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Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates
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Starting from the three-dimensioné8D) Gross-Pitaevskii equation and using a variational approach, we
derive an effective 1D wave equation that describes the axial dynamics of a Bose condensate confined in an
external potential with cylindrical symmetry. The trapping potential is harmonic in the transverse direction and
generic in the axial one. Our equation, that is a time-dependent nonpolynomial nonlineatisgpérequation
(1D NPSH, can be used to model cigar-shaped condensates, whose dynamics is essentially 1D. We show that
1D NPSE gives much more accurate results than all other effective equations recently proposed. By using 1D
NPSE we find analytical solutions for bright and dark solitons, which generalize the ones known in the
literature. We deduce also an effective 2D nonpolynomial Stihger equation(2D NPSH that models
disk-shaped Bose condensates confined in an external trap that is harmonic along the axial direction and
generic in the transverse direction. In the limiting cases of weak and strong interaction, our approach gives rise
to Schralinger-like equations with different polynomial nonlinearities.
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Bose condensates are nowadays routinely produced by 1)
many experimental groups all over the world. The thermal
and _dynamic.al pr.operties of Bose co_ndensates have been iNhare U(r) is the external trapping potential and
vestltg;atedAW|§htd|ffe;¢nt t?]tomlc,;.splemeiland'va;ﬂou ds tfapt.ge': 4xh?ag/m is the scattering amplitude ared the swave
ometries. An interesting theoretical problem 1S the deriva Ionscattering lengthl]. N is the number of condensed bosons
of one dimensionallD) and 2D equations, describing cigar- L :
shaped and disk-shaped condensates, respectively. At ze d the wave function is ngrmallzed to one. Note fchat the 3D
temperature, a good theoretical tool for the study of the dy- E is accurate to describe a condensate Of. d|!ute bosons
namics of dilute condensates is the time-dependent 3@nly near zero temperature, where thermal excitations can be
Gross-Pitaevskii equatidii]. In the case of reduced dimen- neglecteds]. _ _
sionality, various approaches have been adopted to derive '_I'he 3!3 GPE can be obtalr_1ed by using the quantum Ie_ast
effective equations from the 3D Gross-Pitaevskii equatiorfction principle, i.e., 3D GPE is the Euler-Lagrange equation
[2—4]. of the following action functional:

In this paper we analyze both cigar-shaped and disk-
shaped condensates. By using a variational approach, we ob- _ N
tain an effective 1D time-dependent nonpolynomial nonlin- S= | dtdr ¢ (r,t)
ear Schrdinger equation that describes the axial dynamics
of a Bose condensate confined in an external potential with 1 )
cylindrical symmetry. We demonstrate that our equation ex- - §9N|¢(r't)|
actly reproduces previous findings in the limits of weak cou-

pling and strong coupling. Moreover, we show that our variayye consider an external potential with cylindrical symmetry.

tional agproach 4 Is mpr?h accurlatet. thanf SllthOtr;etr' recc(ajn(';lyn particular we analyze a trapping potential that is harmonic
proposed procedures in the evaluation of both stalic and Oy, the transverse direction and generic in the axial direction:

namical properties of the condensate. We also investigate tt]g(r)_ 1mw? (x2-+y?) +V(z). We want to minimize the ac-
-2 1 .

2D reduction of the 3D Gross-Pitaevskii equation. In this f ionalS by choosi ; ial f
case it is not possible to analytically determine a single ef{lon functionalSby choosing an appropriate trial wave func-

fective 2D wave equation which describes the dynamics ofion- A natural choicg3] is the following:

disk-shaped condensates. Nevertheless, analytical equations

can be found in the weakly interacting limit and in the P(r,)=dxy.tio(z,)H(z1), ©)
strongly interacting limit.

