc;agggﬁario the COS(_:ancellation of the scale factor in front of tde? term. Con-
. 9101 y sugg : r?equently the equation of motion assumes the simple form
mological evolution starts at a stage of high temperatures.

is generally believed that the back reaction of the cosmologi-

2
cal particle production onto the gravitational sector yields a E:QAl(T)VZCD. (79)
potentially significant contribution. Consequently, it will be ar?
important to calculate the temperature effects that could af-
fect the cosmological dynamics at very early stages. After the usual canonical quantization procedure the Hamil-

Let us consider the minimally coupled massless scalatonian can be cast into the form
field propagating in the conformally flat Friedmann-
Robertson-Walker space-time; see, e.g., R&8] for a re-
lated calculation at zero temperature.

The Friedmann-Robertson-Walker metric represents a so-
lution of Einstein’s equations for a homogeneous and isotroOne observes a close similarity to the lafgdimit in Sec.
pic distribution of matter and describes an expandiog V B. As we shall see below, this similarity holds also for the
contracting universe. Depending on the density of the  number of created particles.

ﬂ(T):%f d3r[I12+Q4(7)(VD)?]. (80)
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In complete analogy to Sec. lll it is possible to diagonal-quency solutions within the conformally flat Friedmann-
ize this time-dependent Hamiltonian by an expansion of th&Robertson-Walker metric and thus no particles are created.

field @ into a complete set of orthogonalgerfunctions of In view of the above observation one might object that the

; : . , : - oy T=0
the Laplace operator. Owing to the spatial homogeneity angesults of this section are almost irrelevant, sincl,""
isotropy of the space time there is an ambiguity concerning=0 holds for all physical reasonable fields. However—in
the selection of such a basis set. Here we chooseitfen- ~ Spite of the fact that no fundamental scalar field has been
functions to be Comp|ete|y time independeﬁt,: fl(r)_ As a deflnltely observed yet—there are scalar fields W|d6|y be-

consequence, adopting this expansion in B@), ie., lieved to eXiSt(e.g., nggs, inflaton, quintessenCSince our
formalism is restricted to free and independently evolving

- N fields it can only be applied after the cosmological period in
q’(U)ZZ Qi(t)f(n), which these fields decouple from the thermal bath of the
remaining particles/fields.

Hence, the temperature one has to insert in @B8) is
xactly the temperature at which this phase transition took
lace. In order to evaluate the importance of the finite-

temperature effects in E¢82) one has to compare the typi-
cal frequencies of the created particles with the decoupling
1 temperature. For a very rough estimate one may assume that
A(r)== >, [P2(r)+ Q%1 0?Qi(1)], (81)  particles with frequencies of the same order of magnitude as
27 the Hubble expansion parameter are produced predomi-
) o ) nantly. But after the Planck era the temperature of the uni-
where — " denote the time-independeeigervalues of the  verse is considerably larger than the Hubble expansion pa-
Laplacian. Now we may use the outcome of Sec. Il H and wgameter (both in energy units-except for the period of
arrive at inflation, where the temperature drops drastically. So one
would expect the finite-temperature effects in E&R) to be
2 ) important if the scalar field under consideration does not just
expBw)—1)" decouple during inflation.
Unfortunately we cannot give a more quantitative esti-
It should be mentioned here that the particle number aboveate of Eq.(82) and its consequencés.g., the back reac-
is—strictly speaking—merely a formal quantity since it doestion, see alsd40]) here since the necessary data are not
not describe particles in a well-defined and unique sense. Thexplicitly known yet.
Friedmann-Robertson-Walker space-time is not time-
translationally invariant and thus does not possess a corre-
sponding Killing vector. Ergo, the definition of energy neces- VIl. SUMMARY
sitates additional considerations. It is not possible to define a
physical reasonabland conserved energy. Of course, this
fact is consistent with the permanent particle creation

the resulting mode§, (t) do not obey any intermode inter-
action due to the spatial integration and the orthogonality an
time independence of tregerfunctionsf, . Hence, the time-
dependent Hamiltonian is diagonal

ANI,zANL=°( 1+ (82

Calculating the number of particles created by dynamical
external conditions we found that for the case of a com-
pletely diagonal Hamiltonian the number of produced par-

Hence, the interpretation of the .at_:)ove quantit,, is not e ot finite temperature equals the analog quantity at zero
obvious—at zero as well as at finite temperatures, see a'%@mperature times a thermal factor

Ref.[39]. But here we are mainly interested in the influence Focusing on the scenario of a resonantly vibrating cavity

of finite (initial) temperatures. Fortunately, the finite- \ o \were able to derive within the RWA the effective pertur-
temperature effects factorize out and the problems mention tion Hamiltonian which turned out to be diagonal. As a
T=0 .

above concern the prefactdN,,"~ only. In summary we  onsequence we observe an enhancement of the dynamical
may draw the conclusion that—putting aTsL%e the problem Ot asimir effect at finite temperatures as described above.
the interpretation of the vacuum ter&iN,,”"—the particle In contrast to this nonperturbative result the finite tem-
creation in the Friedmann-Robertson-Walker space-time gerature corrections to the energy radiated by a single mov-
finite (initial) temperatures gets strongly enhanced by a thefing mirror in 1+1 dimensions was calculated within re-
mal factor in analogy to the resonantly vibrating cavity. sponse theory.

