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Adaptive quantum measurements of a continuously varying phase
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We analyze the problem of quantum-limited estimation of a stochastically varying phase of a continuous
beam(rather than a pulgeof the electromagnetic field. We consider both nonadaptive and adaptive measure-
ments, and both dyne detectidnsing a local oscillatgrand interferometric detection. We take the phase
variation to begp= Jk&(t), where&(t) is 5-correlated Gaussian noise. For a beam of poyethe important
dimensionless parameter = P/A wk, the number of photons per coherence time. For the case of dyne
detection, both continuous-wayew) coherent beams and divroadbangisqueezed beams are considered. For
a coherent beam a simple feedback scheme gives good results, with a phase vahané&2. This is 2
times smaller than that achievable by nonadaptheterodyng detection. For a squeezed beam a more accu-
rate feedback scheme gives a variance scaliny &, compared td\ ™% for heterodyne detection. For the
case of interferometry only a coherent input into one port is considered. The locally optimal feedback scheme
is identified, and it is shown to give a variance scaling\Nas”?. It offers a significant improvement over
nonadaptive interferometry only fod of order unity.
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[. INTRODUCTION where the measurements are made on a sifyle- or two-
mode pulse with finite duration and a single fixed phase. In
The phase of an electromagnetic field is not a quantityoractice, if we wish to transmit information via a beam, a
that can be directly measured. All phase-measuremeritme-varying phase would be more convenient. A time-
schemes rely on measurement of some other quantity, whictgrying phase may also arise through random fluctuations,
necessarily introduces an excess uncertainty in the phase é¥1d we may wish to keep track of the phase as well as pos-
timate. The standard method of measuring the phase of %ib|e; ) . )
single mode is to combine it with a strong local-oscillator Itis a!so possible to model a_broadband signal that carries
field, which is detuned from the signéo the phase changes information by random f!uctuatlong. We_the_refo_re consider
linearly with respect to the signal phas@his is called the the case of a phase subject to white noise in this paper. We

heterodyne scheme, and introduces an excess uncertairffgnsider cw measurements for both dyne measurements and
. — —. interferometry. For the former, we consider both coherent
scaling as I, wheren is the mean photon number. If the

signal phase is known approximately beforehand, the intro.peams and broadband squeezed beams. For interferometry it

duced phase uncertainty can be reduced areatly by using's not clear if there is a cw analog to the optimal two-mode
P Y« greatly by 9 &ates derived in Ref§5,6]. Therefore, we consider only the
local-oscillator phase that i8/2 out of phase with the signal

(homodyne measurements case of a coherent input into one port.

If there is no estimate for the phase available beforehand,
it is still possible to reduce the excess phase uncertainty by Il. ADAPTIVE DYNE MEASUREMENTS ON A
adjusting the local-oscillator phase during the measurement COHERENT BEAM

SO islfodapproxmate a homodyngdmezs_urtla?r[ﬂens].dTge First, we will consider the case of cw dyne measurements
mark Il dyne measurements considered in REf$and[3] o, 5 ingle beam with a varying phase. It is simplest to

introduce an excess phase uncertainty scaling@. Itis  consider a coherent beam with amplitude= | «| exio(t)]
eVﬂ pOSSible to attain the theoretical I|m|t, Scaling aqf]aving a constant magnitude’ but Varying phase_ The magni_
Inn/n?, using a more sophisticated feedback schéie tude is scaled so that|? is the photon flux P/iw). As
The case of interferometry is quite similar. In interferom- explained above, the phase is assumed to diffuse in time,
etry we wish to measure the phase shift in one arm of an
interferometer by counting photons in the output ports. If a o(t+dt)=(t) + VkdW'(t). (2.7)
phase shift varying linearly in time is introduced into the
other arm(analogous to the heterodyne chsbere is a large  HeredW’ is a Wiener increment satisfyingl (V' )2=dt. The
introduced phase variance scalingias. On the other hand, spectrum for the coherent beam is a Lorentzian of linewidth
if feedback is used to adjust the auxiliary phase shift adap¢full width at half maximum «.
tively, the introduced phase variance is greatly reduéel. As in the single-shot case, a quadrature of the field is
These studies are all based on single-shot measuremeniseasured by combining the mode to be measured with a
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large-amplitude local-oscillator field at a 50:50 beam splittervariance of®(t) with respect to the new system phasé
and measuring the outputs with photodetectors. The photo+ dt) will be A®?+ kdt. The variance in the phase estimate

current is then defined by from the latest time interval(t), will be given by Eq.(2.7).
If we take a weighted average &¥(t) and6(t), then the
()= lim lim ON, — SN 2.2 contributions from each of the phase estimates from the in-

dividual time intervals should be correctly weighted, and the
variance in the weighted average should be the equilibrium
wheresN, andSN_ are the outputs from the photodetectorsvalue, A®?. This implies that

and g is the local-oscillator amplitude. For a continuous co-
herent beam this yields

5t—0 B Bot

1
+4|a|?dt=—— (2.9

I(t)dt=2 Re e ' ®W)dt+dW(t), (2.3 AB®?+ kdt AG?

whered(t) is the phase of the local oscillator, adt\(t) is  Solving for A®? givesA®?= \/x/2|a|. If we define
a Wiener increment independent ¥V’ (t).

