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Light quantization for arbitrary scattering systems
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We present a quantum theory of light scattering for the analysis of the quantum statistical and fluctuation
properties of light scattered or emitted by micrometric and nanometric three-dimensional structures of arbitrary
shape. We obtain general three-dimensional quantum-optical input-output relations providing the output photon
operators in terms of the input photon operators and of the noise currents of the scattering system. These
relations hold also for photon operators associated with evanescent fields, for anisotropic scattering systems
and/or for media with a nonlocal susceptibility. We find that the commutation relations of the output photon
operators, carrying all the information on the scattering and/or the emission process, result to be fixed by
energy conservation and reciprocity. We prove that this quantization scheme is consistent with QED commu-
tation rules by using a novel relationship between vacuum and thermal fluctuations. This theoretical framework
has been applied to analyze the spectral density of light close to a point scatterer under different nonequilib-
rium conditions.
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[. INTRODUCTION eral results have been recently presen&t25. In particu-
lar it has been proved that quantization of the Maxwell
The study of the optical properties of systems with shapegheory of the electromagnetic field in inhomogeneous three-
and sizes varying on micrometric and nanometric scales igimensional, dispersive, and absorbing dielectric media of
motivated by fundamental research and by possible applicdiven causal permittivity is consistent with the fundamental
tions. In particular, the tailoring of electromagnetic modesequal-time commutation relations of QER5]. A different
allowed by microcavities and photonic bandg&PBGS has general 3D quantization scheme that makes use of a set of
given rise to a variety of striking phenomena observed irduxiliary fields, followed by a canonical quantization proce-
recent year$1,2] and it is expected to dramatically improve dure has been deyelo_ped by Tip6]. Recently the equiva-
the performance of light-emitting devices. These developlence of the quantization schemes by Scletedl. [25] and
ments and recent continuous progress in scanning near-fieRy Tip [26] has been demonstratg2(7]. _
optical microscopy have stimulated new theoretical ap- Here we generalize these results to media that can be
proaches for the analysis of a large class of problems dealingnisotropic and/or with a nonlocal susceptibility. Further-
with three-dimensional3D) objects of arbitrary shape and More, we consider explicitty media that can have finite size.
dielectric functions[3,4], and have renewed the interest in This allows the analysis of quantized light scattering and
the classical theory of light scatteriri§,6]. allows us to derive general quantum-optical input-output re-
In this paper we present a quantum generalization of théations relating the output photon operators to the input pho-
classical theory of light scattering based on Green’s dyadiéon operators and to the noise currents of the scattering sys-
technique. The theory presented here provides a general affm- These relqtions hold also for evanescent fields and thgs
unified basis for analyzing a large class of optical processedllow us to define naturally output photon operators associ-
where quantum and/or thermal fluctuations play a [@lelt ~ ated with evanescent waves.
is expected to be adequate to analyze a wide range of optical
phenomgna and expgriment§ sych as precision measurements || THE SCATTERING SYSTEM PROPERTIES
of Casimir forced8], light emission from sources embedded
in photonic system§9], light fluctuations in finite inverted- Let us consider the most general nonmagnetic linear scat-
population media with inclusion of spatial effedts0], the  tering system. It can be described by a causal and eventually
spatial behavior of scattered and/or confined nonclassicalonlocal susceptibility tensoy; j(r,r’, ») [28]. Thus we are
light [11,12, nanoscale radiative transfgt3,14], etc. considering a large class of material systems of arbitrary
Quantum electrodynamics in the presence of medighape including anisotropic media and/or media driven by
started from the pioneering work by Agarwdl5] who, ap-  the electric field via a nonlocal susceptibility. Electronic
plying the fluctuation-dissipation theorem, developed the lin-states of semiconductors and semiconductor quantum struc-
ear response theory of spontaneous emission in presencetofes, and also all those systems with a spatially dispersive
dielectrics and conductors. A more direct microscopic quansusceptibility are driven by the electric field via a nonlocal
tization procedure for light in a dispersive and absorptivesusceptibility[21].
homogeneous dielectric was first proposed by Huttner and In the following we will adopt the compact Dirac nota-
Barnett [16]. Since this work, following the method of tion. We introduce the operatoksfor —V X V X, e, for k21,
Langevin forces, light has been quantized in media of in-and the integral operateg, describing the effect of the scat-
creasing generality17—23. Within this method quite gen- tering system. This operator applied to the electric field gives
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Hence the wave equation relative to the material system$hermal equilibrium can be altered by, e.g., optical pumping.
here considered, for the positive frequency components ah this case, Eq.(2.7) can still be used considerind
the electric-field operator can be written in the compact=T(w) as a frequency-dependent effective temperature.

