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Fermi pseudopotential approximation: Two particles under external confinement
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In this paper we calculate the energy levels of two trapped atoms interacting through a spherical two-body
potentialV(r) under external confinement quantum mechanically. We then replageoy either a regularized
energy-independemnr an energy-dependend-function potential. A comparison shows that the use of an
energy-dependemseudopotential improves significantly upon the use oérergy-independerseudopoten-
tial. The accuracy of the pseudopotential approximation is approximately determined by th@gdig,
where B¢ anday,, denote the characteristic length scale of the two-body interaction pot#fftialand of the
trapping potential, respectively.
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Recently, the experimental realization of Bose-Einsteinnteraction potentiaV/(r). In the study by Tiesingat al.[5],
condensatioBEC) of atomic vaporg1] has led to a revival V(r) is given by the interaction potential between two Na
of Fermi’s pseudopotential treatment. The theoretical dexioms 6o=33 A), and two Cs atomga,= —370 A; this
scription of these weakly interacting at'omic gases IS COMyglue has recently been refined, see R6f.and Table ),
monly based on the mean-field Gross-Pitaevskii equaliin  regpectively. Through comparison of the eigenvalues for the
which can be derlvedgthrough a perturbative treatment in th%seudopotentia‘vgﬁ)(r) with those forV(r), they document
small gas parametera, (wheren is the gas density anh is 5 preakdown of the pseudopotential treatment in the regime
:jhe zero—energgrwa}ve scatt%r&rll? lengit 2]. ﬁ“ alternative  \herea, approaches the characteristic lengjg of the ex-

erivation starts from Schdinger's number-conserving ternal trappi : _ ; _
e . " ) pping potentiaby,,= VA/(prwp) with x=m/2 and
mhan);-tilody Hamlltqnlar[S]: Thel,' HG ross-Pllztaestku equatlgn who=2TV,. The present study revisits the pseudopotential
then follows assuming an initial Hartree-Fo@kF) state and 555 oximation, and show@) that the validity regime of the

a two-pody Fermi-_type contapt potqntial, specificallylc_m- . energy-independent pseudopotential approximation is better
regularized 5-function pote'ntlal. This contact potential is characterized by the ratjfs/an, than by|ag /an [whereg,
usually chosen such that it reproduces the two-body 28105 the characteristic length scale for the two-body potential

energys-wave scattering length, of the “true” interaction V(r) [7-13], and(ii) that a pseudopotential with @&mergy-
potential. This alternative derivation, based on many-bod ependentw’()-bodys-wave scattering lengthg leads to a

Schradinger quantum mech.amcs, Ieads. to essentially th‘F\ighly improved description of two particles confined in a
same result as the perturbative low-density treatment, excegbherical trap. The energy-dependemtvave scattering

o o Piicles, I the nerscion Jengih i deined atnonzero eneresy- - andy )k
two-body interaction potentidl(r) by a pseudopotential is a where k=y2uE/fi. @ approaches the usual scattering

. : : ; . length in the limit of zero energy.

crucial step in connecting mean-field treatments with many- Consider two mas particles interacting through a two-
body theory{2-4]. Conseqyently It 'S.V'tal. to understapd the body potentiaM(r), confined in an external trapping poten-
accuracy of pseudopotential approximations and its implica-, PRSI - -
tions for the description of dilute Bose-condensed gasedid Virap=Mwp(ri+r3)/2. Here,ry andr, denote the po-
Specifically, a detailed understanding of the two-particle sysSition vector(measured with respect to the center of thetrap
tem must be in place before applications to many-particlé®f atoms 1 and 2, respectively. The spherical symmetry of

systems can be conducted. Virap(R), Iiz(F1+F2)/2, and ofV(r), allow us to separate
Recently, Tiesingat al. [5] used anenergy-independent out the center-of-mass motion
regularizedpseudopotential

h? 9?1
+->MwiR?

