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Fermi pseudopotential approximation: Two particles under external confinement
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In this paper we calculate the energy levels of two trapped atoms interacting through a spherical two-body
potentialV(r ) under external confinement quantum mechanically. We then replaceV(r ) by either a regularized
energy-independentor an energy-dependentd-function potential. A comparison shows that the use of an
energy-dependentpseudopotential improves significantly upon the use of anenergy-independentpseudopoten-
tial. The accuracy of the pseudopotential approximation is approximately determined by the ratiob6 /aho,
whereb6 andaho denote the characteristic length scale of the two-body interaction potentialV(r ) and of the
trapping potential, respectively.

DOI: 10.1103/PhysRevA.65.043613 PACS number~s!: 03.75.Fi, 31.15.2p
ei

de
m

th

n

is
er

d
th
ce

u
a
ny
e

ica
e
ys
icl

t

tia
e

a

the

ime

tial

tter

tial

a

g

-
-

p
of

ar-
Recently, the experimental realization of Bose-Einst
condensation~BEC! of atomic vapors@1# has led to a revival
of Fermi’s pseudopotential treatment. The theoretical
scription of these weakly interacting atomic gases is co
monly based on the mean-field Gross-Pitaevskii equation@2#,
which can be derived through a perturbative treatment in
small gas parameterna0

3 ~wheren is the gas density anda0 is
the zero-energys-wave scattering length! @2#. An alternative
derivation starts from Schro¨dinger’s number-conserving
many-body Hamiltonian@3#. The Gross-Pitaevskii equatio
then follows assuming an initial Hartree-Fock~HF! state and
a two-body Fermi-type contact potential, specifically anon-
regularized d-function potential. This contact potential
usually chosen such that it reproduces the two-body z
energys-wave scattering lengtha0 of the ‘‘true’’ interaction
potential. This alternative derivation, based on many-bo
Schrödinger quantum mechanics, leads to essentially
same result as the perturbative low-density treatment, ex
for a change fromN to N21 particles in the interaction
parameter. For many purposes, the replacement of the ‘‘tr
two-body interaction potentialV(r ) by a pseudopotential is
crucial step in connecting mean-field treatments with ma
body theory@2–4#. Consequently it is vital to understand th
accuracy of pseudopotential approximations and its impl
tions for the description of dilute Bose-condensed gas
Specifically, a detailed understanding of the two-particle s
tem must be in place before applications to many-part
systems can be conducted.

Recently, Tiesingaet al. @5# used anenergy-independen
regularizedpseudopotential

V0
(d)~r !5

4p\2a0

m
d (3)~rW !

]

]r
r ~1!

to describe the interaction between two massm particles con-
fined in an external spherical harmonic trapping poten
with trapping frequencynho. Here, rW denotes the distanc
vector between the two particles, andr the length of this
vector. d (3)(rW) is a three-dimensional delta function.a0 is
chosen such that the pseudopotentialV0

(d)(r ) has the same
zero-energy scattering lengtha0 as the ‘‘realistic’’ two-body
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interaction potentialV(r ). In the study by Tiesingaet al. @5#,
V(r ) is given by the interaction potential between two N
atoms (a0533 Å), and two Cs atoms~a052370 Å; this
value has recently been refined, see Ref.@6# and Table I!,
respectively. Through comparison of the eigenvalues for
pseudopotentialV0

(d)(r ) with those forV(r ), they document
a breakdown of the pseudopotential treatment in the reg
wherea0 approaches the characteristic lengthaho of the ex-
ternal trapping potential,aho5A\/(mvho) with m5m/2 and
vho52pnho. The present study revisits the pseudopoten
approximation, and shows~i! that the validity regime of the
energy-independent pseudopotential approximation is be
characterized by the ratiob6 /aho than byua0 /ahou †whereb6
is the characteristic length scale for the two-body poten
V(r ) @7–13#‡, and~ii ! that a pseudopotential with anenergy-
dependenttwo-body s-wave scattering lengthaE leads to a
highly improved description of two particles confined in
spherical trap. The energy-dependents-wave scattering
length is defined at nonzero energies byaE52tand0(E)/k,
where k5A2mE/\. aE approaches the usual scatterin
length in the limit of zero energy.

