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Adaptive quantum measurements of a continuously varying phase
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We analyze the problem of quantum-limited estimation of a stochastically varying phase of a continuous
beam~rather than a pulse! of the electromagnetic field. We consider both nonadaptive and adaptive measure-
ments, and both dyne detection~using a local oscillator! and interferometric detection. We take the phase

variation to beẇ5Akj(t), wherej(t) is d-correlated Gaussian noise. For a beam of powerP, the important
dimensionless parameter isN5P/\vk, the number of photons per coherence time. For the case of dyne
detection, both continuous-wave~cw! coherent beams and cw~broadband! squeezed beams are considered. For
a coherent beam a simple feedback scheme gives good results, with a phase variance.N21/2/2. This isA2
times smaller than that achievable by nonadaptive~heterodyne! detection. For a squeezed beam a more accu-
rate feedback scheme gives a variance scaling asN22/3, compared toN21/2 for heterodyne detection. For the
case of interferometry only a coherent input into one port is considered. The locally optimal feedback scheme
is identified, and it is shown to give a variance scaling asN21/2. It offers a significant improvement over
nonadaptive interferometry only forN of order unity.

DOI: 10.1103/PhysRevA.65.043803 PACS number~s!: 42.50.Dv, 42.50.Lc, 03.67.Hk
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I. INTRODUCTION

The phase of an electromagnetic field is not a quan
that can be directly measured. All phase-measurem
schemes rely on measurement of some other quantity, w
necessarily introduces an excess uncertainty in the phas
timate. The standard method of measuring the phase
single mode is to combine it with a strong local-oscillat
field, which is detuned from the signal~so the phase change
linearly with respect to the signal phase!. This is called the
heterodyne scheme, and introduces an excess uncert
scaling as 1/n̄, where n̄ is the mean photon number. If th
signal phase is known approximately beforehand, the in
duced phase uncertainty can be reduced greatly by usi
local-oscillator phase that isp/2 out of phase with the signa
~homodyne measurements!.

If there is no estimate for the phase available beforeha
it is still possible to reduce the excess phase uncertainty
adjusting the local-oscillator phase during the measurem
so as to approximate a homodyne measurement@1–3#. The
mark II dyne measurements considered in Refs.@2# and @3#

introduce an excess phase uncertainty scaling asn̄23/2. It is
even possible to attain the theoretical limit, scaling
ln n̄/n̄ 2, using a more sophisticated feedback scheme@4#.

The case of interferometry is quite similar. In interferom
etry we wish to measure the phase shift in one arm of
interferometer by counting photons in the output ports. I
phase shift varying linearly in time is introduced into th
other arm~analogous to the heterodyne case!, there is a large
introduced phase variance scaling asn̄21. On the other hand
if feedback is used to adjust the auxiliary phase shift ad
tively, the introduced phase variance is greatly reduced@5,6#.

These studies are all based on single-shot measurem
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where the measurements are made on a single~one- or two-
mode! pulse with finite duration and a single fixed phase.
practice, if we wish to transmit information via a beam,
time-varying phase would be more convenient. A tim
varying phase may also arise through random fluctuatio
and we may wish to keep track of the phase as well as p
sible.

It is also possible to model a broadband signal that car
information by random fluctuations. We therefore consid
the case of a phase subject to white noise in this paper.
consider cw measurements for both dyne measurements
interferometry. For the former, we consider both coher
beams and broadband squeezed beams. For interferome
is not clear if there is a cw analog to the optimal two-mo
states derived in Refs.@5,6#. Therefore, we consider only th
case of a coherent input into one port.

II. ADAPTIVE DYNE MEASUREMENTS ON A
COHERENT BEAM

First, we will consider the case of cw dyne measureme
on a single beam with a varying phase. It is simplest
consider a coherent beam with amplitudea5uauexp@iw(t)#
having a constant magnitude, but varying phase. The ma
tude is scaled so thatuau2 is the photon flux (P/\v). As
explained above, the phase is assumed to diffuse in time

w~ t1dt!5w~ t !1AkdW8~ t !. ~2.1!

HeredW8 is a Wiener increment satisfying (dW8)25dt. The
spectrum for the coherent beam is a Lorentzian of linewi
~full width at half maximum! k.

As in the single-shot case, a quadrature of the field
measured by combining the mode to be measured wit
©2002 The American Physical Society03-1
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D. W. BERRY AND H. M. WISEMAN PHYSICAL REVIEW A65 043803
large-amplitude local-oscillator field at a 50:50 beam split
and measuring the outputs with photodetectors. The ph
current is then defined by

I ~ t !5 lim
dt→0

lim
b→`

dN12dN2

bdt
, ~2.2!

wheredN1 anddN2 are the outputs from the photodetecto
andb is the local-oscillator amplitude. For a continuous c
herent beam this yields

I ~ t !dt52 Re~ae2 iF(t)!dt1dW~ t !, ~2.3!

whereF(t) is the phase of the local oscillator, anddW(t) is
a Wiener increment independent ofdW8(t).

In making adaptive phase measurements the phase o
local oscillator is usually taken to beF(t)5ŵ(t)1p/2,
where ŵ(t) is some estimate of the system phasew(t) @7#.
With this, the signal becomes

I ~ t !dt52uausin@w~ t !2ŵ~ t !#dt1dW~ t !. ~2.4!

A. Linear approximation

Provided that the estimated system phase is sufficie
close to the actual system phase, we can make the li
approximation

I ~ t !dt52uau@w~ t !2ŵ~ t !#dt1dW~ t !. ~2.5!