In making adaptive phase measurements the phase of the N=|a|?k, (2.10
local oscillator is usually taken to bé(t)=o(t)+ /2,
where ¢(t) is some estimate of the system phagg) [7].
With this, the signal becomes

the number of photons per coherence tifoe photon flux
divided by linewidth, we have

I(t)dt=2]a|siM e(t) — (D ]dt+dW(t). (2.4 AO?=1/2{N. (2.11

This is the square root of the analogous resultnifdr a

) ) ) ~ single-shot adaptive measurement on a coherent pulse of
Provided that the estimated system phase is suff|C|entI¥nean photon number.

close tp thfe actual system phase, we can make the linear Explicitly, the weighted average is
approximation

A. Linear approximation

~ 2 2
I(Hdt=2]al[e(t)— p(O]dt+dW(H). (2.5 ot+dy= Haldv 9(t)+@(t2)/(A@ *xdf)
1/A0
Rearranging this equation, we see that (2.12
0(t)=@(t) +1(t)/2 al (2.6 solving this as a differential equation gives

is an unbiased estimator gf(t) based on the data obtained ¢
in the infinitesimal time intervalt,t+dt). We will denote @(t):2|a|\/;f f(s)e?lelVks=0gs.  (2.13
the best phase estimate based on all the data up tot tiype -
O (t). Note that this is thdestphase estimate, in contrast to
the phase estimate used in the feedba¢k). The variance
of each phase estimatt) is given by

Therefore, this method corresponds to a simple negative ex-
ponential scaling of the weighting.
We can also consider a more general negative exponential
dW(t) 2 1 scaling given by
_ 2y
<[0(t) e(t)] > <(2|a|dt >

(2.7

 4lalqdt’ ¢
@(t):xf 6(s)ex(s79ds. (2.14
Here the simple definition of the variance has been used, o

rather than the Holevo phase variarjég ) _ i _
Note that with this more general scalin@(t) is no longer

Viu(0)=[(e'®)|2-1, (2.8)  necessarily the best phase estimate. For most of the remain-
der of this paper®(t) will be used in this more general
as in Refs[2-6]. This is because we are using the linearsense, rather than as specifically the best phase estimate. The
approximation. best phase estimate will be found by finding the optimum
The noise in the estimaté(t) is due entirely to the pho- value of y. Taking the derivative of this expression with
tocurrent noise, rather than the noise in the phaseself.  respect to time gives
Since dW(t) is independent of all previous noise, the up-

dated best estimat® (t+dt) will be a weighted average of O(t+dt)=ydto(t)+(1— xdt)O(t). (2.1
the instantaneous phase estimate) and the estimate from
all the previous dat®(t). This means that this method is again a weighted average,

The equilibrium value of the variance @ (t), with all  except with a weighting that is not optimum. If we find the
the individual phase estimates correctly weighted, will bevariance of both sides of this equation and solveX@r? we
denoted byA®2. From Eq.(2.1), after a timedt the phase obtain
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emerges that we should use the same exponential in the in-

X (2.16  tegrand forB, as forA;. From Eq.(2.22) it can be shown

AB2= +—.
8lal> 2x that

This equation has a minimum oh®2=/k/2|a| for y At xBAF =a(llx—x|B|d) +io—ixBwot . (2.24
=2|a|k, reproducing the result found more directly above.
Taking the expectation value gives

B. Exact treatment
(Ar+ xBAT )~ a(llx—x|B{?). (2.29

The results of the previous section are all using the linear
approximation(2.5). Although this approximation is very If the local oscillator phase is independent of the photocur-
useful for obtaining the asymptotic value of the variance, itrent record, then this is exact. In the case of feedb&gk,
does not directly tell us what to do in the exact case. In thanay be correlated witho;, but this result should still be
exact case for single-shot measuremégisrather than av- approximately true. Therefore, the phase estimate that will be
eraging phase estimates from each time interval, we detetsed here is

mine A, andB,, defined(for scaled timev €[0,1]) as

Aﬁf ePI(u)duy, BU=—f e”®du, (217  Similarly to the single-shot cagd], we will define the vari-
0 0 able C,=A.+ xB/Af , so ®(t)=argC,. The above deriva-

and obtain the phase estimate from tion is not exact_if the system phgse is not constant; ho_wever,
argC; should still be a good estimator for the phase in the
O(v)=argvA,+B,A¥). (2.18 semiclassical limit.

A differential equation for the feedback phase can be de-
The intermediate phase estimate in the simplesark 1)  termined in a similar way as in Rd®2]. Using Eq.(2.20, we
case[2] was can determine the increment Ay,

o(v)=argA, . (2.19 dA=e"*I(t)dt— yAdt. (2.27

We seek cw analogues of these formulas, that should rel@king the local oscillator phase to lo(t) =argA+ /2,
produce the above linearized results in the appropflatge ~ We find that
N) regime. Guided by Sec. Il A, we replace the definitions of

A
A, andB, by dA= Al I(t)dt— yAdt, (2.29
t
t .
Atzf eX(U=el®| (y)du, (2.20  so the magnitude oA, varies as

t d|A?=Af (dA) + (dAF) A+ (DAY ) (dA)
Bi=— fﬁwex‘“")e““’d u, (2.2 =(1-2x|A/ddt. (2.29

hus |A;| increases up to an equilibrium value given by
and continue to use afg as the intermediate phase estlmate|A 12=1/2y.