Consider two massm particles interacting through a two
body potentialV(r ), confined in an external trapping poten
tial, Vtrap5mvho

2 (r 1
21r 2

2)/2. Here,rW1 and rW2 denote the po-
sition vector~measured with respect to the center of the tra!
of atoms 1 and 2, respectively. The spherical symmetry
Vtrap(R), RW 5(rW11rW2)/2, and ofV(r ), allow us to separate
out the center-of-mass motion

S 2
\2

2M

]2

]R2
1

1

2
Mvho

2 R2D F~R!5Ec.m.F~R! ~2!

with eigenenergiesEc.m.5(3/21nc.m.)\vho, wherenc.m. de-
notes the quantum number of the three-dimensional h
monic oscillator@Eq. ~2!#, andM denotes the total mass,M
52m. Thus, the problem reduces to solving the Schro¨dinger
equation for the radial internal motion

F2
\2

2m

]2

]r 2
1V~r !1

1

2
mvho

2 r 2Gc~r !5Eintc~r !. ~3!
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D. BLUME AND CHRIS H. GREENE PHYSICAL REVIEW A65 043613
Equations~2! and ~3! are derived forL50 andl 50, where
L and l denote the orbital angular momentum for the cen
of mass and relative motion, respectively. In the followi
we compare the positive eigenenergiesEint, for realistic al-
kali atom-atom potentials, with those obtained for t
energy-independent pseudopotentialV0

(d)(r ) @Eq. ~1!#, and
the energy-dependent pseudopotentialVE

(d)(r ),

VE
(d)~r !5

4p\2aE

m
d (3)~rW !

]

]r
r . ~4!

Table I summarizes characteristic parameters for a se
of two-body alkali systems interacting througha 3Sg

1 atom-
atom potentials, namely, the dispersion coefficientC6, the
characteristic lengthb65(2mC6 /\2)1/4 @7–13#, the zero-
energys-wave scattering lengtha0, and the effective range
r e f f . The upper part of Table I reports these quantities for
two-body systems7Li2 , 23Na2 , 39K2 , 85Rb2 , 87Rb2 @14#,
and 133Cs2, while the lower part summarizes these quantit

TABLE I. Dispersion coefficientC6, characteristic lengthb6

5(2mC6 /\2)1/4, zero-energys-wave scattering lengtha0, and ef-
fective ranger e f f for 7Li 2 , 23Na2 , 39K2 , 85Rb2 , 87Rb2, and 133Cs2

interacting througha 3Su
1 potentials~upper part!, and for 39K2 and

85Rb2 interacting through modified potentials~lower part, see text!.

C6 ~a.u.! b6 ~a.u.! a0 ~a.u.! r e f f ~a.u.!

7Li 2 1388a 65 227.3b 530
23Na2 1472c 89 77.3d 62
39K2 3897e 129 233 f 2083
85Rb2 4700g 164 2369g 347
87Rb2 4700g 165 106g 143
133Cs2 6890h 197 2400h 358

M -39K2 3948i 129 23672 187
M1-85Rb2 4700j 164 6162 223
M2-85Rb2 4700j 164 10990 226

aReference@28#.
bReference@29#, analysis of photoassociation experiments on ato
in the F52, mF52 state.
cReference@28#.
dReference@30#.
eReference@31#.
fReference@32#, experimental photoassociation spectroscopy, c
ried out in conjunction with a detailed theoretical simulation of t
experiment.
gReference@27#, theoretical analysis of experimental elastic col
sion data between atoms in theF52, mF522 state.
hReference@6#, theoretical analysis of Feshbach resonance data
theF54, mF54 state measured experimentally~see Ref.@33#!; for
the F53, mF523 state, Ref.@6# reportsa0522770 a.u. Note,
the calculations reported in Ref.@5# ~see text! use an older potentia
with a scattering lengtha052699 a.u.
iTheC6 coefficient is obtained by multiplying theC6 value given in
Ref. @31# by a factor of 1.013~see text!.
jThe short range part of the two-body potentialVRb(r ) is modified
slightly, without changingC6 from Ref. @27#.
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for 39K2 and 85Rb2 interacting through modified atom-atom
potentials. The potential labeledM -39K2 has been obtained
by multiplying the K2 potential by a factor of 1.013. This
rescaling leads to a large negative scattering lengtha0 for the
39K isotope while changingC6 and b6 very little. The po-
tentials labeled byM1-85Rb2 and M2-85Rb2 have been ob-
tained by modifying the short-range part of the Rb2 potential,
thus leavingC6 and b6 unchanged, however, resulting i
large positive scattering lengthsa0 for the 85Rb isotope.
Similar adjustments of two-body potentials are common
the presence of a Feshbach resonance.

