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Robustness of nonclassical superposition states against decoherence
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We make a comparative study of quadrature squeezing, photon-number distribution, and Wigner function in
a decayed quantum system. Specifically, for a field mode prepared initially the Schro¨dinger cat states interact-
ing with a zero-temperature environment, we show that the rate of reduction of the nonclassical effects in this
system is proportional to the occurrence of the decoherence process.
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I. INTRODUCTION

Decoherence process represents the transformation o
perposition states into statistical mixture states, i.e., the
diagonal elements of the system are suppressed. This
occur through, e.g., the interaction between system and
vironment. Actually, the decoherence process is impor
not only for understanding the quantum-classical transit
@1#, but also it may eventually be useful for applications th
require keeping coherence in mesoscopic or macrosc
systems, such as quantum computation@2#. Furthermore, the
decoherence is at the heart of the quantum theory of m
surement@3#.

On the other hand, superposition principle is at the he
of the quantum mechanics. It implies that probability den
ties of observable quantities usually exhibit interference
fects instead of simply being added. The most signific
examples reflecting the power of such a principle are
macroscopic quantum interference~Schrödinger cat! states
@4#, which exhibit various nonclassical effects, such
squeezing, sub-Poissonian statistics, and oscillations
photon-number distribution@5–7#, even if their components
are close to the classical ones@8#, i.e., they are minimum
uncertainty states and exhibit Poissonian distribution. Th
states can be defined as

ua&f5A1/2@ ua&1exp~ if!u2a&], ~1!

whereua& is a coherent state with complex amplitudea, f
is a relative phase, andA is the normalization constant hav
ing the form

A5
1

2@11exp~22uau2!cosf#
. ~2!

Specifically, forf50, p, andp/2 state~1! reduces to even
coherent ~ECS!, odd coherent~OCS!, and Yurke-Stoler
~YSS! states, respectively. It is worth mentioning that the
are two regimes controlling the behavior of the states~1!,
which are microscopic regime for small values ofuau ~i.e.,
when the ‘‘distance’’ between the components of the ca
small! and macroscopic regime for large values ofuau @9#. In
fact, these states are more nonclassical in the microsc
regime. In other words, the amount of nonclassical effe
such as the negative values in Wigner function and the
1050-2947/2002/65~4!/043814~6!/$20.00 65 0438
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cillatory behavior in the photon-number distribution for the
types of states are more pronounced in the microscopic
gime than in the macroscopic regime. For more details ab
states~1!, such as their generations and their properties w
they are evolving in various optical systems, one can con
the paper@10#, and references therein.

In this paper we study the relation between the decoh
ence process and the occurrence of the nonclassical effec
a decayed quantum system. More precisely, we compare
velopment of nonclassical effects in both quadrature sque
ing and photon-number distribution with the occurrence
interference pattern in the Wigner function. We perform su
a comparison for the field mode prepared initially in the st
~1! ~described by the density matrixr̂), which interacts with
zero-temperature environment. The master equation in
Born-Markov approximation describing the system is@11#

]r̂

]t
5

g

2
~2âr̂â†2â†âr̂2 r̂â†â!, ~3!

whereg is the decay constant andâ (â†) is the annihilation
~creation! operator designated to the mode of the field. T
well-known time dependent solution for Eq.~3! is @12#

r̂~ t !5A (
j , j 851

2

exp~ if j j 8!^a j ua j 8&
12muAma j&^Ama j 8u,

~4!

where a15a, a252a, m5exp(2t), t5tg is the scaled
decaying parameter and

f j j 85H 0 for j 5 j 8

f for j . j 8

2f for j , j 8.

~5!

II. QUADRATURE SQUEEZING

As is well known squeezing is one of the most importa
phenomena in quantum optics because of its application
various areas, e.g., in optics communication, quantum in
mation theory, etc.@13#. Squeezed light can be measured
a homodyne detection where the signal is superimposed
strong coherent beam of the local oscillator.

Here we investigate quadrature squeezing for the den
©2002 The American Physical Society14-1
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matrix ~4!. For this purpose we define the position and m
mentum operators, which are related to the conjugate ele
and magnetic-field operatorsÊ and Ĥ of electromagnetic
waves, as

X̂5
1

2
~ â1â†!, Ŷ5

1

2i
~ â2â†!, ~6!

where @X̂,Ŷ#5 i /2; then the uncertainty relation read

^(nX̂)2&^(nŶ)2&> 1
16 , where ^(nX̂)2&5^X̂2&2^X̂&2.

