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Theory for photon statistics of random lasers
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A theory for the photon statistics of a random laser is presented. Noise is described by Langevin terms,
where fluctuations of both the electromagnetic field and of the medium are included. The theory is valid for all
lasers with small outcoupling when the laser cavity is large compared to the wavelength of the radiation. The
theory is applied to a chaotic laser cavity with a small opening. It is known that a large number of modes can
be above threshold simultaneously in such a cavity. It is shown that the amount of fluctuations is increased
above the Poissonian value by an amount that depends on the number of modes above threshold.
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I. INTRODUCTION

A random laser is a laser where the necessary feedba
not due to mirrors at the ends of the laser but due to rand
scattering inside the medium@1–3#. It was long argued abou
how to distinguish such a random laser from a random m
dium with amplified spontaneous emission~ASE!—in the
former, the randomness is essential for providing feedba
whereas in the latter, scattering only increases the dwell t
in the medium and thus the amplification factor. Two ye
ago, the first experimental proof of a random laser was gi
@4#. It was demonstrated that the lasing action was ind
due to the randomness of the medium, by measuring
emitted radiation at different points on the surface of
sample and showing that the peaks in the radiation spec
were completely different at different points.

Earlier experiments@5–7# were only able to prove ASE in
random media, frequently referred to as ‘‘laserlike em
sion.’’ In a medium with saturation both laser action and AS
lead to a dramatic narrowing of the emitted light profile up
crossing some threshold so that this criterion does not n
essarily signal a laser. Most ‘‘traditional lasers’’ are chara
terized by emitting coherent radiation above threshold so
considering only the intensities and forgetting about the fl
tuation properties is insufficient. Recently the first two me
surements on the photon statistics of a random laser h
been published. Papazoglou and co-workers report that
emitted radiation becomes only partially coherent@8#
whereas Caoet al. report that the statistics become com
pletely Poissonian@9#.

The theoretical description of random lasers has in
past focused on the light intensity inside in the laser. Phot
were considered as classical particles that diffuse or mov
some other way repeatedly through the sample while be
amplified.~The literature on this and similar methods is va
some more general, some focusing more towards a partic
system; see, e.g., Ref.@10# for one of the earlier papers.! In
this way the intensity of the emitted radiation can be co
puted, confirming the observed narrowing of the emiss
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line far above threshold. No results for the fluctuation pro
erties, however, can be derived in this way. Recently, rand
lasers are also simulated by the finite-difference time-dom
method@11#. While this method, in principle, can incorpora
quantum fluctuations on a microscopic level, the compu
tional effort is prohibitively large, so that at most two
dimensional samples can be treated~see, e.g., Ref.@12#!, and
most of its value is for one-dimensional applications~see,
e.g., Ref.@13#!. Furthermore, only short time series can
computed with acceptable effort so that the fluctuation pr
erties of the emitted radiation are not accessible. A differ
analytical approach to noise in random lasers has rece
been put forward by Hackenbroichet al. @14#. Since they do
not include mode competition, their work is only applicab
near threshold.

For a linear medium, i.e., a medium where, in contras
a laser, saturation effects can be neglected, the statistic
the emitted radiation can be computed directly, e.g., by
method of input-output relations@15#. No theory of compa-
rable power exists for lasers. The theoretical treatmen
‘‘nontrivial’’ lasers has in the past focused on the Peterma
factor ~see Refs.@16–18# for a definition!. It is a geometry-
related factor that describes by how much the excess nois
the emitted radiation is larger than that for a ‘‘simple’’ singl
mode laser—assumingthat the nontrivial laser behaves th
same way as a single-mode laser, which is basically equ
lent to neglecting mode-competition effects.~It should be
stressed that the Petermann factor only gives informa
about the radiation far above threshold; it gives no inform
tion on threshold behavior.! Since the Petermann factor is
geometrical factor it can be computed for a linear medi
and then used for the corresponding system filled with
medium with saturation. The Petermann factor has been
rived for arbitrary geometries~see, e.g., Refs.@19,20#!, but
also random media could be treated@21–23#.

There thus is a need for a theory that allows one to co
pute the photon statistics of the emitted light for ‘‘nontrivia
lasers, in particular, this includes random lasers. In this pa
such a theory based on Langevin terms, also referred t
Langevin noise sources, is presented. Langevin terms h
successfully been used to describe the radiation propertie
linear media from a microscopic model@20#. On a higher
level, they were used to describe random linear amplify
media@24# where the Langevin terms included both fluctu

g,
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M. PATRA PHYSICAL REVIEW A 65 043809
tions of the electromagnetic field and sample-to-sample fl
tuations of the properties of the random medium. None
these theories included saturation effects of the medium
that they break down when the lasing threshold is
proached. Apart from saturation effects for a single mode
large number of modes can be above threshold simu
neously@25#, so that mode competition is important and ca
not be neglected.