Dirac notation as Very high temperatures correspond to saturation of the tran-
) . sition between the two levels. By taking a negative effective
(L+ey+e)|EN)=iwugl)), (2.1))  temperature, it is possible to describe also population inver-

sion and hence amplifying med[&0]. Equation(2.4) can
where the hat indicates quantum operators. The zero meatiso be generalized to take into account a scattering system
noise Currentsf can be derived from the Heisenberg- including media with different effective temperatures. We
Langevin equations for the material syst¢®9] and appear obtain
only if the susceptibility tensor is not real; they are a direct

consequence of the fluctuation-dissipation theorem and obey 2

(O]

the following commutation rules, (Jf(r,w)fj(r’,w»:W—m?
itr )i e)1=0 22 X3 (e (10 )N, 0)
~ 2t h w2 | ’ ’ XN w—w' 2.8
[Ji(riw)!Jj(r 'w)]:W_/vLogl)(ij(r,r 1w)|5(w_w )! ((1) w )1 ( . )

(2.3 wherem labels the different media. We point out that the

) . ) o nonlocal susceptibility )i (r.r’, ) is different from zero

' being the imaginary part of the susceptibility tensor. ; , m ;

%hese eg| ations 5?10 %/har; a nonlocal s scept'b'l"{y rod ceosnly v andr ! belong to the same medium The correla-
quat W usceplbrity produceg, | (Ji(r,®)j](r',®)) can be obtained from Eq2.4) re-

noise currents that are spatially correlated. These spontangc—)
ous currents act as quantum Langevin forces. Their expect&lacingN with N+1.

tion values determine the amounts of noise that are added to

optical signals that propagate through the attenuating or am- 1ll. QUANTUM THEORY OF LIGHT SCATTERING

plifying media. Moreover(ﬁ) is the source term producing

light emission. These noise currents are related to th((a)perator can be derived following the well-known quantiza-

Bosonic vector field describing the reservoir oscillators. Thetion schemes in vacuum. By using the angular spectrum of
expectation values qf hoise currents depend on th_e specn‘ ane waves, the electric-field operator can be expanded in
state of the reservoir oscillators. We start by considering arms of phoion operators as

system at a given temperatufe In this case the current’s
correlation tensor is given by

In the absence of the scattering system, the electric-field

EO(r,t)= dewe*“"tEO*(r,w)JrH.c.,
i w? _ 0
(1 ro)j(r0)=— = xir.r"o)N,T)so-o'),

To 2 with
(2.4

. hw A
— 0 i T T
whereN(T) is the mode occupation described by Planck’s E° (r,)=i+/ 2—8072;4( o (r,w)ag(w), 3.1
formula '

wherer=>, < indicates leftward and rightward propagating
(2.5) waves, anK=(K, o) is a shortcut for the wave-vector pro-
exphwl/kgT)—1" ' jection along thexy plane and the polarization directian

. _ . é& are the photon operators obeying the usual Bosonic com-
If we consider the medium composed of a collection of non-,

) g Sl mutation rules,
interacting two-level systems at thermal equilibrium, the ra-

tio between the uppeN,- and the lowerN;-level occupa-
tions associated with the dielectric response at frequency
is given by the Boltzmann distribution law

N(w,T)=

[a%(w). a5 (0")]= 6, 5 dw—w'), (3.2

[a%(©), 85, (0')]=0. (3.3
N,
N_|:exq_ﬁkaT)‘ (28 The orthonormal set of vector fields is given by
From Egs.(2.5 and(2.6) we obtain (1, 0)= axe “expi (K- R+ k,z), (3.4
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where r=(R,z), e; is the polarization unit vectork,
= (0% c?—K?Y2 and ay = (w/2mc?k,A)Y2 A being the
guantization surface. In compact notation, E8}1) can be

written as
N ) .
[E%)=i\5-2 |diak(w).
€o7,K

We observe that the field operator in E§.1) verifies, in
the same compact notation of E@.1), the following wave
equation:

(3.9

(L+ey)|E®TY=0. (3.6)

The Green operator associated with the complete system is

defined by
(L+e+e)G=1. (3.7

Adding Eq.(3.6) to Eq.(2.1) and using Eq(3.7) we obtain

[EY)=1EN)+IEp), (3.9
with the particular solutiorﬁ; given by
|Eq)=iwuGl]), (3.9
and the homogeneous solution
|Eq)=(1-Ge)|E"). (3.10
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FIG. 1. Scattering geometry and notation.
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volume discretization procedure in close analogy with the
discrete dipole approximatiof81,32. Recently the method
of multipole expansion has been used to calculate 2D Green
functions in photonic crystalg33]. A different scheme for
the calculation of Green functions for photons propagating in
complex dielectric structures based on an extension of the
finite-difference time-domain method has been presented by
Ward and Pendry34].

The consistency of the quantization approach described in
this section with the equal-time QED commutation relations
is proved in Appendix A.