Therefore, we can say that the mode is squeezed ifS1(t)
54^(nX̂)2&21,0 or S2(t)54^(nŶ)2&21,0.

Now squeezing factorsSj (t) for the system unde
consideration—restricting ourselves to ECS case—take
forms

S1~ t !5mS1~0!5
4ma2

11exp~22a2!
,

S2~ t !5mS2~0!5
24ma2exp~22a2!

11exp~22a2!
, ~7!

whereSj (0) are the initial squeezing factors. Here we ha
considereda to be real. From these expressions it is cle
that the quantum fluctuation of the field decreases expon
tially as a result of its interaction with environment. Mo
precisely,Sj (t) decay at the same rate as the intensity of
field @14#. Further, we see that squeezing exists provided
a andt are finite. Of course, the origin of these nonclassi
effects is in the interference between the components of
cat. One can also check that whent is large enough, squeez
ing factors Sj (t), j 51,2 tend to zero. In other words, th
system tends to a steady state, which, in this case, is a
state~vacuum state!. In Fig. 1 we plotS2(t) for shown val-

FIG. 1. Squeezing factorS2(t) of ECS case against the scale
decaying parametert for a52 ~solid curve!, 1.5 ~star-centered
curve!, 1 ~short-dashed curve!, and 0.5~long-dashed curve!.
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ues of the parameters. Generally we can see that squeez
more pronounced in the microscopic regime~when a is
small!. Furthermore, fora>2 the squeezing factor tends t
zero regardless of the values oft. In this case the system
becomes a statistical mixture state or a vacuum state if
values oft are small or large. This point will be clear whe
investigating the behavior of the Wigner function in Sec. I

III. PHOTON-NUMBER DISTRIBUTION

Photon-number distributionP(n) is an integral part of the
modern description of light, which can be measured by p
ton detectors based on the photoelectric effect. Further,
of the most interesting nonclassical effects emerging fr
the superposition principle is the oscillatory behavior
P(n). In general, such behavior is closely related to that
the Wigner function, however, this is a necessary but
sufficient condition. For example, theP(n) of ECS, OCS,
and YSS are completely different; whereas those of ECS
OCS exhibit pairwise oscillations in phase space~even num-
ber of photons can be observed for ECS and odd number
OCS!, the distribution of YSS is a Poissonian even thou
the behavior of the Wigner function for these states is qu
tatively similar. The second issue we want to address her
that in general the occurrence of squeezing in the quadra
variances does not need to be accompanied by oscillation
the P(n) and vice versa. For instance, binomial states@15#
can exhibit quadrature squeezing even though theirP(n) are
close to Poissonian ones. In the same spirit, for ECS
oscillations in P(n) are more pronounced when the ‘‘dis
tance’’ between the basis of the cat increases, however, th
not the case for the quadrature squeezing, which is c
pletely suppressed fora>2 ~see Fig. 1!.

Now we investigate the sensitivity of theP(n) of the
system under consideration to lossy mechanism. This qu
tity can be calculated easily@P(n)5^nur̂(t)un&# and one
obtains

P~n!52A
~Ama!2n

n!
exp~2ma2!$11~21!nf ~a!cosf%,

~8!

where

f ~a!5exp@22a2~12m!#. ~9!

By comparing the expression~7! with Eq. ~8! we find that
the dissipation is involved in two quantities by differe
ways and consequently the sensitivity of these quantitie
lossy mechanism is completely different. As before, the o
gin of the nonclassical oscillations in theP(n) lies in the
interference in phase space. Further, in Eq.~8! the interfer-
ence term is decaying by the factorf (a) @11# and thus its
contribution is more pronounced—oscillatory behavior c
occur in P(n)—when a and m are small. This situation is
similar to that of the quadrature squeezing. We will discu
this point quantitatively in Sec. IV by investigating the b
havior of the factorf (a). In Fig. 2 we plot theP(n) for ECS
againstn for microscopic~a! and macroscopic~b! regimes,
4-2
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ROBUSTNESS OF NONCLASSICAL SUPERPOSITION . . . PHYSICAL REVIEW A65 043814
respectively, for given values of the parameters. By comp
ing the curves in Fig. 2~a! with those having the same value
of t in Fig. 2~b!, one can conclude that the oscillations
P(n) for macroscopic regime are suppressed faster t
those for microscopic regime provided thatt is small. Also
the comparison between the behavior of both the sh
dashed curves in Fig. 1 and in Fig. 2~a! shows that theP(n)
is more sensitive to dissipation than the quadrature squee
is. This is clear as one can observe that the oscillations in
P(n) are completely suppressed, however, squeezing is
remarkable in the quadrature squeezing. The final remar

FIG. 2. P(n) of ECS case againstn for a51 ~a!, 2 ~b! and for
t50 ~solid curve!, 0.1 ~short-dashed curve!, 0.3 ~long-dashed
curve!, and 1 ~circle-centered curve!.
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that the behavior of theP(n) when t50.3,1 in Fig. 2 is
close to that for the statistical mixture of coherent states
der the influence of the decay mechanism.

