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Resonant enhancement of high-order optical nonlinearities based on atomic coherence
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We show that the effect of coherent population trapping may result in resonant enhanceny&t af
higher-order nonlinearities. The enhancement is accompanied by suppression of the other linear and nonlinear
susceptibility terms. This effect has promise for a realistic scheme of photon phase gates necessary for practical
implementation of quantum processing protocols.
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I. INTRODUCTION Il. MODEL

We consider a mediunfatomic, molecular, semiconduc-

It is well known that the potential devices for quantum tor) with the energy level structure shown in Fig. 1, where
computing and quantum information processing require unilevels |a;) have fast natural decay;. Ground-state levels
tary operations. The main problem faced in the design ofb;) have no decay. The coherence between lejglsand
such devices is the loss in quantum circuits and decoherend®;)(i #J) has slow homogeneous decgy . This decay re-
associated with if1,2]. While the resonant two-level media Sults from either finite time of flight of atoms through the
can provide the highest values of nonlinearities necessary fdpteraction region(for atomic vapors or from phonon-
the interaction of single optical quanta, there is an unavoig@ssociated decoherender solids. For the sake of simplic-
able trade-off between the values of the nonlinear susceptlly We assume thag;; = yo.
bility and the absorptioi3]. This makes the usage of such Thg energy I_evels are coupled .by weak probe electr.omag-
media extremely difficult for quantum computing. netic fields having Rabi frequencies and strong coupling

Coherent effects such as electromagnetically inducegeédrsehgr\]’;nn% R-?ﬁi;reggz?gﬁﬁ]ﬂ-‘tliag)géntmﬁeffe field
transparency(EIT) [4] and coherent population trapping reres With assocl sttions excep Pr !

(CPT) [5,6] attract a lot of attention because of their ability dm-—1 Wh'Ch has a detunmg. The relation between Rabi
. . . frequencies of the probe fields and quantum operators de-
to suppress a linear absorption of a resonant multilevel me:

: ) ) - . scribing the corresponding field mode can be written as
dia, keeping nonlinear susceptibility at a very high level
[7,8]. A number of studies were focused on the creation of >
large x® nonlinearities that allows either effective self- ~_[2meivie

: . : \ a;=¢&a, (€N
action of an electromagnetic field on a single photon energy AV, Tt
level [9], or effective interaction of two electromagnetic
fields due to refractivd8,10,11 and absorptivg12] Kerr ~ where p; is the dipole moment of the transitioa;)
nonlinearities. —|b;),v; is the field frequencyy; is the quantization vol-

In this paper we discuss the possibilities of resonant enume of the mode, and; and a are the annihilation and
hancement ofX(5) and higher-order nonlinearities keeping creation operators.
the losses at a low level. Our proposition is based on the
existence of CPT in multilevel media and resembles the early
ideas of Kerr nonlinearity enhancement. Our estimations
show thaty® nonlinearity may be so high that three-photon
phase gate@@s described belowbecome feasible. Moreover,
constructing an absorptive® nonlinearity, we are able to
remove exactly one photon each from the three modes that
can be useful for quantum logic operation with photonic en-
tangled states.

CPT results in trapping all the population of a resonant
system into the so-called “dark state,” which is uncoupled
from the electromagnetic fields. A weak external disturbance
of the dark state by means of another electromagnetic field
results in the partial destruction of the dark state. This is
accompanied by residual refraction and absorption that can FIG. 1. Energy level schemes for the resonant enhancement of
possess nonlinear properties of great importance for quantufbnlinear susceptibilities of the mediéa) x nonlinearity; (b)
and nonlinear optics. x® nonlinearity;(c) x'™ nonlinearity.

