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Intermolecular energy transfer in the presence of dispersing and absorbing media

Ho Trung Dung,* Ludwig Knöll, and Dirk-Gunnar Welsch
Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universita¨t Jena, Max-Wien-Platz 1, 07743 Jena, Germany

~Received 30 July 2001; published 1 April 2002!

By making use of the Green-function concept of quantization of the electromagnetic field in Kramers-Kronig
consistent media, a rigorous quantum-mechanical derivation of the rate of intermolecular energy transfer in the
presence of arbitrarily shaped, dispersing, and absorbing material bodies is given. Applications to bulk mate-
rial, multislab planar structures, and microspheres are studied. It is shown that when the two molecules are near
a planar interface, then surface-guided waves can strongly affect the energy transfer and essentially modify
both the~Förster! short-rangeR26 dependence of the transfer rate and the long-rangeR22 dependence, which
are typically observed in free space. In particular, enhancement~inhibition! of energy transfer can be accom-
panied by inhibition~enhancement! of donor decay. Results for four- and five-layered planar structures are
given and compared with experimental results. Finally, the energy transfer between two molecules located at
diametrically opposite positions outside a microsphere is briefly discussed.

DOI: 10.1103/PhysRevA.65.043813 PACS number~s!: 42.50.Ct, 12.20.2m, 42.60.Da, 82.20.Rp
e
n
o

r
ve
a

In
e

g

he
-
-

he
r-
rg

he
,
ks
e
o

o-

e
oc

er-

c
ulk
a
e of

i’s
at-
tro-
he

lk
are
nsion

the
ar-
ies,
lec-
uc-
the
red
ors
ntal

l-
eld
ng
er-
lar

la-
s on
he
ol-
ided
and

are

ci
h

I. INTRODUCTION

Intermolecular energy transfer as a fundamental proc
in many biochemical and solid-state systems has bee
increasing interest@1#. It is often distinguished between tw
cases, namely,~radiationless! short-range transfer~also
called Förster transfer@2#! and ~radiative! long-range trans-
fer. In the former the distanceR between donor and accepto
is small compared with the electronic-energy-transfer wa
lengthlA , R/lA!1. The free-space transfer rate behaves
R26, which can be explained by the instantaneous~longitu-
dinal! Coulomb interaction between the two molecules.
the latter the intermolecular distance substantially exce
the transition wavelength,R/lA@1. The observedR22 de-
pendence of the transfer rate can be regarded as bein
result of emission and reabsorption of real~transverse! pho-
tons. It is worth noting that in a rigorous approach to t
problem ~e.g., within the framework of the multipolar for
malism of QED @3,4#! the R26 and R22 distance depen
dences are limiting cases of a unified theory@5#.

When the two molecules are near material bodies, t
the electromagnetic field ‘‘felt’’ by them can be quite diffe
ent from that in free space and the intermolecular ene
transfer can change accordingly. The effect has attracted
tention, because it offers the possibility of controlling t
energy transfer, with regard to potential applications, e.g.
high-efficiency light-harvesting systems, optical networ
and quantum computing. Enhanced energy transfer betw
molecules randomly distributed within a single glycer
droplet~of about 10mm diameter! @6# and within a polymer
Fabry-Pe´rot microcavity@7# has been observed. Using mon
molecular layers of donor and acceptor molecules~separated
by distances of 10–20 nm! in planar microstructures, th
dependence of short-range energy transfer on the l
photon-mode density has been demonstrated@8#.

*On leave from the Institute of Physics, National Center for S
ences and Technology, 1 Mac Dinh Chi Street, District 1, Ho C
Minh City, Vietnam.
1050-2947/2002/65~4!/043813~13!/$20.00 65 0438
ss
of

-
s

ds

the

n

y
at-

in
,
en
l

al

Calculations of the energy-transfer rate have been p
formed in order to include the effect of bulk material@9#,
microspheres@10–13#, and planar microcavities@14,15#. The
quantum theory given in Ref.@9# is based on a microscopi
model that allows for both dispersing and absorbing b
material. In Refs.@10,11# the classical field generated by
donor dipole and felt by an acceptor dipole in the presenc
a microsphere is substituted into the free-space Ferm
golden rule expression. A strictly quantum-mechanical tre
ment that starts from a mode decomposition of the elec
magnetic field according to the Helmholtz equation of t
macroscopic Maxwell equations is given in Refs.@12,14,15#.
Unfortunately, the microscopic theory developed for bu
material@9# becomes quite cumbersome when boundaries
present, and studies based on the standard mode expa
@12,14,15# cannot incorporate material absorption.

In the present paper we give a rigorous derivation of
rate of intermolecular energy transfer in the presence of
bitrarily shaped, dispersing, and absorbing material bod
starting from the quantized version of the macroscopic e
tromagnetic field. The quantization is based on the introd
tion of Langevin noise current and charge densities into
classical Maxwell equations, which can then be transfer
to quantum theory, with the electromagnetic-field operat
being expressed in terms of a continuous set of fundame
bosonic fields via the classical Green tensor~see@16,17# and
references therein!. In particular, we show that the minima
coupling scheme and the multipolar-coupling scheme yi
exactly the same form of the rate formula. It is worth noti
that the formalism includes material absorption and disp
sion in a consistent way, without restriction to a particu
frequency domain, and applies to an arbitrary~inhomoge-
neous! medium configuration.

Here, we apply the theory to bulk material, multislab p
nar structures, and microspheres, with special emphasi
media of Drude-Lorentz type. In particular, we show that t
energy transfer can be strongly modified, if the two m
ecules are sufficiently near an interface and surface-gu
waves at the energy-transfer wavelength exist. Four-
five-layered planar structures are studied, and the results
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compared with recent measurements@8#. Finally, the effect
of surface-guided waves and whispering-gallery waves in
case of the molecules being near a microsphere is br
discussed.

The paper is organized as follows. In Sec. II the bas
theoretical concept of electromagnetic-field quantization
outlined and the energy-transfer rate is derived. Section I
devoted to applications, with special emphasis on multis
planar structures, and concluding remarks are made in
IV. Some explanatory calculations are given in the Append

II. BASIC EQUATIONS

A. The Hamiltonian

Let us consider an ensemble of point charges, interac
with the quantized electromagnetic field in the presence
absorbing media. The minimal-coupling Hamiltonian in t
Coulomb gauge reads@17,18#

Ĥ5E d3rE
0

`

dv \v f̂†~r ,v! f̂~r ,v!1(
a

1

2ma

3@ p̂a2qaÂ~ r̂a!#21
1

2E d3r r̂~r !f̂~r !

