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Bogoliubov theory of entanglement in a Bose-Einstein condensate
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We consider a Bose-Einstein condensate that is illuminated by a short resonant light pulse that coherently
couples two internal states of the atoms. We show that the subsequent time evolution prepares the atoms in an
interesting entangled state called a spin-squeezed state. This evolution is analyzed in detail by developing a
Bogoliubov theory that describes the entanglement of the atoms. Our calculation is a consistent expansion in
1/JN, whereN is the number of particles in the condensate, and our theory predicts that it is possible to
produce spin-squeezing by at least a factor ofNL/ Within the Bogoliubov approximation this result is
independent of temperature.

DOI: 10.1103/PhysRevA.65.043610 PACS nuntder03.75.Fi, 03.65.Ud, 42.50.Dv

[. INTRODUCTION and our theory indicates that within the Bogoliubov approxi-
mation the created entanglement is independent of tempera-
One of the main problems in the experimental explorature. The results of the Bogoliubov theory agrees very well
tions of entanglement is the engineering of a controlled inWith the results of the approximate method used in [R&f.
teraction between individual quantum particles. Such an inand thus confirms the validity of this method.
teraction among the particles is automatically present in
Bose-Einstein condensed dilute atomic galskes3], where A. Considered experimental setup
Sions o the partcles It s, herefore, natural {0y to exploi. "€ consider a collection o atoms vith two interna
this interaction to create éntanglemént and a number of pros_tate_sa : andb. We assume.that we first create a condensate
posals have appeared that use the collisional interaction gonsisting only of atoms in the internal stade After .the .
entangle the atoms in the condensate 1], tf))reparanon of the conden_sate a fast resonant pulse is applied
In Ref.[4] we proposed a realistic experiment where theto the atoms. The pglse is assumed to be much fastgr than
o : i \ . any other time scale in the problem, so that the only action of
atoms in a Bose-Einstein condensate are illuminated by fe oulse i ) .
pulse is to mix the internal statéa)— cos/2)|a)

single resonant pulse. After this pulse the system evolves _. -~ e
freely, and the collisional interaction among the particles pre- sin(¢/2)|b) and |b)— cos@/2)|b)—sin(¢4/2)|a). The

pares the atoms in an entangled state. The created entangfhgory developed in Sec. il and IV applies for all values of

state even has practical applications in atomic clocks, wherge angled bl.Jt we or_lly 90 into details with the case where
e resonant interaction is@/2 pulse¢= /2. In this paper

it can be used to increase the precision significafiR]. In . . e .
[4] we presented an approximate simulation of the conden’V® shall describe our atoms in the second quantlz_atlon using
sate dynamics, where the state vector was expanded on syf!d operators¥; and ¥, and we calculate the time evo-
spaces containing a different number of atoms, and where tHtion in the Heisenberg picture, where the action of the
spatial wave function in each subspace was evolved with thBUIS€ IS given by
Gross-Pitaevskii equation. This calculation indicated that a

substantial entanglement can be created, but the validity of «ira(F,tzoﬂ:COg(_
the ansatz used in the calculation and the behavior of the

proposal at nonzero temperature is difficult to determine

from the simulation. An exact calculation with a stochastic —sin
method[8] has later confirmed that the proposal is indeed

capable of producing substantial entanglement. But due to s 1.1
the noise in this calculation, it is difficult to estimate the s Ao

exact amount of entanglement from this procedure and the Po(r,t=0 )—cos(i)\lf (r,t=07)
method is also difficult to apply in the regime where most
experiments are currently operating.