(b)

|b1)
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The Hamiltonian of the generalized atomic syst#il.  for this state is equal to zeroyp =0, ie., H | D)

i1S(c)] in slowly varying amplitude and phase approximations:}\Dm|Dm>:0_ For the scheme shown in Figial, the dark

state is
m—1
A=A am)(am| + A aplam (bl +H.c)+% > (ajla;)
=1 D)= §1Vng+1[by,ny) —Qyqfby 0y +1) 3
2 - .
X(bj|+Q;la;)(bj. 4| +H.c), ®) VEI(N +1)+Q,)2

where H.c. means Hermitian conjugate.
First we assume that—c. Then each system, shown in Similarly, the dark state for the scheme shown in Figp) 1s
Fig. 1, has a dark state. The eigenvalue of the Hamiltoniagiven by

|D3)=(&16,\(N+1)(Ny+1)|bg,nq,Np) — Q&N+ 1]by,ng o+ 1)+ Q105 by ,n + 10+ 1))/
VEE(N +1)(Np+ 1) +|Qo282(n, + 1) +] Q4|21 Q,)%, (4)

and so on. In Eqg3) and(4), the Fock statef;)(i=1,2) is  where|ay|?= £2(n,+1). The Hamiltonian of the system can
the eigenstate QiiTai with eigenvalues; . then be presented in form

Next we consider the case of finite. Strictly speaking,
there is no dark state in the system in this case. However, o ”
when the detuning is large such thae|Q;|>]£|(n;+1), H=k21 2 AN, (6)
|b;) is a quasidark state corresponding to the eigenvalue that —h M2l
goes to zero when the detuning is infinite. In the Appendi
we discuss the level scheme of Figajl(m=2) and derive
the eigenstates and the eigenvectors of the Hamilot2an
An effectiv(tsa)Hamiltonian can then be derived in terms of the
resulting x**’ nonlinearity. 2 2 2

Following the approach of the Appendix we can consider Ne=\p.~ €3(ngt+1) §(np+1) £1(ni+1) )
the case fom=3 [see Fig. )]. As, in the case om=2, 3 A |Q),|2 10,2
we write the Hamiltonian(2) in terms of the basis of states

)\Nhere)\k are the eigenvalugsoots of Eq.(5)] and|\,) are
the corresponding eigenvectors. Here the eigenvalue for the
disturbed dark state is

and the corresponding eigenstate is
|bsz,n1,Ny,n3+1), |by,ny,ny+1n3+1),
|D3)=|by,n;+1n,+1n3+1). 8
|by,ni+1n,+1n3+1), |ag,ng,n,,Ng),
It can be shown that none of the other eigensﬂaq}s (j
lag,ny,ny,ng+1),  |ag,ng,np+1ng+1). =1-5) contain the statfb,). Thus for atoms initially in the
state|b,), the approximate Hamiltonian is
The corresponding equation for the eigenvalues is then of the
form - E &ng+1) &np+1) (ny+1)
2 2
AS+anS+br*+cen3+dA2+en+f=0, (5) nmigng A 12, 1€,
X|by,ni+1n,+1n5+1)

a=A, f=— 2 o, || a2,
EAREAREER X{by,n;+1n,4+1ng+1|. 9

— 2_ 2__ 2_ 2_ 2
b=—]as|*=[a]*~[aa]* Q" ||, To derive an effective Hamiltonian from Ed6), we ex-

changen,+1 by the photon number operatafay .
We can derive now an effective Hamiltonian for the inter-

action of the probe fields with a single atom in the general
d=| a1 |*|aa|?+| aal*| as|?+ | s |*| @]+ [ Q4] 5] form

+ Q]2 Q|2+ Q)2 a4,

c=A(|Q4]2+[ Qo2+ agl?),

2212 m-1 2212
ﬂm:(_l)mlh mamam H iai a, .
e=—A(|ay|?|asl®+ Q% a1 ]?— Q5% Q,]), A= [

(10
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As all the atomic population is eventually optically pumpedunlessa,=0. If a;#0, anda,= a3=0 there is no absorp-
into the dark state and, as discussed above, almost all thi®n due to EIT. The same is true if;#0 anda,#0, but
population of the dark state is in thi,) state, this interac- a3=0. Only when all three probe fields are present the ab-
tion Hamiltonian does not contain atomic operators. sorption is possible.