1E d3r r̂~r !ŵ~r !, ~1!

where r̂a is the position operator andp̂a is the canonical
momentum operator of theath ~nonrelativistic! particle of
chargeqa and massma . The first term of the Hamiltonian is
the energy of the medium-assisted electromagnetic field,
pressed in terms of bosonic vector fieldsf̂(r ,v) with com-
mutation relations

@ f̂k~r ,v!, f̂k8
†

~r 8,v8!#5dkk8d~r2r 8!d~v2v8!, ~2!

@ f̂k~r ,v!, f̂k8~r 8,v8!#50. ~3!

The second term is the kinetic energy of the charged parti
and the third term is their Coulomb energy, where the co
sponding scalar potentialf̂(r ) is given by

f̂~r !5E d3r 8
r̂~r 8!

4p«0ur2r 8u
, ~4!

with

r̂~r !5(
a

qad~r2 r̂a! ~5!

being the charge density of the particles and«0 is the
vacuum dielectric permittivity. The last term is the Coulom
energy of interaction of the particles with the medium.

The scalar potentialŵ(r ) and the vector potentialÂ(r ) of
the medium-assisted electromagnetic field are given by
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2“ŵ~r !5E
0

`

dv Êi~r ,v!1H.c., ~6!

Â~r !5E
0

`

dv~ iv!21Ê'~r ,v!1H.c., ~7!

where

Ê'(i)~r ,v!5E d3r 8d'(i)~r2r 8!Ê~r 8,v!, ~8!

with d'(r ) andd i(r ) being the transverse and longitudin
dyadicd functions, respectively, and

Ê~r ,v!5 iA \

p«0

v2

c2 E d3r 8A« I~r 8,v!G~r ,r 8,v! f̂~r 8,v!.

~9!

Here,G(r ,r 8,v) is the classical Green tensor, which obe
the inhomogeneous, partial differential equation

Fv2

c2
«~r ,v!2“3“3GG~r ,r 8,v!52d~r2r 8! ~10!

together with the boundary condition at infinity@d (r ) is the
dyadicd function#, with «(r ,v)5«R(r ,v)1 i« I(r ,v) being
the complex, space- and frequency-dependent permittivi

Let us consider the case where the particles are cons
ents of neutral molecules~at positionsr M) that are well sepa-
rated from each other. The Hamiltonian~1! can then be de-
composed into an unperturbed partĤ0 and an interaction
part Ĥ int as follows:

Ĥ5Ĥ01Ĥ int , ~11!

Ĥ05E d3rE
0

`

dv\v f̂†~r ,v! f̂~r ,v!1(
M

ĤM , ~12!

Ĥ int5
1

2 (
MÞM8

V̂MM81(
M

ĤM int . ~13!

Here,

ĤM5(
aM

1

2maM

p̂aM

2 1
1

2
V̂MM ~14!

is the Hamiltonian of theM th molecule,

V̂MM85(
aM

(
aM8

qaM
qaM8

4p«0u r̂aM
2 r̂aM8

u
~15!

is the Coulomb interaction energy between theM th and the
M 8th molecule, and
3-2
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ĤM int5(
aM

S 2
qaM

maM

D p̂aM
Â~ r̂aM

!1(
aM

S qaM

2

2maM

D Â2~ r̂aM
!

1E d3r r̂M~r !ŵ~r ! ~16!

is the interaction energy between theM th molecule@charge
density r̂M(r )# and the medium-assisted electromagne
field.

In what follows we shall restrict our attention to th
~electric-! dipole approximation, so that Eq.~15! simplifies
to

V̂MM85«0
21dM8d

i~r M82r M !dM , ~17!

where

d̂M5(
aM

qaM
~ r̂aM

2r M ! ~18!

is the dipole operator of theM th molecule. Disregarding the
Â2 term in Eq.~16!, which does not give rise to off-diagona
molecular matrix elements, making use of Eqs.~6!–~8!, and
applying the dipole approximation,ĤM int takes the form

ĤM int52E
0

`

dvE d3r m̂M~r ,v!Ê~r ,v!1H.c., ~19!

where

m̂M~r ,v!52
1

\v
@ d̂M ,ĤM#d'~r2r M !1d̂Md i~r2r M !.

~20!

B. The transfer rate

Let us consider the resonant energy transfer between
moleculesA andB at positionsrA andrB . The initial ~final!
stateu i & (u f &) describes the excited moleculeA (B), the mol-
ecule B ~A! being in the ground state and the mediu
assisted field in the vacuum state,

u i &5ua8,b& ^ u$0%&, Ei5Ea81Eb , ~21!

u f &5ua,b8& ^ u$0%&, Ef5Ea1Eb8 ~22!

~cf. @2#!. Note that imposing this initial condition require
that the time of state preparation is sufficiently short co
pared with the time of energy transfer. Using the Born e
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pansion@19# up to the second order in perturbation theo
the ~total! rate of energy transfer can be given by

w5(
f ,i

piwf i , ~23!

wherepi is the occupation probability of the stateu i & and

wf i5
2p

\
u^ f uT̂u i &u2d~Ef2Ei !, ~24!

with

T̂5Ĥ int1Ĥ int

1

Ei2Ĥ01 is
Ĥ int , s→10. ~25!

Applying the decomposition~13!, we may write

^ f uT̂u i &5^a,b8uT̂ua8,b&5^a,b8uV̂ABua8,b&

1^a,b8uT̂ ua8,b&, ~26!

where

^a,b8uT̂ ua8,b&5^a,b8u@ĤA int1ĤB int#@Ei2Ĥ01 is#21

3@ĤA int1ĤB int#ua8,b&. ~27!

Let us first consider the Coulomb term̂a,b8uV̂ABua8,b&.
From Eq.~17! it is not difficult to see that

^a,b8uV̂ABua8,b&5«0
21@db8bdi~rB2rA!daa8#, ~28!

where

daa8(bb8)5^a~b!ud̂A(B)ua8~b8!&. ~29!

In order to calculatê a,b8uT̂ ua8,b&, we make use of Eqs
~19! and ~20!, perform the summation and integrations ov
the possible intermediate statesua8,b8& f̂ j

†(s,v)u$0%& and

ua,b& f̂ j
†(s,v)u$0%&. After some calculation we derive, on ap

plying Eq. ~9! and the relationship@16,17#

Im Gkl~r ,r 8,v!5E d3s
v2

c2
« I~s,v!Gkm~r ,s,v!Glm* ~r 8,s,v!,

~30!

the following expression:
^a,b8uT̂ ua8,b&5
\va8a

2

p«0c2E d3r 8E d3rE
0

`

dvH @db8bDB~r 8,2v!Im G~r 8,r ,v!DA~r ,2v!daa8#

2\va8a2\v1 is

1
@db8b DB~r 8,v!Im G~r 8,r ,v!DA~r ,v!daa8#

\va8a2\v1 is
J , ~31!
3-3
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where

va8a5~Ea82Ea!/\5~Eb82Eb!/\5vb8b ~32!

and

DA(B)~r ,v!5d'~r2rA(B)!1
v

va8a(b8b)

d i~r2rA(B)!