In this paper we investigate the propof4] in more de-
tail. We first develop a Bogoliubov theory for a two-
component condensate and then we apply it to describe tHé¢=0" andt=0" denotes the time just before and after the
entanglement of the atoms in the condensate. Our theory isulse. After the pulse we let the system evolve and perform
consistent expansion in the ratio between noncondensed aadmeasurement on it at a later time.
condensed particles and the validity of the approximations The resonant pulse splits the condensate inta and ab
can directly be investigated for a given experimental concomponent with a well-defined phase between them; if one
figuration. To lowest order, the Bogoliubov theory can beapplies a new pulse shortly after the first, it is possible to
used to describe the effect of a nonvanishing temperaturgroduce interferences between the two component and, e.g.,

V,(r,t=0")

NS~

OSIRSS

)\ifb(F,t=0),

b
+sin g \ifa(F,t=0‘)
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transfer all the atoms back into tlaestate. As the two com- entangled stat¢4], and to quantify the entanglement that
ponents evolve with time there is nothing to maintain themay be obtained in the considered experimental setup, we
relative phase between them, and the relative phase wihall determine the reduction of the squeezing parangéter
spread in time because each of the two components do ngt different characterization of the squeezing is presented in
have a well-defined number of particlgs3—15. Due to the  Ref.[21], where the depth of entanglement in a collection of
spreading of the relative phase, the magnitude of interferencgtoms is identified.
terms such aé¥ W) will decrease with time and it will no To see that the proposed experimental setup produces
longer be possible to see interferences between the two coraqueezing we shall first consider the short-time evolution. At
ponents. This process is referred to as phase collapse.  time t=0" we have£2=1 for all ¢, and to prove that
Instead of focusing on the interferences between the corsqueezing is produced, it is sufficient to show that the time
densates it is fruitful to consider other observables of thelerivative of¢2 is negative for a suitable choice 6f
system. By considering fluctuations in the particle numbers In the limit of very low temperatures a collection of atoms
one can show that the time evolution prepares the atoms iwith two internal states andb are described by the second
an entangled state called a spin-squeezed stated. guantized Hamiltonian

B. Spin-squeezing

Suppose that we prepaMatoms in an equal superposi- H=_2 Ol‘q’r‘I’jJ((r JHo;W;(r)
tion of two internal state|@)+|b))/y2 and measure the jmab
number of particles in tha state. Because the patrticles are 1 e~ mA A
independent of each other the result of the measurement will *t3 2 gjjj dgr‘l’}(r )‘I’,-T(r YW(r)w;(r)
be a distributed according to the binomial distribution with a j=ab
mean valueN,=N/2 and a variancéN/4. A spin-squeezed N - .
state is a state where the atoms are prepared in a suitable +gabf AW (r)W(r)Wa(r)Wy(r), 1.3
entangled state such that the variafeenoise of this mea-
surement is reduced.

A more convenient way to represent the atoms is to conwhereH,; is the one-particle Hamiltonian for atoms in state
sider each atom as a spin-1/2 particle with the internal statgsincluding the kinetic energy and the external trapping po-
|a) and |b) representing the spin-up and spin-down state§ential V,-(F), andgjk=47'rﬁ2asjk/M is the strength of the
respectively. In this language the noise in the counting Stapteraction between particles ‘of typeand k, expressed in
tistics is represented by. the variance of thg operator iarms of the scattering length, j, and the atomic masil.
(AJ,)% where the collectivel,, J,, andJ, operators are Here we have assumed that there are no spin changing col-
obtained by summing the spin operators for the individualjsions. A specific experimental setup where it is possible to
atoms. Expressed in terms of the spin operators, Spifexclude such spin changing collision with sodium atoms in
squeezing is the reduction of the noiseJf(or any other g optical trap is described [d].
spin component Recently the first experimental realizations  \jith the Hamiltonian(1.3) we may find the equation of

of such spin-squeezed states have been gch[d\ﬁadl_q. motion for the field operato¥ , by taking the commutator
In Ramsey spectroscopy, as used for instance in atomigi, the Hamiltonian(using7 = 1)

clocks, a signal is recorded that is proportional to the length
of the spin in a given direction, say thedirection, and the
noise of the signal is proportional to the noise of a spin A . o o
componentl ;= cos()J,+sin(6)J, perpendicular to the mean ia\pa: HoaWat GaaV IV W, + g, WIW, W, . (1.4
spin. The precision of atomic clocks is currently limited by

the spin noise 4J,)? [20], and by using a spin-squeezed

state where this noise is smaller than in the unsqueezed ) ) ) . .