Rearranging this equation, we see that

u~ t !5ŵ~ t !1I ~ t !/2uau ~2.6!

is an unbiased estimator ofw(t) based on the data obtaine
in the infinitesimal time interval@ t,t1dt). We will denote
the best phase estimate based on all the data up to timet by
Q(t). Note that this is thebestphase estimate, in contrast
the phase estimate used in the feedbackŵ(t). The variance
of each phase estimateu(t) is given by

^@u~ t !2w~ t !#2&5 K S dW~ t !

2uaudtD
2L 5

1

4uau2dt
. ~2.7!

Here the simple definition of the variance has been us
rather than the Holevo phase variance@8#

VH~Q!5u^eiQ&u2221, ~2.8!

as in Refs.@2–6#. This is because we are using the line
approximation.

The noise in the estimateu(t) is due entirely to the pho
tocurrent noise, rather than the noise in the phasew itself.
Since dW(t) is independent of all previous noise, the u
dated best estimateQ(t1dt) will be a weighted average o
the instantaneous phase estimateu(t) and the estimate from
all the previous dataQ(t).

The equilibrium value of the variance ofQ(t), with all
the individual phase estimates correctly weighted, will
denoted byDQ2. From Eq.~2.1!, after a timedt the phase
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variance ofQ(t) with respect to the new system phasew(t
1dt) will be DQ21kdt. The variance in the phase estima
from the latest time interval,u(t), will be given by Eq.~2.7!.

If we take a weighted average ofQ(t) andu(t), then the
contributions from each of the phase estimates from the
dividual time intervals should be correctly weighted, and t
variance in the weighted average should be the equilibr
value,DQ2. This implies that

1

DQ21kdt
14uau2dt5

1

DQ2
. ~2.9!

Solving for DQ2 givesDQ25Ak/2uau. If we define

N5uau2/k, ~2.10!

the number of photons per coherence time~or photon flux
divided by linewidth!, we have

DQ251/2AN. ~2.11!

This is the square root of the analogous result 1/4n̄ for a
single-shot adaptive measurement on a coherent puls
mean photon numbern̄.

Explicitly, the weighted average is

Q~ t1dt!5
~4uau2dt!u~ t !1Q~ t !/~DQ21kdt!

1/DQ2
.

~2.12!

Solving this as a differential equation gives

Q~ t !52uauAkE
2`

t

u~s!e2uauAk(s2t)ds. ~2.13!

Therefore, this method corresponds to a simple negative
ponential scaling of the weighting.

We can also consider a more general negative expone
scaling given by

Q~ t !5xE
2`

t

u~s!ex(s2t)ds. ~2.14!

Note that with this more general scaling,Q(t) is no longer
necessarily the best phase estimate. For most of the rem
der of this paper,Q(t) will be used in this more genera
sense, rather than as specifically the best phase estimate
best phase estimate will be found by finding the optimu
value of x. Taking the derivative of this expression wit
respect to time gives

Q~ t1dt!5xdtu~ t !1~12xdt!Q~ t !. ~2.15!

This means that this method is again a weighted avera
except with a weighting that is not optimum. If we find th
variance of both sides of this equation and solve forDQ2 we
obtain
3-2
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DQ25
x

8uau2
1

k

2x
. ~2.16!

This equation has a minimum ofDQ25Ak/2uau for x
52uauAk, reproducing the result found more directly abov

B. Exact treatment

The results of the previous section are all using the lin
approximation~2.5!. Although this approximation is very
useful for obtaining the asymptotic value of the variance
does not directly tell us what to do in the exact case. In
exact case for single-shot measurements@2#, rather than av-
eraging phase estimates from each time interval, we de
mine Av andBv , defined~for scaled timevP@0,1#! as

Av5E
0

v
eiFI ~u!du, Bv52E

0

v
e2iFdu, ~2.17!

and obtain the phase estimate from

Q~v !5arg~vAv1BvAv* !. ~2.18!

The intermediate phase estimate in the simplest~mark II!
case@2# was

ŵ~v !5argAv . ~2.19!

We seek cw analogues of these formulas, that should
produce the above linearized results in the appropriate~large
N) regime. Guided by Sec. II A, we replace the definitions
Av andBv by

At5E
2`

t

ex(u2t)eiFI ~u!du, ~2.20!

Bt52E
2`

t

ex(u2t)e2iFdu, ~2.21!

and continue to use argAt as the intermediate phase estima
ŵ(t). We will not consider any better intermediate pha
estimates here, as these only give very small improvem
over the mark II case for coherent states.

To find a formula forQ(t), we can use a similar approac
to that used in Ref.@2#. Let us ignore the variation of the
system phase in Eq.~2.20!. Since we expect from Sec. II A
that for largeN the optimalx is O(uauAk)5O(kAN)@k,
this is a reasonable approximation. Then we find

At5a/x2a* Bt1 is t , ~2.22!

where

s t5E
2`

t

ex(u2t)ei (F2p/2)dW~u!. ~2.23!

Equation~2.22! is analogous to the corresponding result@2#
for the case of single-shot measurements, except withv re-
placed with 1/x. Note that from this derivation it naturally
04380
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emerges that we should use the same exponential in the
tegrand forBt as for At . From Eq.~2.22! it can be shown
that

At1xBtAt* 5a~1/x2xuBtu2!1 is t2 ixBts t* . ~2.24!

Taking the expectation value gives

^At1xBtAt* &'a~1/x2xuBtu2!. ~2.25!