This paper is organized as follows. In Sec. II the mo
for the photon statistics inside the laser is described and
model equations are derived. These are then solved in S
III and IV. Section V adds the necessary modifications to
from the fluctuations inside the laser to the fluctuations of
photocurrent emitted by the laser. Until this point all resu
are valid for arbitrary lasers, provided that the outcoupling
weak and the volume of the lasing medium is much lar
than the cube of the wavelength. In Sec. VI we show how
apply the formalism developed in this paper to three exe
plary systems and demonstrate thereby that it can ind
describe all relevant properties of lasing action. In Sec.
the random laser is treated and its photon statistics are c
puted. In Sec. VIII we try to explain the experimental resu
mentioned above. We conclude in Sec. IX.

II. MODEL

We consider a optical cavity that is coupled to the outs
by an opening that is small compared to the wavelength
the emitted radiation~see Fig. 1!. Since the opening is smal
there exist well-defined modes in the cavity, each with
well-defined eigenfrequencyv i , i 51, . . . ,Np , and an
eigenmode profileQ i(rW), and all modes are nonoverlappin
@33# ~In the language of random lasers, this is a ‘‘resona
feedback laser.’’! Each modei thus can be described by th
numberni of photons in it. Photons in modei can escape
through the opening with rategi .

The cavity is filled with an amplifying medium. The me
dium is modeled by a four-level laser dye~see Fig. 2!, where

FIG. 1. A ~chaotic! cavity is coupled to the outside via a sma
opening. The cavity is filled with an amplifying medium. The lig
emitted through the opening is detected.

FIG. 2. Amplification is modeled by a four-level system, whe
lasing action~marked by the wiggly line! is from the third to the
second level. Dashed lines mark transitions that are much fa
than the other ones and thus need not be included in the descrip
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the lasing transition is from the third to the second level. T
transition from the second level to the ground level is
sumed to be so fast that the second level is always em
The density of excited atoms~i.e., atoms in the third level! at
point rW in the cavity is N(rW). Excitations are created b
pumping with rateP(rW) and can be lost nonradiatively wit
ratea(rW).

Coupling between the electromagnetic field and the m
dium depends on two quantities, namely, the eigenmode
file Q i(rW) of modei, and the transition matrix elementw(v)
of the atomic transition 3→2. @Frequentlyw(v) will be a
Lorentzian centered around some frequencyV.# The cou-
pling of modei to the medium at pointrW is then given by
Ki(rW)[w(v i)uQ i(rW)u2.

The semiclassical equations of motion forni andN(rW) are
~the time argument for all quantities has been suppresse!

ṅi52gini1E d3r ~ni11!Ki~rW !N~rW !, ~1a!

Ṅ~rW !5P~rW !2a~rW !N~rW !2(
i 51

Np

~ni11!Ki~rW !N~rW !. ~1b!

‘‘Semiclassical’’ means that all emission events, pumpi
events, etc. are assumed to be deterministic, with spont
ous emission described by the addition of a virtual photon
ni when computing the transition rates@34#.

To include the randomness of all processes, Lange
terms have to be added to Eq.~1!. The four random pro-
cesses are the escape of photons~described by the Langevin
term G i), pumping @described byF(rW)#, relaxation of the
medium@described bya(rW)#, and emission of a photon into
modei at pointrW @described byC i(rW)#. Each of these terms
has zero mean and a correlator that follows from the assu
tion that the elementary stochastic processes have inde
dent Poisson distributions, hence

^G i~ t !G j~ t8!&5d i j d~ t2t8!gi^ni&, ~2a!

^a~rW,t !a~rW8,t8!&5d3~rW2rW8!d~ t2t8!a~rW !^N~rW !&,
~2b!

^F~rW,t !F~rW8,t8!&5d3~rW2rW8!d~ t2t8!^P~rW !&, ~2c!

^C i~rW,t !C j~rW8,t8!&5d i j d
3~rW2rW8!d~ t2t8!Ki~rW !

3^~ni11!N~rW !&. ~2d!

Equation~2d! corresponds with the correlator given in E
~5b! of Ref. @24#.

