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Theory for photon statistics of random lasers
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A theory for the photon statistics of a random laser is presented. Noise is described by Langevin terms,
where fluctuations of both the electromagnetic field and of the medium are included. The theory is valid for all
lasers with small outcoupling when the laser cavity is large compared to the wavelength of the radiation. The
theory is applied to a chaotic laser cavity with a small opening. It is known that a large number of modes can
be above threshold simultaneously in such a cavity. It is shown that the amount of fluctuations is increased
above the Poissonian value by an amount that depends on the number of modes above threshold.
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I. INTRODUCTION line far above threshold. No results for the fluctuation prop-
erties, however, can be derived in this way. Recently, random
Arandom laser is a laser where the necessary feedback liasers are also simulated by the finite-difference time-domain
not due to mirrors at the ends of the laser but due to randormethod| 11]. While this method, in principle, can incorporate
scattering inside the mediufi—3]. It was long argued about quantum fluctuations on a microscopic level, the computa-
how to distinguish such a random laser from a random metional effort is prohibitively large, so that at most two-
dium with amplified spontaneous emissi6ASE)—in the  dimensional samples can be treatsee, e.g., Ref12]), and
former, the randomness is essential for providing feedbacknost of its value is for one-dimensional applicatioisee,
whereas in the latter, scattering only increases the dwell time.g., Ref.[13]). Furthermore, only short time series can be
in the medium and thus the amplification factor. Two yearscomputed with acceptable effort so that the fluctuation prop-
ago, the first experimental proof of a random laser was giverrties of the emitted radiation are not accessible. A different
[4]. It was demonstrated that the lasing action was indeednalytical approach to noise in random lasers has recently
due to the randomness of the medium, by measuring thbeen put forward by Hackenbroight al. [14]. Since they do
emitted radiation at different points on the surface of thenot include mode competition, their work is only applicable
sample and showing that the peaks in the radiation spectrumear threshold.
were completely different at different points. For a linear medium, i.e., a medium where, in contrast to
Earlier experimentf5—7] were only able to prove ASE in  a laser, saturation effects can be neglected, the statistics of
random media, frequently referred to as “laserlike emis-the emitted radiation can be computed directly, e.g., by the
sion.” In a medium with saturation both laser action and ASEmethod of input-output relatiofd5]. No theory of compa-
lead to a dramatic narrowing of the emitted light profile uponrable power exists for lasers. The theoretical treatment of
crossing some threshold so that this criterion does not nec¢nontrivial” lasers has in the past focused on the Petermann
essarily signal a laser. Most “traditional lasers” are characfactor (see Refs[16—1§ for a definition. It is a geometry-
terized by emitting coherent radiation above threshold so thatelated factor that describes by how much the excess noise of
considering only the intensities and forgetting about the flucthe emitted radiation is larger than that for a “simple” single-
tuation properties is insufficient. Recently the first two mea-mode laser-assumingthat the nontrivial laser behaves the
surements on the photon statistics of a random laser havwame way as a single-mode laser, which is basically equiva-
been published. Papazoglou and co-workers report that tHent to neglecting mode-competition effectét should be
emitted radiation becomes only partially coheref@] stressed that the Petermann factor only gives information
whereas Cacet al. report that the statistics become com- about the radiation far above threshold; it gives no informa-
pletely Poissoniafp9]. tion on threshold behavigrSince the Petermann factor is a
The theoretical description of random lasers has in thegieometrical factor it can be computed for a linear medium
past focused on the light intensity inside in the laser. Photonand then used for the corresponding system filled with a
were considered as classical particles that diffuse or move imedium with saturation. The Petermann factor has been de-
some other way repeatedly through the sample while beingved for arbitrary geometrietsee, e.g., Refd.19,20), but
amplified.(The literature on this and similar methods is vast,also random media could be treafed —23.
some more general, some focusing more towards a particular There thus is a need for a theory that allows one to com-
system; see, e.g., R4fl0] for one of the earlier papejsin  pute the photon statistics of the emitted light for “nontrivial”
this way the intensity of the emitted radiation can be comdasers, in particular, this includes random lasers. In this paper
puted, confirming the observed narrowing of the emissiorsuch a theory based on Langevin terms, also referred to as
Langevin noise sources, is presented. Langevin terms have
successfully been used to describe the radiation properties of
*Present address: Laboratory for Computational Engineeringlinear media from a microscopic modg20]. On a higher
Helsinki University of Technology, P.O. Box 9400, 02015 HUT, level, they were used to describe random linear amplifying
Finland. media[24] where the Langevin terms included both fluctua-