IV. WIGNER FUNCTION

Wigner ~W! function is one of the quasiprobability func
tions, which carries full information about the quantum sy
tem. This function is sensitive to the interference in pha
space and can be realized in optical homodyne tomogra
@16#. Here we use this function to study the decoherence
the system under discussion. The definition of the deco
ence has been given in the Introduction.

The W function can be defined as

W~b,t !5
1

p2E d2z exp~bz* 2b* z!C(w)~z,t !, ~10!

whereC(w)(z,t) is the symmetrically ordered characterist
function having the form

C(w)~z,t !5Tr @ r̂~ t !exp~ â†z2âz* !#, ~11!

wherer̂(t) is the density matrix of the system, which for th
system under consideration is given by Eq.~4!. For the fu-
ture purpose, we derive theW function following the same
steps as in Ref.@8#. Thus we rewrite theW function in terms
of the normally ordered moments of the creation and ann
lation operators using the Baker-Hausdorff theorem. The
fore Eq.~10! takes the form

W~b,t !5
1

p2 (
n,m50

`
^â†m~ t !ân~ t !&

n!m!
I mn , ~12!

where we have used the abbreviation

I mn5E d2z expS 2
1

2
uzu21z* b2zb* D zm~2z* !n

[~21!n1m
]m1n

]b* m]bn

3E d2z expS 2
1

2
uzu21z* b2zb* D . ~13!

Carrying out the integration in Eq.~13! we obtain

I mn52p~21!n1m
]m1n

]b* m]bn
exp~22ubu2!. ~14!

After minor algebra and using the formula of Rodrigues’ f
Laguerre polynomial, Eq.~14! reads

I mn52n11p~21!mb* (n2m)m!Lm
n2m~2ubu2!exp~22ubu2!,

~15!

whereLm
k (.) are the associated Laguerre polynomials of

der m.
4-3
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On the other hand, the normally ordered expectation v
ues^â†m(t)ân(t)& associated with the density matrix~4! are
given as@17#

^â†m~ t !ân~ t !&5A (
j , j 851

2

exp~ if j j 8!^a j ua j 8&a j
na j 8

* mm (m1n)/2.

~16!

On subsituting Eqs.~15! and~16! into Eq. ~12! we arrive
at

W~b,t !5
A exp~22ubu2!

p (
n,m50

` F (
j , j 851

2

exp~ if j j 8!

3^a j ua j 8&a j
na j 8

* mG
3

~21!m2n11m (n1m)/2

n!b* (m2n)
Lm

n2m~2ubu2!. ~17!

On using the generating function for Laguerre polynomi
and the Taylor’s expansion for the exponential function, E
~17! reduces to the following closed form:

W~b,t !5
2A

p
@exp~22ub2aAmu2!1exp~22ub1aAmu2!

12 f ~a!cosf cos~4aAmImb!exp~22ubu2!#,

~18!

where f (a) is given by Eq.~9!.
In general, theW function of ECS, OCS, and YSS~at t

50) are consisting of two Gaussian bells corresponding
statistical mixture of individual composite states and interf
ence fringes in between originating from the superposit
between different components of the states. Actually, th
fringes represent the signature of the nonclassical effects
this reason several papers have been devoted to dealing
these fringes making them less or more pronounced by
lowing the cat states to evolve in different quantum opti
systems~e.g., see@10#, and references therein!. For the sys-
tem under consideration we can easily conclude from
~18! that as the interaction of the system with the enviro
ment is going on, the two Gaussian peaks of the statisti
mixture part move towards the origin and eventually me
into each other. This is quite obvious since the centers of
peaks are exponentially decaying function of time. Furth
more, the amplitude of the oscillatory term goes down by
factor f (a) similar to theP(n). Such behavior can be ex
plained as the flux of coherent energy transfers to the e
ronment from the field and noise transfers to the field fr
the environment. More information about the system can
observed in Figs. 3~a! and 3~b! where we plotW(b5x
1iy) function for microscopic (a51) and macroscopic (a
52) regimes, respectively. In both cases the scaled deca
parametert50.3. From Fig. 3~b! it is clear that the optica
cavity field tends to an approximate statistical-mixture sta
i.e., to a two-peak structure with negligible interference p
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Actually the suppression of the nonclassical interference
tern in theW function does not mean that the system reac
its equilibrium states@18#. Further for large interaction time
the cavity field collapses to vacuum state irrespective of
type of the initial cat state. This can be checked from E
~18! as well as can be clearly seen in Figs. 8 and 9 in Ref.@8#
~see curve 5 in these figures!. This means that the superpo
sitions of macroscopical cat states can be realized, bu
have them surviving for some time the system must be co
pletely isolated. Even a very slight interaction with the en
ronment will very quickly reduce the superpositions to t
corresponding statistical mixture states.