states, which are used today, it is possible to increase tHgO" brevity most of the equations in this papers will only be
precision of the clock. Winelanet al. [12] have analyzed Presented for the field operator for tiRecomponent. The
this possibility and have shown that the frequency varianc&€°'reésponding equations for the component can be

can be reduced by a factor of achieved by exchanging subscriptandb. Since we work in
the Heisenberg picture, essentially all operators and func-
, N(AJ,)? tions appearing in this paper will depend on time, and for
§o=——o (1.2 brevity we shall in most cases omit the time argument on
(30 operators and functions. Unless specified otherwise operators

and functions, such as the field operatdtg and ¥, in Eq.
by preparing the atoms in a spin-squeezed state g@iml. (1.4) should always be considered as functions of the time
This points to an interesting application of spin-squeezedrrom the derivative in Eq1.4) we calculate the time deriva-
states in atomic clocks. tive of the squeezing parame@f; at the timet=0", and by
It has also been shown that a reduction of the squeezingsing the relation(1.1) with ¢=7/2 we can express the de-
parameter below unitg2<1 requires the atoms to be in an rivative in terms of the field operators before the pulse
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d +gpp—2 V(r )= ex V(5
af"é:sin(ze) Jaa gzb:i] Jab W (r,t) JN—ad)a (r,t)+ W (r,t),
V(1 )= NG )+ 8WL(r ). (1.8

xf dBr(vir t=07)2W(r ,t=07)3. (1.5 .
The idea behind this splitting is that the fluctuatiehk, and
oV, are much smaller than the contribution of the conden-

If gaat9pp# 204, We can always choose the anglesuch . . ;
that the expression on the right-hand side is negative and th]{ssates’ and simple equations for the field operators are ob-

exact equation immediately proves that squeezing will be ained by expanding the Hamiltonid.3) to low order in
produced. The time derivative is proportional to the two-the o¥'s. - . _ )
point correlation function that in the limit of an ideal con- The splitting (1_'8) gives some nice properties, such as
densate isN(N—1)fd3|®|* where ® is the condensate Simple commutation relations for the¥" operators, but un-
wave function before the pulse. fortunately it is not well suited for our present purpose. As

The above argument shows that squeezing will be prowe shall see below, the phase collapse and entanglement
duced but it does not quantify the amount of squeezing thafhainly arise from the evolution of the atoms in the conden-
is produced. A simple estimate of the squeezing can be oifate modes. In Eq1.8) the quantum fluctuations of the con-
tained by making a single-mode approximation to each of thélensate modes and fluctuations perpendicular to these modes
components. In this approximation the part of the Hamil-are treated equally, and this is not a good approximation to
tonian (1.3 that is responsible for spin-squeezing can bethe system. In a direct numerical integration we have found
written as[4,7,8] that theoW’s grow very quickly due to the dynamics in the

condensate modes so that the assumptions of the theory
Hepin= xJ2, (1.6)  break down after a short period of tini23].