~33!

@note thatDA(B)(r ,va8a(b8b))5d (r2rA(B))#. Recalling that
Im G(r 8,r ,2v)52Im G(r 8,r ,v), we may rewrite Eq.~31!
as
y
u
f
e

ly

s

r

e
a

04381
^a,b8uT̂ ua8,b&

5
\va8a

2

p«0c2E d3r 8E d3rE
2`

`

dv

3
@db8bDB~r 8,v!Im G~r 8,r ,v!DA~r ,v!daa8#

\va8a2\v1 is sgn~v!

~34!

or, equivalently,
^a,b8uT̂ ua8,b&5
\va8a

2

p«0c2E d3r 8E d3rE
2`

`

dv
1

2i H F @db8bDB~r 8,v!G~r 8,r ,v!DA~r ,v!daa8#

\va8a2\v1 is sgn~v!
G

2F @dbb8DB~r 8,v!G~r 8,r ,v!DA~r ,v!da8a#

\va8a2\v2 is sgn~v!
G* J . ~35!
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The v integral in Eq. ~35! may now be evaluated b
means of contour-integral techniques, by taking into acco
the fact that the Green tensor is a holomorphic function ov
in the upper complex half plane, which asymptotically b
haves as@17#

lim
uvu→`

v2

c2
G~r ,r 8,v!52d~r2r 8!. ~36!

We therefore close the path of integration by an infinite
large semicircle in the upper complex half plane,uvu→`,
and subsequently subtract the semicircle integral. It is ea
seen that only the terms inDA(r ,v) andDB(r ,v) @Eq. ~33!#,
which are proportional tov, contribute to the integral ove
the semicircle,

^a,b8uT̂ ua8,b&usemicircle5«0
21@db8bd i~rB2rA!daa8#.

~37!

It is further seen that only the first term in the curly brack
contributes to the integral over the closed path. We thus
rive at

^a,b8uT̂ ua8,b&52«0
21@db8bd i~rB2rA!daa8#

2
va8a

2

«0c2
@db8bG~rB ,rA ,va8a!daa8#.

~38!

Substitution of the expressions~28! and~38! into Eq.~26!
yields the transition amplitude
nt

-

ily

t
r-

^a,b8uT̂ua8,b&52
va8a

2

«0c2
@db8bG~rB ,rA ,va8a!daa8#.

~39!

Note that the first term in Eq.~38! and the Coulomb term
~28! exactly cancel out. We eventually combine Eqs.~24!
and~39! and find that the rate of energy transfer between

chosen statesua8,b& and ua,b8& reads as (wf i5wab8
a8b)

wab8
a8b

5
2p

\2 S va8a
2

«0c2D 2

udb8bG~rB ,rA ,va8a!daa8u
2

3d~va8a2vb8b!. ~40!

It can be proved~Appendix A! that the use of the multipola
Hamiltonian @17# instead of the minimal-coupling Hamil
tonian~1! exactly leads to the same expression of the ener
transfer rate.

Let us now consider the total energy-transfer rate acco
ing to Eq.~23!, by taking into account the vibronic structur
of the molecular energy levels. Restricting our attention
the Born-Oppenheimer approximation and neglecting
weak dependence of the electronic-dipole-transition ma
element on the nuclear coordinates~see, e.g.,@20#!, we may
factorize the dipole-transition matrix elements according

daa8(bb8)5dA(B)vaa8(bb8) , ~41!

wheredA(dB) is the purely electronic transition-dipole ma
trix element of the transition between the lower and the
per electronic state of the moleculeA (B), andvaa8(bb8) are
the overlap integrals between the vibrational quantum st
in the two electronic states of the respective molecule. N
3-4
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that the vibrational overlap integrals take account of b
displaced and distorted energy surfaces. Combining E
~23! and ~40! yields

w5
2p

\2 (
a,a8

(
b,b8

pa8pbS va8a
2

«0c2D 2

uvb8bvaa8u
2

3udB* G~rB ,rA ,va8a!dAu2d~va8a2vb8b!, ~42!

which can be rewritten as

w5E dvw̃~v!sA
em~v!sB

abs~v!, ~43!

where

w̃~v!5
2p

\2 S v2

«0c2D 2

udB* G~rB ,rA ,v!dAu2, ~44!

and

sA
em~v!5 (

a,a8
pa8uvaa8u

2d~va8a2v! ~45!

and

sB
abs~v!5 (

b,b8
pbuvb8bu2d~vb8b2v!, ~46!

respectively, are proportional to the~single-photon! emission
spectrum of moleculeA and the~single-photon! absorption
spectrum of moleculeB, both in free space@20#. Thus, the
rate of energy transfer is proportional to the overlap of
two spectra weighted by the square of the absolute valu
the actual Green tensor. It is worth mentioning that E
~40!–~46! apply to the resonant energy transfer between
molecules in the presence of an arbitrary configuration
dispersing and absorbing macroscopic bodies. All the
evant parameters of the bodies are contained in the G
tensor. Note that the emission~absorption! spectrum ob-
served in this case is not proportional tosA

em(v)@sB
abs(v)#,

in general, as it can be seen from a comparison of Eq.~45!
with Eq. ~B7!.

In particular when the Green tensor slowly varies w
frequency on a scale given by the~relevant! vibrational fre-
quencies of the molecules, thenw̃(v) is also a slowly vary-
ing function of frequency and can~approximately! be taken
at the electronic-energy-transfer frequencyvA('vB) and
put in front of the integral in Eq.~43!; thus

w.w̃~vA!s, ~47!

where

s5E dvsA
em~v!sB

abs~v!. ~48!

In this case, the influence of matter environment on the~to-
tal! energy-transfer rate is fully contained inw̃(vA). Clearly,
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when the two molecules are near a resonatorlike equipm
so that the molecule can ‘‘feel’’ sharply peaked field res
nances, thenw̃(v) cannot be assumed to be a slowly varyi
function of frequency, in general~see Sec. III C!.

