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Light quantization for arbitrary scattering systems

Salvatore Savasta, Omar Di Stefano, and Raffaello Girlanda
INFM and Dipartimento di Fisica della Materia e Tecnologie Fisiche Avanzate, Universita` di Messina, Salita Sperone 31,
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~Received 30 July 2001; published 14 March 2002!

We present a quantum theory of light scattering for the analysis of the quantum statistical and fluctuation
properties of light scattered or emitted by micrometric and nanometric three-dimensional structures of arbitrary
shape. We obtain general three-dimensional quantum-optical input-output relations providing the output photon
operators in terms of the input photon operators and of the noise currents of the scattering system. These
relations hold also for photon operators associated with evanescent fields, for anisotropic scattering systems
and/or for media with a nonlocal susceptibility. We find that the commutation relations of the output photon
operators, carrying all the information on the scattering and/or the emission process, result to be fixed by
energy conservation and reciprocity. We prove that this quantization scheme is consistent with QED commu-
tation rules by using a novel relationship between vacuum and thermal fluctuations. This theoretical framework
has been applied to analyze the spectral density of light close to a point scatterer under different nonequilib-
rium conditions.
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I. INTRODUCTION

The study of the optical properties of systems with sha
and sizes varying on micrometric and nanometric scale
motivated by fundamental research and by possible app
tions. In particular, the tailoring of electromagnetic mod
allowed by microcavities and photonic bandgaps~PBGs! has
given rise to a variety of striking phenomena observed
recent years@1,2# and it is expected to dramatically improv
the performance of light-emitting devices. These devel
ments and recent continuous progress in scanning near-
optical microscopy have stimulated new theoretical
proaches for the analysis of a large class of problems dea
with three-dimensional~3D! objects of arbitrary shape an
dielectric functions@3,4#, and have renewed the interest
the classical theory of light scattering@5,6#.

In this paper we present a quantum generalization of
classical theory of light scattering based on Green’s dya
technique. The theory presented here provides a genera
unified basis for analyzing a large class of optical proces
where quantum and/or thermal fluctuations play a role@7#. It
is expected to be adequate to analyze a wide range of op
phenomena and experiments such as precision measurem
of Casimir forces@8#, light emission from sources embedde
in photonic systems@9#, light fluctuations in finite inverted-
population media with inclusion of spatial effects@10#, the
spatial behavior of scattered and/or confined nonclass
light @11,12#, nanoscale radiative transfer@13,14#, etc.

Quantum electrodynamics in the presence of me
started from the pioneering work by Agarwal@15# who, ap-
plying the fluctuation-dissipation theorem, developed the
ear response theory of spontaneous emission in presen
dielectrics and conductors. A more direct microscopic qu
tization procedure for light in a dispersive and absorpt
homogeneous dielectric was first proposed by Huttner
Barnett @16#. Since this work, following the method o
Langevin forces, light has been quantized in media of
creasing generality@17–23#. Within this method quite gen
1050-2947/2002/65~4!/043801~11!/$20.00 65 0438
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eral results have been recently presented@24,25#. In particu-
lar it has been proved that quantization of the Maxw
theory of the electromagnetic field in inhomogeneous thr
dimensional, dispersive, and absorbing dielectric media
given causal permittivity is consistent with the fundamen
equal-time commutation relations of QED@25#. A different
general 3D quantization scheme that makes use of a se
auxiliary fields, followed by a canonical quantization proc
dure has been developed by Tip@26#. Recently the equiva-
lence of the quantization schemes by Scheelet al. @25# and
by Tip @26# has been demonstrated@27#.

Here we generalize these results to media that can
anisotropic and/or with a nonlocal susceptibility. Furthe
more, we consider explicitly media that can have finite si
This allows the analysis of quantized light scattering a
allows us to derive general quantum-optical input-output
lations relating the output photon operators to the input p
ton operators and to the noise currents of the scattering
tem. These relations hold also for evanescent fields and
allow us to define naturally output photon operators ass
ated with evanescent waves.

II. THE SCATTERING SYSTEM PROPERTIES

Let us consider the most general nonmagnetic linear s
tering system. It can be described by a causal and eventu
nonlocal susceptibility tensorx i , j (r ,r 8,v) @28#. Thus we are
considering a large class of material systems of arbitr
shape including anisotropic media and/or media driven
the electric field via a nonlocal susceptibility. Electron
states of semiconductors and semiconductor quantum s
tures, and also all those systems with a spatially disper
susceptibility are driven by the electric field via a nonloc
susceptibility@21#.

In the following we will adopt the compact Dirac nota
tion. We introduce the operatorsL for 2“3“3, e0 for k21,
and the integral operatores , describing the effect of the sca
tering system. This operator applied to the electric field giv
©2002 The American Physical Society01-1
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^r ,i uesuE!&5k2E d3r 8x i j ~r ,r 8!Ej~r 8!.

Hence the wave equation relative to the material syste
here considered, for the positive frequency components
the electric-field operator can be written in the comp
Dirac notation as

~L1e01es!uÊ1&5 ivm0u ĵ &, ~2.1!

where the hat indicates quantum operators. The zero m
noise currentsĵ can be derived from the Heisenber
Langevin equations for the material system@29# and appear
only if the susceptibility tensor is not real; they are a dire
consequence of the fluctuation-dissipation theorem and o
the following commutation rules,

@ ĵ i~r ,v!, ĵ j~r 8,v!#50, ~2.2!