I. INTRODUCTION

2

'ha+ﬁ VZ-U
ot omy V)

p(r,t). 2

where bothg¢ andf are normalized an@ is represented by a

Il. EFFECTIVE 1D EQUATION Gaussian
The 3D Gross-Pitaevskii equatigBD GPB, which de- o[- 0 +yAV20(z.0)?
scribes the macroscopic wave functigifr,t) of the Bose by to(z,t)= (4)
condensate, is given by 2o (z,1)
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The variational functionsr(z,t) and f(z,t) will be deter- P 72 g2 gN
mined by minimizing the action functional after integration ih—f=| — z—=—-—=+V+
in the (x,y) plane. The choice of a Gaussian shape for the
condensate in the transverse direction is well justified in the
limit of weak interatomic coupling, because the exact groundvhere the additive constafito, has been omitted because it
state of the linear Schdinger equation with harmonic po- does not affect the dynamics. This equation is a 1D Gross-
tential is a Gaussian. Moreover, for the description of thePitaevskii equation. The nonlinear coefficigyit of this 1D
collective dynamics of Bose-Einstein condensates, it has alsSPE can be thus obtained from the nonlinear coeffiajeoit
ready been shown that the variational technique based ahe 3D GPE by setting’zg/(Zwaf). This ansatz has been
Gaussian trial functions leads to reliable results even in thalready used by various authors, for example in R2f.
large condensate number linf&,7]. Note that the limitagN|f|?<1 is precisely the regime where
We assume that the transverse wave-functiois slowly  the healing length is larger than In this regime the cigar-
varying along the axial direction with respect to the trans-shaped condensate is quasi-1D, as shown in a recent experi-
verse direction[3], i.e., V2¢:Vf¢ where Vf=r72/(9x2 ment[8]. It is well known that in 1D and at ultra-low densi-
+ %/ 3y?. By inserting the trial wave function in EqR) and  ties (@ N|f|?<a%/a?<1) an interacting Bose gas becomes a
after spatial integration along andy variables the action Tonks gas, i.e., a gas of spinless Fermif@s Such a tran-

f|2|f, 9
27Taf| |

functional becomes sition cannot be described by the cubic 3D GPE equation and
therefore by 1D NPSE because in the Tonks regime the in-
B oin h? 9 1 o2 teratomic interaction cannot simply be approximated by a
S= | dtdz f*|ific + 5 -~ = V= 5gN——f| zero-range pseudopotential in mean-field approximation
) [10]. Instead, in the strongly interacting high-density limit
Az mol aN|f|?>1 (but N|y|%as<1 to satisfy the diluteness condi-
——o0 “— o (5) . . 2_ 2 112\ 1/2 _
2m 2 tion) one findso?=\2a?aNV?f| and the 1D NPSE be
comes
The Euler-Lagrange equations with respecfttoando read
d h? 9 2 'ﬁaf e ‘92+v+3 gN"* [f||f. (10
. o ih—f=|—5=-= P m————— .
—f=| — — —+V+gN—1If|? at 2m dz 2 2
'h&tf [ om 972 V+gN > |f| 2mal\2a
h? , me? ) In this limit, and in the stationary case, the kinetic term can
+ >m? + 2 7 f, (6) be neglected Thomas-Fermi approximatiprand one finds
the following analytical formula for the axial density profile:
B e L +1 N073|f|2 0 (7)
70 "—sMwo+ gN—-— =0. 2 1
2m 2 L0 2% 2n 2_ , 2
(D =g ———[u'-V(@], (11)
f(2)1°=3 (ﬁwl)zasN[M ]

The second Euler-Lagrange equation reduces to an algebric

relation pr0\2/|d|ng a one-to-one correspondence between \here ' is the chemical potential, fixed by the normaliza-
andf: o?=a? 1+ 2a,N[f[?, wherea, = VA/mw, is the 0s-  tion condition. It is important to stress that this 1D Thomas-
cillator length in the transverse direction. One sees that Fermj density profile is quadratic in the tegai —V(z). The
depends implicitly orz andt because of the space and time same quadratic dependence is obtained starting from the
dependence dff|*. Inserting this result in the first equation Thomas-Fermi approximation of the 3D stationary GPE, i.e.,

one finally obtains neglecting the spatial derivatives in Ed), and then inte-
grating alongx andy variables. In this way one finds a for-
" d . h? 92 v gN |f|2 mula that differs from Eq(11) only for the numerical factor
gt | 2m o2 2 Maoa NIFI2 which is 1/4 instead of 2/9.
2ma; N1+2a:N|f| To test the accuracy of the full 1D NPSE, E®), and
ho, 1 compare it with other procedures proposed in the last few
5 >+ 1+ 2a,N|f|?] |f. years, we numerically investigate the simple case of har-
V1+2agN|f| monic trapping also in the axial directiohf.(z)=%mw§zz.

