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Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensate
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Starting from the three-dimensional~3D! Gross-Pitaevskii equation and using a variational approach, we
derive an effective 1D wave equation that describes the axial dynamics of a Bose condensate confined in an
external potential with cylindrical symmetry. The trapping potential is harmonic in the transverse direction and
generic in the axial one. Our equation, that is a time-dependent nonpolynomial nonlinear Schro¨dinger equation
~1D NPSE!, can be used to model cigar-shaped condensates, whose dynamics is essentially 1D. We show that
1D NPSE gives much more accurate results than all other effective equations recently proposed. By using 1D
NPSE we find analytical solutions for bright and dark solitons, which generalize the ones known in the
literature. We deduce also an effective 2D nonpolynomial Schro¨dinger equation~2D NPSE! that models
disk-shaped Bose condensates confined in an external trap that is harmonic along the axial direction and
generic in the transverse direction. In the limiting cases of weak and strong interaction, our approach gives rise
to Schrödinger-like equations with different polynomial nonlinearities.
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I. INTRODUCTION

Bose condensates are nowadays routinely produced
many experimental groups all over the world. The therm
and dynamical properties of Bose condensates have bee
vestigated with different atomic species and various trap
ometries. An interesting theoretical problem is the derivat
of one dimensional~1D! and 2D equations, describing ciga
shaped and disk-shaped condensates, respectively. At
temperature, a good theoretical tool for the study of the
namics of dilute condensates is the time-dependent
Gross-Pitaevskii equation@1#. In the case of reduced dimen
sionality, various approaches have been adopted to de
effective equations from the 3D Gross-Pitaevskii equat
@2–4#.

In this paper we analyze both cigar-shaped and d
shaped condensates. By using a variational approach, we
tain an effective 1D time-dependent nonpolynomial nonl
ear Schro¨dinger equation that describes the axial dynam
of a Bose condensate confined in an external potential w
cylindrical symmetry. We demonstrate that our equation
actly reproduces previous findings in the limits of weak co
pling and strong coupling. Moreover, we show that our var
tional approach is more accurate than all other rece
proposed procedures in the evaluation of both static and
namical properties of the condensate. We also investigate
2D reduction of the 3D Gross-Pitaevskii equation. In th
case it is not possible to analytically determine a single
fective 2D wave equation which describes the dynamics
disk-shaped condensates. Nevertheless, analytical equa
can be found in the weakly interacting limit and in th
strongly interacting limit.

II. EFFECTIVE 1D EQUATION

The 3D Gross-Pitaevskii equation~3D GPE!, which de-
scribes the macroscopic wave functionc(r ,t) of the Bose
condensate, is given by
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i\
]

]t
c~r ,t !5F2

\2

2m
¹21U~r !1gNuc~r ,t !u2Gc~r ,t !,

~1!

where U(r ) is the external trapping potential andg
54p\2as /m is the scattering amplitude andas the s-wave
scattering length@1#. N is the number of condensed boso
and the wave function is normalized to one. Note that the
GPE is accurate to describe a condensate of dilute bo
only near zero temperature, where thermal excitations ca
neglected@5#.

The 3D GPE can be obtained by using the quantum le
action principle, i.e., 3D GPE is the Euler-Lagrange equat
of the following action functional:

S5E dtdr c* ~r ,t !F i\
]

]t
1

\2

2m
¹22U~r !

2
1

2
gNuc~r ,t !u2Gc~r ,t !. ~2!

We consider an external potential with cylindrical symmet
In particular we analyze a trapping potential that is harmo
in the transverse direction and generic in the axial directi
U(r )5 1

2 mv'
2 (x21y2)1V(z). We want to minimize the ac-

tion functionalSby choosing an appropriate trial wave fun
tion. A natural choice@3# is the following:

c~r ,t !5f„x,y,t;s~z,t !…f ~z,t !, ~3!

where bothf andf are normalized andf is represented by a
Gaussian

f„x,y,t;s~z,t !…5
e[ 2(x21y2)]/2s(z,t)2

p1/2s~z,t !
. ~4!
©2002 The American Physical Society14-1
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The variational functionss(z,t) and f (z,t) will be deter-
mined by minimizing the action functional after integratio
in the (x,y) plane. The choice of a Gaussian shape for
condensate in the transverse direction is well justified in
limit of weak interatomic coupling, because the exact grou
state of the linear Schro¨dinger equation with harmonic po
tential is a Gaussian. Moreover, for the description of
collective dynamics of Bose-Einstein condensates, it has
ready been shown that the variational technique based
Gaussian trial functions leads to reliable results even in
large condensate number limit@6,7#.