To circumvent the problems associated with the splitting

(1.8 we employ a different splitting that enables a better

with the coupling consta iven b
Ping 9 y description of the evolution in the condensate modes

Jaal DI+ Gppl P51 — 2900 PF1%| P12
_ 3
x(t) fdr 5 ,
(1.7

Wo(r 1) =ad(r t)+ oW ,(r 1),

Wy(r 1) =DOE(r 1)+ 8Wy(r 1), (1.9
where @2 (Pp") is the condensate wave function for par- - . _ _
ticles of typea (b) (the “ex” is used to indicate the exact Where the operataa andb obey bosonic commutation rela-
wave function because it will later be important to distin- tions[a,a’]=1 and[a,b]=0. In this paper we shall derive
guish it from low-order approximations to).it the time evolution of the field operators by assuming that the
The squeezing arising from the Hamiltoniéh6) can be  fluctuationsé¥ , and ¥, are much smaller than the contri-
solved analytically[22]. The obtainable squeezing is ap- butions from the condensate modes. An approach similar to
proximatelyg?,wN*Z’S, and this indicate that strong squeez- ours has previously been considered in R¢fkb,24,25
ing can be produced if the condensate contains a large nurvhere particle-number conserving Bogoliubov approxima-
ber of atoms. The validity of the arguments leading to thetions are derived. We shall generalize these previous results
Hamiltonian(1.6) are not quite clear from the derivation, and to a situation where the atoms can be in two different internal
it is the main purpose of this paper to investigate the validitystates and where the number of atoms in each of the states
of this simple description. As we shall see below, the Hamil-may not be well defined. This generalization enables us to
tonian(1.6) is indeed a good approximation to the dynamicsdescribe the collapse of the relative phase between the two
of the system but the coupling constaht7) has to be modi- condensates and the entanglement of the atoms, which are

fied slightly. To obtain this result we describe the system byshown to arise from the time evolution of the operatmend
Bogoliubov theory. b.

In Sec. Il we present the assumptions used in the Bogo-
C. Bogoliubov theory liubov descriptior{ 15,24 and in Sec. Il we derive the equa-

The Hamiltonian(1.3) and the resulting Eq(1.4) are far tions of motion for the relevant operators. In Sec. IV we

too complicated to be solved in general and approximation§°|ve these equation and in Sec. V we apply our theory to the

have to be applied. Here we shall determine the time eVom(_:onsidered experimental setup described in Sec. | A. Finally,

tion from the Hamiltoniar(1.3) by applying the Bogoliuboy W& €nd the paper with a conclusion in Sec. VI.
approximation. The standard formulation of the Bogoliubov
approximation assumes a broken symmetry such that the ll. ASSUMPTIONS

field operators have a nonvanishing mean vahlig(r ,t)) In this section we describe the assumptions of our theory,
= \/N—ad)gX(r 1), whereN, is the mean number of particles which is presented in Secs. Il and IV. The assumptions and
of type a. The Bogoliubov method proceeds by splitting the methods used here are very similar to the two theories de-
field operators according to rived for a one-component condensate by Castin and Dum
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[15] and by Gardinef24]. These two derivations are equiva- - o~
lent but use two different approaches. Castin and Dum derive QoW = f drOfr )Wy(r) (2.6
equations of motion for the relevant field operators and these
equations are approximated by inserting a splitting as in Eog. js also used in Ref15]). With this notation Eqs(2.4) and
(1.9 and neglecting high-order terms &V In the work of ~ (2.5) can be written in the simpler form
Gardiner the approximations are made to the Hamiltonian,
where terms of high order i®@W¥ are neglected before the é:<(I):X|o\i/a,
equations of motion are derived. Here we choose to follow
the derivation and notation of Castin and Dum in Hé5]
very closely. In order to make the paper self-contained we
reproduce most of the calculations of Castin and Dum.
We assume that the atoms are cooled to a very low tem-
perature such that a condensate is formed before the pul 1 atoms 65P<1 wherep is the atomic densilyat very
that mixes the two internal states. The condensate wave fund2" [emperaturer=~0. n this limit theﬁfractmng of noncon-
tion is determined from the one-body density operator that Igensed atoms is very smaliN/N~10"2~10"° [26]. The
given by field operator\If has matrix-elements scaling a@ from
) ) o the condensed atoms and contributions of ordﬁ from
(1 "padlty=(WLI)Wa(r")). (2.))  the noncondensed atoms, whéfgand SN, are the average
number of particles and the number of uncondensed particles
Mathematically, the definition of a condensate is #hat has  of typea. Due to the small ratio between noncondensed and
an eigenvalue condensed parucles it is useful to perform an expansion of