TheC6 parameters are taken from the literature~see Table
I caption!, as have been the values ofa0 for some systems
For the other systems, we determineda0 through a scattering
calculation. The characteristic lengthb6 is determined by the
C6 coefficient and the reduced massm, and determines
roughly the length scale over which the radial two-body sc
tering wave function oscillates at zero energy. For distan
larger thanb6 the scattering wave function approaches
asymptotic behavior. The effective ranger e f f has been cal-
culated using an expression derived by Gao@Eqs. ~9! and
~11! of Ref. @8#, where we neglect the second term of E
~11!, and usea0 as input#. r e f f determines, for example, th
energy dependence of the scattering length at low collis
energies to first order,

2
1

aE
'2

1

a0
1

1

2
k2r e f f . ~5!

For the two-body systems considered in Table I, the abso
value of the scattering lengthua0u varies from 27 a.u. to
10 990 a.u. while the characteristic lengthb6 varies over a
much smaller range, namely, from 65 a.u. to 197 a.u. T
characteristic lengthb6 is shown to primarily control the
validity of the pseudopotential approximation~see below!.

Figure 1~a! depicts the lowest positive eigenenergiesEint

of Eq. ~3! for two 39K particles using therealistic K-K in-
teraction potentialVK(r ) ~the short-range part of the poten
tial is taken from Ref.@15#, see also Table I! ~dotted lines!,
the energy-independent pseudopotential V0

(d)(r ) with a05
233 a.u.~solid lines!, and theenergy-dependent pseudop
tential VE

(d)(r ) ~dashed lines! as a function ofa0 /aho. For
VK(r ) we solve the radial one-dimensional Schro¨dinger
equation, Eq.~3!, for the reduced mass of the39K isotope
using B splines. The lowest eigenenergyEint with Eint.0
depicted in Fig. 1~a! corresponds to the vibrational state wi
v528 andl 50. Note, the quantum numberv of the lowest
state with energyEint.0 depends on the strengthnho of the
trapping potential, however,v does not change over the pa
rameter range shown in Fig. 1~a!. The eigenenergies of Eq
~3! for the energy-independent pseudopotentialV0

(d)(r ) can
be found exactly, as solutions of the transcendental Eq.~16!
of Ref. @16#,

2GS 2
Eint

2
1

3

4D
GS 2

Eint

2
1

1

4D 5
1

a0 /aho
~6!

~for Eint in units of \vho!. Note our definition of the oscil-
lator lengthaho differs by a factor ofA2 from that used in

s
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FERMI PSEUDOPOTENTIAL APPROXIMATION: TWO . . . PHYSICAL REVIEW A65 043613
Ref. @16#, which leads to a different prefactor on the le
hand side of Eq.~6!. Our calculations based on the energ
dependent pseudopotentialVE

(d)(r ) determineEint iteratively.
A self-consistency condition is imposed such that the ene
dependent two-bodys-wave scattering lengthaE calculated
for the internal potentialVK(r ) alone at a collision energyE
results in exactly this energy when used in Eq.~6! ~replace
a0 by aE!.

For practical reasons, it is convenient to recast this qu
tization condition into an energy level formula analogous
the form familiar in quantum-defect theory@17#. To see this,
define the ‘‘smoothly varying’’ quantum-defect functio
z(Eint) through the equation

z~Eint!52
1

p
arctanF a0

aho

2GS Eint

2
1

3

4D
GS Eint

2
1

1

4D G . ~7!

FIG. 1. Internal eigenenergiesEint, Eint.0, for two 39K atoms
~a!, and two85Rb atoms~b! in a trap as a function ofa0 /aho for the
realistic shape-dependent two-body interaction potentialsVK(r ) and
VM2(r ) ~dotted lines!; the energy-dependent pseudopotential, E
~4! ~dashed lines!; and the energy-independent pseudopotential,
~1! ~solid lines!. Arrows indicate the ratiob6 /aho at which the
lowest eigenenergy withEint.0 for the energy-independen
pseudopotential deviates by 4% from the eigenenergy for the ‘
act’’ two-body interaction potential~see Table II!.
04361
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Inserting this expression, and using theG function reflection
formula, results in an equivalent quantization formula

sinFpS Eint

2
1

1

4
1z D G50. ~8!