Adding the terms from Eq.~2! to Eq. ~1! gives the com-
plete equations of motion,

ṅi52gini1G i1E d3rW~ni11!Ki~rW !N~rW !1E d3rWC i~rW !,

~3a!
ter
on.
9-2
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THEORY FOR PHOTON STATISTICS OF RANDOM LASERS PHYSICAL REVIEW A65 043809
Ṅ~rW !5P~rW !1F~rW !2a~rW !N~rW !1a~rW !

2(
i 51

Np

~ni11!Ki~rW !N~rW !2(
i 51

Np

C i~rW !. ~3b!

The sign of the Langevin terms may be chosen freely as l
as the termC i(rW) has the opposite sign in the equations
ṅ and Ṅ.

III. LINEARIZATION

Equation~3! cannot be solved by direct numerical met
ods since Langevin terms cannot be represented as ‘‘r
numbers. The only practicable way to proceed is to linea
the equations. First, we writeni5n̄i1dni and N(rW)5N̄(rW)
1dN(rW), wheren̄i[^ni& andN̄(rW)5^N(rW)& are the average
solutions. We assume that these average solutions are id
cal to the solutions of the deterministic rate equation~1!.
This is equivalent to the factorizing approximatio

^niN(rW)&'^ni&^N(rW)&. For a single-mode cavity like tha
used in cavity QED this is a bad approximation, leading
errors of up to a factor 1/4 in the computed average pho
density, but if the number of modes in the cavity is large
which is the case that we are interested in—this factoriza
is valid @28#.

Inserting this solution, Eq.~3! can be reformulated so tha
only dni and dN(rW) remain as variables. Linearizatio
means that only terms proportional todni or dN(rW) are kept,
i.e., terms proportional todnidN(rW) are omitted.~This is
justified as long as the variance is sufficiently smaller th
the mean. This condition is equivalent to the validity of t
factorizing approximation used above. It can be chec
self-consistently from the computed results.! This way one
arrives at an equation for the fluctuations alone, where
coefficients depend on the average solution,

dṅi52gidni1G i1E d3rW~ n̄i11!Ki~rW !dN~rW !

1E d3rWdniKi~rW !N̄~rW !1E d3rWC i~rW !, ~4a!

dṄ~rW !5F~rW !2a~rW !dN~rW !1a~rW !2(
i

~ n̄i11!Ki~rW !dN~rW !

2(
i

dniKi~rW !N̄~rW !2(
i 51

Np

C i~rW !. ~4b!

For convenience, we will label the sum of the Langev
terms in Eq.~4a! as f i and the sum in Eq.~4b! as g(rW).
Evaluating the Langevin terms from Eq.~2! at the average
solutionsn̄ and N̄ gives

^ f i f j&5d i j Fgi n̄i1E d3rW~ n̄i11!Ki~rW !N~rW !G52d i j gi n̄i ,

~5a!
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^g~rW !g~rW 8!&5d3~rW2rW 8!Fa~rW !P~rW !1N̄~rW !

1(
i 51

Np

~ n̄i11!Ki~rW !N̄~rW !G
52d3~rW2rW 8!P~rW !, ~5b!

^ f ig~rW !&52~ n̄i11!Ki~rW !N̄~rW !. ~5c!

IV. DISCRETIZATION AND NUMERICAL SOLUTION

We now discretize the equations in space by pick
points rW j , j 51, . . . ,Ns. Defining Ki j [Ki(rW j ) and Nj

[N(rW j ) ~analogously for all other quantities!, the stationary
densitiesn̄i andN̄j from Eq.~1! are the solution of the equa
tions

gi n̄i5(
j 51

Ns

~ n̄i11!Ki j N̄j ~ i 51, . . . ,Np!, ~6a!

Pj5ajN̄j1(
i 51

Ns

~ n̄i11!Ki j N̄j ~ j 51, . . . ,Ns!. ~6b!

This equation cannot be solved analytically but a numer
solution is straightforward~even though it may be numeri
cally expensive ifNp and/orNs are large!.

Equation~4! now becomes a linear ordinary differenti
equation,

d

dt S dni

dNj
D 5S 2gi1(

j
Ki j N̄j ~ n̄i11!Ki j

2Ki j N̄j 2aj2(
i

~ n̄i11!Ki j

D
3S dni

dNj
D 1S f i

gj
D , ~7!

where it is understood that all indicesi run from 1 toNp and
all indicesj from 1 to Ns, so that the previous equation ca
be written as an (Np1Ns)-dimensional matrix equationdN
5AdN1L. Computing fromA its matrixU of eigenvectors
and its vectorE of eigenvalues, the formal solution can im
mediately be written down as

dNj~ t !5 (
k,l 51

Np1Ns E
2`

t

dt8UjkeEk(t2t8)U kl
21Ll~ t8!. ~8!