We next estimate the maximum strength of the field inter- The probability of spontaneous photon emission per unit
action in the case when the medium shows the enhag®d time per single atom shown in Fig(H) can be estimated as
nonlinearity(Fig. 1), i.e.,

m
Ha=7daja;ala,aias, (11 W= 7121 (Dmlaj)(a;|Dm)- (13

where’§ is the coupling constant. Assuming that all param-
eters of the optical transitions are nearly the same and bin the approximation of strong drive and weak probe fields
using the expressiop?/#=3c3y/4v3, we get we find

~ 3 y 1
= — 2 —
o 8’7TN)\ CA nﬂanZ’

—1 2

(12 Enmty &N
Wo=——]] =—. (14)

" Y Jl:[l |QJ|2

whereN is the atomic density in the interaction volumeis

the optical wavelengttg is the speed of light in the vacuum, The probability ofm photon absorption during interaction

andng>1 is the average number of the photons of the couyime 7 is equal tow,,~ and can be very high. We can simply

pling field in the interaction region. We assume here that thge,d the atoms through a cavity with excited probe modes to

interaction and quantization volumes are the same. emove three photons or put the absorbing material inside the
The minimum value of the photon number in the COUp"”gcavity,
field n, is restricted by the necessary conditid¥> \'yoy Let us discuss the possibilities of experimental implemen-

of the validity of the CPT approximation. For an atomic trap, tation of the schemes. For the simplest case of two-photon

70=10"°y~50 Hz can be reached, afid|* should exceed refraction and absorptiofscheme in Fig. (8)] an appropri-

10~ °y? which corresponds to the intensity of 0AW/c.  ate choice is thd®, line of 87Rb[12]. For the level scheme
We now estimate the coupling constahtFor the linear shown in Fig. 1b) any material that has a triplet in the

size of the interaction regioh=0.3 cm, one can have the Ground-state and not less than a triplet in the excited state

power of the coupling field P,=0.3 uW, so that would be appropriate. An example is theé Pidoped ¥%SiO;

1/(ng1nq)=~0.01 (for the interaction time~L/c). Taking  (Pr:YSO) crystal, used recently to demonstrate a slow group

N=3 10 cm 3\=10"* cm, and y/A=0.3, we gets  Velocity of light[13].

~3 10'sL. If we assume that the interaction time is equal It is worth mentioning here that we have so far considered

to L/c, we get phase shibr~3 rad. a homog_eneously broadened medlum_ ano! a r_ez_illzatlon of the
Therefore, atomic coherence allows us to achieve a stronjfh.eme in a Dappler-broadened medium Is difficult. The de-

ning A should be large enough to exceed the Doppler

nonlinear interaction among three electromagnetic waves.. L
This nonlinearity can be only a couple of orders of magni-Wldth Ag. The cqqplmg fields should be much strong.er too.
The usual condition to have a Doppler-free EIT |Q|

tude less than the maximum susceptibility of an atomic sys o -
tem. We point out that a single photon absorption of a weak> A4V Yo/ y- If these conditions are satisfied the factdr
resonant radiation propagating through a two-level Systerrpecomes 5—6 orders of magnitude less then the factor calcu-
which actually determines the maximum of the susceptibilitylated above.
(inverse Beer’s lengthis equal to 3IN%/87 [cf. Eq. (12)].
However, winning in the value of the nonlinearity we lose in
the bandwidth of the nonlinearity. The effective interaction
can be achieved for the continuous waves only. An experi- The above analysis is valid for the cw regime. Propaga-
mental realization of the interaction for light pulses is not sotion substantially modifies the nonlinear interaction, includ-
simple. We discuss this problem in the next section. ing both the refractive and absorptive nonlinearities. The rea-

If the detuningA is small compared tey, the refractive  son for this modification was recognized ja0]. Let us
nonlinearity is small. However, the absorptive nonlinearity ispresent here a simple argument to explain the phenomenon
large. In the case of the scheme Figa)lthe probability of and estimate a phase shift occurring among copropagating
simultaneous absorption of two photons fram and «a, pulses in the nonlinear medium.
fields significantly exceed the probability of independent We consider here the probe pulses initially having the
photon absorptiof12]. In the more general case consideredsame shape and overlapping envelops. This picture changes
here[Fig. 1(b)], the probability ofthreephoton absorption after the pulses enter the nonlinear medium. As almost all the
significantly exceeds the other absorption probabilities. atomic population is collected in th®,) atomic level(see

If initially only the driving fieldsQ; and(), are applied Fig. 1), the pulse of the probe field; propagates much
to the atom, only leve|b,) is populated. When the atom slower than the other puls¢4]. The group velocity of this
starts to interact with probe photons there is no absorptiopulse can be estimated as