1050-2947/2002/68)/0438099)/$20.00 65 043809-1 ©2002 The American Physical Society



M. PATRA PHYSICAL REVIEW A 65 043809

the lasing transition is from the third to the second level. The
5 transition from the second level to the ground level is as-
sumed to be so fast that the second level is always empty.
The density of excited atorrige., atoms in the third leveht

FIG. 1. A(chaotig cavity is coupled to the outside via a small point r in the cavity is N(F). Excitations are created by

opening. The cavity is filled with an amplifying medium. The light »mping with rateP(r) and can be lost nonradiatively with
emitted through the opening is detected. rate a(F)

i f the elect tic field and le-t le f Coupling between the electromagnetic field and the me-
lons ot Ihe electromagnetic field and sample-to-sampie UCf’jium depends on two quantities, namely, the eigenmode pro-
tuations of the properties of the random medium. None o

: gle ®i(F) of modei, and the transition matrix elemew( )

that they break down when the lasing threshold is apOf the atomic transition 3.2. [Frequentlyw(w) will be a

proached. Apart from saturation effects for a single mode, &Ore€ntzian centered around some frequesky The cou-
large number of modes can be above threshold simultaPling of modei to the medium at point is then given by
neously[25], so that mode competition is important and can-K;(r)=w(w;)|0;(r)|?.

not be neglected. The semiclassical equations of motion fgrandN(r) are

This paper is organized as follows. In Sec. Il the modelhe time argument for all quantities has been suppressed
for the photon statistics inside the laser is described and the

model equations are derived. These are then solved in Secs. . .

Il and IV. Section V adds the necessary modifications to go ni= _gini+J' d3r (n; + DK;(r)N(r), (1a

from the fluctuations inside the laser to the fluctuations of the

photocurrent emitted by the laser. Until this point all results Np

are valid for arbitrary lasers, proylded tha.t the.outcouplmg is N(r)=P(r)—a(r)N(r)— E (n;+ 1)Ki(F)N(F). (1b)

weak and the volume of the lasing medium is much larger i=1

than the cube of the wavelength. In Sec. VI we show how to

apply the formalism developed in this paper to three exem:=Semiclassical” means that all emission events, pumping

plary systems and demonstrate thereby that it can indeegvents, etc. are assumed to be deterministic, with spontane-

describe all relevant properties of lasing action. In Sec. VlIlous emission described by the addition of a virtual photon to

the random laser is treated and its photon statistics are cony when computing the transition ratg34].

puted. In Sec. VIII we try to explain the experimental results  To include the randomness of all processes, Langevin

mentioned above. We conclude in Sec. IX. terms have to be added to E@.). The four random pro-
cesses are the escape of phot@escribed by the Langevin

term T;), pumping[described by®(r)], relaxation of the

medium[described bya(r)], and emission of a photon into

We consi.der a op_tical cavity that is coupled to the outside,oqei at pointr [described by¥;(r)]. Each of these terms
by an opening that is small compared to the wavelength of5q ;ero mean and a correlator that follows from the assump-

the emitted radiatiotsee Fig. 1. Since the opening is small, o that the elementary stochastic processes have indepen-
there exist well-defined modes in the cavity, each with ajent poisson distributions. hence

well-defined eigenfrequencyw;, i=1,... Ny, and an

eigenmode profilé®;(r), and all modes are nonoverlapping (Fi()L(t")) =6 6(t—t")gi(n;), (2a)
[33] (In the language of random lasers, this is a “resonant-
feedback laser)’ Each mode thus can be described by the (a(F Ha(r’ t))= s3(r— F’)&(t—t’)a(F)(N(F))

(2

Il. MODEL

numbern; of photons in it. Photons in modecan escape
through the opening with ratg, .

The cavity is filled with an amplifying medium. The me- > > L\ S35 L >
dium is modeled by a four-level laser dysee Fig. 2, where (@O, 1)) =X(r=r)s(t=t')(P(r)), (20
— (Wi(rOW;(r' b)) =8 8%(r—r")(t—t")Ki(r)

— i s ((m+ DIN()). 20

P aN K(nhN Equation(2d) corresponds with the correlator given in Eq.
. 2 (5b) of Ref.[24].