@ ĵ i~r ,v!, ĵ j
†~r 8,v!#5

\

pm0

v2

c2
ux i j

I ~r ,r 8,v!ud~v2v8!,

~2.3!

x I being the imaginary part of the susceptibility tens
These equations show that a nonlocal susceptibility produ
noise currents that are spatially correlated. These spont
ous currents act as quantum Langevin forces. Their expe
tion values determine the amounts of noise that are adde
optical signals that propagate through the attenuating or
plifying media. Moreover,̂ ĵ†ĵ & is the source term producin
light emission. These noise currents are related to
Bosonic vector field describing the reservoir oscillators. T
expectation values of noise currents depend on the spe
state of the reservoir oscillators. We start by considerin
system at a given temperatureT. In this case the current’s
correlation tensor is given by

^ ĵ i
†~r ,v! ĵ j~r 8,v!&5

\

pm0

v2

c2
x i j

I ~r ,r 8,v!N̄~v,T!d~v2v8!,

~2.4!

where N̄(T) is the mode occupation described by Planc
formula

N̄~v,T!5
1

exp~\v/kBT!21
. ~2.5!

If we consider the medium composed of a collection of no
interacting two-level systems at thermal equilibrium, the
tio between the upperNu- and the lowerNl-level occupa-
tions associated with the dielectric response at frequencv
is given by the Boltzmann distribution law

Nu

Nl
5exp~2\vkBT!. ~2.6!

From Eqs.~2.5! and ~2.6! we obtain
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N̄~T!5
Nu

Nl2Nu
. ~2.7!

Thermal equilibrium can be altered by, e.g., optical pumpi
In this case, Eq.~2.7! can still be used consideringT
[T(v) as a frequency-dependent effective temperatu
Very high temperatures correspond to saturation of the tr
sition between the two levels. By taking a negative effect
temperature, it is possible to describe also population inv
sion and hence amplifying media@30#. Equation~2.4! can
also be generalized to take into account a scattering sys
including media with different effective temperatures. W
obtain

^ ĵ i
†~r ,v! ĵ j~r 8,v!&5

\

pm0

v2

c2

3(
m

~xm
I ! i j ~r ,r 8,v!N̄~Tm ,v!

3d~v2v8!, ~2.8!

where m labels the different media. We point out that th
nonlocal susceptibility (xm

I ) i j (r ,r 8,v) is different from zero
only if r andr 8 belong to the same mediumm. The correla-
tion ^ ĵ i(r ,v) ĵ j

†(r 8,v)& can be obtained from Eq.~2.4! re-

placingN̄ with N̄11.

III. QUANTUM THEORY OF LIGHT SCATTERING

In the absence of the scattering system, the electric-fi
operator can be derived following the well-known quantiz
tion schemes in vacuum. By using the angular spectrum
plane waves, the electric-field operator can be expande
terms of photon operators as

Ê0~r ,t !5E
0

`

dve2 ivtÊ01~r ,v!1H.c.,

with

Ê01~r ,v!5 iA\v

2«0
(
t,K

fK
t ~r ,v!âK

t ~v!, ~3.1!

wheret5.,, indicates leftward and rightward propagatin
waves, andK[(K ,s) is a shortcut for the wave-vector pro
jection along thexy plane and the polarization directions.
âK

t are the photon operators obeying the usual Bosonic c
mutation rules,

@ âK
t ~v!,âK8

t8†
~v8!#5dt,t8dK,K8d~v2v8!, ~3.2!

@ âK
t ~v!,âK8

t8 ~v8!#50. ~3.3!

The orthonormal set of vector fields is given by

fK
./,~r ,v!5aKeK

./,expi ~K•R6kzz!, ~3.4!
1-2
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where r5(R,z), ek
t is the polarization unit vector,kz

5(v2/c22K2)1/2, and aK5(v/2pc2kzA)1/2, A being the
quantization surface. In compact notation, Eq.~3.1! can be
written as

uÊ01&5 iA\v

2«0
(
t,K

ufK
t &âK

t ~v!. ~3.5!

We observe that the field operator in Eq.~3.1! verifies, in
the same compact notation of Eq.~2.1!, the following wave
equation:

~L1e0!uÊ01&50. ~3.6!

The Green operator associated with the complete syste
defined by

~L1e01es!G51. ~3.7!

Adding Eq.~3.6! to Eq. ~2.1! and using Eq.~3.7! we obtain

uÊ1&5uÊh
1&1uÊp

1&, ~3.8!

with the particular solutionÊp
1 given by

uÊp
1&5 ivm0Gu ĵ &, ~3.9!

and the homogeneous solution

uÊh
1&5~12Ges!uÊ01&. ~3.10!

In ther representation the obtained electric-field operator
be written as

Êhi
1~r !5Êi

01~r !2q2E Gi j ~r ,r 8!x j l ~r 8,r 9!Êl
01~r 9!dr 8dr 9,

~3.11!

Êpi
1~r !5 ivm0E Gi j ~r ,r 8! ĵ j~r 8!dr 8. ~3.12!

Introducing Eq.~3.1! into Eq. ~3.10!, the homogeneous term
can be expanded in terms of free-space photon operator

uÊ1&5 iA\v

2«0
(
t,K

ucK
t &âK

t ~v!, ~3.13!

where

ucK
t &5~12Ges!ufK

t & ~3.14!

is the electric field arising from an input beamufK
t & scattered

by the material system. Equation~3.8! gives the electric-field
operator in terms of the input photon operators and the n
currents operators. Once the quantum states of the input
beams and of the scattering system are fixed, by using
~3.8! in principle it is possible to compute the electric-fie
operator in the presence of the scattering system in all
space if the Green tensorGi j (r ,r 8) is known. One efficient
procedure to calculate Green tensors for complex 2D and
scattering objects is described in Ref.@4# and it is based on a
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volume discretization procedure in close analogy with
discrete dipole approximation@31,32#. Recently the method
of multipole expansion has been used to calculate 2D Gr
functions in photonic crystals@33#. A different scheme for
the calculation of Green functions for photons propagating
complex dielectric structures based on an extension of
finite-difference time-domain method has been presented
Ward and Pendry@34#.

