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Generation and interaction of solitons in Bose-Einstein condensates
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Generation, interaction, and detection of dark solitons in Bose-Einstein condensates are studied. In particu-
lar, we focus on the dynamics resulting from phase imprinting and density engineering. We show that solitons
slow down significantly when the trap is opened and that soliton phase shifts after binary interactions cannot
be observed with present experiments. Finally, motivated by the recent experimental results of &oahish
[Phys. Rev Lett85, 1795(2000], we analyze the stability of dark solitons under changes of the scattering
length and thereby demonstrate a new way to detect them. Our theoretical and numerical results compare well
with the existing experimental ones and provide guidance for future experiments.
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[. INTRODUCTION the density of the condensate exactly vanishes at the density
minimum is the resulting soliton stationary. Such a standing
Bose-Einstein condensatéBEC's) offer a unique possi- soliton has a phase jump of exacttybetween the two parts
bility of studying nonlinear effects using matter waves. Thisof the condensate connected by it and its velocity is zero. In
has been spectacularly shown in the recent BEC experimengeneral, the local minimum density can range from maximal

that demonstrate, among other things, the possibility of fourto zero depth with the associated soliton velogjtyanging
wave mixing[1], the creation of topological structures such from zero to the speed of sourq in the condensate, i.e.,

as vorticeq2,3], the creation of soliton§4—6], as well as 0=q=c,= Jnog/m, wheren, refers to the mean density in

other demonstrations of the superfluid charaftgr the condensate. In a homogeneous 1D condensate, a soliton
.Sol|tons are_ong-dmenspnélD) waves that propagate g iion can be analytically obtained in an elegant way by

W'thOUt spreading in a_nonlmgar m¢d|um. The|r.shape re'using the inverse scattering methg@. The wave function

mains unalterﬂed after mter'actlng .W'th other solitons. .Thecorresponding to a dark soliton located @tpropagating

n_onlmear Schrdinger equation, which accurate_ly descrll_)esalong thez axis with speed is described by

dilute BEC’s at zero temperature, supports soliton solutions

for attractive as well as for repulsive two-body interactions

[8,9]. These solutions correspond to macroscopically excited NERE v v?

states of the mean field of the condensate. For a single- Vaand2,1)=\No) | T 1 c2

component condensate, the 3D, time-dependent, nonlinear

Schralinger equation, also known as the Gross-Pitaevskii { v2(z—vt)
Xtan

equation(GPE), reads 1-—

cz V2lg
2

J . ﬁ . R R . . .
i ZW(F =1 — — V24 V(D) +al W (F D12 W (r 1) In the case of a dark soliton propagating along _xhzeus in
! ot (r.t 2m (N+g[¥(r.0) (r.H an elongated 3D condensaterefers to the position of the
(1) notchx-y plane, and the constant velocity of such a plane
with respect to a stationary background. The soliton size is of

Hereg=4f2a/m, wherea corresponds to thewave scat- the order of twice the healing length=%/ymgn.

tering length for binary collisions between atomstefers to In contrast, for condensates with attractive interactions
the mass of the atoms, aiitto the trap potential. For repul- (a2<0) soliton solutions are characterized by a maximum in
sive interactions §>0), solitons are characterized by a the density profile without any phase jump across it. These
local-density minimum together with a sharp phase gradiengolitons are termedright solitons, and the solution corre-
of the wave function at the position of the minimum. In this Sponding to a bright soliton reads

case, the nonlinear, effective mean-field potential term

g|¥(r,t)|? balances the dispersion of the wave function o

cLused l:l)y the kinetic energy. Because there is a notch in the W orignt= \/n—osecr(
density these solutions are termeéark solitons. Only when

J e—ignot/h_ (2)

z—ut . .
eﬂvaz/heflgnot/ﬁ_ (3)

lo

The ground state of a condensate with attractive interactions
and sufficiently large nonlinearity, i.69>gmin, IS, in fact, a
*Present address: LENS, 50125 Firenze, Italy. bright soliton[14].
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Dark and bright solitons described by the nonlinearresponds to the axial trap frequer{dl]. Coherent evolution
Schralinger equation have been extensively studied in thélso concerns the generation and interaction of pairs of soli-
context of nonlinear optic§see Ref.[10] and references tons. This coherent soliton evolution has been recently stud-
therein. In condensates only dark solitons have very recentlyed in the context of two-component condensates, where new
been observed as nonlinear matter waes6]. A crucial ~ and rich dynamics appeafs9]. _
difference between optical- and matter-wave solitons appears Dissipative effects include both dynamical and thermal