We assume that the transverse wave-functionf is slowly
varying along the axial direction with respect to the tran
verse direction@3#, i.e., ¹2f.¹'

2 f where ¹'
2 5]2/]x2

1]2/]y2. By inserting the trial wave function in Eq.~2! and
after spatial integration alongx and y variables the action
functional becomes

S5E dtdz f* F i\
]

]t
1

\2

2m

]2

]z2 2V2
1

2
gN

s22

2p
u f u2

2
\2

2m
s222

mv'
2

2
s2G f . ~5!

The Euler-Lagrange equations with respect tof * ands read

i\
]

]t
f 5F2

\2

2m

]2

]z21V1gN
s22

2p
u f u2

1S \2

2m
s221

mv'
2

2
s2D G f , ~6!

\2

2m
s232

1

2
mv'

2 s1
1

2
gN

s23

2p
u f u250. ~7!

The second Euler-Lagrange equation reduces to an alge
relation providing a one-to-one correspondence betwees
andf: s25a'

2 A112asNu f u2, wherea'5A\/mv' is the os-
cillator length in the transverse direction. One sees thas
depends implicitly onz and t because of the space and tim
dependence ofu f u2. Inserting this result in the first equatio
one finally obtains

i\
]

]t
f 5F2

\2

2m

]2

]z21V1
gN

2pa'
2

u f u2

A112asNu f u2

1
\v'

2 S 1

A112asNu f u2
1A112asNu f u2D G f .

~8!

This equation is the main result of our paper. It is a tim
dependent nonpolynomial nonlinear Schro¨dinger equation
~1D NPSE!.

We observe that from 1D NPSE in certain limiting cas
one recovers familiar results. In the weakly interacting lim
asNu f u2!1 one hass25a'

2 and the previous equation re
duces to
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i\
]

]t
f 5F2

\2

2m

]2

]z21V1
gN

2pa'
2

u f u2G f , ~9!

where the additive constant\v' has been omitted because
does not affect the dynamics. This equation is a 1D Gro
Pitaevskii equation. The nonlinear coefficientg8 of this 1D
GPE can be thus obtained from the nonlinear coefficientg of
the 3D GPE by settingg85g/(2pa'

2 ). This ansatz has bee
already used by various authors, for example in Ref.@2#.
Note that the limitasNu f u2!1 is precisely the regime wher
the healing length is larger thans. In this regime the cigar-
shaped condensate is quasi-1D, as shown in a recent ex
ment@8#. It is well known that in 1D and at ultra-low dens
ties (asNu f u2!as

2/a'
2 !1) an interacting Bose gas becomes

Tonks gas, i.e., a gas of spinless Fermions@9#. Such a tran-
sition cannot be described by the cubic 3D GPE equation
therefore by 1D NPSE because in the Tonks regime the
teratomic interaction cannot simply be approximated by
zero-range pseudopotential in mean-field approximat
@10#. Instead, in the strongly interacting high-density lim
asNu f u2@1 ~but Nucu2as!1 to satisfy the diluteness cond
tion! one findss25A2a'

2 as
1/2N1/2u f u and the 1D NPSE be

comes

i\
]

]t
f 5F2

\2

2m

]2

]z21V1
3

2

gN1/2

2pa'
2 A2as

u f uG f . ~10!

In this limit, and in the stationary case, the kinetic term c
be neglected~Thomas-Fermi approximation! and one finds
the following analytical formula for the axial density profile

u f ~z!u25
2

9

1

~\v'!2asN
@m82V~z!#2, ~11!

wherem8 is the chemical potential, fixed by the normaliz
tion condition. It is important to stress that this 1D Thoma
Fermi density profile is quadratic in the termm82V(z). The
same quadratic dependence is obtained starting from
Thomas-Fermi approximation of the 3D stationary GPE, i
neglecting the spatial derivatives in Eq.~1!, and then inte-
grating alongx andy variables. In this way one finds a for
mula that differs from Eq.~11! only for the numerical factor
which is 1/4 instead of 2/9.