It may be interesting to compare the rate of energy tra
fer with the donor decay rate. Straightforward generalizat
of the well-known formula for a two-level transition yields
on applying the Born-Oppenheimer approximation,

GA5E dvG̃A~v!sA
em~v!, ~49!

where

G̃A~v!5
2v2

\«0c2 @dA* Im G~rA ,rA ,v!dA# ~50!

andsA
em(v) is given by Eq.~45!. Whereas the decay rate

determined by the imaginary part of the Green tensor~taken
at equal positions!, the transfer rate is determined by the fu
Green tensor~taken at different positions!. Thus, decay rate
and transfer rate can quite differently respond to a chang
the environment.

III. APPLICATIONS

A. Bulk material

Let us first consider the case when the two molecules
embedded in bulk material of arbitrary complex permittivi
«(v). Using the well-known expression of the bulk-mater
Green tensorGbulk(r ,r 8,v) ~see, e.g.,@17#!, application of
Eq. ~44! yields

w̃~v!5
2p

\2 S v2

«0c2D 2

udB* Gbulk~rB ,rA ,v!dAu2, ~51!

where

dB* Gbulk~rB ,rA ,v!dA5
q~v!

4p
exp@ iq~v!R#

3F2S dB* dA23
dB* R

R

dAR

R D
3S 1

q3~v!R3 2
i

q2~v!R2D
1S dB* dA2

dB* R

R

dAR

R D 1

q~v!RG
~52!

with

q~v!5A«~v!
v

c
, R5rB2rA . ~53!

The energy-transfer rate is then obtained according to
~43!. Obviously, the Green tensor of bulk material can
3-5
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regarded as being a slowly varying function of frequency,
that approximation~47! applies.

From Eqs.~51! and~52! it is seen that the energy-transf
rate includes both the small-distance case~Förster transfer!,
with the rate being proportional toR26, and the large-
distance~radiative! case, where the rate becomes prop
tional to R22. Note that the exponentialuexp@iq(v)R#u2
5exp@22vnI(v)R/c#, which typically arises from materia
absorption, drastically diminishes the large-distance ene
transfer@A«(v)5n(v)5nR(v)1 in I(v)#. In Eq.~51! local-
field corrections are ignored. They may be taken into acco
by applying, e.g., the scheme used in Ref.@18# for correcting
the rate of spontaneous decay.

It is worth noting that the result given above, which
based on the quantization of the macroscopic Maxwell fi
for given complex permittivity, exactly corresponds to t
result obtained in Ref.@9# within the framework of a fully
microscopic approach on the basis of some model med
coupled to the radiation field and a heat bath. Already fr
the study of the spontaneous decay of an excited atom
an interface@21# it is clear that in the case of inhomogeneo
media ~of complicated atomic structure! a microscopic ap-
proach would be rather involved and closed solutions wo
hardly be found.

B. Multislab planar structures

Let us consider a planar multislab structure and assu
that the two molecules are in the same slab. The relev
Green tensor~for the energy transfer between the two mo
ecules! of an inhomogeneous system of this type can alw
be written in the form

G~rB ,rA ,v!5Gbulk~rB ,rA ,v!1Grefl~rB ,rA ,v!, ~54!

whereGbulk(rB ,rA ,v) is the Green tensor according to E
~52!, with «(v) being the permittivity of the slab in which
the two molecules are located, and the reflection te
Grefl(rB ,rA ,v) ensures the correct boundary conditions
the surfaces of discontinuity. Clearly, a decomposition of
type of Eq.~54! is also valid for other than planar system
provided that the two molecules are located in a region
space-independent permittivity.

To be more specific, let thez direction be the direction o
variation of the permittivity of the multislab system and a
sume thatrA and rB are in thej th slab of thicknessdj ~Fig.
1!. The reflection term in Eq.~54! can then be given by@22#
~see also Ref.@23#!

Grefl~rB ,rA ,v!5
i

4pE0

`dkiki

2b j
eib j djG̃refl~rB ,rA ,v,ki!

~55!

@kj5A« j (v)v/c,b j5(kj
22ki

2)1/2#. Choosing the coordinate
system such thatRy50, the nonvanishing components
G̃refl read
04381
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G̃xx(yy)
refl 52

b j
2

kj
2 C2

p @J0~kiRx!2~1 !J2~kiRx!#

1C1
s @J0~kiRx!1~2 !J2~kiRx!#, ~56!

G̃xz(zx)
refl 52~1 !2i

b j ki

kj
2 S1(2)

p J1~kiRx!, ~57!

G̃zz
refl52

ki
2

kj
2 C1

p J0~kiRx! ~58!

@Jn(x) is a Bessel function#, where

C1(2)
q 5@r 2

q eib j (zA1zB2dj )1r 1
q e2 ib j (zA1zB2dj )

1~2 !2r 1
q r 2

q cos~b jRz!e
ib j dj #Dq

21 , ~59!

S1(2)
q 5@r 2

q eib j (zA1zB2dj )2r 1
q e2 ib j (zA1zB2dj )

1~2 !2ir 1
q r 2

q sin~b jRz!e
ib j dj #Dq

21 , ~60!

Dq512r 1
q r 2

q e2ib j dj . ~61!

Here,q5p ~s! means TM~TE! polarized waves andr 1(2)
q

are the total reflection coefficients at the upper~lower! stack
of slabs @ j 8, j ( j 8. j )# of the waves in thej th slab ~for
details, see Ref.@22#!. Note that whenrA and rB are in the
top ~bottom! slab, then Eqs.~55!–~61! ~formally! apply pro-
vided thatr 1(2)

q 50 anddj50 are set.
If the frequencies of the vibronic transitions that are

volved in the energy transfer are sufficiently far from a m
dium resonance, so that material absorption~in the j th slab!
may be disregarded, then the permittivity may be conside
as being real and positive. In this case, it may be usefu
decompose the integral in Eq.~55! into two parts,

Grefl~rB ,rA ,v!5G1
refl~rB ,rA ,v!1G2

refl~rB ,rA ,v!,
~62!

FIG. 1. Geometry of the multislab planar structure problem.
3-6
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G1
refl~rB ,rA ,v!5

i

4pE0

A« jv/c dkiki

2b j
ei ub j udjG̃refl

3~rB ,rA ,v,ki!, ~63!

G2
refl~rB ,rA ,v!5

i

4pEA« jv/c

` dkiki

2b j
e2ub j udjG̃refl~rB ,rA ,v,ki!.

~64!

Obviously,G1
refl results from waves that have a propagati

component in thez direction, whereas the waves that co
tribute toG2

refl are purely evanescent in thez direction.