The consistency of the quantization approach describe
this section with the equal-time QED commutation relatio
is proved in Appendix A.

IV. QUANTUM-OPTICAL INPUT-OUTPUT RELATIONS

Inside absorbing materials, owing to the presence of no
currents, it is not possible to define space-independent p
ton operators as in free space@18,29#, however, we may at-
tempt to find input and output photon operators outside
scattering system@23#. This would furnish useful input-
output quantum-optical relations and it would imply that, ju
outside the scattering system, the light field, although ca
ing information on the scattering process, can be quanti
as in free space. We proceed by bounding the scattering
tem with two planes atz56L, thus separating space in thre
regions: the left region~I! (z,2L), the scattering region~II !
(2L,z,L), and the right region~III ! (z.L), as shown in
Fig. 1. In the following we will show that it is possible t
define space-independent photon operators outside the
tering region. We start from the Dyson equation

G5G02G0esG, ~4.1!

whereG0 is the unperturbed free-space Green dyadic, ob
ing the following equation:

~L1e0!G051. ~4.2!

Using the angular plane-wave expansion, the free-sp
Green tensor can be written as

Gi j
0 ~r ,r 8!52

ipc2

v (
K

fK ,i
. ~r.!f2K , j

, ~r,!1
d~z2z8!

k2

zz

z2
,

~4.3!

FIG. 1. Scattering geometry and notation.
1-3
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where r.5r (r,5r 8) for z.z8 and r.5r 8(r,5r ) for z
,z8. Let us analyze the electric-field operator in the regio
external to the scattering system~I and III!. We start from the
contribution~3.10! arising from the solution of the homoge
neous wave equation. We introduce the Dyson equation~4.1!
into Eq. ~3.10!,

uÊh
1&5uÊ01&2G0~12esG!esuÊ01&. ~4.4!

Let us now consider the electric-field operatorÊh
1(r ) in re-

gion III (z.L). In this case the free-space Green tenso
Eq. ~4.4! appears always withz.z8 and thus can be written
simply as

Gi j
0 ~r ,r 8!52

ipc2

v (
K

fK ,i
. ~r !f K̄ , j

,
~r 8! ~z.z8!,

~4.5!

that in compact notation reads

G052
ipc2

v (
K

ufK
.&^fK

.u, ~4.6!

where we have introduced the following definition:

^fK
.ur &[^r uf2K

, &. ~4.7!

Introducing Eq.~4.6! into Eq. ~4.4! and using Eq.~3.14! we
obtain

uÊh
1&5uÊ01&1

ipc2

v (
K

ufK
.&^cK

.uesuÊ01&. ~4.8!

Following the same steps forÊp
1 we obtain

uÊp
1&5 ivm0

ipc2

v (
K

ufK
.&^cK

.u ĵ &. ~4.9!

By introducing Eq.~3.1! into Eq.~4.8!, the total electric-field
operator in the region III can be written as

Ê1~r ,v!5 iA\v

2«0
(
K

@fK
.~r ,v!b̂K

.~v!

1fK
,~r ,v!âK

,~v!#, ~4.10!

with the space-independent output photon operators give

b̂K
.5b̂K

h.1b̂K
p. , ~4.11!

with

b̂K
h.5âK

.1
pc2

v
A2«0

\v
^cK

.uesuÊ01& ~4.12!

and

b̂K
p.5

ip

«0
A2«0

\v
^cK

.u ĵ1&. ~4.13!
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Equation~4.11! with Eqs.~4.12! and~4.13! gives the output
photon operator associated with a plane wave of given
ergy and propagating along a fixed direction~determined by
K andv) ~see Fig. 1! in terms of the input photon operator
and of the noise currents inside the material system.
integrals in Eqs.~4.12! and~4.13! can be explicitly written in
the r representation, the one in Eq.~4.13! reads

^cK
.u ĵ1&5E cK̄

,
~r !• ĵ ~r !dr . ~4.14!

Analogous results can be obtained for the electric-field
erator in region I, that can be written as

Ê1~r ,v!5 iA\v

2«0
(
K

@fK
.~r ,v!âK

.~v!

1fK
,~r ,v!b̂K

,~v!#, ~4.15!

with b̂K
,(v)5b̂K

h,1b̂K
p, given by

b̂K
h,5âK

,1
pc2

v
A2«0

\v
^cK

,uesuÊ01& ~4.16!

and

b̂K
p,5

ip

«0
A2«0

\v
^cK

,u ĵ &. ~4.17!

Equations.~4.12! and~4.16! can be further simplified evalu
ating the integrals. This can be done by using the Lippm
Schwinger equation

uc&5~12G0es!uc&. ~4.18!