Since the vectorL consists of Langevin terms, a numerical
computed solution of Eq.~8! is not meaningful. Instead
of dNj (t) alone one has to consider correlato
^dNj (t)dNj 8(t)&. Noting that theL’s are delta correlated in
time and that we are interested int→` ~as we are not inter-
ested in intermittent behavior when switching on the lase!,
we arrive at
9-3
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M. PATRA PHYSICAL REVIEW A 65 043809
^dNjdNj 8&52 (
k,l ,m,n51

Np1Ns UjmUj 8nU mk
21U nl

21

Em1En
^LkLl&. ~9!

Inserting the expectation values of the correlators from
~5! gives the final result where a numerical solution is ea
once the average solutionn̄i , N̄j is known. (̂ LkLl& has to
evaluated at the average solution and thus does not de
on time.!

V. OUTCOUPLING

So far we have considered the number of photonsni in
the i th modeinside the cavity. For practical purposes one
more interested in the photocurrentI emittedfrom the cavity.
(I gives the number of photons emitted per unit time and
thus equal to the photon flux integrated over the entire cro
sectional area.! Even though the photons from differen
modesi are emitted through the same opening, each m
has a distinct frequencyv i so that the modes are easily di
tinguished on the outside. We can thus define the photo
rent j i(t)[ j̄ i1d j i(t) through the opening due to thei th
mode in the cavity. The photocurrent can, for example,
measured by an~ideal! photodetector that absorbs the em
ted photons. The fluctuations of the photocurrent with
some timet ~we assume the limitt→`) are quantified by
the noise power

Pi5 lim
t→`

1

tE2t/2

t/2

dt d j ~0!d j ~ t !. ~10!

The ratio Fi5Pi / j̄ i is called the Fano factor and is fre
quently used to describe the fluctuation properties of opt
radiation.

In Sec. II we have introduced the loss ratesgi . From their
definition it is obvious that the mean photocurrentj̄ i is

j̄ i5gin̄i . ~11!

To also compute the fluctuationsd j i we need to treat the
outcoupling in more detail. In a traditional laser~see Fig. 3!
the loss rategi is given by the ratio of the transmissio
probability t i ~in classical optics referred to as ‘‘transmittiv
ity’’ ! through the outcoupling mirror and the round-trip tim
T through the cavity,

gi5t i /T. ~12!

FIG. 3. The loss rate of photons inside the cavity is given by
ratio of the probabilityt i that a photon incident on the outcouplin
mirror is transmitted and the timeT needed for one round-trip
through the cavity. The photons emitted from the cavity are dete
by an ideal photodetector.
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The transmission through the outcoupling mirror changes
noise of the signal compared to the noise inside the cav
and the Fano factor of the emitted radiation is@26#

Fi5t i

^dnidni&

n̄i

112t i . ~13!

This equation can, apart from following the quantum-optic
approach of Ref.@26#, also be understood by the followin
simple argument: The fraction̂dnidni&/n̄i on the right-hand
side is the Fano factor of the radiation trapped inside
cavity in modei. With probability t i the detector will ‘‘see’’
the radiation inside the cavity, and with probability 12t i it
will see reflected vacuum fluctuations~which have a Fano
factor equal to 1).

The Fano factor for a measurement where the phot
emitted from the cavity in all modes are detected simu
neously is

F5

(
i

t i
2^dnidni&

(
i

t i n̄i

1

(
i

t i~12t i !n̄i

(
i

t i n̄i

. ~14!

It is immediately obvious thatt i and gi can for a tradi-
tional laser be identified by properly choosing the unit
time ~for the simple laser from Fig. 3: by choosingT as the
unit of time!. We will show in Sec. VII that this is also
possible for a random laser. In the following, when givin
numerical values or distribution functions forgi this identi-
fication has been made.

VI. COMPARISON OF LASING REGIMES

To demonstrate the application of the formalism presen
in this paper and the validity of the approximations made
this paper we first want to discuss three simple cases
involving random media. For simplicity we seta[w[1,
Ns5Np , andK[const. This reduces the number of para
eters significantly without reducing the physical content.