To test the accuracy of the full 1D NPSE, Eq.~8!, and
compare it with other procedures proposed in the last
years, we numerically investigate the simple case of h
monic trapping also in the axial direction:V(z)5 1

2 mvz
2z2.

In this case, the 1D NPSE can be written in scaled units:z in
units ofaz5A\/mvz, the oscillator length in the axial direc
tion, andt in units of 1/vz . In order to assess the accuracy
the various 1D approximations we have also solved num
cally the 3D Gross-Pitaevskii equation~3D GPE!, given by
Eq. ~1! with imaginary time@11#. Note that the numerica
solution of the 1D NPSE is not more time consuming th
the solution of the standard 1D GPE. In Fig. 1 we plot t
normalized density profiler(z)5u f (z)u2 of the ground-state
4-2
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EFFECTIVE WAVE EQUATIONS FOR THE DYNAMICS . . . PHYSICAL REVIEW A 65 043614
wave function of a cigar-shaped condensate confined
trap with an aspect ratioaz /a'510.

We compare the results of four different procedures. T
first procedure is the ‘‘exact’’ one, i.e., the solution of the 3
GPE. The second procedure is the numerical solution of
1D Gross-Pitaevskii equation~1D GPE! given by Eq. ~9!
with an imaginary time. The third procedure is that propos
by Chiofalo and Tosi@4#. In this case the nonlinear term o
the 1D Gross-Pitaevskii equation is found by imposing t
the 1D wave function has the same chemical potential of
3D one~CGPE!. The fourth and last procedure is the nume
cal solution of our nonpolynomial nonlinear Schro¨dinger
equation~1D NPSE!, i.e., Eq.~8! with imaginary time. As
shown in Fig. 1, the 1D NPSE results are always very cl
to the ‘‘exact’’ ones and much better than the other appro
mations. Moreover, the CGPE procedure gives better res
than the 1D GPE for large values of the scattering len
where Eq.~9! is not reliable but in any case the 1D NPSE
superior.

The very good performance of Eq.~8! is not limited to the
ground state. We have investigated the dynamics of the c
densate by taking the previously calculated ground-s
wave functions but changing the harmonic trap in the ax
direction: from V(z)5 1

2 mvz
2z2 to V(z)5 2

5 mvz
2z2. In this

way the condensate shows large collective shape oscillat
along thez axis.

In Fig. 2 we plot the time evolution of the squared amp
tude ^z2& of the condensate in the axial direction, given
^z2&5*dzz2r(z,t), where r(z,t)5*dxdyuc(r ,t)u2 in the
case of the 3D GPE andr(z,t)5u f (z,t)u2 in the other cases
Apart the better evaluation of the amplitude that is a con
quence of the better evaluation of the ground-state w

FIG. 1. Normalized density profiler(z)5u f (z)u2 along the axial
direction z for the cigar-shaped trap. Number of Bosons:N5104

and trap anisotropy:v' /vz510. Four different procedures: 3D
GPE ~solid line!, 1D GPE~dashed line!, CGPE~long-dashed line!,
and 1D NPSE~dotted line!. From top to bottom:as /az51024,
as /az51023, andas /az51022. Lengthz in units ofaz and density
in units of az

21 .
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function, one sees that our 1D NPSE reproduces quite w
also the ‘‘exact’’ sinusoidal behavior of the collective osc
lation. For example, after four oscillations the relative er
in the determination of the instantt of minimum radiuŝ z2&
is about 1%. The other two procedures~CGPE and 1D GPE!
clearly show a frequency delay with respect to the 3D G
and 1D NPSE results: after four oscillations their relati
errors, with respect to the 3D GPE result, are about 5
6 % respectively.