IV. QUANTUM-OPTICAL INPUT-OUTPUT RELATIONS

Inside absorbing materials, owing to the presence of noise

In ther representation the obtained electric-field operator cap, rants. it is not possible to define space-independent pho-

be written as

é:i<r>=éi°+(r>—q2f Gij (r,r ) x; (r' - EP* (r")drdr”,
(3.11)

E;i(r)ziwﬂof Gij(r,r")j;(r"Hdr’. (3.12

Introducing Eq.(3.1) into Eq.(3.10, the homogeneous term

ton operators as in free spal#3,29, however, we may at-
tempt to find input and output photon operators outside the
scattering systenj23]. This would furnish useful input-
output quantum-optical relations and it would imply that, just
outside the scattering system, the light field, although carry-
ing information on the scattering process, can be quantized
as in free space. We proceed by bounding the scattering sys-
tem with two planes at= * L, thus separating space in three
regions: the left regiofl) (z<—L), the scattering regiofil)

can be expanded in terms of free-space photon operators ds L <z<L), and the right regiorilll) (z>L), as shown in

. h R
E*)=i \/2—8";;K 90)a%(),

(3.13
where
| i) = (1— Gey)| o) (3.14

is the electric field arising from an input bedwh; ) scattered

by the material system. Equati©8.8) gives the electric-field

Fig. 1. In the following we will show that it is possible to
define space-independent photon operators outside the scat-
tering region. We start from the Dyson equation

G=G"-G%gG, (4.1
whereG? is the unperturbed free-space Green dyadic, obey-
ing the following equation:

(L+e)G°=1. 4.2

operator in terms of the input photon operators and the noise

currents operators. Once the quantum states of the inputligfﬂjsing the angular plane-wave expansion, the free-space
beams and of the scattering system are fixed, by using Eqreen tensor can be written as

(3.9 in principle it is possible to compute the electric-field
operator in the presence of the scattering system in all the
space if the Green tens@;;(r,r’) is known. One efficient
procedure to calculate Green tensors for complex 2D and 3D
scattering objects is described in Rf] and it is based on a

i wc? 8(z—12') zz
G(rr=-—=3 ¢i,i<r>>¢<K,j<r<>+(k—2);,

4.3
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wherer-=r(r_=r") for z>z' andr-=r'(r_=r) for z

PHYSICAL REVIEW A 65 043801

Equation(4.11) with Egs.(4.12 and(4.13 gives the output

<Z'. Let us analyze the electric-field operator in the regiongphoton operator associated with a plane wave of given en-

external to the scattering systdiand Ill). We start from the

ergy and propagating along a fixed directi@etermined by

contribution(3.10 arising from the solution of the homoge- K andw) (see Fig. 1in terms of the input photon operators

neous wave equation. We introduce the Dyson equatdi)
into EqQ. (3.10,
|Eq)=E"")-G%1-eG)elE™"). (4.4

Let us now consider the electric-field operaﬁﬁ(r) in re-

and of the noise currents inside the material system. The
integrals in Eqs(4.12 and(4.13 can be explicitly written in
ther representation, the one in E@.13 reads

<¢Eli*>=f P (r)-j(r)dr. (4.14

gion lll (z>L). In this case the free-space Green tensor in
Eq. (4.4 appears always with>z' and thus can be written Analogous results can be obtained for the electric-field op-

simply as

i wc? <
Gﬂ(r,r’)z—%; b (N, () (2>2),

(4.5
that in compact notation reads
i wc?
GO=——— > )l (4.6
o K
where we have introduced the following definition:
(lr)=(rl¢=x). (4.7)

Introducing Eq.(4.6) into Eq. (4.4) and using Eq(3.14) we
obtain

; 2
A A 17C
[En)=[E°")+

; | (Ui |&|ET). (4.9

(O]

Following the same steps f(ﬁ; we obtain

i wc2

B =iomo—— 2 ldO(wli). (49
By introducing Eq(3.2) into Eq.(4.8), the total electric-field

operator in the region Ill can be written as

N h R
B (ro)=i\5-> [ (1o)b; (o)
0K

+ e (r,w)ag(w)],

(4.10

erator in region [, that can be written as

. ho R
E*(r,0)=i \/2—%; [ e (r,0)ag (o)

+ g (r,0)bg ()], (4.19
with b (w) =bY~+bE~ given by
N - mc?  [2g .
bR =ag + — V75, (WelE®T) (4.16
and
N iT [2eq -
p<:_ v <|%
bK €0 ﬁw<$K|J> (417)

Equations(4.12 and(4.16 can be further simplified evalu-
ating the integrals. This can be done by using the Lippman-
Schwinger equation

)= (1-G%)[4).