Adding the terms from Eq(2) to Eq. (1) gives the com-
plete equations of motion,

1

FIG. 2. Amplification is modeled by a four-level system, where

lasing action(marked by the wiggly lingis from the third to the o ‘ 37 ANN(E 32 (7
second level. Dashed lines mark transitions that are much faster gini+ T+ [ dor(m+DKNN()+ | d*rwi(r),
than the other ones and thus need not be included in the description. (39
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N(N)=P(r)+®(r)—a(r)N(r)+ a(r)

(g(rg(r")=8%r—r")a(r)P(r)+N(r)

Np Np
—;1(ni+1>Ki<F>N<F>—i§1wi<F>. (3b)

Np
+2, (ni+ DK(NN(T)
The sign of the Langevin terms may be chosen freely as long
as the term¥,(r) has the opposite sign in the equations for =28%r—r")P(r), (5b)
n andN. i B o
(fig(r))=—(ni+ DK;(r)N(r). (50
I1l. LINEARIZATION

Equation(3) cannot be solved by direct numerical meth- IV DISCRETIZATION AND NUMERICAL SOLUTION

ods since Langevin terms cannot be represented as “real” \We now discretize the equations in space by picking
numbers. The only practicable way to proceed is to Imeanz%omts f, j= Ng. Defining Kj;=K; (;) and N,

the equations. First, we write;=n;+ én; and N(r) N(r) —N(r ) (analogously for all other quantltl)esthe statlonary

+ 8N(r), wheren;=(n;) andN(r)=(N(r)) are the average densitiesn; andN; from Eg. (1) are the solution of the equa-
solutions. We assume that these average solutions are |denﬁ 5ns

cal to the solutions of the deterministic rate equati@n
This is equivalent to the factorizing approximation Ng
(nN(r))Y=(n;}{N(r)). For a single-mode cavity like that 2 n+1)K Nj (i=1,...Np, (6a)
used in cavity QED this is a bad approximation, leading to -
errors of up to a factor 1/4 in the computed average photon
density, but if the number of modes in the cavity is large— — — — .
which>i/s the case that we are interested in—this¥actorizgation Pi=ajN; ;1 M+ DKyN; (=1, Ny).
is valid [28].

Inserting this solution, E¢(3) can be reformulated so that Thijs equation cannot be solved analytically but a numerical
only én; and 5N(r) remain as variables. Linearization solution is straightforwardeven though it may be numeri-

means that only terms proportional éa; or SN(r) are kept, ~cally expensive ifN, and/orN; are large. _ _
, terms proportional tasn, 5N(r) are omitted.(This is Equation(4) now becomes a linear ordinary differential

Justlfled as long as the variance is sufficiently smaller tharfduation.

the mean. This condition is equivalent to the validity of the

factorizing approximation used above. It can be checked _gi+z Kijﬁj (R+ 1K
self-consistently from the computed resyltShis way one  d ( on; ) ] .

Ng

(6b)

arrives at an equation for the fluctuations alone, where theqt| sN. _ —
coefficients depend on the average solution, —K;;N; —a;— > (n+1)K
I

5ni) (fi
+ 1
oN; o]

+f d°r 5niKi(f)N(f)+f d*rwi(r), (48 where it is understood that all indicesun from 1 toN, and
all indicesj from 1 toNg, so that the previous equation can
be written as anN,+ Ng)-dimensional matrix equatioA\
SN(N) =d(r)—a(r) SN(r)+ a(r)— E (n;+1)K;(r)SN(r) = ASN+ L. Computing fromA its matrixZ/ of eigenvectors
! and its vectoi€ of eigenvalues, the formal solution can im-
mediately be written down as

—giani+ri+fd3F(E+1)Ki(F)5N(F) %

@)

N
—_ P -
=2 oK (NN() = 2, Wi(r). (4b) N +N
5]\/,-(0_ f dt' Uy eSOy to ). (9
For convenience, we will label the sum of the Langevin
terms in Eq.(4a) as f; and the sum in Eq(4b) asg(r).  sjnce the vector consists of Langevin terms, a numerically
Evaluating the Langevin terms from E(P) at the average computed solution of Eq(8) is not meaningful. Instead
solutionsn andN gives of 6Nj(t) alone one has to consider correlators
(ON;(t) Nj(1)). Noting that thel'’s are delta correlated in
— - — N — time and that we are interestedtin: (as we are not inter-
3 _

gini+j dr (i + DK(NN(r) | =250, ested in intermittent behavior when switching on the laser
(58  we arrive at

(fifj)=
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—0cT/2 — The transmission through the outcoupling mirror changes the
noise of the signal compared to the noise inside the cavity,
and the Fano factor of the emitted radiatior] 26]

detector

P ity

L

(on;on;)
FIG. 3. The loss rate of photons inside the cavity is given by the Fi=t nT +1
ratio of the probabilityt; that a photon incident on the outcoupling :
mirror is transmitted and the tim& needed for one round-trip
through the cavity. The photons emitted from the cavity are detecte
by an ideal photodetector.