By using the angular spectrum representation of the fi
uc&, defined according to

c~r !5(
K

c K~z!eiK•R, ~4.19!

we can project the Lippman-Schwinger equation as

ucK&5ufK&1
ipc2

v
ufK

.(,),K&^fK
.(,)uesuc&, ~4.20!

with t(t8) depending on which region~I or III ! we are con-
sidering. Introducing Eq.~3.1! into Eq. ~4.12!, using Eq.
~4.20!, and observing thatfK ,s

,,K(L)5êK ,s
, exp@2ikzL#, we ob-

tain

^cK
.uesuÊ01&5^Ê01uesuc2K

, &

5A\v

2e0
(
K8

aK82kz8A exp@2 ikz8L#

3@$cK̄ ,s
,,K̄8~2L !2fK̄8,s

,,K̄8~2L !%eK8
. âK8

.

1-4
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1$cK̄ ,s
,,K̄8~L !2fK̄8,s

,,K̄8~L !%eK8
, âK8

,
#.

~4.21!

By using this equation, Eq.~4.12! can be written as

b̂K
h.5(

K8
@TK

K8âK8
.

1RK
K8âK8

,
#, ~4.22!

where

TK
K85

e2 ikz8L

aK8

cK̄
,K̄8~2L !•eK8

. ~4.23!

RK
K85

e2 ikz8L

aK8

@cK̄
,K̄8~L !2fK̄

,K̄8~L !#•eK8
, , ~4.24!

where K̄[2K and K̄5(2K ,s). Analogously, we can ob
tain for the operators describing output in region I,

b̂K
h,5(

K8
@R K

K8âK8
.

1T K
K8âK8

,
# , ~4.25!

where

R K
K85

e2 ikz8L

aK8

@cK̄
.K̄8~2L !2fK̄

.K̄8~2L !#•eK8
. ,

~4.26!

T K
K85

e2 ikz8L

aK8

cK̄
.K̄8~L !•eK8

, . ~4.27!

The obtained quantum-optical input-output relations rel
the output operatorsb̂K[(b̂K

. ,b̂K
,) to the input photon op-

eratorsâK[(âK
. ,âK

,) and to the noise currentsĵ (r ) of the
scattering system, according to

b̂K5(
K8

SK
K8âK81F̂K , ~4.28!

whereSK
K8 is a 232 scattering matrix (S matrix!,

SK
K85S TK

K8 RK
K8

R K
K8 T K

K8D , ~4.29!

and F̂K is a two-dimensional quantum noise vector,

F̂K5
ip

«0
A2«0

\v
~^cK

.u ĵ &,^cK
,u ĵ &!.

If the quantum state of input radiation and of the mate
system is known, any output photon correlation can be
rectly calculated by using these relations provided the c
sical light modescK̄

, have been computed. Light modes f
specific complex structures can be calculated using
~3.14! according to the scheme described in Ref.@5#. We
04380
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observe that, since we have not assumed any transla
symmetry for our scattering system, in principle all the lig
modescK8

t arising from all possible input fieldsK8 are ex-
pected to contribute to output waves propagating alon
given direction determined byK andv. Instead, due to reci-
procity, Eqs.~4.12! and~4.13! have a simpler structure show
ing that b̂K

. depends onÊ01 and ĵ1 only via the reciprocal
mode cK̄

, . The obtained input-output relations~4.28! are
based on the angular-spectrum representation. As it is
known, this representation describes explicitly also the e
nescent waves@6# that appears forK.k. These relations
~4.28! hold also for evanescent fields and define natura
output photon operators associated with evanescent wa
With the improvement in techniques based on measurem
and control of evanescent waves, these relations should
application for the analysis of evanescent nonclassical fie
e.g., arising from the scattering of nonclassical input fie
by nanometric objects.

V. COMMUTATION RELATIONS

The expansion in input and output photon operators p
formed above is consistent only if the output operators
true photon operators obeying Bosonic commutation ru
Let us start looking at the commutator for the particular te
of the rightward output operator. By using Eqs.~2.3! and
~4.13!, we obtain

@ b̂K
p.~v!,b̂K8

p.†
~v8!#5

p

«0
AK,K8~v!d~v2v8!, ~5.1!

with

AK,K85E dr @cK̄
,

~r !•JK̄8
,* ~r !1JK̄

,
~r !•cK̄8

,* ~r !#, ~5.2!

where J(v)52 iv«0xc(v). We observe thatAK,K is the
power loss of modecK̄

,(v) due to the scattering system
From the Maxwell equations, following the same steps as
the derivation of the Poynting theorem, we find that

AK,K81FK,K850, ~5.3!

with

FK,K85 R @cK̄
,

~r !3HK̄8
,* ~r !1cK̄8

,* ~r !3HK̄
,

~r !#•nda,

~5.4!

where H5(1/ivm0)“3c is the corresponding magneti
field, the integration is over a surface bounding the scatte
system andn is the unit vector normal to the surface
2FK,K is the real power flowing into the scattering syste
Equation~5.3! is a compact form for the Poynting theore
(K5K8) and for the Lorentz reciprocity theorem (KÞK8).
By manupulating the vector products, Eq.~5.4! can be re-
written as
1-5
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FK,K85
i

vm0
E FcK̄

,
~r !•

]

]n
cK̄8

,* ~r !

2cK̄8
,* ~r !•

]

]n
cK̄

,
~r !Gda. ~5.5!

This surface integral can be evaluated by choosing as bo
ing surface the two planes atz56L and by using the
angular-spectrum representation of the fields~4.19!. The gra-
dients in the direction normal to the surfaces can be ea
evaluated by using Eq.~4.20!. We obtain

FK,K85FK,K8
out

2FK,K8
in , ~5.6!

with

FK,K8
out

5
«0

p (
Q

@RK
QRK8

Q* 1TK
QTK8

Q* #, ~5.7!

