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Generation and interaction of solitons in Bose-Einstein condensates
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Generation, interaction, and detection of dark solitons in Bose-Einstein condensates are studied. In particu-
lar, we focus on the dynamics resulting from phase imprinting and density engineering. We show that solitons
slow down significantly when the trap is opened and that soliton phase shifts after binary interactions cannot
be observed with present experiments. Finally, motivated by the recent experimental results of Cornishet al.
@Phys. Rev Lett.85, 1795 ~2000!#, we analyze the stability of dark solitons under changes of the scattering
length and thereby demonstrate a new way to detect them. Our theoretical and numerical results compare well
with the existing experimental ones and provide guidance for future experiments.
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I. INTRODUCTION

Bose-Einstein condensates~BEC’s! offer a unique possi-
bility of studying nonlinear effects using matter waves. Th
has been spectacularly shown in the recent BEC experim
that demonstrate, among other things, the possibility of fo
wave mixing@1#, the creation of topological structures su
as vortices@2,3#, the creation of solitons@4–6#, as well as
other demonstrations of the superfluid character@7#.

Solitons are one-dimensional~1D! waves that propagat
without spreading in a nonlinear medium. Their shape
mains unaltered after interacting with other solitons. T
nonlinear Schro¨dinger equation, which accurately describ
dilute BEC’s at zero temperature, supports soliton soluti
for attractive as well as for repulsive two-body interactio
@8,9#. These solutions correspond to macroscopically exc
states of the mean field of the condensate. For a sin
component condensate, the 3D, time-dependent, nonli
Schrödinger equation, also known as the Gross-Pitaev
equation~GPE!, reads

i\
]

]t
C~rW,t !5H 2

\2

2m
¹21V~rW !1guC~rW,t !u2J C~rW,t !.

~1!

Hereg54p\2a/m, wherea corresponds to thes-wave scat-
tering length for binary collisions between atoms,m refers to
the mass of the atoms, andV to the trap potential. For repul
sive interactions (a.0), solitons are characterized by
local-density minimum together with a sharp phase grad
of the wave function at the position of the minimum. In th
case, the nonlinear, effective mean-field potential te
guC(rW,t)u2 balances the dispersion of the wave functi
caused by the kinetic energy. Because there is a notch in
density these solutions are termeddark solitons. Only when
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the density of the condensate exactly vanishes at the de
minimum is the resulting soliton stationary. Such a stand
soliton has a phase jump of exactlyp between the two parts
of the condensate connected by it and its velocity is zero
general, the local minimum density can range from maxim
to zero depth with the associated soliton velocityq̇ ranging
from zero to the speed of soundcs in the condensate, i.e.
0<q̇<cs5An0g/m, wheren0 refers to the mean density i
the condensate. In a homogeneous 1D condensate, a so
solution can be analytically obtained in an elegant way
using the inverse scattering method@9#. The wave function
corresponding to a dark soliton located atq propagating
along thez axis with speedv is described by

Cdark~z,t !5An0H i
v
cs

1A12
v2

cs
2

3tanhFA12
v2

cs
2

~z2vt !

A2l 0
G J e2 ign0t/\. ~2!

In the case of a dark soliton propagating along thez axis in
an elongated 3D condensate,z refers to the position of the
notchx-y plane, andv the constant velocity of such a plan
with respect to a stationary background. The soliton size i
the order of twice the healing lengthl 05\/Amgn0.

In contrast, for condensates with attractive interactio
(a,0) soliton solutions are characterized by a maximum
the density profile without any phase jump across it. Th
solitons are termedbright solitons, and the solution corre
sponding to a bright soliton reads

Cbright5An0 sechS z2vt

l 0
De2 i2mvz/\e2 ign0t/\. ~3!

The ground state of a condensate with attractive interact
and sufficiently large nonlinearity, i.e.,g.gmin , is, in fact, a
bright soliton@14#.
©2002 The American Physical Society11-1
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Dark and bright solitons described by the nonline
Schrödinger equation have been extensively studied in
context of nonlinear optics~see Ref.@10# and references
therein!. In condensates only dark solitons have very recen
been observed as nonlinear matter waves@4–6#. A crucial
difference between optical- and matter-wave solitons app
at first glance. While optical solitons are created in opti
guides, i.e., in a cylindrical medium that isa priori un-
bounded, a condensate is always confined in a trap. To w
extent the boundary conditions affect the properties and
bility of the solitons has been the subject of recent theoret
studies~see, e.g.,@11#!.