IIl. PROPAGATION PROBLEM
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-1 not introduce nonlinearity itself and do not change the non-
<cC. (15)  linear interaction we discussed above.
Slowing down of the light pulse can be achieved by using
) ) ) different isotopes in the atomic cell. One isotope creates an
The spatial dimensions of the pulse changes, t00. If thegfactive nonlinear interaction between fields while the other
length of the pulse in the vacuum wag, it reduces up 10 jspiope influences on the group velocity of the pulses.
Lavgi/c in the medium. The peak Rabi frequency of the  The jdea of controlling the group velocity of the pulses by
pulse stays unchanged. _ means of different atoms works for us, too. However, it
The other probe pulses propagate with the speed close fRight be impractical for the case of many fields. Instead of
the speed of light in the vacuum because the atomic statgs;| atoms quantum dotéartificial atoms”) may be used.
the pulses interact with are almost_ empty. These pulses pag§e can control the level structure of a quantum dot by
the slow pulse and leave the medium first. changing its shape and size. Practical usage of quantum dots,
To estimate the phase shift acquired by the probe pulsegoyever, is complicated because of different types of nonra-
due to the interaction using Hamiltonida0), we have to  jiative broadenings associated with quantum (bE.
know the interaction time and the number of atoms interact-  apother problem is associated with the nonlinear pulse
ing with the pulses during this time. We consider the casg)qpagation. Due to the nonlinear interaction, different parts
when the length of the medium exceeds the compressegt the pulse acquires different phase shift during propaga-
length of the slow pulse, i.eL.>L ,vqi/c. Then the interac- o For the case of a single-modglane wavg field dis-
tion time is determined b){ thg passage time of the fast pulse§;ssed so far, this is not a problem. We first explain the
through the slow one. This time is equalltg/c. The num-  ggsence of the problem considering the example of two

ber of atoms interacting with the pulses is determined by thg|ses interacting via atoms iN-type level configuration
volume of the spatially compressed slow pulse and is mucligig 1(g)].

smaller than the number of atoms contained in the cell. We 5 e pulses move with the same velocity, the solution
can estimate this number &L, Avy,/c, where A is the 4t the cell exit can be written in the forfa1]
cross-sectional area of the probe laser beams.

We now estimate the phase shift in the case of interaction
of three pulses. The effective interaction Hamiltonian can be E . (Lb)= Eal(O,t’)exr[igLIAEZZ(O,t’)Eaz(o,t’)],

~| 2
Ugl 87TN)\ |Ql|2

presented in the form similar to E¢L1), (18)

N 3 Aata ata ata

Hs=%6"aja;aa,a5a3, (16

- E,o(L,t)=E,(0tYexdigLE!,(0t)E,,(0t")],

where §’ is the new coupling constant a2l 1) = B2 Ot exi1gL Ear (0 (0] (19)

~ 3 y\M 1 c

“8nA Ang, L, 17 : :
™ No2 Lo where E,; and E,, are the quantum operators of pulses’