FK,K8
in

5
«0

p
dK,K8 . ~5.8!

Using Eq.~4.22!, we also directly obtain

@ b̂K
h.~v!,b̂K8

h.†
~v8!#5

p

«0
FK,K8

out
~v!d~v2v8!. ~5.9!

Summing Eq.~5.1! and Eq.~5.9!, the Boson commutation
rules for the output operators are thus readily obtained.
sult of this is that thecommutation relations for the outpu
operators are determined by energy conservation(K5K8)
and by reciprocity(KÞK8). In particular, reciprocity en-
sures the independence of output operators with diffe
wave vector or polarization (@ b̂K

. ,b̂K8
.†

#50 for KÞK8). It
would be violated if output operators with different wav
vector or polarization are not independent as much as
nput operators are. So far we have discussed only the c
mutation relations for the output photon operators. T
equal-time QED commutation relations between the fun
mental fields are shown in Appendix A.

VI. LIGHT EMISSION AND ELECTRIC-FIELD
FLUCTUATIONS

In this section we analyze the fluctuation properties of
electromagnetic field in presence of absorbing and/or e
ting media and present some examples of light propaga
in nonequilibrium.

Let us start considering vacuum fluctuations in prese
of a scattering system. As it is well known, vacuum fluctu
tions play a fundamental role in quantum-optical proces
@37#. By using Eq.~3.8! and the relation~A4! we obtain

^Êi~r1 ,v!Êj~r2 ,v8!&0,05Si j
0 ~r1 ,r2 ,v!d~v2v8!,

~6.1!

with

Si j
0 ~r1 ,r2 ,v!52~\v2/«0pc2!Gi j

I ~r1 ,r2 ,v!. ~6.2!
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In Eq. ~6.1!, ^&a,b indicates the expectation value, whe
(a,b) labels respectively the state of input light and the st
of the material system. In this case (0,0) indicates
vacuum state for both the Hilbert spaces. Equation~6.2!
agrees with results obtained by applying the fluctuatio
dissipation theorem@15#.

Let us now consider a scattering system with an effect
uniform temperatureT embedded in a vacuum atzero tem-
perature. By using Eq.~3.8! we obtain

^Êi
2~r1 ,v!Êj

1~r2 ,v8!&0,T5Wi j ~r1 ,r2 ,v!d~v2v8!,
~6.3!

with

Wi j ~r1 ,r2 ,v!5N~v,T!~\v2/«0pc2!Ã~r1 ,r2 ,v!.
~6.4!

whereÃ(r1 ,r2 ,v) is defined in Appendix A. Equation~6.4!
is very similar to the expression used in Ref.@6# to calculate
the cross-spectral density tensor of the near field therm
emitted into free space by an opaque planar source. U
Eq. ~A4!, Eq. ~6.4! can be written in the form

W~r ,r 8,v!5N̄~v,T!FS0~r ,r 8v!2
\v

2«0
r̃~r ,r 8,v!G .

~6.5!

This equation establishes a general relationship between
spatial variations of the second-order coherence tensors
vacuum fluctuations and spontaneous light emission. We
serve that, while vacuum fluctuations originate from both
scattering system and the input light modes, light emissio
a zero-temperature free space comes only from the scatte
system. This explains why the spatial variation of the ten
describing light emission can be obtained by subtract
from the contribution due to the vacuum fluctuation the co
tribution originating from the input light modesr̃(r ,r 8,v)
and eventually reflected by the thermal source.

The noise properties of the electromagnetic field
manifested by electric-field fluctuation spectrum in the a
sence of any input signal. Let us consider a material sys
at a given uniform temperature. The electric-field correlat
spectrum is defined by

^Ê~r ,v!Ê~r 8,v8!&0,T5^Êh~r ,v!Êh~r 8,v8!&0

1^Êp~r ,v!Êp~r 8,v8!&T

5S~r ,r 8,v!d~v2v8!. ~6.6!

By inserting the expression for the electric-field operator
rived in Sec. III, we obtain

^Êh~r ,v!Êh~r 8,v8!&05^Êh
1~r ,v!Êh

2~r 8,v8!&0

5
\v

2e0
r̃~r ,r 8,v!d~v2v8!,

~6.7!
1-6
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^Êp~r ,v!Êp~r 8,v8!&T5
2N~v,T!11

N~v,T!

3W~r ,r 8,v!d~v2v8!,

~6.8!

hence Eq.~6.6! can be written as

S~r ,r 8,v!5S0~r ,r 8,v!12W~r ,r 8,v!. ~6.9!

We observe that bothS0 andW for a specific system can b
directly calculated once the Green tensor has been deri
The power spectrumS(r ,v) of the electric-field fluctuations
at position r is obtained by taking the trace of Eq.~6.6!.
These power spectra are usually obtained using
fluctuation-dissipation theorem @18,19#. Fluctuation-
dissipation theorems have also been derived for amplify
media@38,39#. However, this approach cannot be used wh
the whole system is not in thermal equilibrium as in t
present example. In this case we are considering an att
ating or amplifying medium at a given effective temperatu
embedded in free space at zero temperature. In Fig. 2
display the electric-field fluctuationsS(r ,v) as a function of
the radial distance for a pointlike scattering object embed
in free space. In Appendix B, the Green tensor for this
ementary scattering system is derived. Figure 2 sho
S(r ,v) ~normalized with respect to the free-space value! for
T50 and for an effective temperature such thatN(v,T)
53. We have considered a point scatterer of radiusa
515 nm with complex permittivity«5610.8i . The wave-
length of the radiation is 600 nm.