If the local oscillator phase is independent of the photoc
rent record, then this is exact. In the case of feedbackBt
may be correlated withs t , but this result should still be
approximately true. Therefore, the phase estimate that wil
used here is

Q~ t !5arg~At1xBtAt* !. ~2.26!

Similarly to the single-shot case@4#, we will define the vari-
able Ct5At1xBtAt* , so Q(t)5argCt . The above deriva-
tion is not exact if the system phase is not constant; howe
argCt should still be a good estimator for the phase in t
semiclassical limit.

A differential equation for the feedback phase can be
termined in a similar way as in Ref.@2#. Using Eq.~2.20!, we
can determine the increment inAt ,

dAt5eiFI ~ t !dt2xAtdt. ~2.27!

Taking the local oscillator phase to beF(t)5argAt1p/2,
we find that

dAt5 i
At

uAtu
I ~ t !dt2xAtdt, ~2.28!

so the magnitude ofAt varies as

duAtu25At* ~dAt!1~dAt* !At1~dAt* !~dAt!

5~122xuAtu2!dt. ~2.29!

Thus uAtu increases up to an equilibrium value given b
uAtu251/2x.

Using this result, the increment in the feedback phase
the steady state is

dF~ t !5Im@d ln At#

5ImFdAt

At
2

~dAt!
2

2At
2 G

5
I ~ t !dt

uAtu
5A2xI ~ t !dt. ~2.30!

Therefore, the feedback phase just changes linearly with
signal, with constant coefficient~rather than a time-
dependent coefficient as in the pulsed case@2#!.

Using this result gives the stochastic differential equat
for the phase estimateŵ(t) as

dŵ~ t !5A2x$2uausin@w~ t !2ŵ~ t !#dt1dW~ t !%.
~2.31!
3-3
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Making a linear approximation gives

dŵ~ t !5A2x$2uau@w~ t !2ŵ~ t !#dt1dW~ t !%. ~2.32!

Rearranging and integrating then gives the solution as

ŵ~ t !5A2xE
2`

t

e2uauA2x(u2t)@2uauw~u!du1dW~u!#.

~2.33!

If the phase is measured relative to the current sys
phase, then

w~u!52AkE
u

t

dW8~s!. ~2.34!

To determine an expression for the phase estimateQ(t), note
that it can be simplified to

Q~ t !5ŵ~ t !1arg~11xe22i ŵ(t)Bt!. ~2.35!

Using Eq.~2.21! and expanding the exponentials to first o
der gives

Q~ t !'ŵ~ t !1argS 12 i ŵ~ t !1 ixE
2`

t

ex(u2t)ŵ~u!duD
'xE

2`

t

ŵ~u!ex(u2t)du. ~2.36!

This demonstrates that the mark II phase estimate is app
mately a weighted average of the intermediate phase
mates, just as in the pulsed case it is approximately an
weighted average@2#. Note also the similarity of this result to
the result for the linear case~2.14!. Unfortunately the simple
technique used in the linear case cannot be applied h
However, using the standard techniques of stochastic ca
lus, the expectation valuêQ2(t)& can be determined from
Eq. ~2.36!, in a lengthy but straightforward calculation. Th
result is exactly the same as that obtained using the lin
approximation~2.16!.

III. HETERODYNE MEASUREMENTS ON A
COHERENT BEAM

In order to determine how much of an improvement fee
back gives for cw measurements, we will compare it with
case of cw heterodyne measurements. For heterodyne
surements on a pulsed coherent state, the introduced p
variance is equal to the intrinsic phase variance. This in
cates that the first term in Eq.~2.16! should be double for the
heterodyne case, so the phase variance is

^Q2~ t !&'
x

4uau2
1

k

2x
. ~3.1!

We now show this more rigorously using a similar tec
nique to that used in Ref.@2#. ExpandingAt gives
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At5E
2`

t

ex(u2t)eiF(u)@~ae2 iF1a* eiF!du1dW~u!#.

~3.2!

For the heterodyne case, the local oscillator phaseF(t) var-
ies very rapidly, so the second term above will be negligib
This means thatAt simplifies to

At5uau E
2`

t

ex(u2t)eiw(u)du1 is t . ~3.3!

SinceBt is also negligible, the phase estimateQ(t) simpli-
fies toQ(t)5argAt . As above, the phase will be measur
relative to the current system phase. In the limitN@1, the
system phase does not vary significantly during the time 1x,
so we can take the linear approximation, giving

At'
uau
x

1 i uau E
2`

t

ex(u2t)w~u!du1 is t . ~3.4!

Using this, the phase estimate is

Q~ t !'ImF ixE
2`

t

ex(u2t)w~u!du1 ixs t /uauG . ~3.5!

Here the linear approximation has again been used. Fur
evaluating this gives

Q~ t !52AkxE
2`

t

du ex(u2t)E
u

t

dW8~s!1
x

2uau ~s t1s t* !.

~3.6!

The variance is, therefore,

^Q2~ t !&5kx2K E
2`

t

du1E
2`

t

du2ex(u11u222t)

3E
u1

t

dW8~s1!E
u2

t

dW8~s2!L
1

x2

4uau2
^~s t1s t* !2&. ~3.7!

The first term here can be evaluated to givek/2x. In addi-
tion, it is easy to show that̂s t

2&'0 and^us tu2&51/2x. Us-
ing these results gives the variance as

^Q2~ t !&5
k

2x
1

x

4uau2
. ~3.8!