at first glance. While optical solitons are created in opticapnstabilities. Dynamical instabilities are due to the fact that
guides, i.e., in a cylindrical medium that & priori un- solitons are indeed one-dimensional objects. When embed-

bounded, a condensate is always confined in a trap. To wh&€d in higher dimensiong.e., 2D or 3D condensatgtheir

extent the boundary conditions affect the properties and stataPility strongly depends on the geometry of the condensate.

bility of the solitons has been the subject of recent theoretica[ " Sfficiently elongated traps with a high transverse con-
studies(see, e.g.[11]). finement it is not possible to excite the transverse modes of

The literature concerning bright solitons in matter Wavesthe trap and the soliton is then dynamically stable. On the

is not very extensivg8,12—15. Condensates with attractive contrary, for a looser transverse confinement the transverse
interactions in 2D and 3D are unstable objects that collapsB10des can be excited, making the soliton plane bend and

very rapidly when the particle number becomes too |argémdergo a snake instability. As a result, the soliton fjecays
[16,17). Therefore, a bright soliton in a condensate with at-INto phonons and more stable structures such as vortices and

tractive interactions is also an unstable object. However/Ort€X rings[6,25,26, or even more exotic objects such as

since quasi-1D condensates with attractive interactions arg/0rtices(27]. Depending on the trap geometry, dynamical
stable, bright solitons could be generated in tHe@]. Al- !nstab!l!t!es may occur on a_shorter time scale tha_n t_hermal
ternatively, an interesting approach based on vector soliton@Stabilities. One should point out here that the dissipatory
in two-component condensatésith repulsive interactions behavior of solitons corresponding to dynamical instabilities
can also be used to to study bright solitons in 2D and 30Fa" also be described, using the Gross-Pitaevskii equation, as
condensates. By creating a dark soliton in one of the specig@nerent but unstable evoluti¢8,29.

one can induce a bright solitonlike structure in the other one 1hermal instabilities appear due to the fact that solitons
[6,15,19 that fills the minimum of the first species. Since aare collectiveexcitedstates of the mean field of the conden-

condensate with positive scattering length is stable, th§2t€ and therefore, decay into the ground state within a finite
bright soliton thus created is no longer limited by the col-time. The dissipation consists in scattering of phonons on the

lapse of the condensate. Finally, it has been recently showfPliton's notch plane. Studies of dissipation, which are re-
that with the well-controlled use of Feshbach resonances iffit€d t0 the interaction of a soliton with a thermal cloud,

85Rb, it is possible to make a condensate with attractive indémand one to go beyond the GPE and use the

teractions in a very controllable wd0,21. This opens a Bogoliubov—de Gennes equations that describe collective
new way to study bright solitons in ma’tter Waves. modes such as phonons. Since a soliton can be regarded as a

The study of matter-wave solitons, both experimentallypartide with negative mass, such scattering accelerates the

and theoretically, principally involves three different aspects:S°liton until it reaches the effective sound velocity and van-