The literature concerning bright solitons in matter wav
is not very extensive@8,12–15#. Condensates with attractiv
interactions in 2D and 3D are unstable objects that colla
very rapidly when the particle number becomes too la
@16,17#. Therefore, a bright soliton in a condensate with
tractive interactions is also an unstable object. Howe
since quasi-1D condensates with attractive interactions
stable, bright solitons could be generated in them@18#. Al-
ternatively, an interesting approach based on vector soli
in two-component condensates~with repulsive interactions!
can also be used to to study bright solitons in 2D and
condensates. By creating a dark soliton in one of the spe
one can induce a bright solitonlike structure in the other o
@6,15,19# that fills the minimum of the first species. Since
condensate with positive scattering length is stable,
bright soliton thus created is no longer limited by the c
lapse of the condensate. Finally, it has been recently sh
that with the well-controlled use of Feshbach resonance
85Rb, it is possible to make a condensate with attractive
teractions in a very controllable way@20,21#. This opens a
new way to study bright solitons in matter waves.

The study of matter-wave solitons, both experimenta
and theoretically, principally involves three different aspec
their generation, coherent evolution including coherent
fects during detection, and incoherent evolution and diss
tion. So far the observed solitons in one-component BE
have been generated by the method of phase imprinting.
method, originally proposed to generate vortices, has bec
a very efficient tool to engineer the phase in condens
@22,23#. Optimization of the phase-imprinting method h
been recently discussed by Carret al. @24#, where initially
not only the phase but also the density is properly en
neered. A proper combination of both effects in a quasi
mogeneous condensate produces a stable, standing s
whose properties can be used to test fundamental aspec
many-body theory such as quantum and thermal fluctuati

The coherent evolution of solitons refers to the evolut
before dissipation takes place. While a condensate has a
time of the order of seconds, the recent experimental res
have shown that for solitons the lifetime is of the order of
ms ~in one-component condensates!. For shorter times the
Gross-Pitaevskii equation provides an accurate descriptio
the soliton dynamics@4–6#. In homogeneous systems and
the absence of dissipation and/or thermal phonons, soli
maintain a constant velocity. In elongated harmonic trap
dark soliton~and in 3D the nodal plane of the soliton! oscil-
lates in the trap with a frequencyV5va /A2 whereva cor-
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responds to the axial trap frequency@11#. Coherent evolution
also concerns the generation and interaction of pairs of s
tons. This coherent soliton evolution has been recently s
ied in the context of two-component condensates, where
and rich dynamics appears@19#.

Dissipative effects include both dynamical and therm
instabilities. Dynamical instabilities are due to the fact th
solitons are indeed one-dimensional objects. When emb
ded in higher dimensions~i.e., 2D or 3D condensates! their
stability strongly depends on the geometry of the condens
For sufficiently elongated traps with a high transverse c
finement it is not possible to excite the transverse mode
the trap and the soliton is then dynamically stable. On
contrary, for a looser transverse confinement the transv
modes can be excited, making the soliton plane bend
undergo a snake instability. As a result, the soliton dec
into phonons and more stable structures such as vortices
vortex rings@6,25,26#, or even more exotic objects such a
svortices@27#. Depending on the trap geometry, dynamic
instabilities may occur on a shorter time scale than ther
instabilities. One should point out here that the dissipat
behavior of solitons corresponding to dynamical instabilit
can also be described, using the Gross-Pitaevskii equatio
coherent but unstable evolution@28,29#.

Thermal instabilities appear due to the fact that solito
are collectiveexcitedstates of the mean field of the conde
sate, and therefore, decay into the ground state within a fi
time. The dissipation consists in scattering of phonons on
soliton’s notch plane. Studies of dissipation, which are
lated to the interaction of a soliton with a thermal clou
demand one to go beyond the GPE and use
Bogoliubov–de Gennes equations that describe collec
modes such as phonons. Since a soliton can be regarded
particle with negative mass, such scattering accelerates
soliton until it reaches the effective sound velocity and va
ishes. This scenario has been described by Fedichevet al.
@28#, and has been recently studied for 3D solitons in elo
gated traps by Muryshevet al. @30#. Both theory and experi-
ment indicate that the lifetime of the soliton due to therm
dynamic instability is of the order of 15 ms. This contras
with the lifetime of vortices that is of the order of a fe
seconds@2,3#.