By using the angular spectrum representation of the field
|4, defined according to

(4.18

¢(r>=; PK(z)eR, (4.19

we can project the Lippman-Schwinger equation as

i 2
)= )+ | g ) g e ), (420

with the space-independent output photon operators given by

by =blk" +b~, (4.11)
with
- - T 2gg .
bR =ag + V750 i e EOT) (4.12
and
N iT [2eq -
p>__" [2%0, >0y
bi co ﬁw<¢K|J ). (4.13

with 7(7') depending on which regioft or Ill) we are con-
sidering. Introducing Eq(3.1) into Eq. (4.12, using Eq.
(4.20, and observing thapg K (L) =eg ,exf —ik,L], we ob-
tain

(il EO7) =(E* el ™)

_ e 2kIA kL
- ZGOK/ ag 4 eXF[ I z ]

g™ (~L)— o (~L)teg A,

043801-4
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K O- oK (Uer a5,
(4.21)

By using this equation, Eq4.12 can be written as

where

whereK=—K andK=(—K,d). Analogously, we can ob-

b= [TK'a , +RE ag,], (4.22
KI
. e ikl i
K= o (—L)-e, (4.23
GfK/
K’ eiikéL <K' <K' <
K = [ (L)—d (L)]-go, (429
CYK/

tain for the operators describing output in region |,

where

b= [RK'a , +7K ag,], (4.25
KI
e_ikéL >K! >K' >
= [ (L= (—L)]-&,
agr
(4.26)
. ekl <
TE = P (L) ey (4.27)

g
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observe that, since we have not assumed any translation
symmetry for our scattering system, in principle all the light
modesa;, arising from all possible input field&’ are ex-
pected to contribute to output waves propagating along a
given direction determined by andw. Instead, due to reci-
procity, Eqs.(4.12 and(4.13 have a simpler structure show-
ing thatb, depends orE®" andj* only via the reciprocal
mode c/r;— The obtained input-output relatior@.28 are
based on the angular-spectrum representation. As it is well
known, this representation describes explicitly also the eva-
nescent wave$6] that appears fokK>k. These relations
(4.28 hold also for evanescent fields and define naturally
output photon operators associated with evanescent waves.
With the improvement in techniques based on measurement
and control of evanescent waves, these relations should find
application for the analysis of evanescent nonclassical fields,
e.g., arising from the scattering of nonclassical input fields
by nanometric objects.

V. COMMUTATION RELATIONS

The expansion in input and output photon operators per-
formed above is consistent only if the output operators are
true photon operators obeying Bosonic commutation rules.
Let us start looking at the commutator for the particular term
of the rightward output operator. By using Ed2.3 and
(4.13), we obtain

ap>c N ppte oo o
[bi™ (@),b; (0")] SOAK,Kr(w)5(w ®"), (5.1)

with

The obtained quantum-optical input-output relations relate

the output operatorb,=(by; ,by) to the input photon op-

eratorsag=(ay, ,ax) and to the noise currenigr) of the

scattering system, according to
BKZE gé'éKr‘i"EK, (428)
K!
wheresﬁ/ is a 2X 2 scattering matrix $ matrix),
’ TK/ RK,
Se = A (4.29
R Tk

andFy is a two-dimensional quantum noise vector,

~ |7T 280 T <
Fk=— %(<¢K|J>’<¢K|J>)-

€0

AK,Kf=j drl ()3 (N + I 4" (D], (5.2

where J(w) = —iweox iy w). We observe thah  is the
power loss of modep%(w) due to the scattering system.
From the Maxwell equations, following the same steps as for

the derivation of the Poynting theorem, we find that
AK,K’+(I)K,K’:OI (53)
with
P o= jg [ (D)X H" (1) + g (1) X Hig(n)] - nda,
(5.9

where H=(1/ioug) VX ¢ is the corresponding magnetic
field, the integration is over a surface bounding the scattering

If the quantum state of input radiation and of the materialsystem andn is the unit vector normal to the surface.
system is known, any output photon correlation can be di— g, , is the real power flowing into the scattering system.
rectly calculated by using these relations provided the C|35Equdtion(5.3) is a compact form for the Poynting theorem
sical light modesp% have been computed. Light modes for (K=K') and for the Lorentz reciprocity theorenK ¢K').
specific complex structures can be calculated using EqBy manupulating the vector products, E§.4) can be re-
(3.149 according to the scheme described in R&l. We

written as

043801-5
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Y In Eq. (6.1), ()ap indicates the expectation value, where

'Omllf,zr (r) (a,b) labels respectively the state of input light and the state
of the material system. In this case (0,0) indicates the
vacuum state for both the Hilbert spaces. Equati6r®)

da. (5.9 agrees with results obtained by applying the fluctuation-
dissipation theoreml5].

This surface integral can be evaluated by choosing as bound- Let us now consider a scattering system with an effective

ing surface the two planes a=+L and by using the uniform temperaturd embedded in a vacuum aerotem-

angular-spectrum representation of the figkld9. The gra-  perature. By using Eq3.8) we obtain

dients in the direction normal to the surfaces can be easily

< d <
_ll,lzf ( ) a_nll’lz(r)

evaluated by using Ed4.20. We obtain (Ef(rl,w)ér(rz,w’)}ovT=Wij(r1,r2,w)5(w—w’),
. (6.3
(I)K‘K,=(I)EL’J:<,—(I):2’K, y (56) .
with
with 5
Wij (r1!r21w) = N(wyT)(ﬁwZ/SOWCZ)A(rl erlw)'
€0 6.4
D =— % [RRRZ +TRTE ], (5.7) 4
whereA(r;,r,,) is defined in Appendix A. Equatiof6.4)
N &0 is very similar to the expression used in R to calculate
(I)K'K/:? Ok K - (5.8)  the cross-spectral density tensor of the near field thermally

emitted into free space by an opaque planar source. Using

Using Eq.(4.22, we also directly obtain Eq. (A4), Eq. (6.4) can be written in the form

how~
[BT(“’)’BE?T(‘"’)]:8_:(1)%:«(“’)5(“’_“’,)' (5.9 W(r,r',w)=N(w,T) SO(r,r’a))—z—%p(r,r’,w) .