their generation, coherent evolution including coherent efiShes. This scenario has been described by Fediebey.
fects during detection, and incoherent evolution and dissipa28l: and has been recently studied for 3D solitons in elon-
tion. So far the observed solitons in one-component BEC,Sgated_tra.ps by Muryshqat "?ll‘ [30]. Both theory and experi-
have been generated by the method of phase imprinting. Tz@ent |r]d|pate thgt t_he lifetime of the soliton dug to thermo-
method, originally proposed to generate vortices, has beco 'r;larﬂlc ;;‘St?‘b'“tyf's’ of the orr1der. of %Shms. This C%ontrfasts
a very efficient tool to engineer the phase in condensate¥ith the lifetime of vortices that is of the order of a few
[22,23. Optimization of the phase-imprinting method hassecor_lds{z,3]. .
been recently discussed by Catral. [24], where initially . This paper chuse_s on the generation and coherer)t evolu-
not only the phase but also the density is properly engi_‘uon of dark solitons in one-component condensates in elon-
neered. A proper combination of both effects in a quasihogated traps. It is organlzed as follows: Sec. Il addresses the
mogeneous condensate produces a stable, standing solittifu€ ©f the generation of solitons. In Sec. Ill the problem of
whose properties can be used to test fundamental aspects ?hton detection is investigated and the dynamics concerning
many-body theory such as quantum and thermal fluctuationd'€ OPening of the trap are studied. Section IV is devoted to
The coherent evolution of solitons refers to the evolutiontN€ interaction between solitons. We discuss therein the ex-
before dissipation takes place. While a condensate has a lif@€rimental conditions undeLWIhmh the effects dﬁe to |n_t|¢rac]:
time of the order of seconds, the recent experimental resul{°"S can be observed. In the latter, we study the stability o
have shown that for solitons the lifetime is of the order of 152 SOliton when the scattering length of the condensate is
ms (in one-component condensateBor shorter times the changed in a cohtrollabl_e way. This sj[udy is stimulated by
Gross-Pitaevskii equation provides an accurate description (Ehe recent experiments iffRb by Cornish and co-workers
the soliton dynamic§4—6]. In homogeneous systems and in [20,23. Finally, we present our conclusions in Sec. V.
the absence of dissipation and/or thermal phonons, solitons
maintain a constant velocity. In elongated harmonic traps a
dark soliton(and in 3D the nodal plane of the solijooscil- In this section we focus on the generation of dark solitons
lates in the trap with a frequendY=w,/\/2 wherew, cor- in one-component Bose-Einstein condensates by three dis-

Il. GENERATION OF DARK SOLITONS
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tinct methodsi{a) phase imprinting(b) density engineering,
i.e., nonadiabatic changes of the potential confining the con- (a) 0.020 1 ——0.00ms
densate, an@c) combination of the previous two methods. n(z)
As already mentioned in the Introduction, even for ther-
modynamically unstable states such as solitons the GPE pro-
vides an excellent tool to describe the coherent dynamics on 0.016 1
the relevant time scale. To avoid the effect of dynamical
instabilities we restrict our analysis to the following configu-
rations:(a) cigar-shaped condensates with a high aspect ratio
and (b) quasi-1D condensates. These quasi-1D condensates
can be obtained for both harmonic and boxlike potentials. (b)
For the former, the radial confinement frequency is required
to be much larger than the mean-field interaction between
particles[30]. For the latter, the healing length is required to #(2)
be of the same order as the transverse box length. These
quasi-1D condensates can be experimentally realized by
loading a condensate from an elongated magnetic trap into a
dipole trap created by a blue-detuned Laguerre-Gaussian la-
ser beanj31,32.

oo12}
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0.35ms
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A. Phase imprinting

The method of phase imprinting consists of passing a FIG. 1. Numerical simulation€lD) showing the time evolution
short off-resonant laser pulse through an appropriately deef the density profile of #’Rb condensate with=10°. The static
signed absorption plate and impinging it on a condensate. IHap has a frequenay,=27x14 Hz. The density profile(z) and
this way one can imprint the desired phase structure on thée phase are depicted, respectively(ahand (b) within the first
condensate and hence create a dark sof@23. miIIise_cond after a phase imprint with¢=7 andl,=2 um has

The Gross-Pitaevskii equation reduces to an effective one2een implemented.
dimensional nonlinear Schdinger equation when the radial
frequency is larger than the mean particle interaction andvheref(t) is the temporal envelope of the laser pulse nor-
when the longitudinal dimension of the confining potential ismalized tof f(t)dt=1. This potential imprints a phase
much longer than its transverse ones

" a\p BN v v A z—24
VBT T am g TV@ VY A= | 1o ag,) | ©
+910/ P (z, D[ ¥ (2,0). (4)  wherel, refers to the width of the potential edge, which in

turn determines the steepness of the imprinted phase gradient
at z,. Attainable experimental values correspond to a
HereV(z,t) describes the interaction with the external laser,10—90 % absorption width of the phase step. For this reason
i.e., denotes the dipole potential generated by the far-detunete use a factor of 0.45 in Ed6). In accordance with this
laser pulse that acts only in one part of the condensate, arlinit, the experimental valuek, correspond td,=2 um.

V(z) refers to the time-independent trapping potential thatfhus the phase of a dark soliton is composed of two areas of
remains constant during the whole process,p, constant phase connected by a steep gradient.