(8) In this case, the 1D NPSE can be written in scaled unis:
units ofa,= yh/mw,, the oscillator length in the axial direc-
This equation is the main result of our paper. It is a time-tion, andt in units of 1, . In order to assess the accuracy of
dependent nonpolynomial nonlinear Satfirger equation the various 1D approximations we have also solved numeri-
(1D NPSE. cally the 3D Gross-Pitaevskii equatid8D GPB, given by
We observe that from 1D NPSE in certain limiting casesEq. (1) with imaginary time[11]. Note that the numerical
one recovers familiar results. In the weakly interacting limitsolution of the 1D NPSE is not more time consuming than
aN|f|?<1 one haScr2=af and the previous equation re- the solution of the standard 1D GPE. In Fig. 1 we plot the
duces to normalized density profile(z) =|f(z)|? of the ground-state
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FIG. 2. Squared amplitud@?) as a function of time&. Number
FIG. 1. Normalized density profile(z) = | f(z)|2 along the axial ~ of Bosons:N=10" and trap anisotropyw, /,=10. Four different

direction z for the cigar-shaped trap. Number of Bosohs=10*  procedures: 3D GPEsolid ling), 1D GPE (dashed ling CGPE

and trap anisotropyw, /w,=10. Four different procedures: 3D (long-dashed ling and 1D NPSHEdotted ling. Scattering length:

GPE (solid ling), 1D GPE(dashed ling CGPE(long-dashed ling  as/a,=10"%. Lengthzin units ofa,, density in units o, *, and

and 1D NPSE(dotted ling. From top to bottomag/a,=1074,  timetin units of lew,.

a,/a,=10 3, andag/a,= 10 2. Lengthz in units ofa, and density

in units ofa, *. function, one sees that our 1D NPSE reproduces quite well

also the “exact” sinusoidal behavior of the collective oscil-

wave function of a cigar-shaped condensate confined in ktion. For example, after four oscillations the relative error

trap with an aspect ratia,/a, = 10. in the determination of the instahbf minimum radius(z?)

We compare the results of four different procedures. Theas about 1%. The other two procedu@GPE and 1D GPE
first procedure is the “exact” one, i.e., the solution of the 3D clearly show a frequency delay with respect to the 3D GPE
GPE. The second procedure is the numerical solution of thand 1D NPSE results: after four oscillations their relative
1D Gross-Pitaevskii equatiofiD GPB given by Eq.(9) errors, with respect to the 3D GPE result, are about 5 and
with an imaginary time. The third procedure is that proposed % respectively.
by Chiofalo and Tos[4]. In this case the nonlinear term of  We remind that the 1D NPSE has been obtained by using
the 1D Gross-Pitaevskii equation is found by imposing thata factorization of the 3D wave function with a variational
the 1D wave function has the same chemical potential of thansatz for the transverse part of the wave function and ne-
3D one(CGPB. The fourth and last procedure is the numeri- glecting the termi2/2me¢* 9°¢/z?. Under the condition of
cal solution of our nonpolynomial nonlinear ScHimger the present computations the last assumption is fully justified
equation(1D NPSH, i.e., Eq.(8) with imaginary time. As  because we have numerically verified that the ratio between
shown in Fig. 1, the 1D NPSE results are always very clos¢he neglected term and the total energy ranges fornt 10
to the “exact” ones and much better than the other approxithe weak-coupling limit to 107 in the strong-coupling limit.
mations. Moreover, the CGPE procedure gives better results To test the accuracy of 1D NPSE in the description of the
than the 1D GPE for large values of the scattering lengtidynamics of a cigar-shaped Bose condensate in a more com-
where Eq.(9) is not reliable but in any case the 1D NPSE is plex problem, we investigate the scattering and tunneling of
superior. the condensate on a Gaussian barrier. The initial wave func-