| D) =N D) 2.2 the field operator\Ifa in terms of y SN, /N,. Formally this
Pai™a atman ' expansion is achieved by taking the I|m|t

which is much larger than all other eigenvalud${(~N, _

SV ,=QW, . 2.7

Our calculation assumes a condensate of weakly interact-

whereN is the total number of atomsand the spatial mode Na—,
function is given byd&{(r). _
The resonant pulse mixes the field operators as described Nagaa=cCONSt, 2.9

by Eqg.(1.1), and by using that the initial state is the vacuum
of \ifb(t=0‘) we find that p,(t=07)=pp(t=07) while keeping a constant ratio between the scattering lengths

= paa(t=07)/2. After the pulse the statEb®{(t=0")) is and between the number of particles ir_1 Eh_and theb states.
still an eigenvalue of the density operatay, with eigen- Below we show thatN, is of ord_er unity in this limit, and
valueN&(t=0")=N(t=0")/2, so that we have a compo- our expansion in terms of 6N,/N, becomes an expansion
nent of the condensate in both theand theb state with  in 1/\/W—a (note that since we have a fixed ratiy /N, this

wave functions also corresponds to an expansion in/l).

e + + ex

x(r t=07)= CD (r t=07)=2P; (r t=07). 23 I1l. EXPANSION IN POWERS OF l/\/ﬁ—A
The condensate mode functio®$* and ®;* can be used

to define a splitting of the field operator as in E#.9), and

to describe the squeezmg we need to determine the tim

evolution of(S\If anda. To derive the equations of motion

for these operators it will be convenient to have an expres-

In this section we present the explicit expansion in powers

of 1/\/— The expansion procedure is implemented by con-
S|der|ng the time evolution of the operai{@&7]

- 1
sion for them in terms of the field operatdt,. By normal- AEX(r )= _aT(t)é\pa(r ). (3.1
izing |®£) to unity we obtain N,
= | &@Bre™* )\ V.(r 24 From the definition of the condensate wave functi@mR)
f a (N)Wa(r) 24 and the splitting(1.9) follows that the expectation value of

and A% vanish exactly at all times
) A7 )=o0. 3.2
a<r>=fd3r'<r*|Q§X|F'>\Ifa<r*'>, 2.5 vt o2
As we shall show belowA &*is of order unity in the limit
where QX is the projector on the subspace perpendicular tan Eq. (2.8) so that the number of noncondensed atoms ap-
@), QF=1—|DIN®. To simplify the notation we proaches a constant in this limit. To perform our expansion
introduce the operandto denote the action of an operaor  we write the operatof\‘;X and the wave function as a series
onto a field operator such as,, of terms
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are linear ina‘\ifa. Equivalently, this corresponds to neglect-

- R 1 . 1.
A=A+ —_Agl)+ —AP+.., ing the terms of higher than second order in thE opera-
N, Na tors in the Hamiltonian if we had used the approach of Gar-

diner [24], where the approximation are made to the
1 1 Hamiltonian rather than in the equations of motion.
PT=P,+ —OP+ — D@+ .. (3.3

W, TN T

B. Order \/ﬁ—: Gross-Pitaevskii equations
and we derive equations for each of the terms order by order. The largest terms in the expression in E8.5 are th
Since we require that the exact wave function is normalized € largest terms € expressio 8. da_e €
to all orders in 1{/N,, the lowest-order contribution must terms on the first line. These two terms are of orget,, but
also be normalizedd | ®,)=1. with a suitable definition of the wave functig®$") the two