¢@(t). We will not consider any better intermediate phase Using this result, the increment in the feedback phase in
estimates here, as these only give very small improvementge steady state is
over the mark Il case for coherent states.
To find a formula for®(t), we can use a similar approach dd(t)=Im[dInA]
to that used in Ref[2]. Let us ignore the variation of the

2
system phase in Eq2.20. Since we expect from Sec. Il A _ %_ (dA)
that for largeN the optimaly is O(|a|k)=0(xN)> «, Ar 2A7
this is a reasonable approximation. Then we find I(t)dt

=alx—a*Bi+ioy, (2.22 A =\2xl(vdt (2.30
where Therefore, the feedback phase just changes linearly with the

t signal, with constant coefficienfrather than a time-

— x(U=1) ni (® = 7/2) dependent coefficient as in the pulsed ciede
Tt Jfooe © dW(w. .23 Using this result gives the stochastic differential equation

) . ) for the phase estimate(t) as
Equation(2.22 is analogous to the corresponding regal

for the case of single-shot measurements, except wité- de(t) = V2x{2|a|sin ¢(t) — @(t)dt-+dW(t)}.
placed with 1f. Note that from this derivation it naturally (2.3)
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Making a linear approximation gives t _ : .
At=J XUl (qe I ®+ o* e ®)du+dW(u)].

de(t)=2x{2|a|[¢(t) — @()]dt+dW(D)}. (2.32 3.2

Rearranging and integrating then gives the solution as For the heterodyne case, the local oscillator phbég var-

ies very rapidly, so the second term above will be negligible.

t —
o(t)= \/Zf QZ\a\v’Zx(uft)[2|a|(P(u)dqu dW(u)]. This means tha#; simplifies to
(2.33 t _
At=|a|f eX(U=Veleldu+io,. (3.3
If the phase is measured relative to the current system -
phase, then

SinceB, is also negligible, the phase estim&dt) simpli-
B , fies to®(t)=argA;. As above, the phase will be measured
e(u)=- ‘/;de (). (2.39 relative to the current system phase. In the liMit-1, the
system phase does not vary significantly during the time 1/
To determine an expression for the phase estifgtd, note SO We can take the linear approximation, giving
that it can be simplified to
|al

t
- - ~ (u—t) H
@(t):(P(t)_i_arql_}_xewa(t)Bt). (2.35 A X +||a|J7xeX (p(U)dU‘HO't. (34)

Using Eq.(2.21) and expanding the exponentials to first or-

) Using this, the phase estimate is
der gives

t
i)(f e Vouydutiyoy/|al|. (3.5

(t)%&(t)ﬂ—ar%l—i;o(t)—}-ixjt ex(u—ogo(u)du) O(t)~Im

A u—t Here the linear approximation has again been used. Further
NXf_m‘P(u)eX( ‘du. (239 evaluating this gives

This demonstrates that the mark 1l phase estimate is apprOX| (u—1) ) X

mately a weighted average of the intermediate phase esti® \/—Xf due f dW'(s)+ 2| |(‘7t+‘7t)
mates, just as in the pulsed case it is approximately an un- (3.6
weighted averagg2]. Note also the similarity of this result to

the result for the linear cag@.14). Unfortunately the simple The variance is, therefore,

technique used in the linear case cannot be applied here.

However, using the standard techniques of stochastic calcu- . .

lus, the expectation valug®?(t)) can be determined from <@2(t)>:KX2<f dUlJ du,ex(Uatuz=29

Eqg. (2.36, in a lengthy but straightforward calculation. The —o —o

result is exactly the same as that obtained using the linear

: X t t
approximation(2.16). ><J dW’(sl)J dW’(sz)>
Uy uz
Ill. HETERODYNE MEASUREMENTS ON A 2
COHERENT BEAM + ﬁ((aﬁ- a7)?). (3.7
o

In order to determine how much of an improvement feed-

back gives for cw measurements, we will compare it with the.l.he first term here can be evaluated to gisy. In addi-

case of cw heterodyne measurements. For heterodyne m 2\ 2
surements on a pulsed coherent state, the introduced phgéon it is easy to show thaor;)~0 and(|o:|%)=1/2x. Us-
INg these results gives the variance as

variance is equal to the intrinsic phase variance. This indi-
cates that the first term in E€R.16) should be double for the

heterodyne case, so the phase variance is X

2X 4l a|?

(O(t))= (3.9

(0

3.1
| |2 2)( @ This shows that Eq(3.1) is correct. Using this result, the

minimum variance is/«/\2|a| for y=y2«|a|. In terms of
We now show this more rigorously using a similar tech-N, this is 142N, which is 2 times the minimum phase
nique to that used in Ref2]. ExpandingA; gives variance for the adaptive case.
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FIG. 1. The phase variance for cw adaptive measurements fo. X

=2/\/N. The numerical results are shown as crosses and the the- . .
x=2h\N umerl ! W FIG. 2. The phase variance as a functiomdbr N=10°. The

oretical values of y2N are shown as the continuous line. The . .
numerical results for adaptive and heterodyne measurements are

inset shows the ratio of the minimum phase variance for cw adap- . .
. - . shown as the crosses and pluses, respectively, and the theoretical
tive measurements to the minimum phase variance for cw hetero- .

results for adaptive and heterodyne measurements are shown as the
dyne phase measurements.

continuous line and dotted line, respectively.