ToM g2 T2 O(R)=E“"®P(R) (2

4’7Tﬁzao > d
Ve (1) = ———®r) (1)

with eigenenergie&®™=(3/2+n ) wp, Whereng ,, de-
to describe the interaction between two magsarticles con-  notes the quantum number of the three-dimensional har-
fined in an external spherical harmonic trapping potentiamonic oscillatorEqg. (2)], andM denotes the total mash/
with trapping frequencyv,,,. Here,r denotes the distance =2M. Thus, the problem reduces to solving the Sdimger
vector between the two particles, andhe length of this ~€quation for the radial internal motion
vector. 5°)(r) is a three-dimensional delta functioay is
chosen such that the pseudopotentig?(r) has the same
zero-energy scattering lengty as the “realistic” two-body

12 92

1, 2
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TABLE I. Dispersion coefficientCg, characteristic lengttBg
=(2uCg/1?)Y4 zero-energys-wave scattering length,, and ef-
fective range o for "Li,, *Nay, 3%K,, ®Rb,, 8Rb,, and!3%Cs,
interacting througta °3. potentials(upper par, and for %K, and
85Rb, interacting through modified potentiallower part, see text

Cs (@u) Bglau) ap@u) reg(au)
"Li, 13882 65 -27.3° 530
BNa, 1472° 89 77.3¢ 62
3%K, 3897° 129 -33f 2083
5Rb, 47009 164 —369¢ 347
%Rb, 47009 165 106° 143
133Cs, 6890" 197 2400" 358
M-3%, 3948i 129 —3672 187
M1-%Rb, 4700 164 6162 223
M2-%Rb, 4700 164 10990 226
8Referencd 28].

bReferencd 29], analysis of photoassociation experiments on atom
in theF=2, mg=2 state.

‘Referencd28].

dreferencd 30].

*Referencd31].
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for 3%, and ®Rb, interacting through modified atom-atom
potentials. The potential labeldd-*°K, has been obtained
by multiplying the K, potential by a factor of 1.013. This
rescaling leads to a large negative scattering leagtior the
3% isotope while changingCs and B¢ very little. The po-
tentials labeled by 1-2°Rb, and M2-%Rb, have been ob-
tained by modifying the short-range part of the,Riotential,
thus leavingCg and Bg unchanged, however, resulting in
large positive scattering lengthe, for the ®Rb isotope.
Similar adjustments of two-body potentials are common in
the presence of a Feshbach resonance.

The Cg parameters are taken from the literat(see Table
| caption, as have been the values &f for some systems.
For the other systems, we determirggdthrough a scattering
calculation. The characteristic lengfl is determined by the
Cg coefficient and the reduced mags and determines
roughly the length scale over which the radial two-body scat-
tering wave function oscillates at zero energy. For distances
larger thanBg the scattering wave function approaches its
asymptotic behavior. The effective rangg; has been cal-

%ulated using an expression derived by G&ags. (9) and

(11) of Ref.[8], where we neglect the second term of Eq.
(12), and usea, as input. r¢s; determines, for example, the
energy dependence of the scattering length at low collision
energies to first order,

Reference[32], experimental photoassociation spectroscopy, car-

ried out in conjunction with a detailed theoretical simulation of the

experiment.
9Referencd27], theoretical analysis of experimental elastic colli-
sion data between atoms in the=2, mg=—2 state.

"Referencd 6], theoretical analysis of Feshbach resonance data foy@

theF=4, mg=4 state measured experimentaléee Ref[33]); for
the F=3, mg 3 state, Ref[6] reportsay=—2770 a.u. Note,
the calculations reported in Rgb] (see text use an older potential
with a scattering lengtl,= —699 a.u.

'The C, coefficient is obtained by multiplying th@&g value given in
Ref.[31] by a factor of 1.013see text

IThe short range part of the two-body potentigly(r) is modified
slightly, without changingCg from Ref.[27].