This shows that Eq.~3.1! is correct. Using this result, the
minimum variance isAk/A2uau for x5A2kuau. In terms of
N, this is 1/A2N, which is A2 times the minimum phase
variance for the adaptive case.
3-4
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IV. RESULTS FOR DYNE MEASUREMENTS
ON A COHERENT BEAM

In order to verify the above analytical results, the equil
rium phase variance was determined numerically for a v
ety of parameters. Because we do not presuppose a valu
x, there are two dimensionless parameters in our sim
tions,

N5
uau2

k
, x5

x

uau2
. ~4.1!

From the above theory, the optimum value ofx is 2/AN for
the adaptive case andA2/N for the heterodyne case.

The value ofN was varied from 1 up to 2.531037. For
each value ofN, x was varied from a quarter to four time
2/AN. Measuring time in units ofuau22, the time steps used
wereDt51/103x. For these calculations 1024 simultaneo
integrations were performed and the variance was sam
repeatedly. The integrations were taken up to time 10/x, in
order for the variance to reach its equilibrium value, then
variance was sampled at time intervals of 1/x up until time
100/x.

The results forx52/AN are plotted in Fig. 1. The vari
ances forN51 to 431012 are the Holevo variances, and fo
above 431012 are the standard variances. As can be seen
results are very close to the theoretical values. To show
improvement over heterodyne measurements, the ratio o
minimum phase variance for adaptive measurements to
minimum phase variance for heterodyne measurements~with
x5A2/N) is plotted in the inset of Fig. 1. The ratio is clos
to 1 for smallN, but for largerN the ratio gets closer an
closer to 1/A2.

Alternatively we can plot the phase variance as a funct
of x for fixed N. In Fig. 2 we have shown the phase varian

FIG. 1. The phase variance for cw adaptive measurements
x52/AN. The numerical results are shown as crosses and the
oretical values of 1/A2N are shown as the continuous line. Th
inset shows the ratio of the minimum phase variance for cw ad
tive measurements to the minimum phase variance for cw het
dyne phase measurements.
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as a function ofx for N5106, for adaptive and heterodyn
measurements. The numerical results agree reason
closely with the theoretical values, although there is a noti
able difference for adaptive measurements for the larger
ues ofx. Note that the minimum phase variance for adapt
measurements is atx52/AN, and the minimum phase vari
ance for heterodyne measurements is larger and at a sm
value of x. When the value ofN is increased further, the
numerical results agree even more closely with the theor
cal values.

V. ADAPTIVE DYNE MEASUREMENTS
ON A BROADBAND SQUEEZED BEAM

The above results show that the improvement offered
adaptive measurements over nonadaptive~heterodyne! mea-
surements in the case of a coherent beam is only a facto
1/A2 reduction in the variance. This is similar to the sing
shot case, where a 1/2 reduction was found for the cohe
case. However, in the single-shot case a far more dram
reduction is found for the case of a squeezed state. Motiva
by this we now consider adaptive dyne measurements o
cw squeezed beam.

It is simplest to consider broadband squeezing. Physica
this could arise as the output of a driven parametric oscilla
in the limit that the decay time of the cavity is much shor
than any other relevant timescales@9#. This results in the
modification of the photocurrent from Eq.~2.3! to

I ~ t !dt52 Re~ae2 iF(t)!dt1dW~ t !

3Ae22r cos2~F2fz/2!1e2r sin2~F2fz/2!,

~5.1!

or
e-

p-
o-

FIG. 2. The phase variance as a function ofx for N5106. The
numerical results for adaptive and heterodyne measurements
shown as the crosses and pluses, respectively, and the theor
results for adaptive and heterodyne measurements are shown a
continuous line and dotted line, respectively.
3-5
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wherea is the amplitude of the squeezed beam, andr andfz

are the magnitude and phase of the squeezing, respect
In this idealized limit the noise reduction via squeezing o
curs by a reduction in the shot noise level, rather than
anticorrelation between the shot noise and the later cohe
amplitude~as in the single-shot case!.

For reduced phase uncertainty, the phase of the squee
should befz52w1p, wherew is the system phase. If w
are using feedback given byF5ŵ1p/2, where ŵ is an
estimate of the phase, then the photocurrent can be expre
as

I ~ t !dt52uausin~w2ŵ !dt

1dW~ t !Ae22r cos2~ ŵ2w!1e2r sin2~ ŵ2w!.

~5.2!

It is clear that if the intermediate phase estimate used is v
close to the system phase, then the factor multiplyingdW
will be close toe2r and will be at a minimum. The better th
intermediate phase estimate is, the smaller this multiply
factor will be. If the intermediate phase estimate is not p
fect, it is clear that increasing the squeezing past a cer
level will not reduce the multiplying factor. This is becau
the e2r term will start to dominate.

It is possible to estimate the optimum squeezing and
minimum phase variance using the linear approximation
this approximation, the variance in the individual phase e
matesu(t) is

@e22r cos2~ ŵ2w!1e2r sin2~ ŵ2w!#/4uau2dt. ~5.3!

It is clear that the minimum phase variance~in this approxi-
mation! will be obtained when the best phase estimates
used forŵ. It is therefore reasonable to use the phase e
matesQ(t) for ŵ, rather than argAt as in the coherent case
The values ofQ(t) will be the best phase estimates when t
correctx is used. As the variance of these estimates isDQ2,
we obtain

^e22r cos2~ ŵ2w!1e2r sin2~ ŵ2w!&'e22r1e2rDQ2.
~5.4!