The resulting energy levels with positive eigenenergyEint

now take the quantum-defect-like form

Ev
int52~v2z!1 3

2 , ~9!

wherev50,1, . . . denotes the vibrational quantum numbe
Note that, as expected, Eq.~9! reduces to the bare harmon
oscillator energy levels if the quantum defectz vanishes. In
general, this equation must be solved iteratively, but the
eration is highly efficient becausez on the right-hand side is
a slowly varying function of energy.

Figure 1~b! shows the lowest positive eigenenergies
theM2-85Rb2 system~see above, and also Table I! with large
positive scattering lengtha0510 990 a.u. for the shape
dependent ‘‘exact’’ potentialVM2(r ) ~dotted lines!, the
energy-independent pseudopotentialV0

(d)(r ) ~solid lines!,
and the energy-dependent pseudopotentialVE

(d)(r ) ~dashed
lines! as a function ofa0 /aho. Figures 1~a! and 1~b! show
good agreement between the eigenenergies calculated fo
shape-dependent realistic two-body potentialsVK(r ) and
VM2(r ), and for the energy-independent pseudopoten
V0

(d)(r ) for ua0 /ahou,0.10 and ,7.0 for 39K2 and
M2-85Rb2, respectively. At theseua0 /ahou values, the devia-
tions between the lowest eigenvalue with positive ene
reach 4%. The lowest positive eigenenergiesEint for VK(r )
and VM2(r ) agree to within 4% with those forVE

(d)(r ), for
ua0 /ahou,0.42 @just outside of the range shown in Fig. 1~a!#
and 370@outside of the range shown in Fig. 1~b!#, respec-
tively. Note that the energy-dependent pseudopotential
proximation improves significantly upon the energ
independent pseudopotential approximation. Comparison
Figs. 1~a! and 1~b! indicates that the validity of the pseudo
potential approximation is not predominantly controlled
the ratioua0 /ahou,1, as was suggested previously@5#. Spe-
cifically, the criterionua0 /ahou,1 underestimates the valid
ity regime of the pseudopotential approximation for syste
having large scattering lengthsa0.

Table II summarizes our studies for39K2 and M2-85Rb2
together with those for 85Rb2 , 87Rb2 , M -39K2, and
M1-85Rb2. Columns 2 and 3 report the values ofua0 /ahou
and b6 /aho at which the eigenenergies for the energ
independent pseudopotentialV0

(d)(r ) differ by 4% from
those for therealistic shape-dependent two-body potent
@18#. The ua0 /ahou values vary from 0.10 to 7.0~factor of
70), whereas theb6 /aho values vary over a much smalle
range, namely, from 0.10 to 0.55~factor of 5.5). Similarly,
columns 4 and 5 report theua0 /ahou and b6 /aho values at
which the eigenenergies for the energy-dependent pseud
tential VE

(d)(r ) differ by 4% from those for the realistic
shape-dependent two-body potential. Here, theua0 /ahou val-
ues vary from 0.42 to 370~i.e., through a factor of 880)
whereas the values ofb6 /aho vary from 0.84 to 5.7~factor of
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D. BLUME AND CHRIS H. GREENE PHYSICAL REVIEW A65 043613
6.8). Roughly speaking, the energy-independent pseud
tential approximation breaks down aroundb6 /aho.0.5.
Note, however, that this value depends somewhat on the
tem under investigation. Table II seems to suggest that
energy-independent pseudopotential approximation bre
down at smaller values ofb6 /aho for systems with largea0.

The validity of the pseudopotential approximation c
also be interpreted from a different point of view. Consid
the wave functionc(r ) of two 39K particles in a trap inter-
acting through the realistic two-body potentialVK(r ). The
lowest eigenstate, with positive energyEint in Eq. ~3!, has 27
nodes at small interparticle distancesr @for the range ofnho

considered in Fig. 1~a!, see above#. Imposing the boundary
conditionc(r )50 at the outermost node and solving Eq.~3!
from this last node out to larger results in the exact energy
The pseudopotential approximation, in contrast, leads to
eigenfunctionc(r ) that ‘‘ignores’’ the nodal structure a
small r. If the eigenfunction of the pseudopotential has
node that is identical to the outermost node of the ‘‘exa
wave function, then the pseudopotential approximation is
act; however, typically the boundary condition of the eige
function of the pseudopotential differs slightly from the exa
boundary condition. The inaccuracy of the eigenenergie
the pseudopotential approximation is therefore directly
lated to the error in the boundary condition, and thus to
error in the phase shift, or equivalently, to the error in t
scattering length. Recall that the characteristic lengthb6

roughly determines the interparticle distance at which
two-body scattering wave function reaches its asymptotic
havior. With this in mind, the above interpretation impli
immediately that the ratiob6 /aho rather than the ratioa0 /aho

determines the validity of the pseudopotential approxim
tion.