This paper focuses on the generation and coherent ev
tion of dark solitons in one-component condensates in e
gated traps. It is organized as follows: Sec. II addresses
issue of the generation of solitons. In Sec. III the problem
soliton detection is investigated and the dynamics concern
the opening of the trap are studied. Section IV is devoted
the interaction between solitons. We discuss therein the
perimental conditions under which the effects due to inter
tions can be observed. In the latter, we study the stability
a soliton when the scattering length of the condensate
changed in a controllable way. This study is stimulated
the recent experiments in85Rb by Cornish and co-worker
@20,21#. Finally, we present our conclusions in Sec. V.

II. GENERATION OF DARK SOLITONS

In this section we focus on the generation of dark solito
in one-component Bose-Einstein condensates by three
1-2
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GENERATION AND INTERACTION OF SOLITONS IN . . . PHYSICAL REVIEW A65 043611
tinct methods:~a! phase imprinting,~b! density engineering
i.e., nonadiabatic changes of the potential confining the c
densate, and~c! combination of the previous two methods

As already mentioned in the Introduction, even for th
modynamically unstable states such as solitons the GPE
vides an excellent tool to describe the coherent dynamics
the relevant time scale. To avoid the effect of dynami
instabilities we restrict our analysis to the following config
rations:~a! cigar-shaped condensates with a high aspect r
and ~b! quasi-1D condensates. These quasi-1D condens
can be obtained for both harmonic and boxlike potentia
For the former, the radial confinement frequency is requi
to be much larger than the mean-field interaction betw
particles@30#. For the latter, the healing length is required
be of the same order as the transverse box length. T
quasi-1D condensates can be experimentally realized
loading a condensate from an elongated magnetic trap in
dipole trap created by a blue-detuned Laguerre-Gaussia
ser beam@31,32#.

A. Phase imprinting

The method of phase imprinting consists of passing
short off-resonant laser pulse through an appropriately
signed absorption plate and impinging it on a condensate
this way one can imprint the desired phase structure on
condensate and hence create a dark soliton@22,23#.

The Gross-Pitaevskii equation reduces to an effective o
dimensional nonlinear Schro¨dinger equation when the radia
frequency is larger than the mean particle interaction
when the longitudinal dimension of the confining potentia
much longer than its transverse ones

i\
]

]t
C~z,t !5H 2

\2

2m

]2

]z2
1V~z!1Ṽ~z,t !

1g1DuC~z,t !u2J C~z,t !. ~4!

HereṼ(z,t) describes the interaction with the external las
i.e., denotes the dipole potential generated by the far-detu
laser pulse that acts only in one part of the condensate,
V(z) refers to the time-independent trapping potential t
remains constant during the whole process.g1D
5gmVr/(2p\) is the renormalized mean field strength
1D, whereVr is the transverse trapping frequency. Let
review here how the phase imprinting can lead to the c
ation of a soliton@22#. For a laser-pulse duration shorter th
the correlation time of the condensatetcor5\/m, wherem is
the chemical potential, the wave function acquires a lo
phase factore2 if without changing the condensate’s dens
profile. To generate the appropriate phase distribution
leads to a soliton, it is sufficient to use a potential that a
only on half of the condensate, e.g.,

Ṽ~z,t !5
\Df

2 S 11tanhF z2z0

0.45l e
G D3 f ~ t !, ~5!
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where f (t) is the temporal envelope of the laser pulse n
malized to* f (t)dt51. This potential imprints a phase

f~z!5
Df

2 S 11tanhF z2z0

0.45l e
G D , ~6!

where l e refers to the width of the potential edge, which
turn determines the steepness of the imprinted phase gra
at z0. Attainable experimental values correspond to
10–90 % absorption width of the phase step. For this rea
we use a factor of 0.45 in Eq.~6!. In accordance with this
limit, the experimental valuesl e correspond tol e>2 mm.
Thus the phase of a dark soliton is composed of two area
constant phase connected by a steep gradient.