. . . . field, t'=t—L/v, is the retarded time, ang is the interac-
This couplmg constagt 'BC/(L“lfgl)%l times weall<er than tion constant. Ag it follows from Eq$198) ;gd(lg) the non-
the coupling constand (12) derived in cw approximation. jinear phase shift changes for each pulse with time. This shift
Our estimation gives the same result as the strict calculatioy smal| in the tails of the pulse and large in the pulse center.
performed for the case of the two probe field{10]. The  Thjs can restrict the application of the nonlinearity signifi-
numerical factor “3/(8r)" can be modified depending on cantly,
the pulse shapes. o . _ The problem of different phase shifts is valid for all kinds
According to Eq(17) it is impossible to get a phase shift of nonlinearities because it depends on the pulse geometry.
per probe photon more than unity because the maximunye see two ways for the solution of this problem. One way
phase shifté’L,/c contains all multipliers less than 1. To is based on the obvious use of long pulses with small tails.
overcome this situation, the technique proposefllilf may  The inhomogeneous phase shift appears on the tails only
be applied. The main idea is to slow down all the probeand, hence, it can be reduced. Another way is based on the
pulses so that their group velocities are equal to each othensage of pulses with a little mismatch between group veloci-
Then the interaction time between the pulses increases by thies. If we send a slower pulse on the front of a faster pulse,
factor Lc/(L,vgq1), thus returning us to our previous cw the faster pulse passes the slower pulse in the nonlinear me-
result. dium. During this passage each point of one pulse interacts
As it was noted irf11], group velocity of the fast pulse in with each point of the other pulse. Therefore, each point of
an N-type level scheme can be reduced if the atomic celboth the pulses acquires the same, averaged, phase shift. The
contains not only the atoms that induce the nonlinear intergroup velocity mismatch should be chosen in such a way that
action between electromagnetic fields, but also other atomshe pulse interaction time nearly corresponds to the time of
These atoms create &-type scheme for the fast pulse and pulse crossing the nonlinear mediurh6]. It might be a
slow it down[14]. By choosing an appropriate density of the problem, however, to use this technique to achieve efficient
miscellaneous gas we are able to match the group velocitigateraction between multipléthree or morg pulses. This
and increase the nonlinear interaction. Thaype atoms do question will be discussed in detail elsewhere.
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IV. MULTIPHOTON QUANTUM PHASE GATES I i
. . o o —Huphred Wi Hu
We now discuss the potential applications of the logic T tTT
gates based on the interacti¢hl). It is well known that a  |m) U g | U L @ L
unitary transformationone-bit gat¢ and a two-bit condi- :I“_‘_‘_ T
tional quantum phase gate form a universal quantum com- |H) — —hl o :_i_ L
puter. The one-bit quantum gate for tH& qubit is given by R ~
t
| cosé —ie"'¥sing FIG. 2. A scheme for the implementation of Grover’s algorithm
0,6 —iel’sing cosf (20) for eight objects =3) based on the multiphoton quantum phase
gate.
The transformation for a two-bit quantum phase gate is given N 1
b
y |s)=— > lag,az, . . . ag), (24)
\/N ap,ag, ..., aq=0

QP ary, ) =exli 704, 10a,1)|a1,@2), (21
i.e., a superposition of all possibi states. Now aroracle
where|a,) and|a,) stand for the basis staté8) or |1) of  flips the phase of a target stdte in the superpositiofs) via

the two qubits, and,,_, is the Kroneckes symbol, whichis ~ an operationC,=1—2|t)(t|. The objective is to determine
. v . the target state. Next an inversion about the mean is accom-
equal to 1 if there is a photon in the modg and zero

; : lished viaN=1-2|s)(s|. In the Grover’s algorithm the
otherwise. Thus the quantum phase gate introduces a phaggmbined operataf= — C\'is applied on the initial statk

7 only when both the qubits in the input state are 1. Thus,. = " .
for example, a representation of the quantum phase gate wi es. Whenk=mN/4, the .probablllty of recovering the
target statét) becomes maximurfil9].

7= s given by In Fig. 2 we present a scheme for the implementation of
Grover’s algorithm for eight objectsq&3) based on the

(2)—
Q%’'=10,0(0,0+(0,20.1 multiphoton quantum phase gate discussed earlier. The basis
+]1,00(1,0—]1,1(1,1]. (22)  of the quantum states we are working in can consist of the
horizontally and vertically polarized one-photon states

This phase gate can be realized by means of a lossless Kerr

medium, for example using the medium with levels shown in IH)= 1) V)= ( 0) _ (25)
Fig. 1(a), i.e., Q@ =exp(~iH,4). 0 1
There are, however, situations where one may madit . ]
quantum phase gate defined via Then the unitary transformations
QPlay.az, ... ap) _Lrt _(0 .
=— = 2
Ul \/E 1 1 ’ U2 1 0 ( 6)

:eXF(| 775a1,15a2,1 e 5am'1)|al,a2, - a'm>,

(23 can be realized by a/2 plate rotated at ar/8 angle and a
N\/2 plate rotated at ar/4 angle.

i.e., a phasey is introduced when all the qubits are in state
|1). It is easily seen that such a multiphoton phase gate can V. CONCLUSION

. . . (m) _ ST
be constructed via interactiofl0) Q" =exp(-iHm#),7 In conclusion, we have proposed a realization of media

=or. Such a construction is extremely simple as compared tQyith resonantly enhanceg® and higher orders of optical

a possible but cumbersome implementation via one-bit uningnlinearity where one-photon resonant absorption is sup-

tary gate and two-bit quantum phase gate. For example, &hressed due to coherence effects. Such media are useful for
implementation of one three-bit quantum phase gate Majhe creation of logical elements necessary for quantum com-

require five two-bit quantum phase gates and four one-bipytation. We have discussed an example of Grover's search
unitary gate[17]. Such higher-order quantum phase gatesygorithm improved by the application of nonlinear gates

may have' important applicatio'ns .in quantu'm computin_g.based on the nonlinearities of higher orders.
Here we discuss one such application in the implementation

of Grover’s quantum search algorithrh8].