This approximation will be true for small phase varianc
and large squeezing. Following the same derivation as for
coherent case, the only difference is the multiplying fac
so we obtain

DQ25
x

8uau2
~e22r1e2rDQ2!1

k

2x
. ~5.5!

This expression has two independent variables,x and r,
that can be varied in order to find the minimum phase v
ance. Taking the derivative of Eq.~5.5! with respect tox and
setting the result to zero gives

x5
k

DQ2
. ~5.6!
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Substituting this into Eq.~5.5! gives

DQ25
k

4uau2 S e2r1
e22r

DQ2D . ~5.7!

Taking the derivative of this with respect tor and again
setting the result equal to zero gives

e24r5DQ2. ~5.8!

Substituting this back into Eq.~5.7! gives the phase varianc
as

DQ25S k

2uau2D 2/3

5S 1

2ND 2/3

. ~5.9!

Thus we see that even for an arbitrarily squeezed be
the best scaling we can obtain for the phase varianc
N22/3, as compared toN21/2 for a coherent beam. This dif
ference is less than for pulsed measurements, where
phase variance for the optimum squeezed states scales a
as n̄22, as compared ton̄21 for coherent states.

VI. HETERODYNE MEASUREMENTS ON A BROADBAND
SQUEEZED BEAM

In order to determine the phase variance for heterod
measurements on a squeezed beam, we can simply per
the derivation of Sec. III, except with the factor multiplyin
dW from Eq. ~5.1! included. This means that the varianc
will be

^Q2~ t !&5
k

2x
1

x2

4uau2
^~s t1s t* !2&, ~6.1!

except withs t modified to

s t5E
2`

t

ex(u2t)ei (F2p/2)

3Ae22r sin2~F2w!1e2r cos2~F2w!dW~u!.

~6.2!

Here we have used the assumption that the phase of
squeezing is 2w1p. Note that the derivation of Sec. II
takes the phase relative to the current system phase.
means that to a first approximation we may takew(u)50.

In order to determine the phase variance, we must de
mine the expectation values^us tu2& and ^s t

2&. We find

^us tu2&5E
2`

t

e2x(u2t)~e22r sin2 F1e2r cos2 F!du.

~6.3!

As the local oscillator phaseF is varying rapidly in the
heterodyne case, we may take the average values of sin2 and
cos2, giving
3-6
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^us tu2&5
cosh~2r !

2x
. ~6.4!

Similarly, evaluatinĝ s t
2& gives

^s t
2&52E

2`

t

e2x(u2t)e2iF~e22r sin2 F1e2r cos2 F!du.

~6.5!

Taking trigonometric averages as above gives

^s t
2&52

sinh~2r !

4x
. ~6.6!

Using these results we obtain the phase variance as

^Q2~ t !&5
k

2x
1

cosh~2r !2 1
2 sinh~2r !

4uau2/x
. ~6.7!

This differs from the result for the coherent case by the m
tiplying term cosh(2r)21

2 sinh(2r). This has a minimum of
A3/2 for r 5 ln(3)/4. Using this value, we obtain the min
mum variance as 31/4Ak/(2a) for x52Akuau/31/4. Thus we
find that the scaling is the same as for a coherent beam,
the multiplying factor is only about 7% smaller. In contra
there is a factor of two difference in the single-shot case

VII. RESULTS FOR DYNE MEASUREMENTS
ON A BROADBAND SQUEEZED BEAM

The results for the cw squeezed beam were obtained
similar method as for the coherent case. Only variation in
variablesN andx of Eq. ~4.1! was considered, and time wa
measured in units ofuau22. The step sizes used wereDt
51/103x. The integrations were taken up to time 30/x, then
the variance was sampled every time step until time 130x.
The integration was performed using the photocurrent gi
in Eq. ~5.1! with fz52w1p.

It was found that whenŵ(t)5argCt was used in the feed
back, very poor results were obtained. This is a similar re
to the case for single-shot measurements, where using arCv
feedback results in large phase variances@4#. This is because
when the intermediate phase estimates are extremely g
the results do not distinguish easily between the real sys
phase and the system phase plusp. This means that many o
the results are out byp, resulting in a large overall phas
variance.

In order to avoid this problem, rather than using argCt in
the feedback, an intermediate phase estimate given by

ŵ~ t !5arg~Ct
12«At

«! ~7.1!

was used, with« constant. Note that this is the same as us
to obtain phase measurements close to optimum in
single-shot case, except that there a time-varying« was used.

For each value ofN there are three variables that can
altered to minimize the phase variance:x, r, and«. It is not
calculationally feasible to consider a range of values for
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three variables. Instead, different values were tried syst
atically to find the minimum phase variance.

The minimum phase variances obtained by this meth
are plotted as a function ofN in Fig. 3. The theoretical value
given by Eq.~5.9! are also shown in this figure. The numer
cal results are higher than the theoretical values, but t
have the same scaling withN, namely,N22/3. If we plot the
ratio of the numerical results to the theoretical values as
the inset of Fig. 3, we find that for the largest values ofN the
ratio levels off at about 2.6.

Now note that, from Eqs.~5.8! and ~5.9!, the optimum
value ofe22r should be (2N)21/3. Similarly, from Eqs.~5.6!
and~5.9!, the optimum value ofx is (N/4)21/3. The numeri-
cally obtained optimum values ofe22r and x, as well as
these theoretical expressions, are plotted in Fig. 4. Simila
to the case for the phase variance, the scaling is the sam
theoretically predicted, but the scaling constants are dif
ent. For the case ofe22r , the optimum values are about eig
times those theoretically predicted, whereas the valuesx
are around a third of those theoretically predicted.