(6.5
Summing Eq.(5.1) and Eq.(5.9), the Boson commutation ) ) ) ) )
rules for the output operators are thus readily obtained. RelNiS equation establishes a general relationship between the
sult of this is that thecommutation relations for the output spatial variations of the second-order coherence tensors for

operators are determined by energy conserva(én-K') vacuum fluctuations and spontaneous light emission. We ob-
and by reciprocity(K#K'). In particular, reciprocity en- S€rve that, while vacuum fluctuations originate from both the

sures the independence of output operators with differertcattering system and the input light modes, light emission in
wave vector or polarization[ b 6>T]=O for K#K'). It a zero-temperature free space comes only from the scattering

. P . Kok ) . ' system. This explains why the spatial variation of the tensor
would be violated if output operators with different wave

o . describing light emission can be obtained by subtracting
vector or polarization are not independent as much as th

. ffom the contribution due to the vacuum fluctuation the con-
nput operators are. So far we have discussed only the com-

mutation relations for the output photon operators. ThetrIbUtion originating from the input light modes(r,r’,«)

equal-time QED commutation relations between the fundagn(_j”(]aventgally reflect(_ed byfthi the:mal source. field
mental fields are shown in Appendix A. e noise properties of the electromagnetic field are

manifested by electric-field fluctuation spectrum in the ab-
sence of any input signal. Let us consider a material system
at a given uniform temperature. The electric-field correlation
spectrum is defined by

In this section we analyze the fluctuation properties of the

VI. LIGHT EMISSION AND ELECTRIC-FIELD
FLUCTUATIONS

electromagnetic field in presence of absorbing and/or emit- (E(r,0)E(r",0"))or=(En(r,0)Ex(r',"))o
ting media and present some examples of light propagation . .
in nonequilibrium. +(Ep(r,@)Ep(r', "))y
Let us start considering vacuum fluctuations in presence —Srr ) S(w—w'). 6.6

of a scattering system. As it is well known, vacuum fluctua-
tions play a fundamental role in quantum-optical processe

By i ting th ion for the electric-field tor de-
[37]. By using Eq.(3.8) and the relatiorfA4) we obtain y Insering e expression for the eleciric-ield operator de

rived in Sec. lll, we obtain

<Ei(rl,H))Ej(rz,(1),)>0'0:S?j(r1,r2,(l))5((1)_(1),),

6.0 (En(r,®)Eq(r',0"))o=(Ep (r,0)E, (r',0"))g

with e s /
_2_60p(r1r lw) (w_w )1

SH(ri.r2,0)=—(ho?leqmc®)Gli(r1,r,,0). (6.2 6.7

043801-6
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1.03 . = / / /
(Ef (r1,0)E[ (r2,0")1, 7,=Wij(r1,r2,0) (0— '),
(6.10
1.024 : is given by the following expression:
é: ' Wi/j(rleraw):le?j(rlrerw)
h .
@ o101 .- o
+2_%Pij(r1-r2,w)[N2_N1]- (6.19
1 004 We observe that the spatial variations of this correlation
' function change continuously as a functionfgfandT,. At
T T T equilibrium (T{=T,) the spatial behavior ofV’' coincides

with that of G' and hence with that of the tensBidescribing

vacuum fluctuations. As expecteds' describes the
FIG. 2. Normalized(with respect to free sparelectric-field  electromagnetic-field fluctuations at equilibriuph5]. The

fluctuations for a resonant-point scatterer at zero temperétare  light intensity as a function of frequency is proportional to

radial distance wr/c

tinuous ling and at a given effective temperatudotted ling asa |’ (r,w)=TrW'(r,r,w). We obtain
function of distance from the scatterer. Parameters are given in the
text. hw
I’(r,w)=NlTrSO(r,r,w)+zp(r,w)[N2—Nl],
0
. A, 2N(w,T)+1 (6.12
(Ep(r,@)En(r', @ )>T_W

wherep(r,w)=Trp(r,r,»); as it can be inferred from Eq.