Let us now analyze another nonequilibrium physical si
ation. We consider a scattering system with an effective u
form temperatureT1 with mode occupationN1 embedded in
a thermal free space that is the cavity of a black body
temperatureT2 and mode occupationN2 with walls very far
from the scattering system. In this case the electric-fi
cross-spectral density tensorW8,

FIG. 2. Normalized~with respect to free space! electric-field
fluctuations for a resonant-point scatterer at zero temperature~con-
tinuous line! and at a given effective temperature~dotted line! as a
function of distance from the scatterer. Parameters are given in
text.
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^Êi
2~r1 ,v!Êj

1~r2 ,v8!&T2 ,T1
5Wi j8 ~r1 ,r2 ,v!d~v2v8!,

~6.10!

is given by the following expression:

Wi j8 ~r1 ,r2 ,v!5N1Si j
0 ~r1 ,r2 ,v!

1
\v

2«0
r i j ~r1 ,r2 ,v!@N22N1#. ~6.11!

We observe that the spatial variations of this correlat
function change continuously as a function ofT1 andT2. At
equilibrium (T15T2) the spatial behavior ofW8 coincides
with that ofGI and hence with that of the tensorS describing
vacuum fluctuations. As expectedGI describes the
electromagnetic-field fluctuations at equilibrium@15#. The
light intensity as a function of frequency is proportional
I 8(r ,v)5Tr W8(r ,r ,v). We obtain

I 8~r ,v!5N1Tr S0~r ,r ,v!1
\v

2«0
r~r ,v!@N22N1#,

~6.12!

wherer(r ,v)5Tr r̃(r ,r ,v); as it can be inferred from Eq
~A3!, r(r ,v) describes the local optical density of stat
~DOS!. It gives the intensity of light atr due to incoherent
illumination, i.e., with input light modes arriving from all th
spatial directions and it is currently used to characterize
optical properties of PBG structures@4# and more generally
of dielectric systems@35,36#. Before presenting some nu
merical results, we observe that whenN1 equalsN2, a situ-
ation of thermal equilibrium is recovered and the spa
variation of light intensity is the same of vacuum fluctuatio
and is determined by the trace of the imaginary part of
Green tensor as prescribed by the fluctuation-dissipa
theorem. Out of equilibrium the fluctuation-dissipation the
rem does not hold. IfN150, which means that the medium
is in its ground state and does not emit light, the spa
variation of I 8(r ,v) is determined by the local optical den
sity of statesr(r ,v). In the opposite limitN250, there is no
input light and the spatial variation ofI 8(r ,v) describes the
emission pattern of the medium that is given by the trace
Eq. ~6.4!.

Figure 3 displaysI 8(r ,v)/@(N11N2)Tr G0
I # for the same

pointlike scattering object of Fig. 2. We consider differe
ratiosN2 /N1. Figure 3~a! obtained withN2 /N150 displays
the emission pattern of the pointlike scatterer. Figure 3~c!
calculated at equilibrium (N15N2) displays TrGI /Tr G0

I ,
Fig. 3~e! displays the normalized local DOS. The other tw
panels describe intermediate situations. We point out that
oscillations observed in Figs. 3~b!–3~e! originate from the
interference between the input and the reflected light fie
These oscillations are absent in Fig. 3~a! because in this cas
there is only emission from the scattering object. Figure
shows that oscillations increase when increasing the r
N2 /N1. This is the consequence of the definite phase rela
between the input and the scattered lights~the input and the
scattered lights are proportional toN2), on the contrary the
emitted light}N1 does not interfere with input light. We als

he
1-7
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observe that Figs. 3~c! and 3~e! display a different spatia
behavior showing that in the presence of absorption the w
known relationship between the Green tensor and the l
DOS,

r~r ,v!52
2v

pc2
Tr GI~r ,r ,v! ~6.13!

is not correct.

VII. CONCLUSIONS

In conclusion, we have presented a general quan
theory of light scattering for 3D systems of arbitrary geo
etry, providing a unified basis for analyzing a large class
optical processes where quantum and/or thermal fluctuat
play a role. We have derived general 3D quantum-opt
input-output relations providing the output photon operat
in terms of the input photon operators and of the noise c
rents of the scattering system. These relations hold also
photon operators associated with evanescent fields and
can be applied to the analysis of evanescent nonclas
fields, e.g., arising from the scattering of nonclassical in
light by nanometric objects. The theory puts forward the c
nection between general theorems of classical electrodyn
ics and commutation relations for the output photon ope
tors carrying all the information on the scattering and
emission process. We have shown that this theory satis
QED commutation rules by using a novel relationship b
tween vacuum and thermal fluctuations. Applications invo
ing scattering from complex nanometric scattering obje

FIG. 3. Normalized light intensityI 8(r ,v)/@(N11N2)Tr G0
I # as

a function of distance from a resonant-point scatterer under di
ent mode occupationsN1 andN2. Parameters are given in the tex
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are under current development.
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APPENDIX A: QED COMMUTATION RELATIONS

In order to ensure overall consistency of this treatme
we show how fundamental equal-time commutation relatio
of QED are preserved. This consistency check has b
proved for a quite general three-dimensional dielectric wit
local and scalar permittivity, not including the homogeneo
solution of the electric-field operator@25#, i.e., by expressing
the electric-field operator via the Green tensor as a func
of only the noise currents. Here we generalize this res
showing that equal-time commutation relations of QED a
preserved also for more general systems that can be a
tropic or even driven by a nonlocal susceptibility. Moreov
we also include the homogeneous solution of Eq.~2.1!, thus
considering explicitly the scattered fields from bounded sc
tering systems. Let us consider the~equal-time! commutation
relations between the fundamental fieldsÊ(r ,t) and B̂(r ,t).
Using the expression for the homogeneous electric-field
erator and thativB̂1(v)5“3Ê1(v), we obtain

@Êi~r !,B̂l~r 8!#5
i\

2«0
e lm j]m

r 8E
0

`

dvF r̃ i , j~r ,r 8!