=gmQ /(2#) is the renormalized mean field strength in  In an elongated cigar-shaped condensate, no matter how
1D, where(},, is the transverse trapping frequency. Let usaccurately the phase-imprinting method is implemented, it is
review here how the phase imprinting can lead to the crenot possible to make a standing soliton. The soliton thus
ation of a solitor{22]. For a laser-pulse duration shorter than generated will be a moving soliton whose speed and depth is
the correlation time of the condensatg,=7%/u, wherew is ~ directly related tol, and the amplitude of the imprinted
the chemical potential, the wave function acquires a locaphaseA ¢. Figure 1 shows the results of a numerical simu-
phase factoe™'¢ without changing the condensate’s densitylation for the time evolution of the density and phase of the
profile. To generate the appropriate phase distribution thagondensate within the first millisecond after a phase with a
leads to a soliton, it is sufficient to use a potential that act®hase gradient oA¢p=7 and I.=2 um has been im-

only on half of the condensate, e.g., printed.
The imprinted phase profile leads to a velocity field

v,(2)=(f/m)d¢p(z)/9z. During the evolution on a time
X (1), (5)  scale of the correlation time, this velocity field leads to a
reduction of density in the regiowv,/dz>0 (z>zg),

z—Z7g
1+tanh ——=

_ hAd
Vzy=—5— 0.45
. e

2
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tion time oft,,~15 ms. On the other hand, a phase imprint-
ing with phases\ ® > 7r but with the same imprinting width

I leads to a faster development of soliton structures, accom-
panied always by the simultaneous creation of multiple soli-
tons.

B. Creation of dark solitons by density engineering

(b) 7z [ m] The possibility of creating solitons in a BEC by engineer-
H ing only the phase suggests that it should also be possible to

¢(2) oo create solitons by purely engineering the density distribution.

) This would be equivalent to the creation of optical dark soli-

21 tons by intensity modulations of a light field propagating in a

............. 475 ms nonlinear mediunj33].

11\ T 2.75 ms Experimentally it is simple to engineer the density of a

0.75 ms condensate. For instance, one can modify the magnetic trap-
oL . ping potential in which the BEC forms with an additional
0 5 10 15 4 [l»lm] optical dipole potential of a far-blue-detuned laser beam,

which is focused to form a thin “light sheet” perpendicular

to the long axis of the cigar-shaped condensate. The spot size
of the focus can easily be chosen to be much smaller than the
axial size of the condensate. Therefore, in the Thomas-Fermi
limit, the density distribution of the BEC will be described
whereas in the regiov,/9z<0 (z<zy) the density in- by an inverted parabola, except for the region where the laser
creases. After the minimum and the maximum in the densitfocus is applied. This creates a local minimung;, with a
have fully developed, they begin to back react significantlyrelative density8=n.i,/Ng, Which is controllable by the
as may be seen in the evolution of the phase. The region daser power. Hera, is the density at the laser focal position
the phase gradient begins to change and leads to a changefdn negligible laser poweP=0. For a Gaussian laser beam
the dynamics of the density distribution. The phase gradienthe shape of the density distribution in the vicinity of the
splits up into two regions with phase gradients of similarlocal minimum will be approximately an inverted Gaussian.
shapes £ p;~A ¢p,~A ¢/2). The density maximum is con- The phase distribution remains constant over the whole con-
nected with one of the phase gradients and moves approxilensate. In order to generate soliton structures the dipole
mately at the speed of sounds=+4mngan/m, towards potential is nonadiabatically switched off while the magnetic
negativez values. As time increases the density wave broadtrap potential is kept on. The phase and density distribution
ens due to dispersion and to the repulsive two-particle interef the condensate adjusts to this new potential by creating
actions. In contrast, for the minimum propagating towardspairs of equal but counterpropagating solitons. Note that the
positive z values, the reduced interaction energy results in dotal phase over the condensate is conserved in this process.
compensation of the dispersion. This leads to an increase i@ should be=0.01 in order to maintain phase coherence
the steepness of the gradient together with a reduction of thieetween the two portions of the condensate on either side of
width of the minimum. In this process, a second, less prothe density notch.
nounced minimum together with additional density perturba- We have numerically simulated the creation of dark soli-
tions is created. As may be seen in Fig. 2, the created prdens in a BEC in the range of parameters accessible to cur-
nounced minimum, in connection with the tanh phaserent experiments by pure density engineering. For instance,
distribution, propagates as a stable solitary wave. Fig. 3(a) shows the density and phase distribution chla