Equations(2) and(3) are derived folL,=0 andl =0, where

L andl denote the orbital angular momentum for the cente
of mass and relative motion, respectively. In the following

we compare the positive eigenenergig8!, for realistic al-

r

1 1
_——a— — 4
ag )

. 2
Ek Feff- 5)
For the two-body systems considered in Table I, the absolute
lue of the scattering lengtfay| varies from 27 a.u. to
10990 a.u. while the characteristic lengsy varies over a
much smaller range, namely, from 65 a.u. to 197 a.u. The
characteristic lengthBg is shown to primarily control the
validity of the pseudopotential approximati¢gsee below,
Figure Xa) depicts the lowest positive eigenenergied
of Eq. (3) for two *K particles using theealistic K-K in-
teraction potentiaV(r) (the short-range part of the poten-
tial is taken from Ref[15], see also Table) I(dotted line$,
the energy-independent pseudopotentiz{f)(lf) with ag=
—33 a.u.(solid lineg, and theenergy-dependent pseudopo-
tential V.(r) (dashed linesas a function ofag/ap,. For
Vk(r) we solve the radial one-dimensional Sdfirger
equation, Eq(3), for the reduced mass of th€K isotope
using B splines. The lowest eigenener@"" with E"'>0
depicted in Fig. {a) corresponds to the vibrational state with

kali atom-atom potentials, with those obtained for the, —2g andi=0. Note, the quantum numberof the lowest

energy-independent pseudopotentié’(r) [Eq. (1)], and
the energy-dependent pseudopoteﬁﬂ@?(r),

d

4mh?a
O (r)= — & s3)(1) —
V)= ———6®r) —-r.

(4)

Table | summarizes characteristic parameters for a series

of two-body alkali systems interacting througH= ; atom-
atom potentials, namely, the dispersion coeffici€gt the
characteristic lengthBs=(2uCq/%?)Y* [7-13, the zero-
energys-wave scattering length,, and the effective range

state with energf'"'>0 depends on the strength, of the
trapping potential, however, does not change over the pa-
rameter range shown in Fig(a). The eigenenergies of Eq.
(3) for the energy-independent pseudopoterm&?(r) can
be found exactly, as solutions of the transcendental( Eg).
of Ref.[16],

Eint 3
ZF(_T z)_ 1 A
Elnt 1 _aO/ahO ()
r-—=—+=
2 4

retf- The upper part of Table | reports these quantities for the

two-body systems'Li,, *Na,, *K,, ®Rb,, 8'Rb, [14],

(for E™ in units of Zwy,). Note our definition of the oscil-

and *%Cs,, while the lower part summarizes these quantitiesator lengthay,, differs by a factor ofy2 from that used in
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St ' ' ' 3 Inserting this expression, and using thdunction reflection
: ] formula, results in an equivalent quantization formula

. Eint 1
S T+Z+§

The resulting energy levels with positive eigenenefgy*
now take the quantum-defect-like form

=0. (8)

Eim [huho]

EM=2(v—{)+%, C)

: 3 wherev=0,1, . . . denotes the vibrational quantum number.
0.0 o1 02 _03 04 Note that, as expected, E(@) reduces to the bare harmonic
(a) 80/ 84, oscillator energy levels if the quantum deféctanishes. In
general, this equation must be solved iteratively, but the it-
6f ' ' ' ' ' ] eration is highly efficient becaugeon the right-hand side is
: ] a slowly varying function of energy.
. ] Figure Xb) shows the lowest positive eigenenergies for
5F TS the M2-8%Rb, system(see above, and also Tab)ewith large
S : positive scattering lengtray=10990 a.u. for the shape-
£t dependent “exact” potentialVy,(r) (dotted lines, the
S 4F 3 energy-independent pseudopotentwga)(r) (solid lines,
E Bo/@p,=0.1 and the energy-dependent pseudopotentidl(r) (dashed
\L ] lines) as a function ofay/ay,. Figures 1a) and Xb) show

T good agreement between the eigenenergies calculated for the
T ] shape-dependent realistic two-body potentisig(r) and
] Vua(r), and for the energy-independent pseudopotential
o s o 5 20 25 30 Vgﬁ)(er) for |ag/an<0.10 and <7.0 for *K, and
(b) ao/ay, M 2-5°Rb,, respectively. At theséa,/ay, | values, the devia-
tions between the lowest eigenvalue with positive energy
FIG. 1. Internal eigenenergi&s™, E™>0, for two 3K atoms  reach 4%. The lowest positive eigenenerdi®¥ for V(r)
(a), and two®Rb atoms(b) in a trap as a function o /an, forthe  and Vv, ,(r) agree to within 4% with those fov{?)(r), for
realistic shape-dependent two-body interaction poteritia(s) and |ag/any <0.42[just outside of the range shown in Figal]
Vua(r) (dottt_ad lines; the energy-_dependent pseudopotentigl, Ed-and 370[outside of the range shown in Fig(bl], respec-
(4) (dashed lines and the energy-independent pseudopotential, Edgjyely Note that the energy-dependent pseudopotential ap-
e o el e ol o St i e proxmaion improves Sigifantly_upon the _energy
independent pseudopotential approximation. Comparison of