In an elongated cigar-shaped condensate, no matter
accurately the phase-imprinting method is implemented,
not possible to make a standing soliton. The soliton th
generated will be a moving soliton whose speed and dep
directly related tol e and the amplitude of the imprinte
phaseDf. Figure 1 shows the results of a numerical sim
lation for the time evolution of the density and phase of t
condensate within the first millisecond after a phase wit
phase gradient ofDf5p and l e52 mm has been im-
printed.

The imprinted phase profile leads to a velocity fie
vz(z)5(\/m)]f(z)/]z. During the evolution on a time
scale of the correlation time, this velocity field leads to
reduction of density in the region]vz /]z.0 (z.z0),

FIG. 1. Numerical simulations~1D! showing the time evolution
of the density profile of a87Rb condensate withN5105. The static
trap has a frequencyvz52p314 Hz. The density profilen(z) and
the phase are depicted, respectively, in~a! and ~b! within the first
millisecond after a phase imprint withDf5p and l e52 mm has
been implemented.
1-3
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whereas in the region]vz /]z,0 (z,z0) the density in-
creases. After the minimum and the maximum in the den
have fully developed, they begin to back react significan
as may be seen in the evolution of the phase. The regio
the phase gradient begins to change and leads to a chan
the dynamics of the density distribution. The phase grad
splits up into two regions with phase gradients of simi
shapes (Df1'Df2'Df/2). The density maximum is con
nected with one of the phase gradients and moves app
mately at the speed of sound,cs5A4pn0a\/m, towards
negativez values. As time increases the density wave bro
ens due to dispersion and to the repulsive two-particle in
actions. In contrast, for the minimum propagating towa
positivez values, the reduced interaction energy results i
compensation of the dispersion. This leads to an increas
the steepness of the gradient together with a reduction o
width of the minimum. In this process, a second, less p
nounced minimum together with additional density pertur
tions is created. As may be seen in Fig. 2, the created
nounced minimum, in connection with the tanh pha
distribution, propagates as a stable solitary wave.

The time scale needed for such a structure to develo
approximately given bytds'tcor( l e / l 0), wheretcor and l 0
correspond to the correlation time and healing length of
condensate, and the phase step connected with the so
DF2 accounts for approximately one half of the initial
imprinted phase stepDf.

The phase-imprinting method depends very strongly
the width of the potential edgel e as well as on the value o
the imprinted phase differenceDf. For a width much larger
than the healing length,l e@ l 0, the time needed for the dar
soliton to arise is significantly enlarged, and only shallo
solitons can be generated. For example, for a phase widt
l e55 mm, but otherwise identical parameters to those u
in Fig. 1, the soliton structure develops only after an evo

FIG. 2. Time evolution of the density profilen(z) and the phase
f(z) for the first 5 ms after ap phase has been imprinted~other-
wise the same parameters as in Fig. 1!.
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tion time of tev'15 ms. On the other hand, a phase impri
ing with phasesDF.p but with the same imprinting width
l e leads to a faster development of soliton structures, acc
panied always by the simultaneous creation of multiple s
tons.

B. Creation of dark solitons by density engineering

The possibility of creating solitons in a BEC by enginee
ing only the phase suggests that it should also be possib
create solitons by purely engineering the density distributi
This would be equivalent to the creation of optical dark so
tons by intensity modulations of a light field propagating in
nonlinear medium@33#.

Experimentally it is simple to engineer the density of
condensate. For instance, one can modify the magnetic t
ping potential in which the BEC forms with an addition
optical dipole potential of a far-blue-detuned laser bea
which is focused to form a thin ‘‘light sheet’’ perpendicula
to the long axis of the cigar-shaped condensate. The spot
of the focus can easily be chosen to be much smaller than
axial size of the condensate. Therefore, in the Thomas-Fe
limit, the density distribution of the BEC will be describe
by an inverted parabola, except for the region where the la
focus is applied. This creates a local minimumnmin with a
relative densityb5nmin /n0, which is controllable by the
laser power. Heren0 is the density at the laser focal positio
for negligible laser powerP50. For a Gaussian laser bea
the shape of the density distribution in the vicinity of th
local minimum will be approximately an inverted Gaussia
The phase distribution remains constant over the whole c
densate. In order to generate soliton structures the dip
potential is nonadiabatically switched off while the magne
trap potential is kept on. The phase and density distribut
of the condensate adjusts to this new potential by crea
pairs of equal but counterpropagating solitons. Note that
total phase over the condensate is conserved in this proc
b should be*0.01 in order to maintain phase coheren
between the two portions of the condensate on either sid
the density notch.