The time scale needed for such a structure to develop isondensate wittN=5x 10° atoms 10 ms after the nonadia-
approximately given byryo~ 7¢o:(lc/lg), wherer.,, andlg batic removal of the optical potential. In this case the mag-
correspond to the correlation time and healing length of thenetic trap has a radial trapping frequensy =320 Hz and
condensate, and the phase step connected with the solitam aspect ratio ok =25. On the other hand, the optical de-
A®, accounts for approximately one half of the initially tuned laser has a Gaussian half-width & Xf W=2 um,
imprinted phase step ¢. and its intensity is assumed to be such that it corresponds to

The phase-imprinting method depends very strongly orn3=0.9. The density profile of the condensate shows three
the width of the potential edde as well as on the value of pairs of counterpropagating dark solitons with different ve-
the imprinted phase difference¢. For a width much larger locities while the phase distribution depicts the correspond-
than the healing length.>1,, the time needed for the dark ing steep phase gradients in the vicinity of the solitons.
soliton to arise is significantly enlarged, and only shallow For a wider laser focus with respect to the healing length,
solitons can be generated. For example, for a phase width dfie number of dark soliton pairs increases; Fith) 3hows
le=5 wm, but otherwise identical parameters to those usedhe situation 10 ms after the switching off of a laser beam
in Fig. 1, the soliton structure develops only after an evolu-with 8=0.6 andW=12 um. One sees from the figure that

FIG. 2. Time evolution of the density profitgz) and the phase
¢(z) for the first 5 ms after ar phase has been imprintédther-
wise the same parameters as in Fig. 1
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(a) twice the healing length it should be possible, for a box-like
confinement with the appropriate choice of experimental pa-

rameters, to dynamically observe the generated soliton

44 Density sity, i.e., without needing to first expand the condensate. The

2 method of density and phase engineering is simply a combi-
g nation of the two above-explained methods. First a density
5 0 minimum is created by adiabatically ramping the intensity of
= . Phase a focused laser into an initially uniform BEGee Fig. 4
21 The focused laser field is abruptly switched off and a second
7 far-detuned laser pulse of uniform density is shined on one
-100 0 100 half of the condensatéhase imprinting Thus the density
(b) Position [pum] minimum acquires the gppropnate.phase d|str_|but|on. !n _th|s
way one can create a single standing dark soliton. Variations
—10 on this technigue allow one to create in a well-controlled
. manner asymmetric soliton pairs and various combinations
_ 5 Density of larger numbers of solitons.
[72]
§ 0 Ill. OPENING OF THE TRAP
'g Phase In current experiments using phase imprinting the size of
=5 the created soliton=2I, is, nevertheless, smaller than the
diffraction limit of the wavelength of the imaging radiation,

-100 Positign [um] 100 so the soliton cannot be observiedsitu [4,5]. To overcome
this problem the trap is suddenly switched off, so that the
FIG. 3. Evolution of pairs of counterpropagating dark solitons condensate, and therefore the soliton, expands freely for a
created by a nonadiabatic change of the BEC trapping potentiafew milliseconds {ro¢) and thus becomes detectable via
The parameters here correspond to a Na condensate Nvith absorption imagind4]. In this section we analyze the dy-
x 10° atoms in a magnetic trap of the clover-leaf type with a radialnamics associated with the opening of the trap and the bal-
trapping frequency oto, =320 Hz and an aspect ratio a=25: |istic expansion. We consider a cigar-shaped geometry with a
@ W=2 um, p=0.9 and(b) =06 andW=12 um. In the |46 aspect ratio. The ballistic expansion then occurs prin-
same figure, density profile and phase gradients are depicted. Nofg, o, in the transverse direction. The dynamics related to
that the phase ifb) has been plotted modulo2 . . . -
the opening of the trap is complicated, since the abrupt
switching off of the trap potential modifies not only the den-
gity distribution but also the phase structure present in the
Scondensate. Our 3D numerical simulations show that as the
condensate expands the soliton velocity diminishes very rap-
idly while its depth increases. Simultaneously, a new mini-
mum in the density distribution appears in the vicinity of the
density maximum connected with one of the phase gradients.
Finally, in this last section we briefly summarize the re- This new density minimum observed in the experimegdis
sults that show that by a proper combination of phase anttavels opposite to the soliton direction with a velocity
density engineering a single standing dark soliton can bemaller than the sound velocity. Since a soliton can be inter-
created in a quasi-one-dimensional BEZA]. In this new preted as a particle with a negative mass, by opening the trap
scenario, a box-like confining trap potential is used for thethe soliton acquires kinetic energy and, therefore, its velocity
condensate. For a harmonic potential the Thomas-Fermi ratecreases until eventually it becomes a standing soliton.
dius scales abl'® and therefore the healing length scales as A condensate in a quasi-1D tranfinitely long cylinder
N~15 while for a box-like confinement the healing length along the axial directionadmits a scaling function for the
scales adl 2 Since the size of the soliton is of the order of wave function34,35. Following Ref.[34] we reexpress the