The very good performance of E@) is not limited to the  tion of the condensate is found by solving the equations with
ground state. We have investigated the dynamics of the conmaginary time and imposing a harmonic trapping potential
densate by taking the previously calculated ground-statalso in the horizontal axial direction
wave functions but changing the harmonic trap in the axial
direction: from V(z)=3mw?z? to V(z)=2mw?z?. In this 1
way the condensate shows large collective shape oscillations V(z)= Emwi(z— Z0)2. (12
along thez axis.

In Fig. 2 we plot the time evolution of the squared ampli-
tude (z?) of the condensate in the axial direction, given by To have a cigar-shaped condensate we cheoskw,= 10.
(z%)=[dzZp(z,t), where p(z,t)=[dxdy#(r,t)|? in the We setzy=20, wherez, is written in units of the harmonic
case of the 3D GPE ana{z,t) =|f(z,t)|? in the other cases. lengtha,=(%/mw,)2 Fort>0 the trap in the axial direc-
Apart the better evaluation of the amplitude that is a consetion is switched off and a Gaussian energy barrier is inserted
guence of the better evaluation of the ground-state wavatz=0. The potential barrier is given by
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FIG. 3. Four frames of the axial density profiléz) of the Bose
condensate tunneling through the Gaussian bariey. (3)].
Start-up kinetic energy per particle of the condensdig=10.
Gaussian barrier parameterd/,=10 and X =1. Interaction
strength:Nag/a,= 10. Comparison among 3D GREolid line), 1D
NPSE (dotted ling, and 1D GPEdashed ling Length in units of
a,= (fi/mw,)*?, density in units ok, *, time in units ofw, *, and
energy in units ofi w, .

V(z)=V,e 2%, (13)

where V, is the height of the potential barrier arX its

width. The condensate is moved towards the barrier by ad

ing an initial momentunp, in the axial direction
f(2,00—f(z,0e Po?, (14)

In the case of a noninteracting condensate, ag= 0, the

PHYSICAL REVIEW A65 043614

f(z,t)=D(z—vt)ev @ o0l 02t (15)
we find
d? ®2 1 1
2yt = | ———+1-2yP?| |®
d? T 12902 2<\/1—2yc1>2 7
=ud, (16)

where {=z—vt and y=|a{N/a, . This is a Newtonian
second-order differential equation and its constant of motion
is given by

2

+pu®2—021— 272

1(d®
( (17)

E=2lar

The boundary conditiod®—0 for {—o implies thatE=0.
Then, by quadratures, one obtains the bright-soliton solution
written in implicit form

1 1 { V1-2y®2—p
= — arctal _—
V2 1-u 1=p
1 1 { V1-2y®2— 4 8
-— arctan —FFF . (18
\/E\ll-f-,u 1tp

Moreover, by imposing the normalization condition one also

d‘_inds

3 3
(1= p) %= 5 (1= )"+ ——==0. (19

22

The normalization relates the chemical potengialto the

total energy per particle is practically the start-up kinetic-coupling constanty, while the velocityv of the bright soli-

energyE0=p§/(2m), and the transverse energy», does
not affect the dynamics.

ton remains arbitrary. In the weak-coupling limig@2<1),
the normalization condition givesu=1—7%/2 and the

As shown in Fig. 3, where we plot the density profile of bright-soliton solution reads

the condensate along the symmetry axis at different instants,

a fraction of the condensate tunnels the barrier while the rest f

is reflected. As expected, one sees also the interference be- e(4)= 5 sech y{].