1. Interface

Let the two molecules be embedded in a half-space
dium ~medium 1) and assume that in the relevant freque
interval the permittivity of the medium«1(v) can be re-
garded as being real and positive. When the molecules
near the interface between the two half-space media s
that k1(zA1zB)!1, it can be proved that Eqs.~55!–~58!
reduce to (k1Rx!1)

Gxx(yy)
refl ~rB ,rA ,v!.

1

4pk1
2

«22«1

«21«1

~zA1zB!22~1 !2Rx
2

@~zA1zB!21Rx
2#5/2

,

~65!

Gxz(zx)
refl ~rB ,rA ,v!.1~2 !

1

4pk1
2

«22«1

«21«1

3
3~zA1zB!Rx

@~zA1zB!21Rx
2#5/2

, ~66!

Gzz
refl~rB ,rA ,v!.

1

4p

«22«1

«21«1

1

A~zA1zB!21Rx
2

3H 2~zA1zB!22Rx
2

k1
2@~zA1zB!21Rx

2#2 11J ~67!

@«2(v) is the complex permittivity of medium 2#. Note that
for rA5rB , Eqs.~65!–~67! just give the Green tensor whos
imaginary part determines the influence of the interface
the rate of spontaneous decay of a single molecule@21,24#.
~For some special cases, see also Ref.@15#.! Under the as-
sumptions made, the main contribution toGrefl comes from
G2

refl . Hence surface-guided waves~including decaying
waves! play an important role and can noticeably influen
the resonant energy transfer. In particular, when medium
a metal or a dielectric with«2 R,0 ~and typically «2 I
!u«2 Ru), then a strong effect is observed for«2 R(v)5
2«1(v), which is nothing but the condition for best excit
tion of surface-guided waves@25#.

In the numerical calculation ofw̃(v) @Eq. ~44!#, which
contains the relevant information about the influence of
interface on the rate of energy transfer@see Eqs.~43!–~46!#,
we have assumed that the two molecules are situate
04381
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vacuum @«1(v)51# above a half-space medium of th
Drude-Lorentz type and have restricted our attention to
single-resonance medium,

«2~v![«~v!511
vP

2

vT
22v22 ivg

. ~68!

Here,vP corresponds to the coupling constant andvT andg
are, respectively, the medium-oscillation frequency and
linewidth. Recall that the Drude-Lorentz model covers bo
metallic (vT50) and dielectric (vTÞ0) matter and features
a band gap betweenvT and vL5AvT

21vP
2. We have per-

formed the calculations using the exact Green tensor@Eqs.
~54!–~61!#. Comparing the results with those obtained
using the approximately valid Green tensor@Eq. ~54! to-
gether with Eqs.~65!–~67!#, we have found good agreemen

The behavior ofw̃(v) is illustrated in Fig. 2. It is seen
that outside the band gap (v,vT), where«R.0, the modi-
fication of w̃(v) due to the presence of the interface is sm
even for small distances of the molecules from the interfa
Since in this frequency domainw̃(v) may be regarded a
being slowly varying on a frequency scale defined by
vibrational frequencies of the molecules, Eq.~47! applies.
Thus, the energy-transfer rate is simply proportional
w̃(vA).

Inside the band gap, however, the interface can sign
cantly affectw̃(v) if, according to Eqs.~65!–~67!, «R(v)
.21 (v.1.06vT in Fig. 2!, that is to say, if the energy
transfer transition under consideration is tuned to a surfa
guided wave. Note that a negative real part of the medi
permittivity can easily be realized by metals. Careful insp
tion of the contributionsGvac andGrefl to G reveals that the
enhancement ofw̃(v) results fromGrefl, whereas the reduc
tion reflects some destructive interference ofGvac and Grefl.
Another interesting feature is that the reduction ofw̃(v) can

FIG. 2. The electronic part of the rate of energy transfer@Eq.
~44!# between two molecules near a planar dielectric half spac
shown as a function of the transition frequency forz-oriented
dipole-transition moments and a single-resonance Drude-Lore
type dielectric @Rx50.015lT , zA5zB50.02lT , vP50.5vT ,
g/vT51024 ~solid line!, 1023 ~dashed line!, and 1022 ~dotted
line!#. The inset shows the electronic part of the correspond
donor-decay rate@Eq. ~50!#.
3-7
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go hand in hand with an enhancement of the correspon
quantity G̃A(v) @Eq. ~50!# for the donor-decay rateGA @Eq.
~49!# ~see the inset in Fig. 2!.

Further, Fig. 2 reveals that with increasing material a
sorption~i.e., with increasing value ofg) w̃(v) varies less
rapidly inside the band-gap region, and enhancement
reduction are thus less pronounced. Clearly, the strong in
ence onw̃(v) of the interface, which is observed for sma
material absorption, must not necessarily lead to a co
sponding strong change of the energy-transfer rate, bec
of the integration in Eq.~43!. Nevertheless, the results sho
the possibility of controlling the resonant energy transfer
surface-guided waves.

Figure 3 illustrates the dependence ofw̃(v) on the inter-
molecular distance for the case whenv corresponds to a
surface-guided wave frequency and a noticeable chang
w̃(v) is observed (v51.062vT in the figure!. It is seen that
the Rx

26 dependence, which is typical of the Fo¨rster transfer
in free space, is observed for much shorter intermolec
distances. The relative minima ofw̃(v) below the free-space
level, which are observed for somewhat larger intermolecu
distances, again result from destructive interference betw
Gvac and Grefl. Eventually, the large-distance reduction
w̃(v) below the free-space level results from material a
sorption. As already mentioned, the behavior ofw̃(v) in Fig.
3 is dominated by surface-guided waves that decay expo
tially along the6z directions. With increasing material ab
sorption the penetration depths decrease, so that on ave
w̃(v) becomes closer to the free-space level. The possib
of controlling the ultrashort-range energy transfer by vary
the distance of the molecule from the surface is illustrated
the inset.

In Fig. 4 the dependence ofw̃(v) ~again for v

FIG. 3. The electronic part of the rate of energy transfer„Eq.
~44!, in units of @ udAdBuv3/(\«0c3)#2/(8p)… between two mol-
ecules near a planar dielectric half space is shown as a functio
the intermolecular distance forz-oriented dipole-transition moment
and a single-resonance Drude-Lorentz-type dielectric@v
51.062vT , zA5zB50.02lT , vP50.5vT , g/vT51024 ~solid line!

and 1022 ~dashed line!#. The dependence ofw̃ on the molecule-
interface distance is illustrated in the inset@g/vT51024, zA5zB

50.02lT ~curve 1!, 0.03lT ~curve 2!, and 0.05lT ~curve 3!#. For
comparison, the free-space result is shown~dotted lines!.
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.1.062vT) on the molecule-surface distance is plotted, a
the contributions tow̃(v) from ordinary waves having a
propagating component in thez direction (G1

refl) and surface-
guided waves (G2

refl) are shown. It is clearly seen that whe
the two molecules are very near the surface, then ene
transfer between them is mediated by surface-guided wa
whereas for larger distances ordinary waves play the do
nant role. Note that the oscillatory behavior is typical of t
latter case. Clearly, for very large distances (zA ,zB@lT) the
free-space behavior is observed.