after this time most of the initial density deformation has
already been transformed into stable density minima. For
narrower laser focus with respect to the healing length it i
possible to produce a single pair of solitdrf].

C. Phase and density engineering

V), () —nz0) (b)) — 6z 0 - .
\ ’ 0.04 FIG. 4. (a) A combination of a box-like poten-

0.8 \ ’ p tial and a tightly focused, blue-detuned laser
0.6 - beam is used to engineer the densiby. The re-
0.4 \ I ' 2 sulting wave function is phase engineered with a
02 \ I / second, far-detuned laser beam, resulting in an

' L } \ J 0l 0 initial state that closely resembles a standing dark

-20  -10 0 10 20 20 o 0 0 20 soliton.
z(1,) z(l,)
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1.5 ' ' T y T " IV. INTERACTING SOLITONS

Solitons propagate in a nonlinear medium without chang-
ing their shape even after interacting with each other. The
interaction between optical solitons has been intensively
studied in the propagation of light in monomode optical fi-
bers (see Ref.[10] and references therginZakharov and
Shabat demonstrated that homogeneous Bose-Einstein con-
densates support multisoliton solutions and that solitons in-
— teract with each other like classical particles with a short-
range repulsive interactiof9]. The signature of this
repulsive interaction manifests itself as a negative shift in the
position of each soliton after interaction as compared to the
0 . ! . . . . . position of a single free-moving soliton. For an untrapped
4 6 8 10 12 homogeneous 1D condensate this shift can be analytically

time [ms] calculated using the inverse scattering method. In this case

FIG. 5. Velocity of the soliton outside the trap versus observa-the Gross-Pitaevskii equation reduces to
tion time. The soliton is imprinted da&=0 and the trap is suddenly
removed aftet=4 ms. The curve shows the analytical scaling law,
and the dots correspond to the values of the soliton velocity ob-
tained from numerical 3D simulations.

velocity [mm/s]

(92
——2+2|\I’(Z)|2]\P(Z), (12)
0z

. d B
IEW(Z)_

) o ) ) wherez is in units of the healing length and time in units of
GPE[Eq. (1)] in cylindrical coordinates for the stationary z/ogn,.

case For a repulsive condensate, with the boundary conditions
) | W (z,t)|>—constant, a soliton solution moving with con-
h? mwppz 2 stant velocity through the condensate can be reexpressed as
“om(BptA)T— oY (p. )"~ ¥(p.2)=0. g 3q

(7) L
B (N tiv)ct+exd2v(z—zy—2\1)]

V= i 2nz—z—2ND]

. . . . 12
The corresponding stationary soliton solution reads (12

p _ where\?+ »?=1 andz, is the initial position of the soliton
Veiar= \ﬁ\/l—y2 tanf z\/1—y?]e  '#/t, (8) att=0. The parametex characterizes the amplitude and the

9 velocity of the soliton in units ot. In these units— 1<\
=<1, wherex = = 1 corresponds to a completely filled soliton
(zero depth moving with the speed of sound, wherems
=0 corresponds to a standing soliton.

