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Robustness of nonclassical superposition states against decoherence
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We make a comparative study of quadrature squeezing, photon-number distribution, and Wigner function in
a decayed quantum system. Specifically, for a field mode prepared initially thedBaepcat states interact-
ing with a zero-temperature environment, we show that the rate of reduction of the nonclassical effects in this
system is proportional to the occurrence of the decoherence process.
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[. INTRODUCTION cillatory behavior in the photon-number distribution for these
types of states are more pronounced in the microscopic re-

Decoherence process represents the transformation of sgime than in the macroscopic regime. For more details about
perposition states into statistical mixture states, i.e., the offstateq1), such as their generations and their properties when
diagonal elements of the system are suppressed. This céiney are evolving in various optical systems, one can consult
occur through, e.g., the interaction between system and ethe papef10], and references therein.
vironment. Actually, the decoherence process is important In this paper we study the relation between the decoher-
not only for understanding the guantum-classical transitiorence process and the occurrence of the nonclassical effects in
[1], but also it may eventually be useful for applications thata decayed quantum system. More precisely, we compare de-
require keeping coherence in mesoscopic or macroscopielopment of nonclassical effects in both quadrature squeez-
systems, such as quantum computafidh Furthermore, the ing and photon-number distribution with the occurrence of
decoherence is at the heart of the quantum theory of meanterference pattern in the Wigner function. We perform such
surement3]. a comparison for the field mode prepared initially in the state

On the other hand, superposition principle is at the heart1) (described by the density matrp), which interacts with
of the quantum mechanics. It implies that probability densi-zero-temperature environment. The master equation in the
ties of observable quantities usually exhibit interference efBorn-Markov approximation describing the systenjig]
fects instead of simply being added. The most significant
examples reflecting the power of such a principle are the p y fnnp mpaa ampn
macroscopic quantum interferen¢Schralinger ca} states 51~ (2apa’—a‘ap—pa'a), (©)
[4], which exhibit various nonclassical effects, such as
squeezing, sub-Poissonian statistics, and oscillations
photon-number distributiof5—7], even if their components
are close to the classical ong8], i.e., they are minimum
uncertainty states and exhibit Poissonian distribution. Thes
states can be defined as

Rherey is the decay constant ard(a") is the annihilation
(creation operator designated to the mode of the field. The
\é\/ell-known time dependent solution for E@) is [12]

2
p(t)= i) aia; )t a; a;
)y =AY ) + expli )| - )], @ PR, Sl e J|’<4>

where|«) is a coherent state with complex amplitude ¢ _
is a relative phase, antl is the normalization constant hav- Where ay=a, a;=—a, u=exp(-7), 7=ty is the scaled

ing the form decaying parameter and
1 0 for j=j’
A= ) 2 . ..,
2[1+exp —2|a|?)cose] @ ¢ =1 ¢ for j>] (5)
—¢ for j<j’.

Specifically, for¢p=0, 7, and /2 state(1) reduces to even
coherent (ECS, odd coherent(OCS, and Yurke-Stoler
(YSS) states, respectively. It is worth mentioning that there
are two regimes controlling the behavior of the statbs As is well known squeezing is one of the most important
which are microscopic regime for small values|ef (i.e., phenomena in quantum optics because of its applications in
when the “distance” between the components of the cat isvarious areas, e.g., in optics communication, quantum infor-
small) and macroscopic regime for large valueg@f [9]. In mation theory, etc[13]. Squeezed light can be measured by
fact, these states are more nonclassical in the microscopahomodyne detection where the signal is superimposed on a
regime. In other words, the amount of nonclassical effectsstrong coherent beam of the local oscillator.

such as the negative values in Wigner function and the os- Here we investigate quadrature squeezing for the density

II. QUADRATURE SQUEEZING
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ues of the parameters. Generally we can see that squeezing is
more pronounced in the microscopic regim&hen « is
smal)). Furthermore, forw=2 the squeezing factor tends to
zero regardless of the values of In this case the system
becomes a statistical mixture state or a vacuum state if the
. values ofr are small or large. This point will be clear when
v investigating the behavior of the Wigner function in Sec. IV.