—t;. (13)

a’his equation can, apart from following the quantum-optical
approach of Ref[26], also be understood by the following

simple argument: The fractiof¥n; 5n;)/n; on the right-hand
NgtNs 74 70 7/-17/-1 sidg is' the Fapo factor of thg radiation trappeq inside the
(SNSNY=— > wwkm_ (9)  cavity in modei. With probabilityt; the detector will “see”

= kI, mn=1 Emtén the radiation inside the cavity, and with probability-1; it

will see reflected vacuum fluctuatiortwhich have a Fano
Inserting the expectation values of the correlators from Eqfactor equal to 1).
(5) gives the final result where a numerical solution is easy The Fano factor for a measurement where the photons
once the average soluticr_n, ﬁ] is known. (£L,) has to emitted from the cavity in all modes are detected simulta-
evaluated at the average solution and thus does not depeﬁQOUSW is
on time)
Ei t?(sn;on;) Z. t(1—tp)n;
F= + . (14)
So far we have considered the number of photopi > tn > tn;

theith modeinsidethe cavity. For practical purposes one is ‘ i
more interested in the photocurrdremittedfrom the cavity. o ) ) )
(I gives the number of photons emitted per unit time and is. 't iS immediately obvious that; and g; can for a tradi-
thus equal to the photon flux integrated over the entire crosdional laser be identified by properly choosing the unit of
sectional area. Even though the photons from different ime (for the simple laser from Fig. 3: by choosifigas the
modesi are emitted through the same opening, each modHNit of time). We will show in Sec. VII that this is also
has a distinct frequenay; so that the modes are easily dis- POSSPIe for a random laser. In the following, when giving
tinguished on the outside. We can thus define the photocuﬂ-“m_er'cal values or distribution functions fgr this identi-
rent j,()=],+ 8j;(t) through the opening due to trigh  "caton has been made.
mode in the cavity. The photocurrent can, for example, be
measured by afideal photodetector that absorbs the emit- VI. COMPARISON OF LASING REGIMES
ted photons. The fluctuations of the photocurrent within
some timer (we assume the limit— o) are quantified by

V. OUTCOUPLING

To demonstrate the application of the formalism presented
in this paper and the validity of the approximations made in

the noise power this paper we first want to discuss three simple cases not
- involving random media. For simplicity we set=w=1,
P,= Iimle dt 8j(0)5j(t). (10) Ng= Np., a.n.d KEcon_st. This redyces the number of param-
roe T =12 eters significantly without reducing the physical content.

The physical features of a lasé@n contrast to a linear
amplifier) are easily understood in the following picture: A
aﬁ:ertain number of excited atoms are created by pumping
within a certain time, and each of those excitations has to be
“consumed” either by nonradiative relaxation or by emitting
one photon from the cavity. For high photon number in the
cavity, nonradiative relaxation can be neglected, and each
- pumping event eventually leads to the emission of one pho-

Ji=ain;. (1)  ton from the cavity. The fluctuations of thetegratedpho-
tocurrent are thus equal to the fluctuations of the pump
To also compute the fluctuation$j; we need to treat the source, assumed to be Poissonian throughout this paper.
outcoupling in more detail. In a traditional laseee Fig. 3 In Fig. 4@ the single-mode laseM,=1) with a small
the loss rateg; is given by the ratio of the transmission opening =10 2) is treated. The computed curve repro-
probability t; (in classical optics referred to as “transmittiv- duces the features of a “traditional” laser. The precise loca-
ity” ) through the outcoupling mirror and the round-trip time tion of the maximum is somewhat ofsee the discussion of
T through the cavity, the factorization approximation above, or refer to Ref7]
for a more detailed discussion of the effects of different ap-
gi=t/T. (12 proximations on the computed curve near the lasing thresh-

The ratio /;=P;/j, is called the Fano factor and is fre-
guently used to describe the fluctuation properties of optic
radiation.