IV. RESULTS FOR DYNE MEASUREMENTS
ON A COHERENT BEAM as a function ofy for N=10°, for adaptive and heterodyne
_ i .. measurements. The numerical results agree reasonably
_ In order to verify the above analytical results, the equilib-¢josely with the theoretical values, although there is a notice-
rium phase variance was determined numerically for a varigp|e difference for adaptive measurements for the larger val-
ety of parameters. Because we do not presuppose a value fggs ofy. Note that the minimum phase variance for adaptive
X, there are two dimensionless parameters in our simuldyeasurements is at=2/\N, and the minimum phase vari-

tions, ance for heterodyne measurements is larger and at a smaller
2 value of y. When the value oN is increased further, the
N= ﬂ Y= L_ (4.1 numerical results agree even more closely with the theoreti-
K’ |a|? cal values.

From the above theory, the optimum valueyofs 2/\/N for

the adaptive case and2/N for the heterodyne case. V. ADAPTIVE DYNE MEASUREMENTS
The value ofN was varied from 1 up to 2:8610%". For ON A BROADBAND SQUEEZED BEAM

each value oN, y was varied from a quarter to four times

2/{N. Measuring time in units dfa| ", the time steps used adaptive measurements over nonadaptheterodyng mea-
were At=1/1Cx. For these calculations 1024 simultaneousgrements in the case of a coherent beam is only a factor of

Integrations were perfor_med and the variance was sampleij/\/i reduction in the variance. This is similar to the single-
repeatedly. The integrations were taken up to timey 101

. . N shot case, where a 1/2 reduction was found for the coherent
order for the variance to reach its equilibrium value, then thecase. However, in the single-shot case a far more dramatic
variance was sampled at time intervals of Lp until ime  o,ction is found for the case of a squeezed state. Motivated
100/. o . by this we now consider adaptive dyne measurements on a

The results fory=2/\/N are plotted in Fig. 1. The vari- cw squeezed beam.
ances forN=21 to 4x10* are the Holevo variances, and for |t is simplest to consider broadband squeezing. Physically,
above 4x 10" are the standard variances. As can be seen, th@jis could arise as the output of a driven parametric oscillator
results are very close to the theoretical values. To show thg, the limit that the decay time of the cavity is much shorter
improvement over heterodyne measurements, the ratio of thg g, any other relevant timescalig. This results in the
minimum phase variance for adaptive measurements to thegdification of the photocurrent from E€.3) to
minimum phase variance for heterodyne measureniaiitis
x=+/2/N) is plotted in the inset of Fig. 1. The ratio is close _
to 1 for sm)(/a_IIN, but for largerN the ratio gets closer and | (t)dt=2 Regae™'*®)dt+dW(t)
closer to 14/2. —r —

Alternatively we can plot the phase variance as a function x e~ cos (@~ $.d2)+e i (@ — ¢./2),
of y for fixed N. In Fig. 2 we have shown the phase variance (5.9

The above results show that the improvement offered by
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wherea is the amplitude of the squeezed beam, aadd¢,  Substituting this into Eq(5.5) gives
are the magnitude and phase of the squeezing, respectively.
In this idealized limit the noise reduction via squeezing oc- K e
. . . A2: 2r .

curs by a reduction in the shot noise level, rather than an 2lal? 102
anticorrelation between the shot noise and the later coherent |l
amplitude(as in the single-shot case : R L .

For reduced phase uncertainty, the phase of the squeezir-18r E:Eg ttr?s rggﬂl\{iﬂvjaf{otgerW'ﬁCerseSpeCt toand again
should be¢,=2¢+ 7, whereg is the system phase. If we 9 q 9

(5.7

are using feedback given b® =+ 7/2, where ¢ is an e Y =A02 (5.8
estimate of the phase, then the photocurrent can be expressed
as Substituting this back into Eg5.7) gives the phase variance
- as
[(t)dt=2|a|sin(¢— ¢)dt
_ _ P 2/3 1 2/3
+dW(t) Ve 2 cod(p— o)+ e sif(o— o). AB2= —) =<—) . (5.9
2|a|2 2N

(5.2

Thus we see that even for an arbitrarily squeezed beam,
e best scaling we can obtain for the phase variance is
N2 as compared tt 2 for a coherent beam. This dif-
erence is less than for pulsed measurements, where the
hase variance for the optimum squeezed states scales almost

It is clear that if the intermediate phase estimate used is ve%

close to the system phase, then the factor multiplydiy

will be close toe™" and will be at a minimum. The better the

intermediate phase estimate is, the smaller this multiplyin

factor will be. If the intermediate phase estimate is not per™ —" )

fect, it is clear that increasing the squeezing past a certaidn . @ compared ta™ - for coherent states.

level will not reduce the multiplying factor. This is because

the e®" term will start to dominate. VI. HETERODYNE MEASUREMENTS ON A BROADBAND
It is possible to estimate the optimum squeezing and the SQUEEZED BEAM

minimum phase variance using the linear approximation. In

this approximation, the variance in the individual phase esti- In order to determine the phase variance fOIT heterodyne
matesd(t) is measurements on a squeezed beam, we can simply perform

the derivation of Sec. lll, except with the factor multiplying
[e~2 co§(§o—¢)+e2r sinZ(qu—go)]/4|a|2dt. (5.3 \(/jv\i?llt;:aom Eqg. (5.1 included. This means that the variance