-0.1

s IIl. PHOTON-NUMBER DISTRIBUTION

/ Photon-number distributioR(n) is an integral part of the
Ty modern description of light, which can be measured by pho-
! ton detectors based on the photoelectric effect. Further, one
of the most interesting nonclassical effects emerging from
the superposition principle is the oscillatory behavior in
P(n). In general, such behavior is closely related to that of
the Wigner function, however, this is a necessary but not
70'50,0' N sufficient condition. For example, thé(n) of ECS, OCS,
T and YSS are completely different; whereas those of ECS and
OCS exhibit pairwise oscillations in phase spé&een num-

FIG. 1. Squeezing factdB,(7) of ECS case against the scaled pher of photons can be observed for ECS and odd numbers for
decaying parameter for a=2 (solid curvg, 1.5 (star-centered (Cg), the distribution of YSS is a Poissonian even though
curve, 1 (short-dashed curyeand 0.5(long-dashed curye the behavior of the Wigner function for these states is quali-

: . . . tatively similar. The second issue we want to address here is
matrix (4). For this purpose we define the position and mo-y,,; i general the occurrence of squeezing in the quadrature
mentum operators, which are related to the conjugate electrig, iances does not need to be accompanied by oscillations in
and magnetic-field operatofs and H of electromagnetic the P(n) and vice versa. For instance, binomial stgtes]
waves, as can exhibit quadrature squeezing even though thém) are
close to Poissonian ones. In the same spirit, for ECS the
X= 1(é+ ah, ¥= i.(é—é’r), (6) oscillations inP(n) are more pron(_)unced when the “dis_— _
2 2i tance” between the basis of the cat increases, however, this is

-0.4

pra bt b e bre et tagprrrrrirad
~

o not the case for the quadrature squeezing, which is com-
where [X,Y]=i/2; then the uncertainty relation reads pletely suppressed far=2 (see Fig. 1

(AX)D((AY)2 =4,  where  ((AX)?)=(X?)—(X)2. Now we investigate the sensitivity of thB(n) of the
Therefore, we can say that the mode is squeezeS (if) system under consideration to lossy mechanism. This quan-
=4((AX)?)—1<0 or S,(t)=4((AY)?—1<0. tity can be calculated easilyP(n)=(n|p(t)|n)] and one

Now squeezing factorsSi(t) for the system under obtains
consideration—restricting ourselves to ECS case—take the

2n
forms P(n)zzA(\/;n—?)exp(—Maz){lJr(—1)"f(a)003¢}’
Apa? ' ®)
Si()=uS(0)= ——— -,
1+exp —2a%) where
- _ —4ua’exp —2a%) f(a)=exgd —2a%(1—u)]. ©)
S0 =uS0)=— @

By comparing the expressiof?) with Eq. (8) we find that
whereS;(0) are the initial squeezing factors. Here we havethe dissipation is involved in two quantities by different
considereda to be real. From these expressions it is clearways and consequently the sensitivity of these quantities to
that the quantum fluctuation of the field decreases exponeressy mechanism is completely different. As before, the ori-
tially as a result of its interaction with environment. More gin of the nonclassical oscillations in tH&(n) lies in the
precisely,S;(t) decay at the same rate as the intensity of thenterference in phase space. Further, in &).the interfer-
field [14]. Further, we see that squeezing exists provided thagénce term is decaying by the factbfa) [11] and thus its
a andr are finite. Of course, the origin of these nonclassicalcontribution is more pronounced—oscillatory behavior can
effects is in the interference between the components of theccur in P(n)—when « and w are small. This situation is
cat. One can also check that wheis large enough, squeez- similar to that of the quadrature squeezing. We will discuss
ing factors §;(t),j=1,2 tend to zero. In other words, the this point quantitatively in Sec. IV by investigating the be-
system tends to a steady state, which, in this case, is a pubavior of the factoif («). In Fig. 2 we plot theP(n) for ECS
state(vacuum state In Fig. 1 we plotS,(7) for shown val-  againstn for microscopic(a) and macroscopicb) regimes,
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that the behavior of thé(n) when r=0.3,1 in Fig. 2 is
close to that for the statistical mixture of coherent states un-
der the influence of the decay mechanism.

o
S’

0.8

IV. WIGNER FUNCTION

0.6 Wigner (W) function is one of the quasiprobability func-

tions, which carries full information about the quantum sys-
tem. This function is sensitive to the interference in phase
space and can be realized in optical homodyne tomography
[16]. Here we use this function to study the decoherence of
the system under discussion. The definition of the decoher-
ence has been given in the Introduction.