In Sec. Il we have introduced the loss raggs From their

definition it is obvious that the mean photocurra\ts
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FIG. 4. Comparison of the Fano factérfor three different conditions. The left axisolid line) depicts the Fano factor for the integrated
emitted radiation, the right axiglashed lingfor the lasing mode only(a) Laser with just a single modéh) Laser with a cavity supporting
ten modes where one mode is coupled out much less than the others, thus effectively modeling a single-mode [2esdr. Witt) Laser

with ten identical modes.

old), but its height reproduces the exact quantum-mechanicahaotic shape of the cavify,3]. If the mean outcoupling is
value well. For high values of the pumping, the photon staweak, a large number of modes in the cavity can be above
tistics of the emitted radiation becomes Poissonian, as qualthreshold simultaneous25]. As seen above, mode compe-
tatively explained above. tition introduces additional noise into the modes. However,

In Fig. 4b) we have modeled a laser with one modeeven if there are several modes above threshold, there only
coupled to the outside witly=10"2 and the other nine will be mode competitiorif the modes are spatially overlap-
modes withg=10"1, henceN,=10. (The valueg=10?2 ping and thus are “eating” from the same excitations. The
was chosen for scaling the axes of the figufde mode with main purpose of this paper is to answer the question of
the smallesg will be the lasing mode, whereas radiation in whether in a random laser there is a relevant level of mode-
the other modes quickly escapes to the outside so that nmompetition noise or whether the radiation emitted in a laser
significant number of photons can accumulate in thosdine approaches Poissonian statistics for strong pumping—
modes. This basically models a single-mode laser where onlgoth statements are mutually exclusively.
a fraction 8=1/N, of the spontaneous radiation is emitted =~ We consider a chaotic cavity as depicted in Fig. 1 with a
into the lasing mode. 4 is called the spontaneous-emission small opening to the outside. This problem becomes a sto-
factor. An ideal cavity-QED laser ha@=1 whereas a semi- chastic problem by considering an ensemble of cavities with
conductor laser can have@as low asB=10 8.) The be- small variations in shape or scatterer positions. The coeffi-
havior is similar to Fig. 49), except that the peak of the Fano cients appearing in Eq6) thus become random quantities.
factor of the lasing mode is larger by about a factor of 8. ForThe statistics of these coefficients for a chaotic cavity with a
small 8, one expects a scaling8~¥2~3 [28] but =1 and  small opening is knowfi29,30. The mean loss ratg of a
B=0.1 are too large for that scaling to be exactly valid.  cavity with volumeV through a hole of diameted at fre-

In Fig. 4(c) the system is kept aN,=10 with all g quencyw is [31]
=10"2. The total radiation depicts the same qualitative be-
havior as for the two cases presented so far but the radiation

; ; : ; ; — 167%d%w® 72c3
emitted by the lasing mode alorim this case, by an arbi- _
trary but fixed modgdepicts a completely different picture: g c® w?V?
The Fano factor diverges as the pumping is increased. This is

easily understood by the qualitative description given above,, . . . . .
y y 9 P 9 d is the level spacing of the cavity. Its inverseS1¢ the time

For high pumping, every pump excitation eventually results . = :
in one photon being emitted from the cavity, but if there areneeded to explore the entire phase space inside the cavity and

several lasing modes the photon still has the freedom t&an be identified with the round-trip time introduced for a

chose one of those modes. These additional fluctuations caH""d't'Onal Ia_ser |n_ Eq.(12). .
be so large that they eventually lead to a very large Fano N & chaotic cavity the mode®;(r) can be modeled as
factor for large pumping(lt is obvious that the Langevin fandom superpositions of Elane Wa\{@]-ﬁThIS implies a
approach will break down eventually if the fluctuations be-Gaussian distribution fo®;(r) at any pointr [35]. The loss
come too large, as explained abgve. rateg; is proportional to the square of the gradient@r)

The three test cases show that the model presented hererigrmal to the opening at the opening, hence its distribution is
able to explain all relevant features of a laser.