tween the incident wave function and the reflected wave

function. Figure 3 shows that the “exact” axial density pro- The above solution is the text-book bright soliton of the 1D

file obtained with the 3D GPE and that of the 1D NPSE arenonlinear cubic Schidinger equation1D GPB. As shown

always quite close, also during the impact and tunnelingn Fig. 4, for \J2/3<y<2/3 there are two values for the

time. These results suggest that 1D NPSE is very adequathemical potentiaj. but we have numerically verified that

also in the description of tunneling phenomena. the lower one corresponds to an unstable solitonic solution.
The cigar-shaped configuration of the condensate is usefior > 2/3 there are no solitary-wave solutions due to the

to study topological objects, like bright and dark solitons. Bycollapse of the condensate.

using 1D NPSE one finds out solitonic solutions which gen- |n the case of static dark solitons, the boundary conditions

eralize what has been previously found with 1D GBEL2].  are: ®(0)=0 and®—®, for z—x. Starting from the 1D

Dark solitons @s>0) of Bose condensed atoms have beerNPSE the analytical formula of the dark soliton is quite in-

experimentally observefdL3], while bright solitons §,<0) tricate because it involves elliptic integrals. Nevertheless,

are more elusive due to the collapse of the condensate withgimple expressions can be found in the weak-coupling and in

large number of atoms. the strong-coupling limit. In the weak-coupling limits one
Let us first consider bright solitons. Starting from our 1D finds

NPSE, setting/(z) =0, scalingzin units ofa, andt in units
of o *, with the position

(20

®(2)=Dotant P\ 272], (21)
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FIG. 4. On the top: chemical potential of the bright soliton as
a function of the interaction strengtp=|ag/N/a, . 1D NPSE(full
line) and 1D GPHdashed ling On the bottom: axial density profile
p(0)=®2({) of the bright soliton of Bose condensed atoms for
three values of the interaction strengttobtained with 1D NPSE.

FIG. 5. Radial density profile(r) of the Bose condensate for a
disk-shaped trap. Number of Bosomé=10* and trap anisotropy:
o, lw,=1/10. 3D GPE(solid line) and 2D NPSE(dotted line.
From top to bottom:as/a,=10"%, as/a,=107%, and a4/a,
=10"2. Lengthr = X2+ yZ in units ofa, and density in unita;l.

where®,=%%%/2 andy=|aAN/a, , with AN the num- o 2127302
ber of missing Bosons due to the hole in the condensate f(z,t; p(x,y,t)= ———, (24)
produced by the dark soliton. Equati¢®0) is the familiar an(x,y,1)Y?

formula of the stationary dark soliton for the 1D nonlinear
Schralinger equation(1D GPB, while in the strong- where 5(X,y,t) is a variational function that describes the
coupling limit one has width of the condensate in the axial direction. We assume
that the axial wave-functioti is slowly varying along the
P transverse direction with respect to the axial direction, i.e.,
| (2)| = =X(3tanf[alz|+b]— 1), (220  V*=d%z%. By inserting the trial wave function in E¢2)
2 and after spatial integration along tkzevariable, one finds
the following Euler-Lagrange equations:

where a=37Y4/®,/2°4 b=arctanh1/y3], and @,

~ 2 -1
=S 2(y3 - 2137, 2 =] — w2 p W gN—T— |2
The study of the stability of our solitary-wave solutions is at 2m * (2m)Y2
left to a future work. Three-dimensional numerical calcula- 5
tions [14] suggest that Bose condensed dark solitons are h? _, Moy
stable for sufficiently small numbers of atoms or large trans- + 2m + 2 7 2 (25
verse confinement. Moreover, a recent experinjébt has
shown that dark solitons, created in a spherical Bose conden- 52 1 2
sate, decay into vortex rings. > -3_ §mw§77+9N2(27T)1,2|¢|2=0- (26)

Ill. EFFECTIVE 2D EQUATION Note that the second Euler-Lagrange equation can be written

In this section we derive the 2D reduction of the 3D GPEas 7*—2(2m)*%aja,N|$|°n—a;=0, and, contrary to the
equation by using again a variational approach. In this casease of 1D reduction, it does not have an elegant analytical
we take a trapping potential that is harmonic in the axialsolution but it can be easily solvgd6]. We name the 2D
direction and generic in the transverse directiam(r)  nonpolynomial Schrdinger Eg.(25), with the condition