To calculate the spatial shift due to a soliton-soliton inter-
action one simply compares each final soliton position to
what it would have been had it not undergone a collision. For
V(pzt)= iq,stat( p z )ei¢(p,z,t)_ (99  two solitons with velocities\; and X, the resulting shifts

wherey=p/R;r andz=2z/1,. We assume here for the radial
coordinate thaju= u1g . Abruptly switching off the trap cor-
responds to suddenly making, zero. A scaling solution
takes the form

b(t) b(t) byt are given by[9,36]
By substituting Eq(9) into Eq.(7) and splitting the real and 57— 1 | [N =Np)%+ (vy+ 12)?] 13
imaginary parts, a solution is found for an appropriate choice Zl_(2y1) n (A1=No) 2+ (vy— 1y)?] (13
of the phasep, giving rise to the scalindp,(t)=+1+ wpztz. ) ’
This approach, which is valid fao;lstTOFs ,u/hw,f, pre- -1 '()\ N2+ (vy+v )2'
dicts a soliton velocity 82,= In| ———2 CRIREEN (14
(2v2) | (N =Np)2+ (v1—2)?)
[ 2 _2
v(7)=0(0) In(w,7+ Jo,7°+1) (10) If the solitons have equal velocities, i.&,= —\,, the shift
,T ' is the same for both of them,

where 7=t —t, e, SO thatv(0) corresponds to the velocity Sp— In[|\4[] (15
of the soliton at the time the trap is suddenly switched off = v,

(topen - This scaling law agrees very well with the numerical

results obtained by solving the time-dependent GPE, as i§enerally speaking, to see how the inhomogeneity due to the
shown in Fig. 5, as well as with the experimental data of Reftrapping potential affects the interaction dynamics between
[4]. solitons one has to turn to numerical solutions of the Gross-
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FIG. 6. Interaction between solitons in a cigar-shaped conden- FIG. 7. The same parameters as in Fig. 6, with the solitons
sate. The solitons are initially created by the method of phase iminitially separated by 35um. At the time of the collision their
printing with an initial separation of 2Qum. HereN=10° anda  velocities are now higher, hence the interaction time is shorter.
=5.7 nm.

) B . ) =5.7 nm, and an initiad s ojj;on=3.3 «M/ms, and assuming
Pitaevskii equation. To this end, we solve the GPE when twg, effective cross-section area 9f 25 wm?, the predicted
opposite phase gradients are imprinted in a cigar-shaped coghjft in the position of the solitons isz=—0.1 um. This

densate calculated value is in agreement with the numerical simula-
- tions. Such a small positional shift cannot be detected experi-
¢(2)= S{tant (z—zy)/1 ] —tani (z—zy) /e, 1}, mentally. In order to obtain a shift of the order of 40n the
2 velocity difference should bl ;—v,|~10 °c;.
(16) Finally, in Fig. 8 we display the resul{dD) for the col-

éision between two dark solitons created with phase gradient
of 1.=0.1 um. The initial velocities are very smallv(
~0.0%c). Thus the interaction time becomes very large. The
solitons are clearly seen to bounce off each other like classi-
Y(z,t=0)=e @ y(z), (17 cal particles undergoing an elastic collision. The shift in the
positions is, however, still very small. Here we have chosen
where (z) is the ground-state solution of the Gross-the density to be % 10'® cm~° that again corresponds to a
Pitaevskii equation. After a time of the order of the correla-condensate with the effective cross-sectional arga
tion time, such a phase distribution generates two counter=25 ,m?.
propagating solitongtwo notch planes located at andz,) In order to unambiguously detect experimentally a signa-
moving at velocities\;=—\,, together with two counter- ture of the interaction between solitons in condensates, one
propagating density wavesgensity maximathat move with  should create two solitons with very similar velocities propa-
the speed of sound. The soliton positions are monitored by
following the density notch in the condensate. Figures 6 and 20
7 display the results of a full 3D calculation corresponding to
the experimental conditions discussed in Réf, where the
soliton planes are initially separated by 20 and @&, re- 10085
spectively. Due to the change in the background density of
the condensate, the solitons first accelerate, and then collide.
In Fig. 6, for the case of an initial separation of 20m the
two solitons overlap strongly during the collision, which
lasts for approximately 1 ms. In Fig. 7 for an initial separa-
tion of 35 um, the solitons collide at such a high velocity -10
that the short interaction time makes the position shifts neg-
ligible. =7 -
In spite of the 3D character of the elongated trap one can 0 10 t[ms] 20 30
still use the analytical resul{®] from the homogeneous 1D

case by applying a local-density approximation where the [ 8. The interaction between solitons in the 1D case. The
condensate density is considered constant in the region of thansity waves created by the phase imprinting are moving with the
soliton plane. This approximation is valid away from the thespeed of sound and are reflected at the condensate bou(mdry
edges of the trap. Inserting the parameters used in the Haghown in the figurethat eventually results in crossing wavest at
nover soliton experimenf4] for 8Rb with N=10°, a =12 ms.