We have numerically simulated the creation of dark so
tons in a BEC in the range of parameters accessible to
rent experiments by pure density engineering. For instan
Fig. 3~a! shows the density and phase distribution of a23Na
condensate withN553106 atoms 10 ms after the nonadia
batic removal of the optical potential. In this case the ma
netic trap has a radial trapping frequencyv'5320 Hz and
an aspect ratio ofl525. On the other hand, the optical d
tuned laser has a Gaussian half-width at 1/e2 of W52 mm,
and its intensity is assumed to be such that it correspond
b50.9. The density profile of the condensate shows th
pairs of counterpropagating dark solitons with different v
locities while the phase distribution depicts the correspo
ing steep phase gradients in the vicinity of the solitons.

For a wider laser focus with respect to the healing leng
the number of dark soliton pairs increases; Fig. 3~b! shows
the situation 10 ms after the switching off of a laser be
with b50.6 andW512 mm. One sees from the figure tha
1-4
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GENERATION AND INTERACTION OF SOLITONS IN . . . PHYSICAL REVIEW A65 043611
after this time most of the initial density deformation h
already been transformed into stable density minima. Fo
narrower laser focus with respect to the healing length i
possible to produce a single pair of solitons@24#.

C. Phase and density engineering

Finally, in this last section we briefly summarize the r
sults that show that by a proper combination of phase
density engineering a single standing dark soliton can
created in a quasi-one-dimensional BEC@24#. In this new
scenario, a box-like confining trap potential is used for
condensate. For a harmonic potential the Thomas-Ferm
dius scales asN1/5 and therefore the healing length scales
N21/5, while for a box-like confinement the healing leng
scales asN21/2. Since the size of the soliton is of the order

FIG. 3. Evolution of pairs of counterpropagating dark solito
created by a nonadiabatic change of the BEC trapping poten
The parameters here correspond to a Na condensate withN55
3106 atoms in a magnetic trap of the clover-leaf type with a rad
trapping frequency ofv'5320 Hz and an aspect ratio ofl525:
~a! W52 mm, b50.9 and ~b! b50.6 andW512 mm. In the
same figure, density profile and phase gradients are depicted.
that the phase in~b! has been plotted modulo 2p.
04361
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twice the healing length it should be possible, for a box-li
confinement with the appropriate choice of experimental
rameters, to dynamically observe the generated solitonin
situ, i.e., without needing to first expand the condensate. T
method of density and phase engineering is simply a com
nation of the two above-explained methods. First a den
minimum is created by adiabatically ramping the intensity
a focused laser into an initially uniform BEC~see Fig. 4!.
The focused laser field is abruptly switched off and a sec
far-detuned laser pulse of uniform density is shined on o
half of the condensate~phase imprinting!. Thus the density
minimum acquires the appropriate phase distribution. In t
way one can create a single standing dark soliton. Variati
on this technique allow one to create in a well-controll
manner asymmetric soliton pairs and various combinati
of larger numbers of solitons.