2. Comparison with experiments

Recently, experiments have been carried out to study
transfer of excitation energy between dye molecules confi
within planar optical microcavities@8#. In the experiments,
donors (Eu31 complex! and acceptors
(1,18 -dioctadecyl-3,3,38,38 - tetramethylindodicarbocyanine
embedded within a transparent material~22-tricosenoic acid!
bounded by no~weak-cavity structure! mirror, one ~half-
cavity structure! silver mirror, or two~full-cavity structure!
silver mirrors are considered. To compare the experime
results with the theoretical ones, we have modeled the h
cavity structure by a planar four-layered system and the f
cavity structure by a five-layered system. The former co
sists of vacuum, dielectric matter~22-tricosenoic acid,«
52.49 @26#, thicknessd), metal ~silver, «5216.010.6i
@26#, thickness 25 nm!, and vacuum, and the latter consists
vacuum, metal~silver, thickness 20 nm!, dielectric matter
~the same as above, thicknessd), metal~silver, thickness 25
nm!, and vacuum. In each system, the donor is situated in
middle of the dielectric layer, while the position of the a
ceptor is shifted towards the silver mirror of 25 nm thic
ness. The Green tensors of the two systems can be calcu
according to Eqs.~54!–~61!. Assigning to silver a Drude-
Lorentz-type permittivity@27#, it can be proven that in the
relevant frequency interval~of overlapping donor emission

of

FIG. 4. The electronic part of the rate of energy transfer@Eq.
~44!# between two molecules near a planar dielectric half spac
shown as a function of the distance of the molecules from the
face (zA5zB) for z-oriented dipole-transition moments and
single-resonance Drude-Lorentz-type dielectric„Rx50.85lT ;vP

50.5vT ;g/vT51024
…. For comparison, the results that are o

tained by taking into account in Eq.~62! only G1
refl ~dashed line! or

G2
refl ~dotted line! are shown.
3-8
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and acceptor absorption spectra! w̃(v) @Eq. ~44!# andG̃A(v)
@Eq. ~50!# vary sufficiently slowly withv, so that@cf. Eq.
~47!# w;w̃(vA) and, similarly,GA;G̃A(vA). Thus,w̃(vA)
and G̃A(vA) can be viewed as measures of the ener
transfer rate and the donor-decay rate, respectively.

Figure 5 shows the dependence ond of G̃A(vA) and
w̃(vA) ~averaged over the dipole orientations!. From Fig.
5~a! it is seen that atd/lA;0.21 ~i.e., d;130 nm for lA
5614 nm) the ratio of the donor-decay rates for the five- a
four-layered systems isG̃A(vA)u5 /G̃A(vA)u4;1.3, which
~within the measurement accuracy! is in sufficiently good
agreement with experimental result~see Fig. 2D in Ref.@8#!.
Note that in the vicinity ofd/lA;0.21 the ratio of the two
rates sensitively responds to a change ofd/lA .

ComparingG̃A(vA) @Fig. 5~a!# with w̃(vA) @Fig. 5~b!#,
we see that for the four-layered system andd/lA
;0.16–0.33~i.e., d;100–200 nm forlA5614 nm) both
G̃A(vA) and w̃(vA) decrease with increasingd and an ap-
proximately valid linear relation between the energy-trans
rate and the donor-decay rate can be established, in ag
ment with experimental results in Ref.@8#. From the data
reported in Ref.@8# it could be expected that the linear rel
tion between the two rates is generally valid. This is

FIG. 5. The electronic parts of the donor-decay rate~a! and the
donor-acceptor energy-transfer rate~b! ~averaged over the dipole
orientations! of molecules in cavitylike systems are shown as fun
tions of the cavity length for the four-layered system~dashed line!
and the five-layered system~full line! considered in Sec. III B 2
(lA5614 nm;R52Rz524 nm).
04381
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course not the case. Since the energy-transfer rate is d
mined by the full ~two-point! Green tensor, whereas th
donor-decay rate is only determined by the imaginary par
the ~one-point! Green tensor, the two rates can behave qu
differently, as it is demonstrated in Fig. 5. In particular, t
increase of the donor-decay rate at the cavity resonances
be accompanied with a decrease of the energy-transfer
because of destructive interferences.

In the experiments in Ref.@8#, the measurements are pe
formed on an ensemble of donors and acceptors whose
tance is fixed in thez direction but are variable in thex
direction (DRx;1 nm). The question thus arises of wheth
the measured data refer to a single nearest-neighbo
donor-acceptor pair (Rx50) or not. In Fig. 6 we have plotted
the dependence ond of w̃(vA) ~averaged over the dipole
orientations! for the five-layered system and various valu
of Rx , with Rz being fixed. We see that the rates of ener
transfer between molecules whose distances are larger
those of nearest-neighboring molecules can be quite com
rable with those of the latter. Moreover, there are also ca
where the energy-transfer rate increases with the do
acceptor distance. The experimentally determined ene
transfer rates are thus averaged rates, which do not nece
ily show the characteristic features of single-pair trans
rates. Averaging in Fig. 6w̃(vA) over all values ofRx , the
resulting curve is expected to be substantially flatter than
solid-line curve (Rx50), particularly when d sweeps
throughlA .

An analysis of the contributions ofG1
refl @Eq. ~63!# and

G2
refl @Eq. ~64!# to Grefl @Eq. ~62!# reveals that for cavity

lengths of d/lA&0.16 ~i.e., d&100 nm for lA5614 nm)
evanescent waves dominate the influence of the cavity
tem on both the rate of intermolecular energy transfer and
donor-decay rate and lead to a strong increase in their val
Whereas for cavity lengths ofd/lA*0.81 ~i.e., d*500 nm
for lA5614 nm) evanescent waves only weakly affect t
donor-decay rate, they can strongly affect the intermolecu

-

FIG. 6. The electronic part of the donor-acceptor energy-tran
rate ~averaged over the dipole orientations! of molecules in the
five-layered cavitylike system considered in Sec. III B 2 is shown
a function of the cavity length for various values of the interm
lecular distance@lA5614 nm,Rz5224 nm,Rx50 ~solid line!, 10
nm ~dashed line!, and 20 nm~dotted line!#.
3-9
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energy transfer up to cavity lengths of a few micromete
Note that the resonance lengths seen in Fig. 5 originate f
propagating waves.