We remind that the 1D NPSE has been obtained by us
a factorization of the 3D wave function with a variation
ansatz for the transverse part of the wave function and
glecting the term\2/2mf* ]2f/]z2. Under the condition of
the present computations the last assumption is fully justi
because we have numerically verified that the ratio betw
the neglected term and the total energy ranges form 1023 in
the weak-coupling limit to 1027 in the strong-coupling limit.

To test the accuracy of 1D NPSE in the description of
dynamics of a cigar-shaped Bose condensate in a more c
plex problem, we investigate the scattering and tunneling
the condensate on a Gaussian barrier. The initial wave fu
tion of the condensate is found by solving the equations w
imaginary time and imposing a harmonic trapping poten
also in the horizontal axial direction

V~z!5
1

2
mvz

2~z2z0!2. ~12!

To have a cigar-shaped condensate we choosev' /vz510.
We setz0520, wherez0 is written in units of the harmonic
lengthaz5(\/mvz)

1/2. For t.0 the trap in the axial direc-
tion is switched off and a Gaussian energy barrier is inse
at z50. The potential barrier is given by

FIG. 2. Squared amplitudêz2& as a function of timet. Number
of Bosons:N5104 and trap anisotropy:v' /vz510. Four different
procedures: 3D GPE~solid line!, 1D GPE ~dashed line!, CGPE
~long-dashed line!, and 1D NPSE~dotted line!. Scattering length:
as /az51023. Lengthz in units ofaz , density in units ofaz

21 , and
time t in units of 1/vz .
4-3
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V~z!5V0 e2z2/S2
, ~13!

where V0 is the height of the potential barrier andS its
width. The condensate is moved towards the barrier by a
ing an initial momentump0 in the axial direction

f ~z,0!→ f ~z,0!e2 ip0z/\. ~14!

In the case of a noninteracting condensate, i.e.,as50, the
total energy per particle is practically the start-up kinet
energyE05p0

2/(2m), and the transverse energy\v' does
not affect the dynamics.

As shown in Fig. 3, where we plot the density profile
the condensate along the symmetry axis at different insta
a fraction of the condensate tunnels the barrier while the
is reflected. As expected, one sees also the interference
tween the incident wave function and the reflected wa
function. Figure 3 shows that the ‘‘exact’’ axial density pr
file obtained with the 3D GPE and that of the 1D NPSE
always quite close, also during the impact and tunnel
time. These results suggest that 1D NPSE is very adeq
also in the description of tunneling phenomena.

The cigar-shaped configuration of the condensate is us
to study topological objects, like bright and dark solitons.
using 1D NPSE one finds out solitonic solutions which ge
eralize what has been previously found with 1D GPE@3,12#.
Dark solitons (as.0) of Bose condensed atoms have be
experimentally observed@13#, while bright solitons (as,0)
are more elusive due to the collapse of the condensate w
large number of atoms.

Let us first consider bright solitons. Starting from our 1
NPSE, settingV(z)50, scalingz in units ofa' andt in units
of v'

21 , with the position

FIG. 3. Four frames of the axial density profiler(z) of the Bose
condensate tunneling through the Gaussian barrier@Eq. ~3!#.
Start-up kinetic energy per particle of the condensate:E0510.
Gaussian barrier parameters:V0510 and S51. Interaction
strength:Nas /az510. Comparison among 3D GPE~solid line!, 1D
NPSE~dotted line!, and 1D GPE~dashed line!. Length in units of
az5(\/mvz)

1/2, density in units ofaz
21 , time in units ofvz

21 , and
energy in units of\vz .
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f ~z,t !5F~z2vt !eiv(z2vt)ei (v2/22m)t, ~15!

we find

F d2

dz2 22g
F2

A122gF2
1

1

2 S 1

A122gF2
1A122gF2D GF

5mF, ~16!

where z5z2vt and g5uasuN/a' . This is a Newtonian
second-order differential equation and its constant of mot
is given by

E5
1

2 S dF

dz D 2

1mF22F2A122gF2. ~17!

The boundary conditionF→0 for z→` implies thatE50.
Then, by quadratures, one obtains the bright-soliton solu
written in implicit form

z5
1

A2

1

A12m
arctanFAA122gF22m

12m
G

2
1

A2

1

A11m
arctanhFAA122gF22m

11m
G . ~18!