III. OPENING OF THE TRAP

In current experiments using phase imprinting the size
the created soliton.2l 0 is, nevertheless, smaller than th
diffraction limit of the wavelength of the imaging radiation
so the soliton cannot be observedin situ @4,5#. To overcome
this problem the trap is suddenly switched off, so that
condensate, and therefore the soliton, expands freely f
few milliseconds (tTOF) and thus becomes detectable v
absorption imaging@4#. In this section we analyze the dy
namics associated with the opening of the trap and the
listic expansion. We consider a cigar-shaped geometry wi
large aspect ratio. The ballistic expansion then occurs p
cipally in the transverse direction. The dynamics related
the opening of the trap is complicated, since the abr
switching off of the trap potential modifies not only the de
sity distribution but also the phase structure present in
condensate. Our 3D numerical simulations show that as
condensate expands the soliton velocity diminishes very
idly while its depth increases. Simultaneously, a new mi
mum in the density distribution appears in the vicinity of t
density maximum connected with one of the phase gradie
This new density minimum observed in the experiments@4#
travels opposite to the soliton direction with a veloci
smaller than the sound velocity. Since a soliton can be in
preted as a particle with a negative mass, by opening the
the soliton acquires kinetic energy and, therefore, its velo
decreases until eventually it becomes a standing soliton.

A condensate in a quasi-1D trap~infinitely long cylinder
along the axial direction! admits a scaling function for the
wave function@34,35#. Following Ref.@34# we reexpress the

l.

l

ote
er

a
an
rk
FIG. 4. ~a! A combination of a box-like poten-
tial and a tightly focused, blue-detuned las
beam is used to engineer the density.~b! The re-
sulting wave function is phase engineered with
second, far-detuned laser beam, resulting in
initial state that closely resembles a standing da
soliton.
1-5
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GPE @Eq. ~1!# in cylindrical coordinates for the stationar
case

H 2
\2

2m
~Dr1Dz!1

mvr
2r2

2
1guC~r,z!u22mJ C~r,z!50.

~7!

The corresponding stationary soliton solution reads

Cstat5Am

g
A12y2 tanh@zA12y2#e2 im\/t, ~8!

wherey5r/RTF andz5z/ l 0. We assume here for the radi
coordinate thatm.mTF . Abruptly switching off the trap cor-
responds to suddenly makingvr zero. A scaling solution
takes the form

C~r,z,t !5
1

b~ t !
CstatS r

b~ t !
,

z

bz~ t !
,t Deif(r,z,t). ~9!

By substituting Eq.~9! into Eq. ~7! and splitting the real and
imaginary parts, a solution is found for an appropriate cho
of the phasef, giving rise to the scalingbz(t)5A11vr

2t2.
This approach, which is valid forvr

21<tTOF<m/\vr
2 , pre-

dicts a soliton velocity

v~t!5v~0!
ln~vrt1Avr

2t211!

vrt
, ~10!

wheret5t2topen so thatv(0) corresponds to the velocit
of the soliton at the time the trap is suddenly switched
(topen). This scaling law agrees very well with the numeric
results obtained by solving the time-dependent GPE, a
shown in Fig. 5, as well as with the experimental data of R
@4#.

FIG. 5. Velocity of the soliton outside the trap versus obser
tion time. The soliton is imprinted att50 and the trap is suddenl
removed aftert54 ms. The curve shows the analytical scaling la
and the dots correspond to the values of the soliton velocity
tained from numerical 3D simulations.
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IV. INTERACTING SOLITONS

Solitons propagate in a nonlinear medium without cha
ing their shape even after interacting with each other. T
interaction between optical solitons has been intensiv
studied in the propagation of light in monomode optical
bers ~see Ref.@10# and references therein!. Zakharov and
Shabat demonstrated that homogeneous Bose-Einstein
densates support multisoliton solutions and that solitons
teract with each other like classical particles with a sho
range repulsive interaction@9#. The signature of this
repulsive interaction manifests itself as a negative shift in
position of each soliton after interaction as compared to
position of a single free-moving soliton. For an untrapp
homogeneous 1D condensate this shift can be analytic
calculated using the inverse scattering method. In this c
the Gross-Pitaevskii equation reduces to

i
]

]t
C~z!5F2

]2

]z2
12uC~z!u2GC~z!, ~11!

wherez is in units of the healing length and time in units
\/2gn0.

For a repulsive condensate, with the boundary conditi
uC(z,t)u2→constant, a soliton solution moving with con
stant velocity through the condensate can be reexpresse
@9,36#

C~z,t !5
~l1 in!21exp@2n~z2z022lt !#

11exp@2n~z2z022lt !#
, ~12!

wherel21n251 andz0 is the initial position of the soliton
at t50. The parameterl characterizes the amplitude and th
velocity of the soliton in units ofcs . In these units21<l
<1, wherel561 corresponds to a completely filled solito
~zero depth! moving with the speed of sound, whereasl
50 corresponds to a standing soliton.