C. Microsphere

Microspheres have been of increasing interest becaus
the whispering-gallery ~WG! and surface-guided~SG!
waves, which may be employed, e.g., for reducing
thresholds of nonlinear optical processes@28,29#. Intermo-
lecular energy transfer in the presence of microspheres
been considered for molecules near a small metallic sphe
~spheroid’s linear extension!lA) in the nonretardation
limit, for molecules embedded within a dielectric micr
sphere@11,12#, and for the case where one molecule is ins
a dielectric microsphere and the other is outside it@13#. Here
we restrict our attention to the influence of WG and S
waves on the energy transfer between two molecules out
a microsphere, taking fully into account retardation effec

Let «1(v) and «2(v) be, respectively, the permittivitie
outside and inside the sphere. If the dipole-transition m
ments are parallel to each other and tangentially orien
with respect to the sphere, the relevant~spherical-coordinate!
components ofGrefl are (fA5fB50, uA50)
,
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g
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e
ge
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GfBfA

refl ~rB ,rA ,v!5
ik1

4p (
l 51

`
~2l 11!

l ~ l 11! HB l
Mhl

(1)~k1r A!hl
(1)

3~k1r B!@ l ~ l 11!Pl~cosuB!

2cosuBPl8~cosuB!#

1B l
N

@k1r A hl
(1)~k1r A!#8

k1r A

3
@k1r B hl

(1)~k1r B!#8

k1r B
Pl8~cosuB!J

~69!

~for the Green tensor of a sphere, see, e.g.,@30#!, and for
radially oriented dipoles the relevant components are (fA
5fB50, uA50)

Gr Br A

refl ~rB ,rA ,v!5
ik1

4p (
l 51

`
l ~ l 11!~2l 11!

r̄ Ar̄ B

3B l
Nhl

(1)~k1r A!hl
(1)~k1r B!Pl8~cosuB!,

~70!

where
B l
M~v!52

@a2 j l~a2!#8 j l~a1!2@a1 j l~a1!#8 j l~a2!

@a2 j l~a2!#8hl
(1)~a1!2 j l~a2!@a1hl

(1)~a1!#8
, ~71!

B l
N~v!52

«1~v! j l~a2!@a1 j l~a1!#82«2~v! j l~a1!@a2 j l~a2!#8

«1~v! j l~a2!@a1hl
(1)~a1!#82«2~v!@a2 j l~a2!#8hl

(1)~a1!
~72!
in
ate

ally
nce
@a1,25k1,2a, a is the microsphere radius,j l(z) is the spheri-
cal Bessel function,hl

(1)(z) is the spherical Hankel function
Pl

m(x) is the associated Legendre function#.

In Fig. 7 the dependence on frequency ofw̃(v) is illus-
trated for the case where vacuum is outside the sphere
the two molecules are placed at diametrically opposite p
tions (rA52rB), with the dipole-transition moments bein
radially oriented. It is clearly seen that the energy trans
can greatly be facilitated at the positions of the sphe

assisted field resonances, the enhancement ofw̃(v) at the
positions of SG resonances~inside the band gap! being larger
than those at the positions of WG resonances~outside the

band gap!. Maximum values ofw̃(v) are observed where th
SG resonances overlap. The energy-transfer rate for tan
tially oriented dipoles~not shown! is, in general, smaller than

that for radially oriented dipoles. Note that whenw̃(v) is
sharply peaked at the sphere-assisted field resonances,
that it is not slowly varying in the frequency interval whe
the ~free-space! donor-emission and acceptor-absorpti
spectra overlap, then it cannot be taken at the electro
nd
i-

r
-

n-

uch

c-

energy-transfer frequency and put in front of the integral
Eq. ~43!. In this case, the change of the energy-transfer r

FIG. 7. The electronic part of the rate of energy transfer@Eq.
~44!# between two molecules~at diametrically opposite positions!
near a microsphere is shown as a function of frequency for radi
oriented dipole-transition moments and a single-resona
Drude-Lorentz-type dielectric „a52lT ,r A5r B52.02lT ,vP

50.5vT ,g/vT51024
….
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will be less pronounced than what might be expected fr
the frequency response of the electronic part, because o
frequency integration.

IV. CONCLUSIONS

We have given a rigorous, strictly quantum-mechani
derivation of the rate of intermolecular energy transfer in
presence of dispersing and absorbing material bodies o
bitrary shapes, showing that both the minimal-coupli
scheme and the multipolar-coupling scheme lead to rate
mulas of exactly the same form. The dependence on the
terial bodies of the energy-transfer rate is fully expressed
terms of the Green tensor of the macroscopic Maxwell eq
tions for the medium-assisted electromagnetic field. In
macroscopic approach, the dispersing and absorbing mat
bodies are described, from the very beginning, in terms o
spatially varying permittivity, which is a complex function o
frequency. The macroscopic approach has—similar to cla
cal optics—the benefit of being universally valid, without t
need of involvedab initio microscopic calculations. In sofa
as such calculations for simple model systems have b
performed, the results agree with those obtained from
microscopic approach. Clearly, macroscopic electrodynam
is valid only to some approximately fixed length scale, wh
exceeds the average interatomic distance in the mat
bodies.

Whereas the spontaneous donor- decay rate is determ
by the imaginary part of the Green tensor in the coincide
limit, the donor-acceptor energy-transfer rate depends on
full two-point Green tensor. Hence, the decay rate and
energy-transfer rate can be affected by the presence of m
rial bodies quite differently. Our calculations for plan
multilayer structures have shown that enhancement~inhibi-
tion! of spontaneous decay and inhibition~enhancement! of
energy transfer can appear simultaneously. They have fur
shown that surface-guided waves can strongly affect the
ergy transfer, thus being very suitable for controlling it.

In free space it is often distinguished between two lim
ing cases, namely, the short-distance nonradiative~Förster!
energy transfer and the long-distance radiative energy tr
fer. The former is characterized byR26 distance dependenc
of the transfer rate, and the latter byR22 dependence. In
particular, in the short-distance limit the energy-transfer r
rapidly decreases with increasing distance between the
ecules. This must not necessarily be the case in the pres
of material bodies, because of the possibly drastic chang
the dependence on the distance of the energy-transfer
So, our calculations for planar multilayer structures ha
shown that the energy-transfer rate can also increase with
distance.
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APPENDIX A: DERIVATION OF THE TRANSFER RATE
IN THE MULTIPOLAR-COUPLING SCHEME

The multipolar-coupling Hamiltonian can be obtaine
from the minimal-coupling Hamiltonian by means of th
Power-Zienau transformation@3,4#,

Ĥ5Û†ĤÛ, ~A1!

where

Û5expF(
M

i

\E d3rP̂M~r !Â~r !G ~A2!

with

P̂M~r !5(
aM

qaM
~ r̂aM

2r M !E
0

1

dld„r2r M2l~ r̂aM
2r M !…

~A3!

being the polarization associated with theM th molecule. Us-
ing Ĥ from Eq. ~1!, we derive~see, for details,@17#!