It is clear that the minimum phase varian@e this approxi-

mation will be obtained when the best phase estimates are 2

2 — K X *\2
N . =—+— + .
used fore. It is therefore reasonable to use the phase esti- (0%(0) 2x 4|a|2<(0t 7%, ©.D
matesO (t) for ¢, rather than arg as in the coherent case.
The values o (t) will be the best phase estimates when theexcept withoy modified to
correcty is used. As the variance of these estimates @,
we obtain o= f ‘ ex(u=1)gi(®—m/2)
(e co(p— ) +e¥ sirf(p—¢))~e ¥ +e*AB2
(5.4) X \Je 2" sir(® — @)+ e co (P — o)dW(u).
This approximation will be true for small phase variances ©.2

and large squeezing. Following the same derivation as for th

coherent case, the only difference is the multiplying factor,E|ere we have used the assumption that the phase of the

squeezing is 2+ . Note that the derivation of Sec. lll

S0 we obtain takes the phase relative to the current system phase. This
means that to a first approximation we may take)=0.
A®2= X (e 2 +eXA0?)+ i_ (5.5 In order to determine the phase variance, we must deter-
8lal? 2X mine the expectation valuéso|?) and(o?). We find

This expression has two independent variabjesndr, t
that can be varied in order to find the minimum phase vari- <|0t|2)=f (U= (e~ 2" sir? d + €2 cod ®)du.
ance. Taking the derivative of E(p.5) with respect toy and ‘°°

setting the result to zero gives 6.3

As the local oscillator phasé is varying rapidly in the
= . (5.6)  heterodyne case, we may take the average values ofsth
AB? cog, giving

K

X
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cosh2r) 10°
(of®=—— (6.4
Similarly, evaluating o) gives
. 810
<crt2>=—f e2X(U=0e2I® (e~ 2" gir? d + €2 cod d)du. 8
— ©
65 g
g
Taking trigonometric averages as above gives 84071
sinh(2r)
2\ _
<O-t > - 4X . (66)
10—15 . N ) )
Using these results we obtain the phase variance as 10° 10° 10" 10" 10%°
N
—Llgj
<®2(t)) _ < + cosh(2r) — 2 sinh(2r) ) (6.7) FIG. 3. The phase variance as a functioriNdbr a cw squeezed
2x 4|C¥|2/X beam. The theoretical relations for adaptive and heterodyne mea-

surements are shown as the continuous line and dashed line, respec-
This differs from the result for the coherent case by the muldively, and the numerical results for adaptive and heterodyne mea-
tiplying term cosh(?)—%sinh(?r). This has a minimum of surements are shown as the crosses and pluses, respectively. The
\J3/2 for r=In(3)/4. Using this value, we obtain the mini- inset shows the ratio of the nur_nerically obtair_led phase variance to
mum variance as 134\/;/(2a) for y= 2\/;|a|/31/4. Thus we the theoretical value as a function Nffor adaptive measurements.

find that the scaling is the same as for a coherent beam, anflree variables. Instead, different values were tried system-
the multiplying factor is only about 7% smaller. In contrast atically to find the minimum phase variance.

there is a factor of two difference in the single-shot case. The minimum phase variances obtained by this method
are plotted as a function of in Fig. 3. The theoretical values
VIl. RESULTS EOR DYNE MEASUREMENTS given by Eq.(5.9) are also shown in this figure. The numeri-

ON A BROADBAND SQUEEZED BEAM cal results are higher than the theoretical values, but they

. have the same scaling with, namely,N~?3. If we plot the
The results for the cw squeezed beam were obtained by @tio of the numerical results to the theoretical values as in
similar method as for the coherent case. Only variation in thgne inset of Fig. 3, we find that for the largest valued\dhe
variablesN and y of Eq. (4.1) was considered, and time was (atio levels off at about 2.6.
measured in units ofa| 2. The step sizes used werst Now note that, from Eqs(5.9 and (5.9), the optimum
=1/1Cy. The integrations were taken up to time g0then value ofe~2" should be (N) 3 Similarly, from Eqs.(5.6)
the variance was sampled every time step until time %30/ gnd(5.9), the optimum value of is (N/4)" 3 The numeri-
The integration was performed using the photocurrent give@a”y obtained optimum values & 2 and x, as well as
in Eq. (5.1) with ¢, =2¢+ . these theoretical expressions, are plotted in Fig. 4. Similarly
It was found that whep(t) = argC, was used in the feed- to the case for the phase variance, the scaling is the same as
back, very poor results were obtained. This is a similar resultheoretically predicted, but the scaling constants are differ-
to the case for single-shot measurements, where usir@,arg ent. For the case & 2", the optimum values are about eight
feedback results in large phase variariegdsThis is because, times those theoretically predicted, whereas the valugg of
when the intermediate phase estimates are extremely goodre around a third of those theoretically predicted.
the results do not distinguish easily between the real system For the case of there is no theoretical prediction for the
phase and the system phase ptusThis means that many of optimum value. The numerically obtained values are shown
the results are out byr, resulting in a large overall phase in Fig. 4, and as can be seendecreases in a regular way
variance. with increasingN. A power law was fitted to these values
In order to avoid this problem, rather than using @rgn (for N>1), and the power found was 0.35+0.01. This is
the feedback, an intermediate phase estimate given by  very similar to theN~*? scaling found fore™?" and y.
The results for heterodyne measurements are also shown
(}(t)zargctl’SAf) (7.1 in Fig. 3. The results in this case agree very accurately with
the theoretical prediction, within about 0.5% for the larger
was used, witte constant. Note that this is the same as usedralues ofN. Similarly the optimum values af and y agree
to obtain phase measurements close to optimum in theery accurately with those predicted above. The variance
single-shot case, except that there a time-vargingas used. scales ad\~ %2, in contrast to the variance for adaptive mea-
For each value oN there are three variables that can besurements that scales bs %2, This means that the improve-
altered to minimize the phase varianggr, ande. Itis not  ment in using adaptive measurements scald$ @€, which
calculationally feasible to consider a range of values for allcan be very large for largh.
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ment rather than one using a local oscillator as a phase ref-
erence, the phase of is irrelevant.