The physical features of a laser~in contrast to a linear
amplifier! are easily understood in the following picture:
certain number of excited atoms are created by pump
within a certain time, and each of those excitations has to
‘‘consumed’’ either by nonradiative relaxation or by emittin
one photon from the cavity. For high photon number in t
cavity, nonradiative relaxation can be neglected, and e
pumping event eventually leads to the emission of one p
ton from the cavity. The fluctuations of theintegratedpho-
tocurrent are thus equal to the fluctuations of the pu
source, assumed to be Poissonian throughout this paper

In Fig. 4~a! the single-mode laser (Np51) with a small
opening (g51022) is treated. The computed curve repr
duces the features of a ‘‘traditional’’ laser. The precise loc
tion of the maximum is somewhat off~see the discussion o
the factorization approximation above, or refer to Ref.@27#
for a more detailed discussion of the effects of different a
proximations on the computed curve near the lasing thre

e

d
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FIG. 4. Comparison of the Fano factorF for three different conditions. The left axis~solid line! depicts the Fano factor for the integrate
emitted radiation, the right axis~dashed line! for the lasing mode only.~a! Laser with just a single mode.~b! Laser with a cavity supporting
ten modes where one mode is coupled out much less than the others, thus effectively modeling a single-mode laser withb'0.1. ~c! Laser
with ten identical modes.
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old!, but its height reproduces the exact quantum-mechan
value well. For high values of the pumping, the photon s
tistics of the emitted radiation becomes Poissonian, as qu
tatively explained above.

In Fig. 4~b! we have modeled a laser with one mo
coupled to the outside withg51022 and the other nine
modes withg51021, henceNp510. ~The valueg51022

was chosen for scaling the axes of the figure.! The mode with
the smallestg will be the lasing mode, whereas radiation
the other modes quickly escapes to the outside so tha
significant number of photons can accumulate in th
modes. This basically models a single-mode laser where
a fractionb51/Np of the spontaneous radiation is emitte
into the lasing mode. (b is called the spontaneous-emissi
factor. An ideal cavity-QED laser hasb51 whereas a semi
conductor laser can have ab as low asb51028.! The be-
havior is similar to Fig. 4~a!, except that the peak of the Fan
factor of the lasing mode is larger by about a factor of 8. F
smallb, one expects a scaling}b21/2'3 @28# but b51 and
b50.1 are too large for that scaling to be exactly valid.

In Fig. 4~c! the system is kept atNp510 with all gi
[1022. The total radiation depicts the same qualitative b
havior as for the two cases presented so far but the radia
emitted by the lasing mode alone~in this case, by an arbi
trary but fixed mode! depicts a completely different picture
The Fano factor diverges as the pumping is increased. Th
easily understood by the qualitative description given abo
For high pumping, every pump excitation eventually resu
in one photon being emitted from the cavity, but if there a
several lasing modes the photon still has the freedom
chose one of those modes. These additional fluctuations
be so large that they eventually lead to a very large F
factor for large pumping.~It is obvious that the Langevin
approach will break down eventually if the fluctuations b
come too large, as explained above.!

The three test cases show that the model presented he
able to explain all relevant features of a laser.

VII. RANDOM LASER

A random laser is a laser where the feedback is not du
mirrors at the ends of the laser but due to chaotic scatter
either caused by scatterers placed at random positions or
04380
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chaotic shape of the cavity@1,3#. If the mean outcoupling is
weak, a large number of modes in the cavity can be ab
threshold simultaneously@25#. As seen above, mode comp
tition introduces additional noise into the modes. Howev
even if there are several modes above threshold, there
will be mode competitionif the modes are spatially overlap
ping and thus are ‘‘eating’’ from the same excitations. T
main purpose of this paper is to answer the question
whether in a random laser there is a relevant level of mo
competition noise or whether the radiation emitted in a la
line approaches Poissonian statistics for strong pumpin
both statements are mutually exclusively.

We consider a chaotic cavity as depicted in Fig. 1 with
small opening to the outside. This problem becomes a
chastic problem by considering an ensemble of cavities w
small variations in shape or scatterer positions. The coe
cients appearing in Eq.~6! thus become random quantitie
The statistics of these coefficients for a chaotic cavity with
small opening is known@29,30#. The mean loss rateḡ of a
cavity with volumeV through a hole of diameterd at fre-
quencyv is @31#

ḡ5
16p2d6v6

c6

p2c3

v2V2
[ t̄d. ~15!

d is the level spacing of the cavity. Its inverse 1/d is the time
needed to explore the entire phase space inside the cavity
can be identified with the round-trip time introduced for
‘‘traditional laser’’ in Eq. ~12!.