For the case of« there is no theoretical prediction for th
optimum value. The numerically obtained values are sho
in Fig. 4, and as can be seen« decreases in a regular wa
with increasingN. A power law was fitted to these value
~for N.1), and the power found was20.3560.01. This is
very similar to theN21/3 scaling found fore22r andx.

The results for heterodyne measurements are also sh
in Fig. 3. The results in this case agree very accurately w
the theoretical prediction, within about 0.5% for the larg
values ofN. Similarly the optimum values ofr andx agree
very accurately with those predicted above. The varia
scales asN21/2, in contrast to the variance for adaptive me
surements that scales asN22/3. This means that the improve
ment in using adaptive measurements scales asN21/6, which
can be very large for largeN.

FIG. 3. The phase variance as a function ofN for a cw squeezed
beam. The theoretical relations for adaptive and heterodyne m
surements are shown as the continuous line and dashed line, re
tively, and the numerical results for adaptive and heterodyne m
surements are shown as the crosses and pluses, respectively
inset shows the ratio of the numerically obtained phase varianc
the theoretical value as a function ofN for adaptive measurements
3-7
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VIII. cw INTERFEROMETRY

Now we will turn from dyne measurement on a sing
beam to cw interferometric measurements. In this case
have a Mach-Zehnder interferometer~MZI !, and are attempt-
ing to continuously track a stochastically varying phase
one arm, by controlling the phase in the other arm and
tecting photons in the two output beams. This is shown
Fig. 5. In this context it is not possible to consider noncl
sical states of the type considered for the single-shot case@6#.
Instead, for simplicity, we will restrict our consideration
the case where all photons enter through one port. This
be realized using coherent light, withuau2 photons per unit
time. Note that because this is an interferometric meas

FIG. 4. The optimum values ofe22r , x, and« for measurements
on a cw squeezed beam. The numerically found values ofe22r are
plotted as crosses, and the theoretical expression as a contin
line. The numerically found values ofx are plotted as pluses, an
the theoretical expression as a dashed line. The numerically fo
values of« are plotted as circles, and the dotted line is the expr
sion fitted to the data.

FIG. 5. The Mach-Zehnder interferometer, with the addition o
controllable phaseF in one arm. The unknown phase to be es
mated isw. Both beam splitters are 50:50.
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ment rather than one using a local oscillator as a phase
erence, the phase ofa is irrelevant.

This case is essentially semiclassical, and the detect
can be considered independently. Therefore, consider
state with a single photon incident on porta. The annihila-
tion operators for the output modes of the MZI,ĉ0 and ĉ1,
are related to the annihilation operators for the input mod
â and b̂, by @6#

ĉu5â sin@~w2F1up!/2#1b̂ cos@~w2F1up!/2#,
~8.1!

for uP$0,1%. Hence the probability for detecting the photo
in detectoru is given by

sin2@~w2F1up!/2#. ~8.2!

Using Bayes’ theorem, the probability distribution for th
system phase after the detection is proportional to this pr
ability times the initial probability distribution.

Denote the results form such detections by the strin
nm5umum21•••u1. The probability distribution for the
phase givennm , P(wunm), can be expressed as

P~wunm!5 (
k52m

m

Pm;k~nm!eikw. ~8.3!

In the absence of any phase variation, it can be shown f
Eq. ~8.2! that the unnormalized coefficientsPm;k8 (nm) can be
determined by

Pm;k8 ~nm!5Pm21;k~nm21!2 1
2 e2 i (Fm2ump)Pm21;k21~nm21!

2 1
2 ei (Fm2ump)Pm21;k11~nm21!. ~8.4!

The normalization condition on the probability distributio
becomesPm;0(nm)51. The normalized probability distribu
tion can be obtained by simply dividing the coefficients o
tained from Eq.~8.4! by Pm;08 (nm).

Similarly to the case of dyne measurements, we will
sume that the system phase diffuses with time as in Eq.~2.1!.
When the phase varies in time, the time between detect
is important. For a photon flux ofuau2, the probability of a
photodetection in timedt is uau2dt. The probability distribu-
tion for the time between detections is given by the expon
tial distribution

PE~ t !dt5uau2e2uau2tdt. ~8.5!

In the results that will be presented here, the time betw
detections,Dt, was determined according to this probabili
distribution.

Now in order to determine the effect of this phase diff
sion on the probability distribution between detections,
must first consider the effect over some very small time
terval dt. This is necessary because the probability distrib
tion for the change in the system phase over timeDt does not
go to zero forDw56p. This means that the probabilit
distribution will not be exactly Gaussian, due to the overla
In contrast, if we look at a very small time intervaldt, the

ous

nd
-
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change in the phase will have a normal distribution with
variance ofkdt. Explicitly the probability distribution is

PG~Dw!d~Dw!5
1

A2pkdt
e2Dw2/(2kdt)d~Dw!. ~8.6!

The probability distribution for the phase after timedt
will be the convolution of the initial probability distribution
with the Gaussian described by Eq.~8.6!. Evaluating this
convolution gives

Pdt~wunm!5E
2p

p

P~w2uunm!PG~u!du

5 (
k52m/2

m/2

Pm;k~nm!eikwE
2p

p

e2 ikuPG~u!du.

~8.7!

As dt is assumed to be small,kdt!1, and the integral in Eq
~8.7! evaluates toe2k2kdt/2. The effect of the variation of the
system phase on the probability distribution is, therefore

Pm;k
dt ~nm!5Pm;k~nm!e2k2kdt/2. ~8.8!