Now we turn our attention to the microscopic case@Fig.
3~a!#. From this figure one can observe that the noise elli
related to squeezed states is similar to that of squee
vacuum states. The origin of this behavior is in the com
tition between the diagonal and off-diagonal elements of
system. Actually, in the microscopic regime the contributio

FIG. 3. TheW function of ECS case for (a,t)5(1,0.3) ~a!;
(a,t)5(2,0.3) ~b!.
4-4
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ROBUSTNESS OF NONCLASSICAL SUPERPOSITION . . . PHYSICAL REVIEW A65 043814
of the statistical-mixture components are located close to
origin of the phase space. Furthermore, the comparison
tween the behavior of quadrature squeezing, photon-num
distribution, andW function @i.e., the comparison of Fig. 1
Fig. 2, and Figs. 3~a! and 3~b! for the specified values of th
parameters# shows that the occurrence of the nonclassi
effects and decoherence phenomenon are qualitatively on
same level. More precisely, the more the system decohe
the more the nonclassical effects decrease. This conclusi
completely different from that in Ref.@8#. The reason for this
difference is that when the authors of Ref.@8# compare the
decay of the interference part in phase space based oW
function ~Fig. 6! with the behavior of the quadrature squee
ing ~Figs. 8 and 9! they chose the field amplitudea52, for
which squeezing does not exist. Therefore both deve
ments cannot be compared and thus they arrived at misl
ing conclusions. Furthermore, they explained their results
using a series form for theW function @see~17!; further in
Eq. ~5.13! of Ref. @8# there is a misprint in this expression
where the square root should not be in its denominator! and
concluded that ‘‘it is clearly seen that the Wigner functi
always decays faster than the second-order squeezing.’’
tually, this discussion is not persuasive because the ex
sion contains the terms of both the mixture and the inter
ence components symmetrically.

We conclude by giving a quantitative analysis of the fa
tor f (a) in Fig. 4. Such analysis can give insight into th
occurrence~or nonoccurrence! of the decoherence process
regard to the values ofa and the interaction time. As is clea
from Eq. ~9!, f (a) exponentially decays whenevera in-
creases provided thatmÞ1 ~i.e., tÞ0) and has its minimum
value atm50 ~i.e., t is very large!. Actually, Fig. 4, even if
it is relatively simple, can give the smallest values ofa for
which the system can be completely decohered for cer
values of the interaction time. For instance, fort 50.1, 0.3,
0.8 the corresponding smallest values area55, 3, 2 for
which the system is completely decohered. In this case
density matrix describing the system has typically the fo
r̂t(t)5 1

2 @ ua t&^a tu1u2a t&^2a tu# wherea t5aAm @7#. It is
clear that these results agree with the fact that the noncla
cal effects occur in the microscopic regime. Finally, it
worth mentioning that the decoherence in the present sys
can be overcome by including amplifying media in the cav
@19#.
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In conclusion, we have shown that the sensitivity
quadrature squeezing andW function to lossy mechanism i
on the same level. This is not a surprising result since theW
function is built on the complementarity of the canonic
operators@20#. On the other hand, theP(n) is more sensitive
to dissipation than the quadrature squeezing. Furtherm
the decoherence process is more visible in the macrosc
regime. Thus in a more realistic situation the generation
detection of a macroscopic superposition state is very d
cult due to the unavoidable coupling with environment a
the consequent dissipation@21#. Finally in the view of the
quantities studied here, the nonclassical superposition s
cannot be saved from decoherence.
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FIG. 4. The functionf (a) aganista for t50.1 ~solid curve!,
0.3 ~short-dashed curve!, 0.8 ~long-dashed curve!, and 1.2~star-
centered curve!.
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