wherez; andl,; denote the positions of the phase gradient
and the width of the potential edge, respectively. Thug, at
=0 the wave function of the condensate reads

X [um]
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gating in the same direction. The solitons will thus interact
for a long time. From Eqs(13) and(14) it is clear that this
scenario can amount to an arbitrarily large shift. This re-
quires, however, a very long condensate. Such condensates
are becoming experimentally availabl82,37 in reduced
geometries. On the other hand, this drawback could be re-
moved by creating the condensate in a ring geometry. An-
other possibility is to create solitons in a hard-wall geometry,
as for example, in a hollow blue-detuned laser beam with
laser light sheet endcaps, so that the solitons will reflect from
the ends without changing their form, since the wave func-
tion at the endcaps acts as a pinned solf28].

4
t [ms]

FIG. 9. The scattering length is changed a2 ms froma to
—0.1a. The cloud, represented here as the integrated density as a
function of z, is starting to collapse at the onset of the negative

Recent experiments concerning the use of Feshbach resgrattering length.
nanceg21] to change both the magnitude and the sign of the
scattering length of condensates with alkali atoms offer a
new range of phenomena to study. In particular, a carefullycareful study that takes into account three-body recombina-
controlled study of the outstanding problem of collapse oftion processes is needed to investigate the dynamics for
the condensate for negative scattering length becomes pognger times.
sible[39]. As already mentioned in the previous sections, the
form of a soliton depends on the sign of the scattering length.

For positive scattering lengths the stable soliton solution is a VI. CONCLUSIONS
density notch, i.e., a density minimum; for sufficiently strong

negative scattering lengths the stable solution is a bright soli- Ve have discussed the generation, evolution, and interac-
ton that is a density peak. tion of dark solitons in matter waves. We have first reviewed

The possibility of changing the scattering length from different approaches to generate standing or moving dark

positive to negative values opens the question of the stabilitg®/itons in one-component condensates. The interaction dy-
of dark solitons in attractive condensates. Let us first recon?@mics between dark solitons have also been addressed and

sider the stability of dark solitons when adiabatically chang-"& have discussed und_er which circumstances the i_nteraction
ing the scattering length. Since a soliton is a particular solu¢an b€ observed experimentally. We conclude that in present
tion of the Gross-Pitaevskii equation for a well-defined 8XPeriments using cigar-shaped condensates with a large as-
scattering length, it is reasonable to assume that an adiabaf€Ct ratio, a conclusive signature of the soliton interaction

change of the scattering length could change the velocity ang@Nnot be observed. However, by using other geometries
depth of the soliton gradually. such as quasi-1D or toroidal condensates, the interaction

On the contrary, an abrupt change in the condensate’gould be qnambiguously detect_ed experimentally. Astat_io_n-
scattering length will destroy the soliton. For negative scat&"y Wave in the form of a density notch or peak, even if it
tering lengths the physical and mathematical situatiofMOVes at less than the speed of sound, cannot truly be called
changes dramatically. If we only consider low densities and
neglect three-body recombination—which becomes impor- 30
tant at high densities and produces additional kinetic
energy—in the absence of any soliton, the instability of the
condensate is seen as a collapse of the condensate’s wave
function. This is shown in Fig. 9, where one can see a shrink-
ing cloud as time proceeds and where no solitons are present.
In these simulations we have used a sn¥4Rb condensate
with 5000 atoms in the same cigar-shaped trap previously
discussed. We change the scattering length from its initial
valuea=5.7 nm toa— —0.1a. In the presence of a dark
soliton, (Fig. 10 the scenario changes dramatically. The soli-
ton splits the cloud into two separate parts that independently
continue to collapse. A direct consequence of nonadiabati- 2 t[ms] 4 6
cally changing the sign of the scattering length in the pres-
ence of a soliton is the creation of a large number of density FIG. 10. Same situation as in Fig. 9 with the presence of a dark
waves. This effect speeds up the collapse of the wave funaoliton. The soliton splits the cloud into two parts that indepen-
tion because of the local increase in the density. A morelently start to collapse.

V. STABILITY OF DARK SOLITONS FOR NEGATIVE
SCATTERING LENGTHS
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