In order to take account of the effect of the phase dif
sion on the probability distribution over some significa
time intervalDt, this time interval can be thought of as com
prising M small time intervalsdt. Then we find that the
coefficients are just multiplied byM terms ofe2k2kdt/2. This
is equivalent to a single term ofe2k2kDt/2, which is very easy
to implement.

As time passes the effect of Eq.~8.4! is to broaden the
distribution of probability coefficients ink, corresponding to
a smaller variance in the phase distribution. In contrast,
Gaussian term in Eq.~8.8! tends to narrow the distribution o
probability coefficients, corresponding to a greater ph
variance. The initially broad phase distribution narrows un
an approximate equilibrium is reached, where the two effe
cancel each other out.

In Ref. @6# it was shown that the optimum phase estim
for the single-shot case is

Q5arĝ eiw&5argPm;21~nm!. ~8.9!

It is easy to see that this phase estimate is optimal in the
case also. In addition we consider feedback that is equiva
to that considered in the single-shot case in Ref.@6#. Rather
than using an intermediate phase estimate as in the d
case, we use the full power of Bayesian statistics to cho
the feedback phaseF so as to minimize theexpectedHolevo
phase variance after thenext detection. This is achieved b
choosingFm to minimize the value of@6,10#

M ~Fm!5 (
um50,1

U E
2p

p

P~nmuw!eiwdwU. ~8.10!

The values ofP(nmuw) can be obtained, except for a no
malizing constant that is common toum50 and 1, by using
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Eq. ~8.4!. This means that we can expressM (Fm) as in Ref.
@6# with the parametersa, b, andc given by

a5Pm21;21~nm21!,

b5 1
2 Pm21;22~nm21!,

c5 1
2 Pm21;0~nm21!. ~8.11!

These values ofa, b, and c can be used to determine th
feedback phase as in Ref.@6#.

The phase uncertainty at equilibrium can be estimated
ing a similar approach as was used for the single-mode c
Let us assume that the equilibrium variance in the best e
mate for the system phase isDQ2. After time Dt, the vari-
ance in this phase estimate with respect to the new sys
phase,w(t1Dt), will be DQ21kDt. In the equilibrium case
this increase in the variance should, on average, be bala
by the decrease due to the next detection.

We now wish to estimate the equilibrium variance bas
on a weighted average with the previous best phase estim
and a phase estimate from the new detection. If we use
actual variance for a phase estimate based on a single d
tion, then we do not get accurate results. This is because
variance for a single detection is large, so the weighted
erage does not accurately correspond to the exact theor
order to make the theory based on weighted averages a
rate, we need to assume aneffectivevariance for the single
detection, that is different from the actual variance.

In the case where there is no variation in the syst
phase, the phase variance aftern detections is approximately
1/n @6#. It is clear that, if we assume that each detection
an effective variance of 1, then we will obtain the corre
result. This is, in fact, equal to the variance as estima
using ^2(12cosw)& ~this measure is used, for example,
Ref. @11#!. Applying this to the case with a varying syste
phase gives

1

DQ21kDt
115

1

DQ2
. ~8.12!

Simplifying this to solve forDQ2, we findDQ2'AkDt. On
average, the time between detections is 1/uau2, so the ap-
proximate value of the variance should be

DQ2'Ak/uau251/AN. ~8.13!

IX. RESULTS FOR cw INTERFEROMETRY

In order to verify this theoretical result, the equilibrium
phase variance was determined numerically for a variety
parameters. In this case there is only one dimensionless
rameter,N. In the case of dyne measurements there was
additional parameterx describing how the latest results we
weighted as compared to the previous results. In this case
do not have this parameter, as the phase estimates ar
determined in that way.

The calculations were run for 105 detections~or 23105

for the maximum value ofN), and the phase error wa
3-9
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sampled every detection after 10AN detections. This was
done 100 times for each value ofN. The equilibrium phase
variance was determined in this way for the nearly optim
feedback scheme described above. In addition we test
nonadaptive measurement scheme with

Fm5F01mp/AN, ~9.1!

whereF0 is a random initial phase. When the value ofN was
1 or less this was modified to

Fm5F01mp/2, ~9.2!

to preventFm being constant~modulop). This is equivalent
to the nonadaptive scheme in the single-shot case use
Ref. @6#, and is analogous to heterodyne measurement.
reason for the factor of 1/AN is that the effective number o
detections used for the phase estimate isAN. This follows
from the fact that the phase variance is approximately 1/AN.

A minor problem with cw adaptive measurements is t
the number of probability coefficientsPm;k(nm) needed to
determine the probability distribution for the phase rises
definitely with the number of detections. The narrowing
fect of the varying system phase, however, means that
probability coefficients fall approximately exponentially wi
k. The probability distribution can, therefore, be appro
mated very accurately by keeping only a certain numbe
coefficients. For the results presented here all probability
efficients with a magnitude above about 10220 were used.

The Holevo phase variances for the two measurem
schemes are plotted in Fig. 6. As can be seen, the result
both cases are very close to the theoretical result of 1/AN for
the larger values ofN. For values ofN closer to 1 the results
for the nonadaptive scheme are noticeably above the the
ical values. For small values ofN ~less than 1!, the variance
converges to 3 for both the feedback schemes. This is w
can be expected, as the system phase is randomized bet
detections. This means that the measurements are equiv
to phase measurements with a single photon, for which
Holevo phase variance is 3. The feedback has no effec
there is no information on which to base it.