XW(r,r' o)d(w—w'), (A3), p(r,») describes the local optical density of states
(6.8) (DOSY). It gives the intensity of light at due to incoherent
illumination, i.e., with input light modes arriving from all the

hence Eq(6.6) can be written as spatial directions and it is currently used to characterize the
optical properties of PBG structur@4] and more generally
S(r,r’,w)=S(r,r",0)+2W(r,r’, o). (6.9 of dielectric systemg35,36]. Before presenting some nu-

merical results, we observe that whiep equalsN,, a situ-

We observe that botB® andW for a specific system can be ation of thermal equilibrium is recovered and the spatial
directly calculated once the Green tensor has been derivedariation of light intensity is the same of vacuum fluctuations
The power spectrur(r,w) of the electric-field fluctuations and is determined by the trace of the imaginary part of the
at positionr is obtained by taking the trace of E¢6.6). Green tensor as prescribed by the fluctuation-dissipation
These power spectra are usually obtained using théheorem. Out of equilibrium the fluctuation-dissipation theo-
fluctuation-dissipation ~ theorem [18,19.  Fluctuation- rem does not hold. IN;=0, which means that the medium
dissipation theorems have also been derived for amplifyinds in its ground state and does not emit light, the spatial
media[38,39. However, this approach cannot be used whervariation ofl’(r,) is determined by the local optical den-
the whole system is not in thermal equilibrium as in thesity of states(r,). In the opposite limifN,=0, there is no
present example. In this case we are considering an atteninput light and the spatial variation of(r,) describes the
ating or amplifying medium at a given effective temperatureemission pattern of the medium that is given by the trace of
embedded in free space at zero temperature. In Fig. 2, wed. (6.4).
display the electric-field fluctuatiorj(r,w) as a function of Figure 3 displays’(r,w)/[ (N1+N,)Tr G] for the same
the radial distance for a pointlike scattering object embeddegointlike scattering object of Fig. 2. We consider different
in free space. In Appendix B, the Green tensor for this elratiosN,/N,. Figure 3a) obtained withN,/N,;=0 displays
ementary scattering system is derived. Figure 2 showthe emission pattern of the pointlike scatterer. Figufe) 3
S(r, ) (normalized with respect to the free-space valioe  calculated at equilibrium N;=N,) displays TiG'/Tr G},
T=0 and for an effective temperature such tiN{tw,T) Fig. 3(e) displays the normalized local DOS. The other two
=3. We have considered a point scatterer of radius panels describe intermediate situations. We point out that the
=15 nm with complex permittivite =6+ 0.8. The wave- oscillations observed in Figs.(l3—3(e) originate from the
length of the radiation is 600 nm. interference between the input and the reflected light fields.

Let us now analyze another nonequilibrium physical situ-These oscillations are absent in Figajdecause in this case
ation. We consider a scattering system with an effective unithere is only emission from the scattering object. Figure 3
form temperatur@’; with mode occupatioiN; embedded in  shows that oscillations increase when increasing the ratio
a thermal free space that is the cavity of a black body atN,/N;. This is the consequence of the definite phase relation
temperaturel, and mode occupatioN, with walls very far  between the input and the scattered liglke input and the
from the scattering system. In this case the electric-fieldscattered lights are proportional i), on the contrary the
cross-spectral density tenséf’, emitted lighteN; does not interfere with input light. We also
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1.0005 are under current development.
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OO (<), APPENDIX A: QED COMMUTATION RELATIONS
= 0.50 oy - - - . .
x N(w,T)N(w,T,) = 1 In order to ensure overall consistency of this treatment,
ZN ] we show how fundamental equal-time commutation relations
+ (c) of QED are preserved. This consistency check has been
= 0-52:‘ Py —————— proved for a quite general three-dimensional dielectric with a
= 03 local and scalar permittivity, not including the homogeneous
™ solution of the electric-field operatf25], i.e., by expressing
= the electric-field operator via the Green tensor as a function
0.333 of only the noise currents. Here we generalize this result
0.00% showing that equal-time commutation relations of QED are
preserved also for more general systems that can be aniso-
tropic or even driven by a nonlocal susceptibility. Moreover,
0.006 (a) ) . . we also include the homogeneous solution of &91), thus
1 3 5 7 9 considering explicitly the scattered fields from bounded scat-
radial distance or/c tering systems. Let us consider tfegjual-tim¢ commutation

relations between the fundamental fieldg,t) and B(r,t).

. . . . ’ |
FIG. 3. Nor_mahzed light intensity (r,w)_/[(N1+N2)Tr Gol as Using the expression for the homogeneous electric-field op-
a function of distance from a resonant-point scatterer under differ-

B+ — =+ ;
ent mode occupation¥; andN,. Parameters are given in the text. €rator and thatwB™ (w) =V XE™ (w), we obtain

observe that Figs.(8) and 3e) display a different spatial . L ik (|~ ,
behavior showing that in the presence of absorption the well- [Ei(r),By(r )]_Z_SOGImi'?m o do| pij(r,r’)
known relationship between the Green tensor and the local
DOS, 2w~
+—2Aij(r,r’) —c.c., (A1)
c
2w
p(r,w)=——2TrG|(r,r,w) (6.13