To calculate the spatial shift due to a soliton-soliton int
action one simply compares each final soliton position
what it would have been had it not undergone a collision. F
two solitons with velocitiesl1 and l2, the resulting shifts
are given by@9,36#

dz15
1

~2n1!
lnF ~l12l2!21~n11n2!2

~l12l2!21~n12n2!2G , ~13!

dz25
21

~2n2!
lnF ~l12l2!21~n11n2!2

~l12l2!21~n12n2!2G . ~14!

If the solitons have equal velocities, i.e.,l152l2, the shift
is the same for both of them,

dz52
ln@ ul1u#

n1
. ~15!

Generally speaking, to see how the inhomogeneity due to
trapping potential affects the interaction dynamics betwe
solitons one has to turn to numerical solutions of the Gro

-

,
-

1-6
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Pitaevskii equation. To this end, we solve the GPE when
opposite phase gradients are imprinted in a cigar-shaped
densate

f~z!5
p

2
$tanh@~z2z1!/ l e1#2tanh@~z2z2!/ l e2#%,

~16!

wherezi and l ei denote the positions of the phase gradie
and the width of the potential edge, respectively. Thus,t
50 the wave function of the condensate reads

C~z,t50!5e2 if(z)c~z!, ~17!

where c(z) is the ground-state solution of the Gros
Pitaevskii equation. After a time of the order of the corre
tion time, such a phase distribution generates two coun
propagating solitons~two notch planes located atz1 andz2)
moving at velocitiesl152l2, together with two counter-
propagating density waves~density maxima! that move with
the speed of sound. The soliton positions are monitored
following the density notch in the condensate. Figures 6
7 display the results of a full 3D calculation corresponding
the experimental conditions discussed in Ref.@4#, where the
soliton planes are initially separated by 20 and 35mm, re-
spectively. Due to the change in the background density
the condensate, the solitons first accelerate, and then co
In Fig. 6, for the case of an initial separation of 20mm the
two solitons overlap strongly during the collision, whic
lasts for approximately 1 ms. In Fig. 7 for an initial sepa
tion of 35 mm, the solitons collide at such a high veloci
that the short interaction time makes the position shifts n
ligible.

In spite of the 3D character of the elongated trap one
still use the analytical results@9# from the homogeneous 1D
case by applying a local-density approximation where
condensate density is considered constant in the region o
soliton plane. This approximation is valid away from the t
edges of the trap. Inserting the parameters used in the H
nover soliton experiment@4# for 87Rb with N5105, a

FIG. 6. Interaction between solitons in a cigar-shaped cond
sate. The solitons are initially created by the method of phase
printing with an initial separation of 20mm. HereN5105 and a
55.7 nm.
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55.7 nm, and an initialvsoliton53.3 mm/ms, and assuming
an effective cross-section area ofS525 mm2, the predicted
shift in the position of the solitons isdz520.1 mm. This
calculated value is in agreement with the numerical simu
tions. Such a small positional shift cannot be detected exp
mentally. In order to obtain a shift of the order of 10mm the
velocity difference should beuv12v2u;1026cs .

Finally, in Fig. 8 we display the results~1D! for the col-
lision between two dark solitons created with phase grad
of l e50.1 mm. The initial velocities are very small (v
;0.05cs). Thus the interaction time becomes very large. T
solitons are clearly seen to bounce off each other like cla
cal particles undergoing an elastic collision. The shift in t
positions is, however, still very small. Here we have chos
the density to be 431013 cm23 that again corresponds to
condensate with the effective cross-sectional areaS
525 mm2.

In order to unambiguously detect experimentally a sig
ture of the interaction between solitons in condensates,
should create two solitons with very similar velocities prop

n-
-

FIG. 7. The same parameters as in Fig. 6, with the solit
initially separated by 35mm. At the time of the collision their
velocities are now higher, hence the interaction time is shorter.