Moreover, by imposing the normalization condition one a
finds

~12m!3/22
3

2
~12m!1/21

3

2A2
g50. ~19!

The normalization relates the chemical potentialm to the
coupling constantg, while the velocityv of the bright soli-
ton remains arbitrary. In the weak-coupling limit (gF2!1),
the normalization condition givesm512g2/2 and the
bright-soliton solution reads

F~z!5Ag

2
sech@gz#. ~20!

The above solution is the text-book bright soliton of the 1
nonlinear cubic Schro¨dinger equation~1D GPE!. As shown
in Fig. 4, for A2/3,g,2/3 there are two values for th
chemical potentialm but we have numerically verified tha
the lower one corresponds to an unstable solitonic solut
For g.2/3 there are no solitary-wave solutions due to t
collapse of the condensate.

In the case of static dark solitons, the boundary conditio
are: F(0)50 andF→F0 for z→`. Starting from the 1D
NPSE the analytical formula of the dark soliton is quite i
tricate because it involves elliptic integrals. Neverthele
simple expressions can be found in the weak-coupling an
the strong-coupling limit. In the weak-coupling limits on
finds

F~z!5F0tanh@F0A2g̃z#, ~21!
4-4
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whereF05g̃1/2/A2 andg̃5uasuDN/a' , with DN the num-
ber of missing Bosons due to the hole in the condens
produced by the dark soliton. Equation~20! is the familiar
formula of the stationary dark soliton for the 1D nonline
Schrödinger equation ~1D GPE!, while in the strong-
coupling limit one has

uF~z!u5
F0

2
~3tanh2@auzu1b#21!, ~22!

where a5A3g̃1/4AF0/23/4, b5arctanh@1/A3#, and F0

5g̃1/6/@A2(A322/3)2/3#.
The study of the stability of our solitary-wave solutions

left to a future work. Three-dimensional numerical calcu
tions @14# suggest that Bose condensed dark solitons
stable for sufficiently small numbers of atoms or large tra
verse confinement. Moreover, a recent experiment@15# has
shown that dark solitons, created in a spherical Bose con
sate, decay into vortex rings.

III. EFFECTIVE 2D EQUATION

In this section we derive the 2D reduction of the 3D GP
equation by using again a variational approach. In this c
we take a trapping potential that is harmonic in the ax
direction and generic in the transverse direction:U(r )
5W(x,y)1 1

2 mvz
2z2. As trial wave function we take the fol

lowing:

c~r ,t !5f~x,y,t ! f „z,t;h~x,y,t !… ~23!

with

FIG. 4. On the top: chemical potentialm of the bright soliton as
a function of the interaction strengthg5uasuN/a' . 1D NPSE~full
line! and 1D GPE~dashed line!. On the bottom: axial density profile
r(z)5F2(z) of the bright soliton of Bose condensed atoms
three values of the interaction strengthg obtained with 1D NPSE.
04361
te

-
re
-

n-

se
l

f „z,t;h~x,y,t !…5
e2z2/2h(x,y,t)2

p1/4h~x,y,t !1/2
, ~24!

where h(x,y,t) is a variational function that describes th
width of the condensate in the axial direction. We assu
that the axial wave-functionf is slowly varying along the
transverse direction with respect to the axial direction, i
¹2f .]2/]z2. By inserting the trial wave function in Eq.~2!
and after spatial integration along thez variable, one finds
the following Euler-Lagrange equations:

i\
]

]t
f5F2

\2

2m
¹'

2 1W1gN
h21

~2p!1/2
ufu2

1S \2

2m
h221

mvz
2

2
h2D Gf, ~25!

\2

2m
h232

1

2
mvz

2h1gN
h22

2~2p!1/2
ufu250. ~26!