(15

VIl. RANDOM LASER (16)

e 2gi /9
Ho)=—F7—=
A ; ; 2mgig
random laser is a laser where the feedback is not due to
mirrors at the ends of the laser but due to chaotic scattering,
either caused by scatterers placed at random positions or byaadg; andg; are uncorrelated for+j.
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FIG. 5. Fano factor of the radiation emitted from tfpgimary) .
lasing mode(left axis, solid ling@ of some particular sample. The FIG. 6. Fluctuations of the excitation densi(r) of the me-
right axis (dashed ling depicts the number of modes above lasing dium for the sample from Fig. 5. Depicted are the fluctuations
threshold. Each additional mode crossing the threshold increasé€®N?(r)))/N(r) at the pointr|, where the eigenmode profile of the
the Fano factor of the primary lasing mode. primary lasing mode has the largest magnit(i#id line, scaled by

a factor 100, and the global quantitie§ J d3r SN(r)12)/fd3rN(r)

It should be noted that the level spacidds no random  (long dashesand(Jd3 SN2(r))/fd3rN(r) (short dashes
guantity, so thaty; andt; can be identified by choosing &/
as the unit of time.

For simplicity we assume that the amplification profile
w=1 so that the distribution of the eigenfrequencies is no . - i )
needed to comput;; . (The distribution is knowrj29] so ~ densitiesN(r) are on average negatively correlated since
that an extension to nonconstamis straightforwardg. each emission of an extra photoan(>0) leads to the de-

Figure 5 shows the computed Fano factor for a particulaexcitation of an aton{ §N(r)<0] and vice versa, hence

sample from this ensemblNg=10, g=0.5, but it should (n;N(r))<0. [This has also been confirmed by comput-
be kept in mind that the value af of the lasing mode is ing this correlator numerically from Eq9)]. Since the ex-
much smaller thar@[Zl 23). This kind of curve is typical cited atoms at different positions communicate only via the

for all members of the ensemble, while the precise shap diation field, their density thus has to be positively corre-

varies. When the first mode crosses the lasing threshold, t gted._ - . .
It is difficult to relate the fluctuations of the excitation

Fano factor goes through a maximum. While there is a global, ™ . , . ; .
decrease with increasing pumping, additional peaks are SLgj_ensny of the medium to the properties of the emitted light.

perimposed each time another mode crosses the lasindyith increasing pumping, a peak 65N>(r,))/N(r)) starts to
threshold (In the following a mode is considered to be aboveform (cf. Fig. ) at the same level of pumping as that at
lasing threshold if it contains at least two photons, but thevhich a peak starts to form for the Fano facfcf. Fig. 5,
results are basically independent of whether one choosd¥/t the location of the maximum of the peak is significantly
one, two, or ten photonsThe Fano factor approaches the different for both curves. The complicated interplay between
value 1 along with some finite difference. Mode-competitionradiation modes and matter in a random laser does not allow
noise thus gives a contribution to the noise but there stilfor @ simple understanding of the relation between these two
exists a lasing threshold that is well defined by a peagof quantities, and we will not discuss the fluctuations of the
Similarly to computing the fluctuations of the Fano factor, medium further in this paper since it focuses on the radiation
it is possible to compute the fluctuatioddl(r) of the den- properties. The; complicated structure of the eigenmodes of a
sity of excited atoms directly from Eq9). Figure 6 depicts chaotic cavity is what makes a random laser fundamentally

the computed fluctuations for the entire cavithashed lines different from a “traditional” laser.

.= . - In the following we will concentrate on the radiation and
as well as for the point; where the eigenmode profi@(r) o the Fano factor far above threshdRiis chosen such that
of the primary lasing mode has the largest magnitude. Th

f ; K anifi v n ?’/g~107 (remember that the value gdfof the lasing mode
orr]mﬁr.qqantltyd_peal S atda S|gn(|j|cbanty arger Eumﬂ 9 fluctuates. This is a compromise between a value as large as
which is immediately understood by noticing that the pri- possible to ensure that the limiting value fBr—o is ap-

n?aryllasing mode affects .onl'y part“of the totalncavi'ty, and l'j\:)roached as closely as possible and a not too large valBe of
significant part of the cavity is left “untouched” until more to avoid numerical problemgemember that Fig. 5 already
modes have crossed the lasing threshold. spans 11 orders of magnitude