This case is essentially semiclassical, and the detections
can be considered independently. Therefore, consider the
state with a single photon incident on patThe annihila-

tion operators for the output modes of the M£}, and c;,
are related to the annihilation operators for the input modes,

a andb, by [6]

cy=asin(¢—®+um)/2]+bcog(¢—d+um)/2],
(8.2)

for ue{0,1}. Hence the probability for detecting the photon
in detectoru is given by

5

¢ 10

10" 10
N

FIG. 4. The optimum values @& 2', x, ande for measurements Using Bayes’ theorem, the probability distribution for the
on a cw squeezed beam. The numerically found values & are ~ System phase after the detection is proportional to this prob-
plotted as crosses, and the theoretical expression as a continucability times the initial probability distribution.
line. The numerically found values qf are plotted as pluses, and Denote the results fom such detections by the string
the theoretical expression as a dashed line. The numerically found,,=u,Uy_1---U;. The probability distribution for the
values ofe are plotted as circles, and the dotted line is the expresphase givem,,, P(¢|n,,), can be expressed as
sion fitted to the data.

10 10 sirf[ (¢— @ +u)/2]. 8.2

m
_ ik
VIIl. cw INTERFEROMETRY P(<P|”m)—k:2_m Pmk(Nm) €74, 8.3

Now we will turn from dyne measurement on a single
beam to cw interferometric measurements. In this case w ) -
have a Mach-Zehnder interferomet&Zl), and are attempt- Eq. (8'2.) that the unnormalized coefﬁmerﬁ?#n;k(nm) can be
ing to continuously track a stochastically varying phase indetermmed by
one arm, by controlling the phase in the other arm and dey _ L a—i(Ppy— Uy
tecting photons in the two output beams. This is shown iy k(M) = P 13(Mm—g) =2 050 TP 41 (Nm-1)

Fig. 5. In this context it is not possible to consider nonclas- —3e@m Ummp (M) (8.9
sical states of the type considered for the single-shot[&se

Instead, for simplicity, we will restrict our consideration to The normalization condition on the probability distribution
the case where all photons enter through one port. This capecomesP,.o(n,)=1. The normalized probability distribu-
be realized using coherent light, witke|?> photons per unit tion can be obtained by simply dividing the coefficients ob-
time. Note that because this is an interferometric measurdained from Eq.(8.4) by P,.o(Np).

Similarly to the case of dyne measurements, we will as-
sume that the system phase diffuses with time as inZEd).
When the phase varies in time, the time between detections
is important. For a photon flux diz|?, the probability of a
photodetection in timet is | «|2dt. The probability distribu-
tion for the time between detections is given by the exponen-
tial distribution

In the absence of any phase variation, it can be shown from

Data
Processor -

(1)

Pe(t)dt=|a|2e” e dt. (8.5

BS In the results that will be presented here, the time between
BS detectionsAt, was determined according to this probability
’ distribution.
. Now in order to determine the effect of this phase diffu-
’ 0(1) sion on the probability distribution between detections, we
b must first consider the effect over some very small time in-
o> terval 8t. This is necessary because the probability distribu-
tion for the change in the system phase over tinh@loes not
FIG. 5. The Mach-Zehnder interferometer, with the addition of ag0 to zero forAe==* . This means that the probability
controllable phaseb in one arm. The unknown phase to be esti- distribution will not be exactly Gaussian, due to the overlap.
mated is¢. Both beam splitters are 50:50. In contrast, if we look at a very small time intervét, the

\

lo>_a
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change in the phase will have a normal distribution with aEq. (8.4). This means that we can exprédg® ) as in Ref.

variance ofk ét. Explicitly the probability distribution is [6] with the parameters, b, andc given by
1 2 a=Py_1,-1(Nm-1),
Ps(A@)d(Ap)=——=e 2¢72<Nqg(A¢). (8.6
G( ¢ (3 m ¢

b:%mel;fz(nmfl)y

The probability distribution for the phase after tinde _1ip 81
will be the convolution of the initial probability distribution €= 2Pm-1;0(Nm-1)- (8.1
with the Gaussian described by E@.6). Evaluating this

. ; These values of, b, andc can be used to determine the
convolution gives

feedback phase as in R¢6].
The phase uncertainty at equilibrium can be estimated us-

P ¢|ny,) = f P(e—0In,)Pg(0)do ing a similar approach as was used for the single-mode case.
- Let us assume that the equilibrium variance in the best esti-
m/2 - mate for the system phase A9 2. After time At, the vari-
= > Pm-k(nm)eik“’J e kip,(0)d6. ance in this phase estimate with respect to the new system
k=—m2 —r phasegp(t+At), will be A®%+ kAt. In the equilibrium case

8.7 this increase in the variance should, on average, be balanced
' by the decrease due to the next detection.