Note that the second Euler-Lagrange equation can be wr
as h422(2p)1/2az

4asNufu2h2az
450, and, contrary to the

case of 1D reduction, it does not have an elegant analyt
solution but it can be easily solved@16#. We name the 2D
nonpolynomial Schro¨dinger Eq. ~25!, with the condition
~26!, 2D NPSE. In Fig. 5 we compare the radial dens
profile r(r ) of the Bose condensate obtained by solving
NPSE with the exact one obtained by solving the 3D GP
For simplicity, we use a harmonic trapping potent
W(x,y)5 1

2 mv'
2 (x21y2) also in the transverse radial direc

tion. Figure 5 shows that 2D NPSE is quite reliable in d
scribing the ground state of disk-shaped Bose condens

FIG. 5. Radial density profiler(r ) of the Bose condensate for
disk-shaped trap. Number of Bosons:N5104 and trap anisotropy:
v' /vz51/10. 3D GPE~solid line! and 2D NPSE~dotted line!.
From top to bottom: as /az51024, as /az51023, and as /az

51022. Lengthr 5Ax21y2 in units ofaz and density in unitsaz
21 .
4-5
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For example, the relative error in the calculation of the d
sity at the orgin ranges from 0.7 to 5 % by increasingas /az .

We can analyze the limits of weak and strong interact
of 2D NPSE. In the weakly interacting case one findsh
5az and the equation of motion becomes

i\
]

]t
f5F2

\2

2m
¹'

2 1W1
gN

~2p!1/2az

ufu2Gf, ~27!

where the constant\vz has been omitted because it does n
affect the dynamics. This equation is a 2D Gross-Pitaev
equation. The nonlinear coefficientg9 of this 2D GPE can be
thus obtained from the nonlinear coefficientg of the 3D GPE
by setting g95g/@(2p)1/2az#. Equation ~27! describes a
disk-shaped Bose condensate in a quasi-2D configuratio
fact, the weakly interacting limit corresponds to a condens
with a chemical potential lower than\vz @8#. In the strongly
interacting case one has insteadh5A2p1/3az

4/3as
1/3N1/3ufu2/3,

and the resulting nonlinear Scho¨dinger equation is

i\
]

]t
f5F2

\2

2m
¹'

2 1W1
3

4

gN2/3

p2/3az
4/3as

1/3
ufu4/3Gf.

~28!

Note that in this limit, and in the stationary case, the kine
term can be neglected~Thomas-Fermi approximation! and
one finds the following analytical formula for the transver
density profile:

uf~x,y!u25
1

3A3p

1

~\vz!
3/2asazN

@m92W~x,y!#3/2,

~29!

wherem9 is the chemical potential, fixed by the normaliz
tion condition. The same dependence is obtained star
from the Thomas-Fermi approximation of the stationary
GPE, i.e., neglecting the spatial derivatives in Eq.~1!, and
ev
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then integrating along thez variable. In this way one finds a
formula that differs from the previous one only for the n
merical factor which isA2/(3p) instead of 1/(3A3p).

IV. CONCLUSIONS

We have found that the 1D nonpolynomial nonline
Schrödinger equation we have obtained by using a Gauss
variational ansatz from the 3D Gross-Pitaevskii action fu
tional is quite reliable in describing the ground state a
axial collective oscillations of cigar-shaped condensates.
have also tested the accuracy of the nonpolynomial nonlin
equation in the case of a Bose condensate scattering
tunneling on a Gaussian barrier. The agreement with the
sults of the 3D Gross-Pitaevskii equation is very good
both ground state and the dynamics of the condensate.
equation will be useful for detailed numerical analysis of t
dynamicsof cigar-shaped condensates, particularly when
local density may undergo sudden and large variations
fact, the accurate mapping we have provided, allows us
maintain a very good spatial resolution with modest com
tational effort even if the breakdown of the weak interacti
condition during time evolution prevents the use of a st
dard 1D GP equation. This case is often encountered in
study of reflection and tunneling events and in the propa
tion of solitary waves, which are currently being experime
tally investigated. By using the 1D nonpolynomial Schr¨-
dinger equation we have obtained analytical formulas
bright and dark solitons which generalize the ones known
the literature for the 1D nonlinear cubic Schro¨dinger equa-
tion. Finally, we have deduced effective 2D equations
scribing the axial dynamics of disk-shaped condensa
From the 3D Gross-Pitaevskii action functional and us
another Gaussian variational ansatz we have derived the
fective 2D nonlinear Schro¨dinger equation, which again ha
a nonpolynomial structure. This structure simplifies in t
weak and strong interacting regime.
ys.
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