In a chaotic cavity the modesQ i(rW) can be modeled as
random superpositions of plane waves@32#. This implies a
Gaussian distribution forQ i(rW) at any pointrW @35#. The loss
rategi is proportional to the square of the gradient ofQ(rW)
normal to the opening at the opening, hence its distributio

F~gi !5
e22gi /ḡ

A2pgiḡ
~16!

andgi andgj are uncorrelated foriÞ j .
9-5
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M. PATRA PHYSICAL REVIEW A 65 043809
It should be noted that the level spacingd is no random
quantity, so thatgi and t i can be identified by choosing 1/d
as the unit of time.

For simplicity we assume that the amplification profi
w[1 so that the distribution of the eigenfrequencies is
needed to computeKi j . ~The distribution is known@29# so
that an extension to nonconstantw is straightforward.!

Figure 5 shows the computed Fano factor for a particu
sample from this ensemble (Np510, ḡ50.5, but it should
be kept in mind that the value ofg of the lasing mode is
much smaller thanḡ @21,23#!. This kind of curve is typical
for all members of the ensemble, while the precise sh
varies. When the first mode crosses the lasing threshold
Fano factor goes through a maximum. While there is a glo
decrease with increasing pumping, additional peaks are
perimposed each time another mode crosses the la
threshold.~In the following a mode is considered to be abo
lasing threshold if it contains at least two photons, but
results are basically independent of whether one choo
one, two, or ten photons.! The Fano factor approaches th
value 1 along with some finite difference. Mode-competiti
noise thus gives a contribution to the noise but there
exists a lasing threshold that is well defined by a peak ofF.

Similarly to computing the fluctuations of the Fano fact
it is possible to compute the fluctuationsdN(rW) of the den-
sity of excited atoms directly from Eq.~9!. Figure 6 depicts
the computed fluctuations for the entire cavity~dashed lines!
as well as for the pointrW l where the eigenmode profileQ l(rW)
of the primary lasing mode has the largest magnitude.
former quantity peaks at a significantly larger pumpingP,
which is immediately understood by noticing that the p
mary lasing mode affects only part of the total cavity, and
significant part of the cavity is left ‘‘untouched’’ until mor
modes have crossed the lasing threshold.

The two global quantities depicted

^@*d3rWdN(rW)#2&/*d3rWN̄(rW) and ^*d3rWdN2(rW)&/*d3rWN̄(rW),
differ by the inclusion of termŝ dN(rW1)dN(rW2)&, rW1ÞrW2.
The different heights of the peaks~the first one is higher!
demonstrate that~at least in the relevant interval ofP, and on

FIG. 5. Fano factor of the radiation emitted from the~primary!
lasing mode~left axis, solid line! of some particular sample. Th
right axis ~dashed line! depicts the number of modes above lasi
threshold. Each additional mode crossing the threshold incre
the Fano factor of the primary lasing mode.
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average! the density of excited atoms at different positions
positively correlated. This can be understood in the follo
ing simple picture: The photon densitiesni and the excitation
densitiesN(rW) are on average negatively correlated sin
each emission of an extra photon (dni.0) leads to the de-
excitation of an atom@dN(rW),0# and vice versa, hence
^dnidN(rW)&,0. @This has also been confirmed by compu
ing this correlator numerically from Eq.~9!#. Since the ex-
cited atoms at different positions communicate only via
radiation field, their density thus has to be positively cor
lated.

It is difficult to relate the fluctuations of the excitatio
density of the medium to the properties of the emitted lig
With increasing pumping, a peak of^dN2(rW l)&/N̄(r l

W) starts to
form ~cf. Fig. 6! at the same level of pumping as that
which a peak starts to form for the Fano factorF ~cf. Fig. 5!,
but the location of the maximum of the peak is significan
different for both curves. The complicated interplay betwe
radiation modes and matter in a random laser does not a
for a simple understanding of the relation between these
quantities, and we will not discuss the fluctuations of t
medium further in this paper since it focuses on the radiat
properties. The complicated structure of the eigenmodes
chaotic cavity is what makes a random laser fundament
different from a ‘‘traditional’’ laser.