Tg? R t\;vo Sa_gls)bal qlﬁnt't;% SQﬂ)'fted’ The main results of a Monte Carlo simulation will,
(LJd%r 6N(r)]5)/Jd*rN(r) and (Jd*r 6N*(r))/fd*rN(r), =10 are depicted in Fig. 7. The scaled Fano factor does not
differ by the inclusion of termgSN(r1)SN(ry)), ri#r,.  depend on the size of the openififig. 7(@], and only
The different heights of the peakthe first one is highér weakly depends on the outcoupling constant of the lasing
demonstrate thdat least in the relevant interval & and on  mode[Fig. 7(b)]. As Fig. 7c) clearly shows, the true depen-

averagethe density of excited atoms at different positions is
positively correlated. This can be understood in the follow-

ing simple picture: The photon densitiesand the excitation
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FIG. 7. The value of the Fano factor for the primary lasing mode depends on the nNiifecavity modes above laser threshold, not
on the other parameters; unless otherwise noted, computed<§@®m10° samples wittg=0.1.(a) Probability distribution of F—1)/g for

§=O.1,0.2 ...,0.5. The five curves overlap almost perfectly, thereby demonstrating that the size of the opening does not influence the

amount of mode-competition noise generatébmputed from=10° samples for each value &with identical realizations foK;; andg; /5

for the five runs. The inset shows the probability distribution from the large set Eiﬂo.l plotted logarithmically(b) Average of the Fano
factor as a function of the outcoupling constgmf the lasing mode(c) Average of the Fano factor as a function\f.

dence is on the numbét; of modes above threshol@The
weak dependence of the Fano factor on the valug affthe
lasing mode can be understood by noting thais correlated
with g of the lasing modeg.The finite value of 7/—1 thus
indeed is due to mode-competition noise, as claimed abovdaper should be understood as representing one of those vir-
For larger cavities, i.e., cavities with more modes in it, thetual cavities. It is not obvious which values of the parameters
distribution of (F—1)/g changes from a peak ned&=1 to
one that peaks at a finite value af¢1)/g, as seen from
Fig. 8. AsN, andNg increase, the effort to numerically com- are the average outcouplirgyand, even more importantly,
pute the average solution from E@) increases very fast, so the probability distributior(g; /g) as they together deter-

that only a comparably small number of realizations weremine the numbeN, of modes above lasing threshold.
computed ¢20000 forN,=50 and~4000 for N,=150),

explaining the large sampling error in the histograffhe
speed could be increased significantly by developing an opmuch smaller factor than the difference observed in the ex-
timized algorithm for solving Eq(6).] For largerN, the
average of F—1)/g becomes smaller as the largetalil
gradually disappeargFrom N,=10 toN,=150 the average . . . —
becomes smaller by about a factor of 2; the average is diffinot be important either. This leavgsand’>(g; /g) as param-

cult to compute since it sensitively depends on few sample

with large F.)

VIIl. INTERPRETATION OF EXPERIMENTS

laser light, so that it is scattered within a small volume many
times before it can escape; see Fig(The linear dimension

of such cavities was measured to be of the order of 100
wavelengthg4].) The chaotic cavity used as a model in this

(Np, Ng, gi,...) areneeded to explain the experiments.
In the following we will argue that the important parameters

Above it was shown thal, and Ny influence the Fano
factor only weakly, i.e., only by a factor of 2, and thus by a

periments. Even though it was not explicitly discussed in this
paper, it is obvious that the choice wi{w) and ®;(r) will

gters to explain the experiments.
In this paper, a random laser is modeled by a chaotic
cavity with a small opening. The size of the opening deter-

mineithe average outcoupli@ and allg; scale linearly
with g [see Eq.(16)]. For a virtual cavity the average out-

Experiments on random lasers are usually explained by nling cannot be computed in such a simple geometrical
the formation of small “virtual” cavities, which can “trap”

4 * T T T T
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— 3F
> o
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— o mem et
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a2 ‘3:3'_1%‘ '3°°"
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r“"‘;*"'ﬂww
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way. The outcouplingy; for theith mode in such a virtual
cavity depends delicately on the positions of the scatterers
and the wavelength of that mode. While no theory is avail-

able to computey; or at Ieasiafor this case, it is likely that
it will be relatively large as individual scatterers cannot be as

O

@)
@)

FIG. 9. Small “virtual” cavities can be formed by scatterers in
the random medium. Photons can be trapped very efficignéy,

FIG. 8. Distribution of the scaled Fano factor for cavities with small outcoupling if the distances between the scatterers are com-

different numbemN,= Ny of modes.

patible with the wavelength of the radiation.
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effective as a massive wall with only one small opening. lasing threshold should be spatially separdiezl, be in dif-