As 6t is assumed to be smakst<1, and the integral in Eq. We now wish to estimate the equilibrium variance based
(8.7) evaluates t@~ K’ko2 The effect of the variation of the onda WEIr?hted av_eragefwnh t?}e prewodus be§t phl?se estlmar:e,
system phase on the probability distribution is, therefore, and a phase estimate from the new detection. If we use the
actual variance for a phase estimate based on a single detec-
P (n V=P (n.)e K2 3.8 tion, then we do not get accurate results. This is because the

mk(Mm) = P M) &8 variance for a single detection is large, so the weighted av-
In order to take account of the effect of the phase diffu-erage does not accurately correspond to the exact theory. In
sion on the probability distribution over some significant Order to make the theory based on weighted averages accu-

time intervalAt, this time interval can be thought of as com- 'ate, we need to assume effectivevariance for the single

prising M small time intervalsst. Then we find that the detection, that is different from the actual variance.
coefficients are just multiplied by terms ofe K2, Thig In the case wherg there Is no variation in th? system
: phase, the phase variance aftedetections is approximately

; ; ; K2kAU2 \pich i i X :

is equivalent to a single term ef * “="%, which is very easy 1/ [6]. It is clear that, if we assume that each detection has

to implement. . an effective variance of 1, then we will obtain the correct
_As time passes the effect of E(B.4) is to broaden the resyit. This is, in fact, equal to the variance as estimated

distribution of probability coefficients ik, corresponding to using (2(1—cosg)) (this measure is used, for example, in

a smaller variance in the phase distribution. In contrast, thxef, [11]). Applying this to the case with a varying system
Gaussian term in Eq8.8) tends to narrow the distribution of phase gives

probability coefficients, corresponding to a greater phase

variance. The initially broad phase distribution narrows until 1 1

an approximate equilibrium is reached, where the two effects +1= . (8.12
cancel each other out. A®%+ kAt A®?

In Ref.[6] it was shown that the optimum phase estimate
for the single-shot case is Simplifying this to solve forA®?, we findA®2~ \/kAt. On
average, the time between detections is{f, so the ap-
@zarg(e‘*g):arng;,l(nm). (8.9 proximate value of the variance should be
It is easy to see that this phase estimate is optimal in the cw A®2~Jk/|a|?=1/YN. (8.13

case also. In addition we consider feedback that is equivalent
to that considered in the single-shot case in R&f. Rather
than using an intermediate phase estimate as in the dyne
case, we use the full power of Bayesian statistics to choose In order to verify this theoretical result, the equilibrium
the feedback phask so as to minimize thexpectedHolevo  phase variance was determined numerically for a variety of
phase variance after thextdetection. This is achieved by parameters. In this case there is only one dimensionless pa-
choosing®,, to minimize the value of6,10] rameterN. In the case of dyne measurements there was the
additional parametey describing how the latest results were
(8.10 weighted as compared to the previous results. In this case we
do not have this parameter, as the phase estimates are not
determined in that way.
The values ofP(n,|¢) can be obtained, except for a nor-  The calculations were run for 2@letections(or 2x 10°
malizing constant that is common tg,=0 and 1, by using for the maximum value ofN), and the phase error was

IX. RESULTS FOR cw INTERFEROMETRY

M<<1>m>=u201Uf P(nn¢)e'*de
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sampled every detection after R detections. This was
done 100 times for each value bf The equilibrium phase
variance was determined in this way for the nearly optimum 10
feedback scheme described above. In addition we tested
nonadaptive measurement scheme with o
o -1
® = Do+ ma/ N, 910 &1
[V
>
whered is a random initial phase. When the valud\bivas o
1 or less this was modified to 2, oo
al10 v
O =Py+ma/2, (9.2
to preventd ,, being constantmodulo ). This is equivalent 107}
to the nonadaptive scheme in the single-shot case used i
Ref. [6], and is analogous to heterodyne measurement. The )

reason for the factor of YN is that the effective number of
detections used for the phase estimate/ié This follows _ _ _
from the fact that the phase variance is approximate{ﬂl/ FIG. 6. The phase variance as a functionNofThe numerical

A minor problem with cw adaptive measurements is thafesults for adaptive and nonadqptlve measurements.are shown as
the number of probability coefficient®,(n,) needed to the crosses and pluses, r_espectlvc_ely, and the theoretical va_Iues are
determine the probability distribution for the phase rises in_shovyn as the contlngous line. The inset shows the phase variance as
definitely with the number of detections. The narrowing ef-2 "aio to the theoretical value of\IK. The results for adaptive and
fect of the varying system phase, however, means that th(r‘;_jonadaptlve measgrements are shown as the continuous line and
probability coefficients fall approximately exponentially with otted line, respectively.
k. The probability distribution can, therefore, be approxi- _
mated very accurately by keeping only a certain number ofnoderate values df. In contrast, the result; for nonadaptive
coefficients. For the results presented here all probability coméasurements are all above the theoretical valtmsN
efficients with a magnitude above about 2®were used. =1). For small values oN the variance for both schemes is