=W(x,y) + smw?z2. As trial wave function we take the fol- (26), 2D NPSE. In Fig. 5 we compare the radial density
lowing: profile p(r) of the Bose condensate obtained by solving 2D

NPSE with the exact one obtained by solving the 3D GPE.
For simplicity, we use a harmonic trapping potential
P(r,)=o(x,y,Df(Zt; n(x,y,1)) (23 W(x,y)=imw?(x*+y?) also in the transverse radial direc-
tion. Figure 5 shows that 2D NPSE is quite reliable in de-
with scribing the ground state of disk-shaped Bose condensate.
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For example, the relative error in the calculation of the denthen integrating along thevariable. In this way one finds a

sity at the orgin ranges from 0.7 to 5% by increasipda, . formula that differs from the previous one only for the nu-
We can analyze the limits of weak and strong interactionrmerical factor which is\2/(3) instead of 1/(3/37).

of 2D NPSE. In the weakly interacting case one fingls

=a, and the equation of motion becomes
IV. CONCLUSIONS
2
iﬁi(b: —ﬁ—Vf+W+ AWZ 6, (27 We have found that the 1D nonpolynomial nonlinear
ot 2m (2m)Ya, Schralinger equation we have obtained by using a Gaussian
) ) variational ansatz from the 3D Gross-Pitaevskii action func-
where the constariiw, has been omitted because it does notjong| is quite reliable in describing the ground state and
affect the dynamics. This equation is a 2D Gross-Pitaevskihyia| collective oscillations of cigar-shaped condensates. We
equation. The nonlinear coefficieg' of this 2D GPE can be  paye also tested the accuracy of the nonpolynomial nonlinear
thus obtained from the nonlinear coefficigndf the 3D GPE  gquation in the case of a Bose condensate scattering and
by setting g"=g/[(27)"%,]. Equation (27) describes a tunneling on a Gaussian barrier. The agreement with the re-
disk-shaped Bose condensate in a quasi-2D configuration. l§yits of the 3D Gross-Pitaevskii equation is very good for
fact, the weakly interacting limit corresponds to a condensat@oth ground state and the dynamics of the condensate. This
with a chemical potential lower thaw, [8]. In the strongly  equation will be useful for detailed numerical analysis of the
interacting case one has instead \27'7a;aN"4|*°, dynamicsof cigar-shaped condensates, particularly when the
and the resulting nonlinear Saftiager equation is local density may undergo sudden and large variations. In
fact, the accurate mapping we have provided, allows us to
maintain a very good spatial resolution with modest compu-
tational effort even if the breakdown of the weak interaction
(29) condition during time evolution prevents the use of a stan-
dard 1D GP equation. This case is often encountered in the
Note that in this limit, and in the stationary case, the kineticstudy of reflection and tunneling events and in the propaga-
term can be neglecte@Mhomas-Fermi approximatiorand  tion of solitary waves, which are currently being experimen-
one finds the following analytical formula for the transversetally investigated. By using the 1D nonpolynomial Schro
density profile: dinger equation we have obtained analytical formulas for
bright and dark solitons which generalize the ones known in
9 1 Y 3 the literature for the 1D nonlinear cubic Sctinger equa-
|p(x,y) “ 33 2 (1" =W YT tion. Finally, we have deduced effective 2D equations de-
7 (hw,)*asa,N o . . )
(29) scribing the axial dynamlcs __of ol_lsk-shap_ed condensa_tes.
From the 3D Gross-Pitaevskii action functional and using
where” is the chemical potential, fixed by the normaliza- another Gaussian variational ansatz we have derived the ef-
tion condition. The same dependence is obtained startinfpctive 2D nonlinear Schdinger equation, which again has
from the Thomas-Fermi approximation of the stationary 3Da nonpolynomial structure. This structure simplifies in the
GPE, i.e., neglecting the spatial derivatives in Ef, and  weak and strong interacting regime.

J %2 gN2’3
ih—¢p=| —s=V2+W+—-————|p|*®| ¢.
at 2m *+ 4 772’3a;”3a§’3| |
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