Note that the phenomenon of particle creatigmantum In close analogy we derived the energy of the photons

radiatior) in the conformally flat Friedmann-Robertson- generated by a bubble with an oscillating radius within a
Walker space-time can be observed merely for fields whictjielectric medium.

are not conformally invariant. As counterexamples we may
guote the massless scalar field itt 1 dimensions, the mass-

less and conformally coupled scalar field if3 dimensions  21pg decoupling can be understood in complete analogy to the
(see also Refl38]), and-last but not least—the electromag-phase transition of recombinatiar +p* —H where the photon
netic field in 3+ 1 dimensions. Obviously the absence of anyfield became effectively free and now can be observed as the cos-
mass terms is essential for the conformal invariance. Fofic microwave background. In addition, the restriction of the for-
these conformally invariant fields the equation of motionmalism to free fields allows for treating only small fluctuations
does not lead to any mixing of positive and negative fre-around the minimum of thépossibly nonlinegrpotential.
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Finally we investigated the particle production within X. OUTLOOK

the Friedmann-Robertson-Walker —universe — at finite There are several possibilities to extend the presented cal-
temperatures—where the Hamiltonian can again be castin a ,_.. P S P
diagonal form. Culations to more general scenarios: First, one may drop the

idealization of a perfectly conducting cavity and take losses
into accoun{43]. In analogy, it would be interesting to study
Vill. CONCLUSION the effects of a nontrivial dispersion relation of a dielectric

As a main result of this paper we have presented a thedhedium in view of the phenomenon of quantum radiation.
retical description of quantum radiation at finite temperatured his might be especially interesting for the investigation of
by generalizing the canonical approach developed earlidhe dielectric black hole analogs; see, el44]. The investi-
[11,17,28,41,4R The major advantage of this formalism is gation of the phenomenon of quantum radiation for interact-
its generality and flexibility. ing field_s obeying nonlinear equations of motion is rather

Depending on the characteristic scales associated to ttf&allenging.
perturbation the effects of finite temperatures represent po-

tentially significant contributions to the quantum radiation ACKNOWLEDGMENTS
and hence should be taken into account for realistic estima- )
tions of this striking effect. We are grateful to A. Calogeracos, D. Dalvit, V. Dodonov,

This observation may be interpreted in the f0||owing way: and G. Schaller for fruitful discussions. We thank D. Dalvit

Not only the vacuum fluctuations but also the thermal exciin particular for pointing out the difficulty discussed in the
tations are converted into real particles by the influence of\Ppendix. R.S. and G.P. appreciated the kind hospitality dur-

the dynamical external conditions. ing their stays at the Atomic Physics Group of the Chalmers
University in Gothenburg/Sweden as well as at the Institute
IX. DISCUSSION for Theoretical Physics of the Debrecen University in Hun-

gary. This stay was supported by DAAD and MOR.S. is

For perhaps the most interesting scenario in view of dndebted to the Particle Physics Group at the Kyoto Univer-
possible experimental verification of the dynamical Casimirsity in Japan and to MONBUSHO as well as to the Alex-
effect—the resonantly vibrating cavity—we specified someander von Humboldt Foundation. Financial support from
relevant parameters in Sec. IV F. BMBF, DFG, and GSI is gratefully acknowledged.

But as it became evident in Sec. V, a cavity filled with a
dielectric medium with a resonantly oscillating permittivity
e(t) = e, + Ae sin(2wt) generates quite similar effects. Iden-
tifying the dimensionless amplitude of the vibration of the In the previous publicatiofl] we studied the possibility
cavity in the first case with the relative change of the permit-of satisfying the resonance condition for the velocity term
tivity Ae in the second case the set of relevant parameters isee Sec. IV B and stated:For most cases of higher-
completely equivalent in both situations. dimensional cavities, e.g., a cubic one, this condition cannot

It turns out that the thermal factor enhancing the dynamibe fulfilled. Whereas the main statement is correct, the ex-
cal Casimir effect is of order £0But this enormous ampli- ample of thecubic cavity is particularly unfortunate—since in
fication should be contrasted to the thermal variance of th¢his special case the resonance conditanbe fulfilled, see
number of particles present initially which may complicate also[9]. For the rather general case of a rectang(arcy-
the measurement of the number of produced particles. Fdindric) cavity with transcendental ratios of the cavity dimen-
the relevant temperature regions both terms are of the sanstons the resonance conditions for the squeezing and the ve-
order of magnitude. locity term cannot be matched simultaneously. With regard

As a consequence the finite-temperature effects do ndb an experimental verification of the dynamical Casimir ef-
necessarily generate difficulties concerning the experimentdeéct it appears to be reasonable to utilize such a cavity with
verification of the dynamical Casimir effect. From our point the eigerfrequencies being well separated from the velocity
of view there is no need to perform an experiment at lowresonance conditions—instead of e.g., a cubic one—since the
temperatures—which might be much more involved than oneccurrence of the velocity term lowers the resonant particle

APPENDIX

at room temperature. creation rate in general.
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