1
2v

pc2
Ãi j ~r ,r 8!G2c.c., ~A1!

where

Ã5Ges
I G* ~A2!

and

r̃ i , j~r ,r 8!5(
t,K

cK,i
t ~r !cK, j

t* ~r 8!. ~A3!

Equation~A1! can be simplified using the following relation

pc2

2v
r̃ i , j~r ,r 8!52Gi j

I ~r ,r 8!2Ãi j ~r ,r 8!. ~A4!

This equation can be proved using the mode expansion~4.3!
of G0 and applying the Dyson equation. Equation~A4! has
been demonstrated for particular cases@21,23#. Its general
derivation will be presented elsewhere. By using Eq.~A4!,
Eq. ~A1! reduces to

@Êi~r !,B̂l~r 8!#52
i\

p«0
e lm j]m

r 8E
0

`

dv
v

c2
Gi j

I ~r ,r 8,v!2c.c.

~A5!

r-
1-8
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Furthermore, from Eq.~3.7! and the relation x* (v)
5x(2v) it follows that Gi j* (r ,r 8,v)5Gi j (r ,r 8,2v),
Eq. ~A5! becomes

@Êi~r !,B̂l~r 8!#52
\

p«0
e lm j]m

r 8E
2`

`

dv
v

c2
Gi j ~r ,r 8,v!.

~A6!

Although, owing to generalizations, the starting po
~A1! was quite different from Eq.~26! of Ref. @24#, after
using Eq. ~A4! and some manipulation we arrived at E
~A6! that coincides with the corresponding findings in Re
@11,24#. From now the canonical commutation relations c
be demonstrated using a machinery analogous to that of
@11#. In particular equal-time commutation relations of QE
are preserved if the following relation holds:

e lm j]m
r 8E

2`

`

dv
v

c2
Gi j ~r ,r 8,v!52 ipe lm j]m

r 8d i j d~r2r 8!.

~A7!

For the sake of completeness and also because we ad
medium susceptibility with a more complex structure, in t
following we provide a concise demonstration of Eq.~A7!.

First we observe that the Kramers-Kronig relations imp
that the causal-complex-valued susceptibility ten
x i j (r ,r 8,v) is a holomorfic function ofv in the upper com-
plex plane. Moreover, Kramers-Kronig relations imply th
for uvu→`, x i j (r ,r 8,v)→0 at least asv21. Also the Green
tensor for causality requirements is a holomorfic function
v in the upper complex plane. This can also be derived
plicitly from applying iteratively the Dyson equation and o
serving that bothx i j and G0 are holomorfic in the uppe
complex plane. The analytical properties ofG0 can be di-
rectly inspected, with its analytical expression being know
The free-space Green tensor can be expanded in plane w
as

Gi j
0 ~r ,r 8,v!5

1

~2p!3E Gi j
0 ~p,v!eip•(r2r8)dp, ~A8!

with

Gi j
0 ~p,v!5

1

k22p2 S d i j 2
pipj

p2 D 1
1

k2

pipj

p2
. ~A9!

From these expansion it follows that foruvu→`,
Gi j

0 (r ,r 8,v) approaches zero asv22. We note that

Gi j
0 (r ,r 8,v) @see Eq.~A9!# is singular atv50.
By introducing the Dyson equation into the integral on t

right-hand side~rhs! of Eq. ~A11!, the expression inside th
integral becomes

v

c2
G5

v

c2
G01

v

c2 (
n51

`

@G0es#
nG0, ~A10!

where we have developed by iteration the Dyson equat
Owing to the last term in Eq.~A9!, the two terms on the rhs
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of Eq. ~A10! are singular atv50. Nevertheless, these sin
gularities, that have to be treated as principal values, d
not contribute to the integral being odd functions
(}v2(2n11)) of v. Now we observe that the summation o
the left-hand side of Eq.~A10! for uvu→` approaches zero
at least asv22, thus this summation does not contribute
the integral as can be evaluated by performing the integra
on the upper complex plane. As a consequence, we obta

E
2`

`

dv
v

c2
Gi j ~r ,r 8,v!5E

2`

`

dv
v

c2
Gi j

0 ~r ,r 8,v!.

~A11!

The expression for theG0 in the real space is

Gi j
0 ~r ,r 8,v!52S d i j 2

1

k2
] i

r] j
r 8D g0~r2r 8,v!, ~A12!

where

g0~r2r 8,v!5
eikur2r8u

4pur2r 8u
.

Inserting Eq ~A12! in Eq. ~A6! and recalling that

e lm j]m
r 8] j

r 8$•••%50 we obtain

@Êi~r !,B̂l~r 8!#5
\

p«0
e lm j]m

r 8d i j E
2`

`

dv
v

c2
g0~r2r 8,v!.

~A13!

Using the known relation@40#

E
2`

`

dv
v

c2
g0~r2r 8,v!5 ipd~r2r 8!, ~A14!

we finally obtain

@Êi~r !,B̂l~r 8!#52
i\

«0
e lm j]m

r d i j d~r2r 8!. ~A15!