Ĥ5E d3rE
0

`

dv\v f̂†~r ,v! f̂~r ,v!1(
M

(
aM

1

2maM

3H p̂aM
1qaM

E
0

1

dll~ r̂aM
2r M !3B̂@r M1l

3~ r̂aM
2r M !#J 2

1(
M

E d3r F 1

2«0
P̂M~r !P̂M~r !G

2(
M

E d3r @P̂M~r !Ê~r !#, ~A4!

whereB̂(r )5“3Â(r ) @with Â(r ) from Eq. ~7!# and

Ê~r !5E
0

`

dvÊ~r ,v!1H.c., ~A5!

and neutral molecules with nonoverlapping charge distri
tions are again assumed. Note that in the multipolar-coup
scheme the operator of the electric-field strength is defi
according to

Ê~r !52
1

i\
@Â~r !,Ĥ#2“ŵ~r !2“f̂~r !, ~A6!

which implies the following relation betweenÊ(r ) andÊ(r ):

«0Ê~r !5«0Ê~r !1(
M

P̂M~r !. ~A7!

Hence,«0Ê(r ) has the meaning of the displacement fie
with respect to the molecular polarization.

From Eq.~A4! it is seen that the molecules now intera
only via the medium-assisted electromagnetic field. In p
ticular, in the~electric-! dipole approximation Eq.~A4! sim-
plifies to
3-11
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Ĥ5Ĥ01Ĥint , ~A8!

where

Ĥ05E d3rE
0

`

dv\v f̂†~r ,v! f̂~r ,v!1(
M

ĤM ~A9!

with

ĤM5(
aM

1

2maM

p̂aM

2 1E d3r
1

2«0
P̂M~r !P̂M~r ! ~A10!

is the unperturbed Hamiltonian of the medium-assisted e
tromagnetic field and the molecules, and

Ĥint5(
M

Ĥint
(M )52(

M
d̂MÊ~r M ! ~A11!

is the interaction energy between them.
Comparing the multipolar-coupling energy given by E

~A11! with the minimal-coupling energyĤ int given by Eq.
~13! together with Eqs.~17!–~20!, we see that the two ene
gies~formally! become equal to each other, if we remove
the latter the Coulomb term and replace2@ d̂M ,ĤM#/\v

with d̂M . Having these changes in mind, we now follow st
by step the derivation of Eq.~40! in Sec. II B. Starting from
the corresponding eigenstates of the unperturbed multipo
coupling Hamiltonian~instead of those of the unperturbe
minimal-coupling Hamiltonian!, it is not difficult to see that
the result is again Eq.~40!. It should be pointed out that th
above-mentioned difference betweenÊ(r ) and Ê(r ) @Eq.
~A7!# does not affect the energy-transfer rate.

APPENDIX B: SINGLE-MOLECULE EMISSION
SPECTRUM

In the electric-dipole approximation and the rotating-wa
approximation, the Hamiltonian for a single molecule~at po-
sition rA) that ~with regard to the vibronic transition
ua8&↔ua&) resonantly interacts with the medium-assist
electromagnetic field reads, by appropriately specifying E
~11!–~20! @18#,

Ĥ5Ĥ01Ĥ int , ~B1!

Ĥ05E d3rE
0

`

dv\v f̂†~r ,v! f̂~r ,v!1(
a

\vaua&

3^au1(
a8

\va8ua8&^a8u, ~B2!

Ĥ int52 (
a,a8

@ ua8&^auÊ(1)~rA!da8a1H.c.#, ~B3!

whereÊ(1)(r ) is the positive-frequency part ofÊ(r ) defined
by Eq. ~A5!, and the vibronic-dipole-transition matrix ele
04381
c-

.

r-

s.

mentsda8a of the vibronic transitions are given, in the Born
Oppenheimer approximation, by Eq.~41!. Let us assume tha
the molecule is initially~at time t50) prepared in a statisti
cal mixture of vibrational states in the upper electronic st
and the medium-assisted electromagnetic field is in
vacuum state, i.e.,

r̂~ t50!5(
a8

pa8ua8&^a8u ^ u$0%&^$0%u. ~B4!

The time-dependent spectrum of light observed at positior
~in free space! by means of a spectral apparatus of su
ciently small passband width can be given by~see, e.g.,@31#!

S~r ,vS,T!5E
0

T

dt2E
0

T

dt1@exp$2 ivS~ t22t1!%

3^Ê(2)~r ,t2!Ê(1)~r ,t1!&#, ~B5!

wherevS andT are, respectively, the setting frequency a
the operating time of the spectral apparatus. In order to
culate the electric-field correlation function associated w
the light emitted by the molecule during the spontaneo
decay of the upper electronic state, we may restrict our
tention to the perturbative expansion of the time-evolut
operator up to the first order inĤ int @19#,

e2 iĤ t/\.e2 iĤ 0t/\1
1

i\E0

t

dt8exp@2 iĤ 0~ t2t8!/\#

3Ĥ inte
2 iĤ 0t8/\. ~B6!

We make use of Eqs.~B3!, ~A5! @together with Eq.~9!#,
~B4!, and~B6!, apply Eq.~B5!, and derive after some calcu
lation, on recalling the relation~30! ~see also@32#!,

lim
T→`

T21S~r ,vS,T!52p(
a,a8

pa8uva8au2uF~r ,rA ,va8a!u2

3d~vS2va8a!, ~B7!

where

F~r ,rA ,va8a!5
1

p«0
E

0

`

dv
v2

c2 Im G~r ,rA ,v!dAz~va8a2v!

.2
iva8a

2

«0c2
G~r ,rA ,va8a!dA ~B8!

@z(x)5pd(x)1 iP(1/x); P is the principal value#. In the
derivation of Eq.~B7!, retardation has been ignored and t
relation

lim
T→`

1

TE0

T

dt2E
0

T

dt1e2 iv(t22t1)5 lim
T→`

sin2~vT/2!

T~v/2!2 52pd~v!

~B9!

has been used.
3-12
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