pseudopotential deviates by 4% from the eigenenergy for the “ex-. S . i
act” two-body interaction potentialsee Table I Figs. X@ and Xb) indicates that the validity of the pseudo

potential approximation is not predominantly controlled by
Ref. [16], which leads to a different prefactor on the left- “?]fr‘ ra|1|t|o|tao/ ah.‘ﬂ <1, |as )Nas|2ulggezted pi_rew?usﬂth. Spelj q
hand side of Eq(6). Our calculations based on the energy- .(;' '(r:: yr:ne (ce)fctrr:s“zg ac?oagtt)ent'alug e:gs.ga?.gﬁ fofsvitle;ns
dependent pseudopotentidl’(r) determineE™ iteratively. = '°9' pseudopotential approximat y
. L having large scattering lengtlas,.
A self-consistency condition is imposed such that the energy- . . 85
. Table Il summarizes our studies féfK, and M2-8°Rb,

dependent two-bodg-wave scattering lengthg calculated . 85 a7 39
for the internal potentiaV/k(r) alone at a collision energy together with those ~for "Rby,  *Rb, M-"K,, and

X K M1-8Rb,. Columns 2 and 3 report the values |af/ay|

results in exactly this energy when used in Eg). (replace and Bg/an, at which the eigenenergies for the energy-

ag by ag). . S 105) . 0
For practical reasons, it is convenient to recast this quanl_ndependent pseudopotentialy™(r) differ by 4% from

P e those for therealistic shape-dependent two-body potential
tization condition into an energy level formula analogous to
9 d [18]. The|ap/ay values vary from 0.10 to 7.(factor of

the form familiar in quantum-defect theof%7]. To see this,
70), whereas thg8g/ay,, values vary over a much smaller

define the “smoothly varying” quantum-defect function -

Z(E™) through the equation range, namely, from 0.10 to 0.5%actor of 5.5). Similarly,
columns 4 and 5 report thigy/a, ] and Bg/an, values at

which the eigenenergies for the energy-dependent pseudopo-

Eint 3
1 a 2F<7+Z tential V(E‘”(r) differ by 4% from those for the realistic
Z(E"=— Zarcta 20 - (7)  shape-dependent two-body potential. Here,|thga,d val-
w ho F(E_JFE ues vary from 0.42 to 37Qi.e., through a factor of 880),
2 4 whereas the values @ /ay,, vary from 0.84 to 5.7factor of
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TABLE IlI. Ratios (|ag/and)o and (8s/ang)o at which the low- [ ' ' ' '
est positive eigenenerdy™ for the energy-independent pseudopo-
tential, or that for the shape-dependent “realistic” two-body poten-

tial, deviate by 49418] (columns 2 and Bfor six different systems ?
interacting through alkali atom-atom®3, ' potentials. Also shown =
are the ratios |@g/and)e and (8s/an)e at which the lowest g
eigenenergy WitrE'™>0 for the energy-dependent pseudopoten- é
tial, or that for the shape-dependent realistic two-body potential, =
deviate by 4%(columns 4 and b ':‘r:i1
(lag/and)o  (Bs/ando (lac/and)e (Bs/ande ta
3K, 0.10 0.39 0.42 1.7
85Rb, 0.42 0.18 2.4 1.0
%Rb, 0.36 0.55 2.2 3.3
M-3%K 2.2 0.14 24 0.84 o
g5 FIG. 2. Internal eigenenergi&", E"'>0, for two 8’Rb atoms
M1~ Rb, 4.0 0.11 220 57 in a trap as a function ody/a;, for the realistic shape-dependent
M2-55Rb, 7.0 0.10 370 5.4 L 0/8ho pe-dep

two-body interaction potentiaVg,(r) (dotted ling, the energy-
dependent pseudopotential, E¢) (dashed ling and the energy-
independent pseudopotential, Ed.) (solid line). In addition, a