In the following we will concentrate on the radiation an
on the Fano factor far above threshold.P is chosen such tha
P/g'107 ~remember that the value ofg of the lasing mode
fluctuates!. This is a compromise between a value as large
possible to ensure that the limiting value forP→` is ap-
proached as closely as possible and a not too large valueP
to avoid numerical problems~remember that Fig. 5 alread
spans 11 orders of magnitude!.

The main results of a Monte Carlo simulation withNp
510 are depicted in Fig. 7. The scaled Fano factor does
depend on the size of the opening@Fig. 7~a!#, and only
weakly depends on the outcoupling constant of the las
mode@Fig. 7~b!#. As Fig. 7~c! clearly shows, the true depen

es

FIG. 6. Fluctuations of the excitation densityN(rW) of the me-
dium for the sample from Fig. 5. Depicted are the fluctuatio

^dN2(rW l)&/N̄(r l
W) at the pointrW l , where the eigenmode profile of th

primary lasing mode has the largest magnitude~solid line, scaled by

a factor 100!, and the global quantitieŝ@*d3rWdN(rW)#2&/*d3rWN̄(rW)

~long dashes! and ^*d3rWdN2(rW)&/*d3rWN̄(rW) ~short dashes!.
9-6
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FIG. 7. The value of the Fano factor for the primary lasing mode depends on the numberNl of cavity modes above laser threshold, n

on the other parameters; unless otherwise noted, computed from'93105 samples withḡ50.1. ~a! Probability distribution of (F21)/g for

ḡ50.1,0.2, . . . ,0.5. The five curves overlap almost perfectly, thereby demonstrating that the size of the opening does not influe

amount of mode-competition noise generated.~Computed from'105 samples for each value ofḡ with identical realizations forKi j andgi /ḡ

for the five runs.! The inset shows the probability distribution from the large set withḡ50.1 plotted logarithmically.~b! Average of the Fano
factor as a function of the outcoupling constantg of the lasing mode.~c! Average of the Fano factor as a function ofNl .
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dence is on the numberNl of modes above threshold.~The
weak dependence of the Fano factor on the value ofg of the
lasing mode can be understood by noting thatNl is correlated
with g of the lasing mode.! The finite value ofF21 thus
indeed is due to mode-competition noise, as claimed ab

For larger cavities, i.e., cavities with more modes in it, t
distribution of (F21)/g changes from a peak nearF51 to
one that peaks at a finite value of (F21)/g, as seen from
Fig. 8. AsNp andNs increase, the effort to numerically com
pute the average solution from Eq.~6! increases very fast, s
that only a comparably small number of realizations w
computed ('20 000 forNp550 and'4000 for Np5150),
explaining the large sampling error in the histograms.@The
speed could be increased significantly by developing an
timized algorithm for solving Eq.~6!.# For larger Np the
average of (F21)/g becomes smaller as the large-F tail
gradually disappears.~From Np510 to Np5150 the average
becomes smaller by about a factor of 2; the average is d
cult to compute since it sensitively depends on few samp
with largeF.!

VIII. INTERPRETATION OF EXPERIMENTS

Experiments on random lasers are usually explained
the formation of small ‘‘virtual’’ cavities, which can ‘‘trap’’

FIG. 8. Distribution of the scaled Fano factor for cavities w
different numberNp5Ns of modes.
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laser light, so that it is scattered within a small volume ma
times before it can escape; see Fig. 9.~The linear dimension
of such cavities was measured to be of the order of 1
wavelengths@4#.! The chaotic cavity used as a model in th
paper should be understood as representing one of those
tual cavities. It is not obvious which values of the paramet
(Np , Ns, gi , . . . ) areneeded to explain the experiment
In the following we will argue that the important paramete
are the average outcouplingḡ and, even more importantly
the probability distributionP(gi /ḡ) as they together deter
mine the numberNl of modes above lasing threshold.

Above it was shown thatNp and Ns influence the Fano
factor only weakly, i.e., only by a factor of 2, and thus by
much smaller factor than the difference observed in the
periments. Even though it was not explicitly discussed in t
paper, it is obvious that the choice ofw(v) andQ i(rW) will
not be important either. This leavesḡ andP(gi /ḡ) as param-
eters to explain the experiments.