The Grover’s algorithm for the search of an item in an
unsorted database containifg=29 items can be accom-  The authors gratefully acknowledge the support from Air
plished as follows. In the first step, an initial state Force Research LaboratoriéRome, New York, DARPA-
|01,0, ...,Q) undergoes Walsh-Hadamard transformationQuiST, TAMU Telecommunication and Informatics Task
W which rotates each qubit fron®) to (|0)+|1))/y2 and  Force (TITF) initiative, the Office of Naval Research, and
|1) to (|1)—|0))/\/2. The resulting state is the Welch Foundation.
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APPENDIX: DERIVATION OF AN EFFECTIVE
HAMILTONIAN FOR A FOUR-LEVEL N SCHEME

Here we consider the level scheme shown in Fi@).1

PHYSICAL REVIEW A 65 043804

(lag,ny,na+1)+[by,ng,n+ 1)),

|)\2>:E

The Hamiltonian describing the atom-field interaction has

the form([cf. Eq. (2)]

0 o O, O
. al 0 0 O
Mg 0 0 a (AD
0 0 @, A
We introduce the basis of states
|by,ni+1n,+1), |ag,ng,ny,+1), (A2)
Iba,n1,np+1),  [az,ng,ny),

and calculate the eigenvalues of the Hamiltonian in this ba-

sis. The eigenvalue equation is

_}\ gl\ n1+1 QI 0

gl\l’l1+l _)\ 0 O 0
Ql O _)\ 52\/n2+1 o
0 0 52\ n2+1 A_)\
(A3)

Equation(A3) can be rewritten in the usual algebraic form

A +an3+ba%+ch+d=0, (A4)
where
a=—A,d=£¢5(n+1)(ny+ 1),
b=—&l(n;+1)=[Q4* =~ &(n+ 1),
c=A[£(n+1)+|Q4]2].

We solve this equation assumings>|Q,|> & n;+1. The
resultant eigenvalues are

)\1:A,

No=VEN(n +1)+|Qq)2

A= — &N +1)+]|Qq[?,

285 +1)(ny+1)
AlQ,?

)\45)\522 -

1
(lag,ng,np+1)—[by,ny,np+1)),

Na)=—
| 3> \/E
INg)=|Dz)=|bs,n;+1n,+1).

The eigenvlua\f,2 and the corresponding eigenvectﬁrz)

correspond to the disturbed dark state. Thus an atom initially
in state|b) will remain there and the atom-field interaction is
purely dispersive as shown below.

The Hamiltonian of the system can now be written in the
form

4 o
Ho=2 > ANdNO(N, (A5)
k=1 nq,n,

and for an atom initially in the staté) can be approximated
as

H2~ E h)\52|52><52|, (A6)
nqy,no
where\, are the eigenvaludsoots of Eq.(A4)] and|\,) are

the corresponding eigenvectors. Using the above results we
represent this expression as

©

A~-7% >,

nqy,No A

E(n,+1) (ny+1)
Q42

X|by,ny+1n,4+1)(by,n +1n,+1].

(A7)

To derive an effective Hamiltonian from Eg@A5), we
exchangen,+1 by the photon number operatafa,
. glala; Zaza,

2= A

. n%z lby,ny+1n,+1)

X (by,ny+1n,+1]
2215 p2tn
§1a;a; £335ay

=—nh . (A8)
A2

As all the atomic population is eventually optically pumped
into the dark state, almost all the population of the dark state
is in the |b;) state. Therefore, we have not included the
atomic operators in the interaction Hamiltonian in the last

It is easy to calculate the corresponding eigenvectors ant€ of EqQ.(A7). To keep all the population in the dark state

they are

|)\1>:|a21n11n2>1

during the interaction process, we need to satisfy adiabaticity
the conditionQT>1, whereT is a characteristic time of the
process.
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