The Holevo phase variances for the two measuremerfelow 1AN, as the variance is converging to 3. _
schemes are plotted in Fig. 6. As can be seen, the results for These results show that there will be a significant im-
both cases are very close to the theoretical result gRfor ~ Provement in using an adaptive scheme over a nonadaptive
the larger values df. For values oN closer to 1 the results Scheme only if the time scale for the system phase variation
for the nonadaptive scheme are noticeably above the theordf comparable to the time between detections. This can be
ical values. For small values of (less than 1 the variance expected_ from the results for the smgle-shqt_ case with all
converges to 3 for both the feedback schemes. This is wh&notons in one port, where there was a significant improve-
can be expected, as the system phase is randomized betwdBRNt I using an adaptive scheme only if the photon number
detections. This means that the measurements are equivald¥gs small. The maximum improvement here is about 24%
to phase measurements with a single photon, for which théor N~4.
Holevo phase variance is 3. The feedback has no effect, as
there is no information on which to base it.

To see the differences more clearly, the phase variances
are plotted as ratios to the theoretical values in the inset of This study considered the problem of cw phase measure-
Fig. 6. The adaptive scheme gives phase variances that amgents, where the phase is being varied randomly in time and
very close to, and slightly below, the theoretical values forthe aim is to follow this variation with the minimum possible

X. CONCLUSIONS

TABLE I. Scaling of phase variances for large photon numibetsmder various measurement conditions.
For the cw(continuous-wavecasesN is the number of photons per coherence time. In the pulsed aases,
(n) is the(mearn photon number per pulse. Dyne measurements are those performed on a phase-shifted beam
or pulse using a local oscillator, while MZI measurements are of a phase shift in one arm of a Mach-Zehnder
interferometer. The two empty cells are those not treated in this study, and the question mark denotes a
conjectured scaling.

Coherent, dyne Squeezed, dyne Coherent, MZI Optimal, MZI
cw, adaptive N~Y22 O(N™23) N~12
cw, nonadaptive N~Y2 2 N~ 12 31412 N~12
Pulsed, adaptive nYa O(In/n?) n-t O(In n/n?)?
Pulsed, nonadaptive 12 nYa n-t o(n Y
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excess uncertainty. We considered three different situationghase variance for heterodyne measurements.
dyne measurements on a coherent beam, dyne measurementg-or the case of dyne measurements on broadband
on a(broadbanyl squeezed beam, and interferometric mea-squeezed states, the situation is considerably more compli-
surements using a coherent beam input. The relevant dimegated. The change in the phase cannot be taken to be propor-
sionless parameter N, the number of photons per coher- tional to the current, but rather is a functional with two pa-
ence time(the characteristic time for the phase diffusion rameters. With the degree of squeezing to be optimized as
Under optimum conditions, we found the analytical resultsWell, there are three parameters that must be varied to find
confirmed numerically, shown in Table I. Previous resultsthe minimum phase variance. Nevertheless, it is still possible
obtained for single-shot measurements on a pulse containintg obtain an analytic result that agrees with the numerical
— . results in its scalindalthough predicts the wrong multiply-
n, or n on average, photons are also shown for compariso

- ) g > r\ng facton. Specifically, it was found that the minimum
A number of regularities are evident from this table. With phase variance varies &5 23, compared tN~ 2 for a co-

coherent light, the variance reduction offered by adaptiveyerent beam. This contrasts with heterodyne measurements
measurements is at most a multiplying factor. With nonclaspn proadband squeezed states, for which the minimum vari-
sical light, nonadaptive measurements scale in the same wajnce is only about 7% below the corresponding result for a
as for coherent light, but adaptive measurements offer agoherent beam.
improvement in the scaling. In all cases, the variance reduc- The case for interferometry is more difficult to treat, as it
tion (by a change in the prefactor or the scaliigless in the  does not work with any simple feedback scheme. The feed-
cw case than in the pulsed case. This is because in order track used was based on minimizing the expected variance
obtain the best phase estimate,Mgncreases, the memory after the next detection, similarly to the single-shot case. De-
time for the estimate is reduced. This is needed to keep thspite this, it was found that it is possible to determine an
contribution to the variance from the varying system phasepproximate theory that agrees reasonably well with the nu-
(which increases with memory time&omparable with that merical results for the case where a coherent beam enters one
from the quantum uncertaintywhich decreases with port of the interferometer. Similarly to the dyne case with a
memory time. This means that the effective number of pho- coherent state, the phase variance is proportiona &2
tons used for the estimate is the number per memory timeyhen a linearly changing feedback phase was yaedlo-
rather than the number per coherence tiie, gous to the heterodyne schemi¢ was found that the phase

In the case of dyne measurements on a coherent beam érriance is above that for the adaptive feedback, but the dif-
was found that good results were obtained using a simpléerence is very small except fot of order unity. This is as
feedback phase (afy), similarly to mark Il single-shot can be expected, as the difference is also very small for large
measurement]. In the cw case, the feedback simplifies to photon numbers in the single-shot case.
a form even simpler than for the single-shot case. Specifi- In comparison with our previous pulsed results, the cw
cally, the feedback phase is simply adjusted proportional teesults obtained in this paper are probably more relevant to,
the photocurrent. When the correct proportionality constantind in some cases easier to implement in, a quantum-optics
is selected, a minimum equilibrium phase variance is foundaboratory. This augurs well for future experimental verifica-
that scales abl~*%2. This is only/2 times smaller than the tion.
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