In this paper, a random laser is modeled by a chao
cavity with a small opening. The size of the opening det
mines the average outcouplingḡ, and all gi scale linearly
with ḡ @see Eq.~16!#. For a virtual cavity the average ou
coupling cannot be computed in such a simple geometr
way. The outcouplinggi for the i th mode in such a virtua
cavity depends delicately on the positions of the scatte
and the wavelength of that mode. While no theory is ava
able to computegi or at leastḡ for this case, it is likely that
it will be relatively large as individual scatterers cannot be

FIG. 9. Small ‘‘virtual’’ cavities can be formed by scatterers
the random medium. Photons can be trapped very efficiently~i.e.,
small outcoupling! if the distances between the scatterers are co
patible with the wavelength of the radiation.
9-7
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M. PATRA PHYSICAL REVIEW A 65 043809
effective as a massive wall with only one small opening.
It was shown in Fig. 7~a! that F21}ḡ. This is valid as

long as the size of the opening is small compared to
square of the wavelength. If the opening becomes larger,
modes inside the cavity acquire a finite width~in frequency
space! and start to overlap, severely complicating the the
@36#, and it is not obvious how the behavior changes. C
et al. @9# speculate that this overlapping prevents the form
tion of a fixed photon number in one particular mode
photons are constantly exchanged between modes
nearby frequencies. Furthermore, the Petermann factor o
lasing mode becomes significantly large@22#, which might or
might not increase the amount of fluctuations. While there
no proof that the amount of fluctuations is increased by th
two effects, it seems to be obvious that the amount of fl
tuations will not decrease due to them. Hence,F21 will at
least increase proportionally to the size of the opening—a
for openings that are larger than the region of validity of t
theory presented in this paper.

The previous argument assumes that the numberNl of
lasing modes inside a virtual cavity is the same as fo
chaotic cavity with a small hole. Mode overlap itself do
not change that number, but for a larger opening the dis
bution functionP(gi /ḡ) no longer has the form given by Eq
~16!. The form ofP(gi /ḡ) sensitively depends on the kind o
outcoupling and the number of lasing modes, in turn, se
tively depends onP(gi /ḡ). For example, there already is
large difference between a cavity with one small hole an
cavity with two somewhat smaller holes~so that the total
average loss rate is the same in both cases! @25#. It is very
well possible that the form ofP(gi /ḡ) may look signifi-
cantly different from Eq.~16! and could depend on man
parameters of the sample.

The differences inP(gi /ḡ) and thus in the number o
lasing modes are thus the natural candidates to explain
differences observed in the two experiments.

This prediction could, in principle, be checked expe
mentally by measuring the number of modes above thres
in onevirtual cavity, but to devise an experimental setup
do this seems very difficult, if at all possible. The samp
used by Papazoglou and co-workers@8# should have severa
spatially overlapping modes above lasing threshold~i.e.,
some modes above threshold are in the same virtual cav!,
whereas in the sample by Caoet al. @9# all modes above
re

at

R

04380
e
he

y
o
-
s
ith
he

is
e
-

o

a

i-

i-

a

he

ld

y

lasing threshold should be spatially separated~i.e., be in dif-
ferent virtual cavities!. One explanation could be that th
sample of Caoet al. has more resonant feedback, so that
confinement of the lasing modes is stronger compared
Papazoglou’s sample. In the latter, the modes would be
tended over a much larger part of the sample~i.e., the virtual
cavities are larger!, giving them more possibility to overlap

IX. CONCLUSIONS

In this paper we have developed a theory to compute
fluctuation properties of the radiation of a random las
While for a standard single-mode laser the emitted radia
becomes coherent far above threshold, the radiation fo
random laser fluctuates more. It was shown that this e
noise is due to mode-competition noise, i.e., due to the
certainty of deciding into which mode a photon is emitted
induced emission. This noise is larger, the higher the num
of modes above lasing threshold is.

To be able to create mode-competition noise, the com
ing modes have to be~at least partially! overlapping. On the
other hand, if the profiles of the modes are overlapping
much, usually only one of those modes will be above thre
old. The amount of noise created thus is the result of a d
cate interplay between these two competing effects. Fo
random laser modeled by a chaotic cavity filled with a la
dye, this leads to a finite increase of the Fano factor
above threshold, with the precise value depending on
number of modes within the cavity, which are simult
neously above threshold for that particular realization of
disorder. In particular, the emitted radiation becomes coh
ent if only one mode is above threshold.

Recent experiments on random lasers@8,9# gave conflict-
ing results on whether the noise is increased with respec
the Poissonian value. Even though it is not directly possi
to model the differences in the two experiments, the the
presented in this paper suggests that this is due to the di
ences in the number of modes above threshold. This num
depends heavily on the specific system in question, so
the noise properties of a random laser are not universal
depend on the~experimental! setup.
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