. . dashed-dotted line shows the HF eigenendgt}§, and a dashed-
6.8). Roughly speaking, the energy-independent pseudopQy, e gotted-dotted line the modified HF eigenenekdim°d

tential approximation breaks down aroung/an.>0.5. Note, the exact center-of-mass motion offilaf,, has been “artifi-

Note, however, that this value depends somewhat on the sygply” subtracted from the HF and modified HF eigenenergies to
tem under investigation. Table Il seems to suggest that thgptainEHF and EHF-mod

energy-independent pseudopotential approximation breaks
down at smaller values @#¢/a,, for systems with largey,,.

The validity of the pseudopotential approximation can —h2 , 1, 4mh?(N—1)a, -
also be interpreted from a different point of view. Consider S VT 5 Ml T+ [ Dye(r)|
the wave function/(r) of two 3K particles in a trap inter-
acting through the realistic two-body potentik(r). The xd)HF(F):eHFQDHF(F). (20

lowest eigenstate, with positive energ{'t in Eq. (3), has 27

nodes at small interparticle distanceffor the range of,,  Here, e denotes the Hartree-Fock orbitalormalized to
considered in F|g (h)' see abov:b |mposing the boundary 1), a.n.deFI the chemical pOtentIal. The derivation Of.the HF
conditiony(r)=0 at the outermost node and solving Eg). ~ €duation is based on many-body wave mechanics for a
from this last node out to largeresults in the exact energy. Hartree-Fock initial state with a nonregularizéefunction

The pseudopotential approximation, in contrast, leads to affteraction potentiafi.e., Eq.(1) without the @/dr)r opera-
eigenfunction¢(r) that “ignores” the nodal structure at tor t_erm]. Equation(10) is valid for any number of particles,
small r. If the eigenfunction of the pseudopotential has apartlcularly for theN=2 case considered here, and also for

node that is identical to the outermost node of the "exact”any density of the systeralthough the accuracy of the ap-

. ) L proximate treatment depends considerably on the system’s
Waye function, thgn the pseudopotential approxmanon_ls eXdensit;). The HF treatment does not separate out the center-
act; however, typically the boundary condition of the eigen-

f ) fih d ial diff lahtly f h of-mass motion, and thus results in the total energy, which
unction of the pseudopotential differs slightly from the exact ., e gptained through evaluation of the energy functional

boundary conditio.n. The ina.ccur.acy.of the eigene.nergies irEHF[(DHF] [2]. To compare this energy with the internal
the pseudopotential approximation is therefore directly raigenenergie€ ™ of Eq. (3) we “artificially” [19] subtract
lated to the error in the boundary condition, and thus to thgne analytically known center-of-mass energy offikd,,
error in the phase shift, or equivalently, to the error in thegng denote the resulting energy BYF.
scattering length. Recall that the characteristic length Figure 2 depicts the lowest eigenenerg{"t with E™
roughly determines the interparticle distance at which the>q for two 8’Rb atoms confined in an external trap as a
two-body scattering wave function reaches its asymptotic befunction of ag/ay,. The lowest eigenenergy of E() E™
havior. With this in mind, the above interpretation implies with E""*>0 calculated for the energy-dependent pseudopo-
immediately that the rati@s/ay,, rather than the ratiag/a,,  tential (dashed lingis nearly indistinguishable from the ex-
determines the validity of the pseudopotential approximaact eigenenergy calculated for the two-body potentig)(r)
tion. (dotted ling, whereas the energy-independent pseudopoten-
To connect our studies with commonly used mean-fieldial (solid line) deviates from the exact eigenenergy by 4%
treatmentg 2], consider the HF equatiof8], which agrees or more for ag/an,=0.36. The HF energife™" (dashed-
with the Gross-Pitaevskii equatidi2] except for a change dotted ling deviates from the exact energy by 4% or more
from N to N—1 in the interaction parameter for ag/an,=0.25, and roughly follows the eigenenergjf"
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of Eq. (3) for the energy-independent regularized pseudopo- This study of a two-particle system, the smallest system
tential. In addition to the HF equation, we also consider &or which interactions alter the ideal-gas energy levels, pro-
modified HF equation vides a simple test of the validity of the mean-field HF treat-