The W function can be defined as

0.2

1
W(B.1)= ?f d*¢exp Bt —*)C™(¢,h),  (10)

I T T T T T T T T T T T A Y Y T 0 V2 Y

" ] whereCW)(¢,t) is the symmetrically ordered characteristic
0.0 1.0 2.0 3.0 4.0 5.0 6.0 function having the form

CW(L,t)=Tr[p(t)expa’c—ac*)], (11)

0.4 1 wherep(t) is the density matrix of the system, which for the
system under consideration is given by E4). For the fu-
ture purpose, we derive th& function following the same
steps as in Ref8]. Thus we rewrite th&V function in terms

of the normally ordered moments of the creation and annihi-
lation operators using the Baker-Hausdorff theorem. There-
fore Eq.(10) takes the form

0.3

I T T T T Y T 72 W T T Y Y T

1 (a™mman(t)
502 W(Blt)_ z | | mn: (12)
n, 77 n,m=0 nim
where we have used the abbreviation
0.1 1
=f ngexp( - §|§|2+§*B—m*>zm<—§*>”
m+n
v - = ( _ 1) n+m
0.0 PP
0.0 2.0 4.0 6.0 8.0 10,0 ap*"ap"
n
2 _ 12 * n__ *
FIG. 2. P(n) of ECS case againstfor a=1 (a), 2 (b) and for x f d gex;{ 2 [P+ BB ) (13
7=0 (solid curve, 0.1 (short-dashed curye 0.3 (long-dashed
curve), and 1(circle-centered curye Carrying out the integration in Eq13) we obtain
. . .
respectively, for given values of the parameters. By compar- oy m+n "

ing the curves in Fig. @) with those having the same values i 9B*MaB" exp(—2|8J*).
of 7 in Fig. 2(b), one can conclude that the oscillations in

P(n) for macroscopic regime are suppressed faster thapfter minor algebra and using the formula of Rodrigues’ for
those for microscopic regime provided thats small. Also | aguerre polynomial, Eqi14) reads

the comparison between the behavior of both the short-

dashed curves in Fig. 1 and in Figa2shows that thé>(n) lmn=2"" (= 1)™MB* ("=MmIL"""(2| 8|2)exp( — 2| B|?)

is more sensitive to dissipation than the quadrature squeezing (15)

is. This is clear as one can observe that the oscillations in the
P(n) are completely suppressed, however, squeezing is stiWhereLﬁ(.) are the associated Laguerre polynomials of or-
remarkable in the quadrature squeezing. The final remark ider m.
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On the other hand, the normally ordered expectation val- ( a)
ues(a'™(t)a"(t)) associated with the density matiig) are

given ag[17] E\‘ '\\t\\
2 ] \
@EMOA0)=A 3 expli gy )alay)afa) T 33 i \\\
- @0 R il
On subsituting Eq9.15) and(16) into Eq.(12) we arrive \gg\ ‘\ \\\\\\\\\\
at ] ‘
| \\\\\\\\ A
— * 2 hnge
WA~ Aex[:(w2|,8|2) s { S ooy 3 f “ \\“\\}\\\‘
. 1! L o\\&\xxx\x\&x
1=

><<aj|ozj,)alnar,m

(_1)m2n+1 (n+m)/2 ==

Lm "(281%. D

n! IB* (m—n)

6}
~

On using the generating function for Laguerre polynomials
and the Taylor’s expansion for the exponential function, Eq. n
(17) reduces to the following closed form: ~8
™
2A 2 2 bé\ A
W(B.1) = ——[exp(—2| = aful?) +exp 2| B+ a\u|) 89
+2f(a)cosp cogdarulmpB)exp —2| 8|31, 9
(18) S
3 "l
wheref(a) is given by Eq.(9). 3 ;;;z '
In general, théW function of ECS, OCS, and YS@it t s Y "0 ‘

=0) are consisting of two Gaussian bells corresponding to
statistical mixture of individual composite states and interfer-
ence fringes in between originating from the superposition
between different components of the states. Actually, these > >
fringes represent the signature of the nonclassical effects. Fc.
this reason severa_l papers have been devoted to dealing with FIG. 3. TheW function of ECS case ford,7)=(1,0.3) (a):
these fringes making them less or more pronounced by al- "™