To connect our studies with commonly used mean-fi
treatments@2#, consider the HF equation@3#, which agrees
with the Gross-Pitaevskii equation@2# except for a change
from N to N21 in the interaction parameter

TABLE II. Ratios (ua0 /ahou)0 and (b6 /aho)0 at which the low-
est positive eigenenergyEint for the energy-independent pseudop
tential, or that for the shape-dependent ‘‘realistic’’ two-body pote
tial, deviate by 4%@18# ~columns 2 and 3! for six different systems
interacting through alkali atom-atoma 3Su

1 potentials. Also shown
are the ratios (ua0 /ahou)E and (b6 /aho)E at which the lowest
eigenenergy withEint.0 for the energy-dependent pseudopote
tial, or that for the shape-dependent realistic two-body poten
deviate by 4%~columns 4 and 5!.

(ua0 /ahou)0 (b6 /aho)0 (ua0 /ahou)E (b6 /aho)E

39K2 0.10 0.39 0.42 1.7
85Rb2 0.42 0.18 2.4 1.0
87Rb2 0.36 0.55 2.2 3.3

M -39K2 2.2 0.14 24 0.84
M1-85Rb2 4.0 0.11 220 5.7
M2-85Rb2 7.0 0.10 370 5.4
04361
o-

s-
e

ks

r

n

’’
x-
-
t
in
-
e

e
e-

-

d

F2\2

2m
¹21

1

2
mvho

2 rW21
4p\2~N21!a0

m
uFHF~rW !u2G

3FHF~rW !5eHFFHF~rW !. ~10!

Here,FHF denotes the Hartree-Fock orbital~normalized to
1!, andeHF the chemical potential. The derivation of the H
equation is based on many-body wave mechanics fo
Hartree-Fock initial state with a nonregularizedd-function
interaction potential@i.e., Eq.~1! without the (]/]r )r opera-
tor term#. Equation~10! is valid for any number of particles
particularly for theN52 case considered here, and also
any density of the system~although the accuracy of the ap
proximate treatment depends considerably on the syste
density!. The HF treatment does not separate out the cen
of-mass motion, and thus results in the total energy, wh
can be obtained through evaluation of the energy functio
EHF@FHF# @2#. To compare this energy with the intern
eigenenergiesEint of Eq. ~3! we ‘‘artificially’’ @19# subtract
the analytically known center-of-mass energy of 1.5\vho,
and denote the resulting energy byEHF.

Figure 2 depicts the lowest eigenenergyEint with Eint

.0 for two 87Rb atoms confined in an external trap as
function of a0 /aho. The lowest eigenenergy of Eq.~3! Eint

with Eint.0 calculated for the energy-dependent pseudo
tential ~dashed line! is nearly indistinguishable from the ex
act eigenenergy calculated for the two-body potentialVRb(r )
~dotted line!, whereas the energy-independent pseudopo
tial ~solid line! deviates from the exact eigenenergy by 4
or more for a0 /aho>0.36. The HF energyEHF ~dashed-
dotted line! deviates from the exact energy by 4% or mo
for a0 /aho>0.25, and roughly follows the eigenenergyEint

FIG. 2. Internal eigenenergiesEint, Eint.0, for two 87Rb atoms
in a trap as a function ofa0 /aho for the realistic shape-depende
two-body interaction potentialVRb(r ) ~dotted line!, the energy-
dependent pseudopotential, Eq.~4! ~dashed line!, and the energy-
independent pseudopotential, Eq.~1! ~solid line!. In addition, a
dashed-dotted line shows the HF eigenenergyEHF, and a dashed-
dotted-dotted-dotted line the modified HF eigenenergyEHF,mod.
Note, the exact center-of-mass motion of 1.5\vho has been ‘‘artifi-
cially’’ subtracted from the HF and modified HF eigenenergies
obtainEHF andEHF,mod.
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FERMI PSEUDOPOTENTIAL APPROXIMATION: TWO . . . PHYSICAL REVIEW A65 043613
of Eq. ~3! for the energy-independent regularized pseudo
tential. In addition to the HF equation, we also conside
modified HF equation

F2\2

2m
¹21

1

2
mvho

2 rW21
4p\2~N21!a0

m
uFHF,mod~rW !u2

3S 11
32

3Ap
a0

3/2~N21!1/2FHF,mod~rW !D GFHF,mod~rW !