mC where

is not correct. Z‘:GeISG* (A2)
VIl. CONCLUSIONS and

In conclusion, we have presented a general quantum
theory of _Iight scattg_ring for_3D systems of arbitrary geom- Ei,j(f,f’)=2 U (DY (). (A3)
etry, providing a unified basis for analyzing a large class of 7K
optical processes where quantum and/or thermal fluctuations
play a role. We have derived general 3D quantum-opticaEquation(Al) can be simplified using the following relation:
input-output relations providing the output photon operators
in terms of the input photon operators and of the noise cur- TC~ , | N ,
rents of the scattering system. These relations hold also for 55 PLLT) = =Gy (rr) —Ay(r.r’). (A4)
photon operators associated with evanescent fields and thus

can be applied to the analysis of evanescent nonclassicgg equation can be proved using the mode expan@@
fields, e.g., arising from the scattering of nonclassical inputs 0 gng applying the Dyson equation. Equati@) has
light by nanometric objects. The theory puts forward the CONpeen demonstrated for particular ca$§,23. Its general

nection between general theorems of classical electrodynangg ivation will be presented elsewhere. By using Es)
ics and commutation relations for the output photon OPeragq (A1) reduces to '

tors carrying all the information on the scattering and/or
emission process. We have shown that this theory satisfies

2

QED commutation rules by using a novel relationship be—[é,(r) B.(r’)]z—iq y’fwd EG!-(r r',w)—c.c.
tween vacuum and thermal fluctuations. Applications involv- o om )
ing scattering from complex nanometric scattering objects (A5)
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Furthermore, from Eqg.(3.7 and the relation y* (w) of Eq. (A10) are singular aiwv=0. Nevertheless, these sin-
=x(—w) it follows that Gj(r,r',w)=G;j(r,r',—w), gularities, that have to be treated as principal values, does
Eg. (A5) becomes not contribute to the integral being odd functions
(<~ ""1) of w. Now we observe that the summation on
. . f o[ ® ) the left-hand side of EqA10) for |w|—< approaches zero
[Ei(r).,Bi(r")]= _W_Soflmjam f_wdw;G”(r,r ). at least as» 2, thus this summation does not contribute to
(A6) the integral as can be evaluated by performing the integration
on the upper complex plane. As a consequence, we obtain
Although, owing to generalizations, the starting point w0 w w0 w
(A1) was quite different from Eq(26) of Ref. [24], after f dw—ZGij(r,r’,w)zf dw—ZG?j(r,r’,w).
using Eq.(A4) and some manipulation we arrived at Eq. = C Y
(A6) that coincides with the corresponding findings in Refs. (A1)
[11,24. From now the canonical commutation relations ca . 0 .
be demonstrated using a machinery analogous to that of RZF.he expression for th& in the real space is
[11]. In particular equal-time commutation relations of QED
are preserved if the following relation holds:

0 ’ _ _i rar’ Ofp _ vt
Gij(r,r',0)=—1 & kzaiaj g (r—-r',m), (A12)

o [ ® . b where
E|mj5mf xdw;Gij(r,r',w)——|7Te|mj(9m5ij5(r—r’). -
- e

0 ’ _

(A7) g (r-r',m) pyP—Th
For the sake of completeness and also because we adopt a . , .
medium susceptibility with a more complex structure, in the'”ser“,”g, Eq (A12) in Eg. (A6) and recalling that
following we provide a concise demonstration of E47). e|mj(?[na} {---}=0 we obtain

First we observe that the Kramers-Kronig relations imply A " ®
that the causal-complex-valued susceptibility tensor [Ei(r),él(r’)]:_elmj(gg 5”J dw—zgo(r—r’,w).
xij(r.r’,w) is a holomorfic function ofv in the upper com- TEo -» C
plex plane. Moreover, Kramers-Kronig relations imply that (A13)
for |w|—, xij(r,r',w)—0 at least as»~*. Also the Green
tensor for causality requirements is a holomorfic function of
w in the upper complex plane. This can also be derived ex- * o Lo ,
plicitly from applying iteratively the Dyson equation and ob- fmdw?g (r=r’,w)=imd(r—r’),
serving that bothy;; and G° are holomorfic in the upper
complex plane. The analytical properties @ can be di- we finally obtain
rectly inspected, with its analytical expression being known. A A i%
The free-space Green tensor can be expanded in plane waves [Ei(r),Bi(r")]=— 8—Oe|mja{n5ij S(r=r"). (Alb)
as

Using the known relatiop40]

(A14)

Similarly, it can be shown that
f GJ(p,w)e® " Mdp, (A8) [Ei(r),E/(r")]=0,
[Bi(r),Bi(r")]=0.