, i Y “(a,7)=(2,0.3) (b).
lowing the cat states to evolve in different quantum optical
systemge.g., sed10], and references thergirFor the sys-  Actually the suppression of the nonclassical interference pat-
tem under consideration we can easily conclude from Edgtern in theW function does not mean that the system reaches
(18) that as the interaction of the system with the environ-its equilibrium state$18]. Further for large interaction times
ment is going on, the two Gaussian peaks of the statisticakhe cavity field collapses to vacuum state irrespective of the
mixture part move towards the origin and eventually mergeype of the initial cat state. This can be checked from Eq.
into each other. This is quite obvious since the centers of the18) as well as can be clearly seen in Figs. 8 and 9 in F83f.
peaks are exponentially decaying function of time. Further{see curve 5 in these figune§his means that the superpo-
more, the amplitude of the oscillatory term goes down by thesitions of macroscopical cat states can be realized, but to
factor f(a) similar to theP(n). Such behavior can be ex- have them surviving for some time the system must be com-
plained as the flux of coherent energy transfers to the envipletely isolated. Even a very slight interaction with the envi-
ronment from the field and noise transfers to the field fromronment will very quickly reduce the superpositions to the
the environment. More information about the system can bgorresponding statistical mixture states.
observed in Figs. @) and 3b) where we plotW(g=x Now we turn our attention to the microscopic cafegy.
+iy) function for microscopic &=1) and macroscopica  3(a)]. From this figure one can observe that the noise ellipse
=2) regimes, respectively. In both cases the scaled decayinglated to squeezed states is similar to that of squeezed
parameterr=0.3. From Fig. 8b) it is clear that the optical vacuum states. The origin of this behavior is in the compe-
cavity field tends to an approximate statistical-mixture statetition between the diagonal and off-diagonal elements of the
i.e., to a two-peak structure with negligible interference partsystem. Actually, in the microscopic regime the contributions
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of the statistical-mixture components are located close to the 1.0 ¥
origin of the phase space. Furthermore, the comparison be-
tween the behavior of quadrature squeezing, photon-numbel
distribution, andw function [i.e., the comparison of Fig. 1, 0.8
Fig. 2, and Figs. @& and 3b) for the specified values of the
parameterk shows that the occurrence of the nonclassical
effects and decoherence phenomenon are qualitatively on the
same level. More precisely, the more the system decoheres ©-6
the more the nonclassical effects decrease. This conclusion is7>>
completely different from that in Ref8]. The reason for this =
difference is that when the authors of RE8] compare the 04
decay of the interference part in phase space baseW on
function (Fig. 6) with the behavior of the quadrature squeez-
ing (Figs. 8 and 9they chose the field amplitude=2, for
which squeezing does not exist. Therefore both develop-
ments cannot be compared and thus they arrived at mislead:
ing conclusions. Furthermore, they explained their results by
using a series form for th&/ function [see(17); further in 0.0
Eqg. (5.13 of Ref. [8] there is a misprint in this expression,

where the square root should not be in its denominatod
concluded that “it is clearly seen that the Wigner function k|G, 4. The functionf(a) aganiste for 7=0.1 (solid curve,
always decays faster than the second-order squeezing.” A@.3 (short-dashed curye 0.8 (long-dashed curye and 1.2(star-
tually, this discussion is not persuasive because the expagentered curve

sion contains the terms of both the mixture and the interfer- . o
ence components symmetrically. In conclusion, we have shown that the sensitivity of

We conclude by giving a quantitative analysis of the fac-duadrature squeezing afd function to lossy mechanism is
tor f(a) in Fig. 4. Such analysis can give insight into the On the same level. This is not a surprising result sincevthe
occurrenceor nonoccurrendeof the decoherence process in function is built on the complementarlty of the can'o.mcal
regard to the values af and the interaction time. As is clear OPerator§20]. On the other hand, thié(n) is more sensitive
from Eq. (9), f(a) exponentially decays whenever in- to dissipation than the qu_adrature squeezing. Furthermorg,
creases provided that# 1 (i.e., 7#0) and has its minimum the_decoherence process is more VISI.b|e in the macroscopic
value atu=0 (i.e., v is very large. Actually, Fig. 4, even if '€gime. Thus in a more rgahsuc situation the generation gnd
it is relatively simple, can give the smallest valuesaofor detection of a macroscopic superposition state is very diffi-

which the system can be completely decohered for certaifUlt due to the unavoidable coupling with environment and
values of the interaction time. For instance, for0.1, 0.3, 1€ consequent dissipati¢@l]. Finally in the view of the

0.8 the corresponding smallest values are5, 3, 2 for quantities studied here, the nonclassical superposition states
which the system is completely decohered. In this case th§2nnot be saved from decoherence.

density matrix describing the system has typically the form
po(t)=3[la)(a| +]| = a)(— |] wherea,=a\u [7]. Itis 5
clear that these results agree with the fact that the nonclassi- | thank Professor J. Fiea and Dr. A. Luksfrom the De-

cal effects occur in the microscopic regime. Finally, it is partment of Optics, Palackyniversity, Olomouc for their
worth mentioning that the decoherence in the present systesomments on the revised manuscript. | also acknowledge the
can be overcome by including amplifying media in the cavitysupport from Project No. LNOOAO15 of the Czech Ministry
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