It was shown in Fig. @) that}‘—loca This is valid as ferent virtual cavities One explanation could be that the
long as the size of the opening is small compared to théample of Caet al. has more resonant feedback, so that the
square of the wavelength. If the opening becomes larger, thgonfinement of the lasing modes is stronger compared to
modes inside the cavity acquire a finite width frequency ~ Papazoglou's sample. In the latter, the modes would be ex-
spacg and start to overlap, severely complicating the theorytended over a much larger part of the sampk, the virtual
[36], and it is not obvious how the behavior changes. Cagavities are larger giving them more possibility to overlap.
et al.[9] speculate that this overlapping prevents the forma-
tion of a fixed photon number in one particular mode as IX. CONCLUSIONS
photons are constantly exchanged between modes with

”e"f‘fby frequencies. Fur.the_r.more, the Peterm_ann fgctor of thfﬁjctuation properties of the radiation of a random laser.
lasing mode becomes significantly laigk2], which might or . While for a standard single-mode laser the emitted radiation

might not increase the amount of fluctuations. While there i$)ecomes coherent far above threshold. the radiation for a
no proof that_ the amount of fluct_uat|ons is increased by thes‘Fandom laser fluctuates more. It was sr’mwn that this extra
two effects, it seems to be obvious that the amount of flucy oo ic que to mode-competition noise, i.e., due to the un-
tuations will not decrgase due to them. Henge; 1 W.'” at certainty of deciding into which mode a photon is emitted by
least increase proportionally to the size of the opening—als

for openings that are larger than the region of validity of theofdrlé%%isergésos\zq;mg R(});j;:glgazger, the higher the number
theory presented in this paper. :

™ . ¢ that th ¢ To be able to create mode-competition noise, the compet-
lasi N pr%wou_s g(rjgumentaslsum%[s ; ath € nunhheof ing modes have to b@t least partially overlapping. On the
asing modes Inside a virtual cavily IS th€ same as 1or gypar nang if the profiles of the modes are overlapping too

chaotic cavity with a small hole. Mode overlap itself does.much, usually only one of those modes will be above thresh-

not change that number, but for a larger opening the diStrIE)Id. The amount of noise created thus is the result of a deli-
bution function’>(g; /g) no longer has the form given by Eq. cate interplay between these two competing effects. For a
(16). The form of P(g; /g) sensitively depends on the kind of random laser modeled by a chaotic cavity filled with a laser

outcoupling and the number of lasing modes, in turn, sensidye, this leads to a finite increase of the Fano factor far

tively depends orP(g; /g). For example, there already is a above threshold, With_ the precise _value _depending_ on the
large difference between a cavity with one small hole and &umber of modes within the cavity, which are simulta-

cavity with two somewhat smaller holdso that the total Neously above threshold for that particular realization of the
average loss rate is the same in both caf2s]. It is very  disorder. In particular, the emitted radiation becomes coher-

well possible that the form o‘P(gi/E) may look signifi- ent if only one mode is above threshold.

cantly different from Eqg.(16) and could depend on many . Receﬂt expeer;ntstzn rar!dor_“ I_asgﬁsa] ggve_t(r:]onfhct- ft
parameters of the sample. ing results on whether the noise is increased with respect to

The diff . /@) and thus in th b ¢ the Poissonian value. Even though it is not directly possible
The differences inP(g;/g) and thus in the number of , ,4e the differences in the two experiments, the theory
lasing modes are thus the natural candidates to explain t

diff b din th . IAl?resented in this paper suggests that this is due to the differ-
ffferences observed in the two experiments. . ences in the number of modes above threshold. This number

This prediction (.:OUId’ in principle, be checked experi- epends heavily on the specific system in question, so that
mentally by measuring the number of modes above thresholg s ' nise properties of a random laser are not universal but
in onevirtual cavity, but to devise an experimental setup todepend on théexperimental setup

do this seems very difficult, if at all possible. The sample
used by Papazoglou and co-workgs$ should have several
spatially overlapping modes above lasing thresh@ld.,
some modes above threshold are in the same virtual ¢avity Valuable discussions with C.W.J. Beenakker are acknowl-
whereas in the sample by Caa al. [9] all modes above edged.

In this paper we have developed a theory to compute the
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term would need to be included in the equations. Even more
problematic is the fact that the eigenmodes of the cavity no
longer are orthogonal, the Petermann factor thus is larger than
1[21-23 and the noise properties change: More noise is emit-
ted into each mode but the noise in different modes is corre-
lated so that the total noise power in the linear regime below
threshold stays at the value given by the fluctuation-dissipation
theorem. It is not clear how to include this into the framework
presented in this paper.