Gl(r,r',0)=

! (2m)®
with

We also point out that EQA7) proved here is also the con-

0 1 PiP; 1 pip; dition for obtaining the correct commutation relations for the
Gij(p.w)= k2— p? Sij— K2 p? (A9) potentials and canonically conjugated momerith 24].
From these expansion it follows that fofw|—, APPENDIX B: THE GREEN TENSOR FOR A POINTLIKE
Gﬂ(r,r’,w) approaches zero as» 2. We note that SCATTERING OBJECT

Gﬂ(r,r’,w) [see Eq(A9)]is singular atw=0. Let us consider an absorbing pointlike scattering object. It
~ By introducing the Dyson equation into the integral on thecan be regarded as the building block of much more compli-
right-hand side(rhs) of Eq. (A11), the expression inside the cated scattering objects. It has been shown how to calculate

integral becomes the Green tensor of complex nanopatterned scattering objects
" by discretizing them in terms of these building blodks.
@@ 0, @ 0. 1n~0 Following the approach by de Vries al.[35], it is possible
CZG c? G +c2 n; [C&]"G (A10) to obtain an analytical expression for the Green tensor of this

very simple 3D system.
where we have developed by iteration the Dyson equation. As it is well known, the Green tensor at=0 has a sin-
Owing to the last term in EqA9), the two terms on the rhs gular behavior. Performing a regularization procedi88]
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described at the end of this Appendix, we obtain the free@nd
space-regularized Green tensor that we use as starting point

for subsequent calculations. From the Dyson equation, after~,, _1—3F®F —Air
simple algebra, we obtain the following expression for the CL(T @)= 2rk2r3 {1—e "t[cosA r+A r(cosA.r
Green tensor in the presence of a point scatterer,
e STt &0 = &0 A2e MTsinAr. .
G(r,w)=[1-t(w)G"(r=0,0) |G"(r,w). (B1) +sinA )T+ L . Lot (B9)
Now we can derive the tensor defined in E42). As shown 2mker

in Sec. VI, this tensor describes the emission pattern from the
medium at uniform temperature. From E@2) and using It can be seen that the regularized Green functions converge

Eqg. (B1), we obtain exponentially to their unregularized counterparts. In fact, we
2 retrieve the original transverse and longitudinal Green-
w . . . .
TrA(r,r,w)I—z)('(w)|l—t(w) tensors by letting\+, A — . After this regularization pro-
c cedure the free-space Green tensor=ab is no more sin-

~ ~ ular and reads
X GO(r=0,0)|?Tr|G%r,w)|?A. (B2 g

Let us now consider the regularization procedure. We start G(r=0,0)
from the free-space Green tensor, BE§12). Calculating the ~0 ~0
gradients, Eq(A12) can be written as =Gr(r=00)+ G (r=0,0)
eikr o 5(!’) A3 A
Gor,r',w)=— [P(ikr)1+ Q(ikr)ror]+ —-1, |t _ar R
4ar 3k2 6ok 67 |67T 1. (B9)
(B3)
wherer=|r—r'|,r=r/r and1 is the identity operator. We We now observe that Maxwell's equations are basically a
have also defined the functions macroscopic theory, so pointlike objects represent some mi-

croscopic structure that cannot be resolved on the scale of the
3 3 ; . .
—1+—-——|. (B4 wavelength of light. Hence, all the functions relative to

z 7 physically measurable quantities can be considered to apply

» Q(2)=

B 1 1
P(Z)— 1_E+;

ly tor>a, wherea is some microscopic length, while the
unction can be replaced by a constant that is the inverse of
A ‘ the volumeA = 3 7ra®. This argument allows for an interpre-
1-3rer  e* tation of the cutoff momentaAy,A.). In order to obtain

The Green tensor can be separated into the transverse aga
longitudinal parts as follows:

0 ' _ _ ; 1 B S
Gr(r.r',w)= 4k?r3 A [Pkn)1+Qlkrjrerl, such information, we consider the unregularized free-space
(B5) Green tensofsee Eq.(B3)] and calculate the mean value
assumed by this function in a small sphere centered at
and o =0 and whose radiua is comparable to the dimensions of
0 1-3rer  8(r). the pointlike scatterer. After some algebra, we obtain
Glrr'w)=———+—1 (B6)
4mk?r3  3Kk? Oy —
G°(r=0,w)
As can be observed, the Green tensor-a0 has a singular 1
behavior. A regularization procedure is needed. We follow — _f drGo(r,w)
the regularization procedure described by de Veieal.[35]. AJa

As it can be observed, the singularities of the transverse and

longitudinal parts of the Green tensor differ, so we need two B 1 1k 1 B10
different regularization procedures. In order to moderate the "\ agk2ad® 4ma 6 (B10)
largep behavior of these function, we multiplicate their Fou-

rier transform inp space respectively by 2/(A2+p?) and _ _ _
AH(A#+p%). To alter the zeroth-order dynamics as little asASSUMIng this mean value as the value taken<rD by the
possible, one has to take the cutoff momenta and A, ©reen function and comparing E(9) and Eq.(B10), we

sufficiently large as compared ta/c. The so-obtained regu- ©Ptain
larized Green tensor is given by
~ 1-3reor[ €k . . 3 3
Oy 17 )= — - i i Ad=—0 Ar=—. B11
Gr,r',w) aoard | 2 [P(ikr)1+Q(ikr)rer] L= o0 T=%a (B11)
e A . .
e [P(—A)1+Q(—Aqr)rer] By this procedure the singularity at=0 has been removed

and a relationship between the cutoff momenta and the di-
(B7) mension of the scattering object has been found.
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