To see the differences more clearly, the phase varian
are plotted as ratios to the theoretical values in the inse
Fig. 6. The adaptive scheme gives phase variances tha
very close to, and slightly below, the theoretical values
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moderate values ofN. In contrast, the results for nonadaptiv
measurements are all above the theoretical values~for N
>1). For small values ofN the variance for both schemes
below 1/AN, as the variance is converging to 3.

These results show that there will be a significant i
provement in using an adaptive scheme over a nonadap
scheme only if the time scale for the system phase varia
is comparable to the time between detections. This can
expected from the results for the single-shot case with
photons in one port, where there was a significant impro
ment in using an adaptive scheme only if the photon num
was small. The maximum improvement here is about 2
for N'4.

X. CONCLUSIONS

This study considered the problem of cw phase meas
ments, where the phase is being varied randomly in time
the aim is to follow this variation with the minimum possib

FIG. 6. The phase variance as a function ofN. The numerical
results for adaptive and nonadaptive measurements are show
the crosses and pluses, respectively, and the theoretical value
shown as the continuous line. The inset shows the phase varian
a ratio to the theoretical value of 1/AN. The results for adaptive and
nonadaptive measurements are shown as the continuous line
dotted line, respectively.
s.
es,

d beam
ehnder
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I

TABLE I. Scaling of phase variances for large photon numbersN under various measurement condition
For the cw~continuous-wave! cases,N is the number of photons per coherence time. In the pulsed casn

(n̄) is the~mean! photon number per pulse. Dyne measurements are those performed on a phase-shifte
or pulse using a local oscillator, while MZI measurements are of a phase shift in one arm of a Mach-Z
interferometer. The two empty cells are those not treated in this study, and the question mark de
conjectured scaling.

Coherent, dyne Squeezed, dyne Coherent, MZI Optimal, MZ

cw, adaptive N21/2/2 O(N22/3) N21/2

cw, nonadaptive N21/2/A2 N21/2331/4/2 N21/2

Pulsed, adaptive n̄21/4 O(ln n̄/n̄2) n21 O(ln n/n2)?

Pulsed, nonadaptive n̄21/2 n̄21/4 n21 O(n21)
3-10
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ADAPTIVE QUANTUM MEASUREMENTS OF A . . . PHYSICAL REVIEW A65 043803
excess uncertainty. We considered three different situatio
dyne measurements on a coherent beam, dyne measurem
on a ~broadband! squeezed beam, and interferometric me
surements using a coherent beam input. The relevant dim
sionless parameter isN, the number of photons per cohe
ence time~the characteristic time for the phase diffusion!.
Under optimum conditions, we found the analytical resul
confirmed numerically, shown in Table I. Previous resu
obtained for single-shot measurements on a pulse contai
n, or n̄ on average, photons are also shown for comparis

A number of regularities are evident from this table. Wi
coherent light, the variance reduction offered by adapt
measurements is at most a multiplying factor. With noncla
sical light, nonadaptive measurements scale in the same
as for coherent light, but adaptive measurements offer
improvement in the scaling. In all cases, the variance red
tion ~by a change in the prefactor or the scaling! is less in the
cw case than in the pulsed case. This is because in orde
obtain the best phase estimate, asN increases, the memory
time for the estimate is reduced. This is needed to keep
contribution to the variance from the varying system pha
~which increases with memory time! comparable with that
from the quantum uncertainty~which decreases with
memory time!. This means that the effective number of ph
tons used for the estimate is the number per memory tim
rather than the number per coherence time,N.

In the case of dyne measurements on a coherent bea
was found that good results were obtained using a sim
feedback phase (argAt), similarly to mark II single-shot
measurements@2#. In the cw case, the feedback simplifies
a form even simpler than for the single-shot case. Spec
cally, the feedback phase is simply adjusted proportiona
the photocurrent. When the correct proportionality const
is selected, a minimum equilibrium phase variance is fou
that scales asN21/2/2. This is onlyA2 times smaller than the
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phase variance for heterodyne measurements.
For the case of dyne measurements on broadb

squeezed states, the situation is considerably more com
cated. The change in the phase cannot be taken to be pro
tional to the current, but rather is a functional with two p
rameters. With the degree of squeezing to be optimized
well, there are three parameters that must be varied to
the minimum phase variance. Nevertheless, it is still poss
to obtain an analytic result that agrees with the numer
results in its scaling~although predicts the wrong multiply
ing factor!. Specifically, it was found that the minimum
phase variance varies asN22/3, compared toN21/2 for a co-
herent beam. This contrasts with heterodyne measurem
on broadband squeezed states, for which the minimum v
ance is only about 7% below the corresponding result fo
coherent beam.

The case for interferometry is more difficult to treat, as
does not work with any simple feedback scheme. The fe
back used was based on minimizing the expected varia
after the next detection, similarly to the single-shot case.
spite this, it was found that it is possible to determine
approximate theory that agrees reasonably well with the
merical results for the case where a coherent beam enters
port of the interferometer. Similarly to the dyne case with
coherent state, the phase variance is proportional toN21/2.
When a linearly changing feedback phase was used~analo-
gous to the heterodyne scheme!, it was found that the phas
variance is above that for the adaptive feedback, but the
ference is very small except forN of order unity. This is as
can be expected, as the difference is also very small for la
photon numbers in the single-shot case.

In comparison with our previous pulsed results, the
results obtained in this paper are probably more relevan
and in some cases easier to implement in, a quantum-op
laboratory. This augurs well for future experimental verific
tion.
this
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