ment. We have shown that the positive eigenenergies of two
particle systems can be described properly through the HF
equation in the small interaction parameter limit, and further-

more, that a modified HF treatment improves upon the HF

—h? 1 .. 4mh*(N—1)a, R
WVZ"— Emwﬁorz—’_ T|¢)HF,mod(r)|2

32 12 - - treatment in the medium interaction parameter regime.
x| 1+ 3\/;a0 (N=1)"®@pe mod1) | | Prr,modT) Our findings contradict a recent study by Geltman and
Bambini[26]. This study suggests that a significantly differ-
= 6HF,modq)HF,mod(F)- (11 ent effective two-body potential should be used whenever the

“realistic” two-body potential supports one or more two-
The total energE""™4 relevant to this modified HF equa- pody bound states. For tw&/Rb atoms in a spherical trap
tion can be obtained from the energy functionalyjth trapping frequency,,=220 Hz, the suggested modi-
ENFMOQd e modl- In the following, we denote the modified fied effective potentidlEqs. (5) and(6) of Ref.[26]] leads to
HF energywithoutthe center-of-mass energy of &n, by gych a large negative mean-field term that the HF equation

HFv d g . . .
ET" 9% The additional mean-field term included in B&i1) o5 not have a solution. In contrast, for this frequency we
is identical to the correction term introduced by Huang, Leeg 4 <o tions of Eq(3) with E™>0 for the realistic Rb-Rb

and Yang[21-2 for the homogeneous gas. In contrast tOPotential. Furthermore, our lowest positive eigenenergy

the den\_/gtlon of the I-!ar_tree-Fock equation, the derlv_atlon 0agrees well with that obtained by solving the standard HF
the additional term within many-body wave mechanics cru-

cially depends on the usage of the regularized pseudopoteﬁ—quat'or1 with interaction par_a_mem(;/ahp (see F'gi 2 This
tial [Eq. (1)] rather than the unregularized pseudopotentiagompar'son shows that_modlfled effective potential propos_ed
[Eq. (1) without the operator piedeThe modified HF energy Y Geltman _and Bambini does not handle the I_BEC physics
EHF.mod (Fig. 2, dashed-dotted-dotted-dotted linagrees  ©VEN approxmgtt_aly p_orrectly. While we agree with .the Gelt-
very well with the exact two-body eigenenergy. We take thisman and Bambini criticism of the unphysical behavior of the
agreement for thél=2 system as another indicatiggo—  Gross-Pitaevskii equation for large, their suggested “rec-
25] that the description of a trapped atomic gas through thédification” is unphysical and appears to derive from an un-
modified HF equation improves upon the description througisound interpretation of the meaning of repulsive and attrac-
the HF equation in the low- and medium-density regime. Weive scattering lengthg26]. Our studies in this paper suggest
note, however, that Eq11) has been derived in the larg¢  that the adoption of a modified two-body potential in Eg),
limit [24], and thus the excellent agreement demonstrated iwhich has fewer bound states but the same scattering length
Fig. 2 might be somewhat fortuitous. a, as the realistic potential, can result in accurate positive
In summary, forag/an,<0.1 Fig. 2 shows excellent eigenenergieE™ for interacting atoms in a trap. These
agreement between the lowest positive internal eigenenergigenenergies are particularly accurate if the energy depen-
E'™ of Eq. (3) for Vgy(r) and those calculated using various dence of the scattering length for the modified potential re-
approximate treatments, namely, using the pseudopotentiaembles that for the realistic potential. This is ensured if both
given in Egs.(1) and(4) in Eq. (3), and using the HF and potentials generate comparable values of the effective range
modified HF equation. For larger interaction parametersparametere”_
ao/ano, the energyE"" Mo describes the eigenenergy of the = \te addedRecently, a papdi34] appeared that also ar-
system _extremely well, and the accuracy for thgularized .o at conclusions similar to ours.
energy-independenpseudopotential E'™ of Eq. (3) for

Vv{(r)] is slightly better than that for theonregularized This work was supported partly by the National Science
energy-independemseudopotentialEHF). Foundation.
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