5eHF,modFHF,mod~rW !. ~11!

The total energyEHF,mod relevant to this modified HF equa
tion can be obtained from the energy function
EHF,mod@FHF,mod#. In the following, we denote the modifie
HF energy,without the center-of-mass energy of 1.5\vho by
EHF,mod. The additional mean-field term included in Eq.~11!
is identical to the correction term introduced by Huang, L
and Yang@21–23# for the homogeneous gas. In contrast
the derivation of the Hartree-Fock equation, the derivation
the additional term within many-body wave mechanics c
cially depends on the usage of the regularized pseudopo
tial @Eq. ~1!# rather than the unregularized pseudopoten
@Eq. ~1! without the operator piece#. The modified HF energy
EHF,mod ~Fig. 2, dashed-dotted-dotted-dotted line! agrees
very well with the exact two-body eigenenergy. We take t
agreement for theN52 system as another indication@20–
25# that the description of a trapped atomic gas through
modified HF equation improves upon the description throu
the HF equation in the low- and medium-density regime.
note, however, that Eq.~11! has been derived in the largeN
limit @24#, and thus the excellent agreement demonstrate
Fig. 2 might be somewhat fortuitous.

In summary, for a0 /aho,0.1 Fig. 2 shows excellen
agreement between the lowest positive internal eigenen
Eint of Eq. ~3! for VRb(r ) and those calculated using variou
approximate treatments, namely, using the pseudopoten
given in Eqs.~1! and ~4! in Eq. ~3!, and using the HF and
modified HF equation. For larger interaction paramet
a0 /aho, the energyEHF,mod describes the eigenenergy of th
system extremely well, and the accuracy for theregularized
energy-independentpseudopotential@Eint of Eq. ~3! for
V0

(d)(r )# is slightly better than that for thenonregularized
energy-independentpseudopotential (EHF).
v.

y
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This study of a two-particle system, the smallest syst
for which interactions alter the ideal-gas energy levels, p
vides a simple test of the validity of the mean-field HF tre
ment. We have shown that the positive eigenenergies of
particle systems can be described properly through the
equation in the small interaction parameter limit, and furth
more, that a modified HF treatment improves upon the
treatment in the medium interaction parameter regime.

Our findings contradict a recent study by Geltman a
Bambini @26#. This study suggests that a significantly diffe
ent effective two-body potential should be used whenever
‘‘realistic’’ two-body potential supports one or more two
body bound states. For two87Rb atoms in a spherical tra
with trapping frequencynho5220 Hz, the suggested mod
fied effective potential†Eqs.~5! and~6! of Ref. @26#‡ leads to
such a large negative mean-field term that the HF equa
does not have a solution. In contrast, for this frequency
find solutions of Eq.~3! with Eint.0 for the realistic Rb-Rb
potential. Furthermore, our lowest positive eigenene
agrees well with that obtained by solving the standard
equation with interaction parametera0 /aho ~see Fig. 2!. This
comparison shows that modified effective potential propo
by Geltman and Bambini does not handle the BEC phys
even approximately correctly. While we agree with the Ge
man and Bambini criticism of the unphysical behavior of t
Gross-Pitaevskii equation for largea0, their suggested ‘‘rec-
tification’’ is unphysical and appears to derive from an u
sound interpretation of the meaning of repulsive and attr
tive scattering lengths@26#. Our studies in this paper sugge
that the adoption of a modified two-body potential in Eq.~3!,
which has fewer bound states but the same scattering le
a0 as the realistic potential, can result in accurate posit
eigenenergiesEint for interacting atoms in a trap. Thes
eigenenergies are particularly accurate if the energy dep
dence of the scattering length for the modified potential
sembles that for the realistic potential. This is ensured if b
potentials generate comparable values of the effective ra
parameterr e f f .

Note added. Recently, a paper@34# appeared that also ar
rives at conclusions similar to ours.
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