Similarly, it can be shown that

@Êi~r !,Êl~r 8!#50,

@B̂i~r !,B̂l~r 8!#50.

We also point out that Eq.~A7! proved here is also the con
dition for obtaining the correct commutation relations for t
potentials and canonically conjugated momenta@11,24#.

APPENDIX B: THE GREEN TENSOR FOR A POINTLIKE
SCATTERING OBJECT

Let us consider an absorbing pointlike scattering objec
can be regarded as the building block of much more com
cated scattering objects. It has been shown how to calcu
the Green tensor of complex nanopatterned scattering ob
by discretizing them in terms of these building blocks@4#.
Following the approach by de Vrieset al. @35#, it is possible
to obtain an analytical expression for the Green tensor of
very simple 3D system.

As it is well known, the Green tensor atr 50 has a sin-
gular behavior. Performing a regularization procedure@35#
1-9
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described at the end of this Appendix, we obtain the fr
space-regularized Green tensor that we use as starting
for subsequent calculations. From the Dyson equation, a
simple algebra, we obtain the following expression for t
Green tensor in the presence of a point scatterer,

G̃~r ,v!5@12t~v!G̃0~r 50,v!#G̃0~r ,v!. ~B1!

Now we can derive the tensor defined in Eq.~A2!. As shown
in Sec. VI, this tensor describes the emission pattern from
medium at uniform temperature. From Eq.~A2! and using
Eq. ~B1!, we obtain

Tr A~r ,r ,v!5
v2

c2
x I~v!u12t~v!

3G̃0~r 50,v!u2TruG̃0~r ,v!u2D. ~B2!

Let us now consider the regularization procedure. We s
from the free-space Green tensor, Eq.~A12!. Calculating the
gradients, Eq.~A12! can be written as

G0~r ,r 8,v!52
eikr

4pr
@P~ ikr !11Q~ ikr ! r̂ ^ r̂ #1

d~r !

3k2
1,

~B3!

where r 5ur2r 8u, r̂5r /r and 1 is the identity operator. We
have also defined the functions

P~z!5S 12
1

z
1

1

z2D , Q~z!5S 211
3

z
2

3

z2D . ~B4!

The Green tensor can be separated into the transverse
longitudinal parts as follows:

GT
0~r ,r 8,v!52

123r̂ ^ r̂

4pk2r 3
2

eikr

4pr
@P~ ikr !1̂1Q~ ikr ! r̂ ^ r̂ #,

~B5!

and

GL
0~r ,r 8,v!5

123r̂ ^ r̂

4pk2r 3
1

d~r !

3k2
1̂. ~B6!

As can be observed, the Green tensor atr 50 has a singular
behavior. A regularization procedure is needed. We foll
the regularization procedure described by de Vrieset al. @35#.
As it can be observed, the singularities of the transverse
longitudinal parts of the Green tensor differ, so we need t
different regularization procedures. In order to moderate
large-p behavior of these function, we multiplicate their Fo
rier transform inp space respectively byLT

2/(LT
21p2) and

LL
4/(LL

41p4). To alter the zeroth-order dynamics as little
possible, one has to take the cutoff momentaLT and LL
sufficiently large as compared tov/c. The so-obtained regu
larized Green tensor is given by

G̃T
0~r ,r 8,v!52

123r̂ ^ r̂

4pk2r 3 F2
eikr

4pr
@P~ ikr !1̂1Q~ ikr ! r̂ ^ r̂ #

2
e2LTr

4pr
@P~2LTr !1̂1Q~2LTr ! r̂ ^ r̂ #G

~B7!
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G̃L
0~r ,r 8,v!5

123r̂ ^ r̂

4pk2r 3
$12e2LLr@cosLLr 1LLr ~cosLLr

1sinLLr !#%1
LL

2e2LLrsinLLr

2pk2r
r̂ ^ r̂ . ~B8!

It can be seen that the regularized Green functions conv
exponentially to their unregularized counterparts. In fact,
retrieve the original transverse and longitudinal Gree
tensors by lettingLT , LL→`. After this regularization pro-
cedure the free-space Green tensor atr 50 is no more sin-
gular and reads

G̃0~r 50,v!

5G̃T
0~r 50,v!1G̃L

0~r 50,v!

5S LL
3

6pk2
2

LT

6p
2 i

k

6p D 1. ~B9!

We now observe that Maxwell’s equations are basically
macroscopic theory, so pointlike objects represent some
croscopic structure that cannot be resolved on the scale o
wavelength of light. Hence, all the functions relative
physically measurable quantities can be considered to a
only to r .a, wherea is some microscopic length, while th
d function can be replaced by a constant that is the invers
the volumeD5 4

3 pa3. This argument allows for an interpre
tation of the cutoff momenta (LT ,LL). In order to obtain
such information, we consider the unregularized free-sp
Green tensor@see Eq.~B3!# and calculate the mean valu
assumed by this function in a small sphere centered ar
50 and whose radiusa is comparable to the dimensions o
the pointlike scatterer. After some algebra, we obtain

G0~r 50,v!

5
1

DED
drG0~r ,v!

5S 1

4pk2a3
2

1

4pa
2 i

k

6p D 1. ~B10!

Assuming this mean value as the value taken inr 50 by the
Green function and comparing Eq.~B9! and Eq.~B10!, we
obtain

LL
35

3

2a3
, LT5

3

2a
. ~B11!

By this procedure the singularity atr 50 has been removed
and a relationship between the cutoff momenta and the
mension of the scattering object has been found.
1-10
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