FIG. 8. The interaction between solitons in the 1D case. T
density waves created by the phase imprinting are moving with
speed of sound and are reflected at the condensate boundary~not
shown in the figure! that eventually results in crossing waves at
512 ms.
1-7
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gating in the same direction. The solitons will thus intera
for a long time. From Eqs.~13! and ~14! it is clear that this
scenario can amount to an arbitrarily large shift. This
quires, however, a very long condensate. Such condens
are becoming experimentally available@32,37# in reduced
geometries. On the other hand, this drawback could be
moved by creating the condensate in a ring geometry.
other possibility is to create solitons in a hard-wall geome
as for example, in a hollow blue-detuned laser beam w
laser light sheet endcaps, so that the solitons will reflect fr
the ends without changing their form, since the wave fu
tion at the endcaps acts as a pinned soliton@38#.

V. STABILITY OF DARK SOLITONS FOR NEGATIVE
SCATTERING LENGTHS

Recent experiments concerning the use of Feshbach r
nances@21# to change both the magnitude and the sign of
scattering length of condensates with alkali atoms offe
new range of phenomena to study. In particular, a caref
controlled study of the outstanding problem of collapse
the condensate for negative scattering length becomes
sible @39#. As already mentioned in the previous sections,
form of a soliton depends on the sign of the scattering len
For positive scattering lengths the stable soliton solution
density notch, i.e., a density minimum; for sufficiently stro
negative scattering lengths the stable solution is a bright s
ton that is a density peak.

The possibility of changing the scattering length fro
positive to negative values opens the question of the stab
of dark solitons in attractive condensates. Let us first rec
sider the stability of dark solitons when adiabatically chan
ing the scattering length. Since a soliton is a particular so
tion of the Gross-Pitaevskii equation for a well-defin
scattering length, it is reasonable to assume that an adia
change of the scattering length could change the velocity
depth of the soliton gradually.

On the contrary, an abrupt change in the condensa
scattering length will destroy the soliton. For negative sc
tering lengths the physical and mathematical situat
changes dramatically. If we only consider low densities a
neglect three-body recombination—which becomes imp
tant at high densities and produces additional kine
energy—in the absence of any soliton, the instability of
condensate is seen as a collapse of the condensate’s
function. This is shown in Fig. 9, where one can see a shr
ing cloud as time proceeds and where no solitons are pre
In these simulations we have used a small87Rb condensate
with 5000 atoms in the same cigar-shaped trap previou
discussed. We change the scattering length from its in
value a55.7 nm toa→20.1a. In the presence of a dar
soliton,~Fig. 10! the scenario changes dramatically. The so
ton splits the cloud into two separate parts that independe
continue to collapse. A direct consequence of nonadiab
cally changing the sign of the scattering length in the pr
ence of a soliton is the creation of a large number of den
waves. This effect speeds up the collapse of the wave fu
tion because of the local increase in the density. A m
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careful study that takes into account three-body recomb
tion processes is needed to investigate the dynamics
longer times.

VI. CONCLUSIONS

We have discussed the generation, evolution, and inte
tion of dark solitons in matter waves. We have first review
different approaches to generate standing or moving d
solitons in one-component condensates. The interaction
namics between dark solitons have also been addressed
we have discussed under which circumstances the interac
can be observed experimentally. We conclude that in pre
experiments using cigar-shaped condensates with a larg
pect ratio, a conclusive signature of the soliton interact
cannot be observed. However, by using other geomet
such as quasi-1D or toroidal condensates, the interac
could be unambiguously detected experimentally. A stati
ary wave in the form of a density notch or peak, even if
moves at less than the speed of sound, cannot truly be ca

FIG. 9. The scattering length is changed att52 ms froma to
20.1a. The cloud, represented here as the integrated density
function of z, is starting to collapse at the onset of the negat
scattering length.

FIG. 10. Same situation as in Fig. 9 with the presence of a d
soliton. The soliton splits the cloud into two parts that indepe
dently start to collapse.
1-8
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a soliton until it is demonstrated that it interacts as one, si
that is the defining characteristic that gives solitons their p
ticlelike nature.

Finally, we have discussed the stability of dark solito
to sudden changes of the sign and value of the scatte
length. We find that the presence of a dark soliton c
be unambiguously detected by the radical change in
dynamics of a collapsing cloud when a Feshbach resona
is used to tune the scattering length negative: the cloud s
in two.
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