The procedure in this section is to calculatd®¥dt and contributions cancel each other to leading ordex/M,, and

da/dt to orderk in 1/\/— (k=—1,0) and take the mean Ais of orderN?. By using Eqs(1.4) and(1.9) and keeping
onIy the dominant contribution from the condensed particles
value (A% that must vanish to all orders |n\f_ With
a

et
this procedure we calculate the contributions to the field op— €9

erator to orderNa. The main difference compared to the
derivation of Castin and Dum in Refl15] is that in their
derivation the number of atoms of tyjpés fixed. This means

that No,—N,, whereNy,=a'a is the number operator for

difference only arises due to the noncondensed particles. In
our situation the distribution on different number states is a

— N 2 N 2
binomial distribution with a width~ VN, and hence the op- Hopa=Hoat JaaNa| Pal”+ 9apNo|Pp|*. (3.7
eratorNoa N, is of order\/

d
|_Aex \/—Qa (HGP,a t)|¢a>+o(ﬁg): (3.6

In Eq. (3.6) we have replaced the number operators by their
leading order contributiona’a~N, anda‘afaa~NZ. The

As a starting point for our calculation we use the timedifference between the leading order and the operators is of
derivatives of the operatorA® anda. By taking the time higher order and will be taken into account below. From Eq.
derivative of Eqs(2.4) and (2.5 and using the definition of (3.6) follows that the\/— contribution terX vanishes if we

A. Basic equations forA® and a

A (3.1) we obtain the expressions choose
d. ffd e od
Iaa=l E<q)a| O\I’a+<q)a |°a‘l’a (3.9 d
(_|a+HGPa)|Cba>:§(t)|¢a>- (3.9
and
|if\ex atQe% A _é_|q)eX> The term on the right side introduces an optional phase fac-
dt & [~ algt @ gt @ tor on the wave function®,) ({ must be real due to the
Na normalization condition Since all measurable quantities are
d. expressed in terms of the field operat@r9), we can intro-
—\Ifl)olq) X>—|—\IIT0—|(I) X)) duce any phase factor d,) if we include the opposite
dt phase factor oa. Here we shall choose the simplest possible

phase evolution of and we set’=0 so that Eq(3.9) re-
(3.5 duces to the usual time-dependent Gross-Pitaevskii equation.

With this choice ofZ the equation of motion foa cancels to
In these expressions the only time derivatives are of the wavieading ordeiida/dt= O(Wg).

function ®2* and the field operato¥,. By substituting the
splitting of the field operators in EL.9) into the right-hand

. d
—aT|<I>§*>(a<<D§XI ook

side of the time derivative o¥, in Eq. (1.4) and inserting C. Order N3: @"=0
this into the above expressions we may find equations of |n this subsection we shall show that the lowest-order
motion for AeX anda involving different powers ofé‘\If correction to the wave functm@(l) vanishes exactly in the

Below we shaII only consider the two lowest-order contrlbu-considered experimental situation. To show this, we consider
tions to A% anda, and it is sufficient to keep the terms that the mean value of Eq3.5) to orderN?,
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where we have replaced expressions such ada’aa

—a'aN, with their lowest-order contributions Ny,

- d - —ﬁa)ﬁa. The right-hand side is seen to be a Hermitian op-

+ QapNp| P2 —i a) |<I>§X>+O(1/\/N_a). erator multiplied bya. This doesAnot contribute to the time
derivative of the number operatbl,,, so that we have

d . . — . _
'a(Aa(f )>: \/N—a<l’ |ngo( HO,a+gaaNa|(DgX|2

(3.9
When calculating the mean value of the third term in Eq. d. 7
P . —Nga=O(ND). (3.13
(3.5 (dW¥./dtov,)/ VN, we need to consider mean values dt

such asg,(aata’sw,)/\N,. These terms do not vanish )
and at first sight they might seem to contribute to the presenirhis relation is consistent with , being of order unity. The

order. But sincg A5 vanishes, this term may be rewritten number of particles of type is a conserved quantity and
asgaa((Noa— Na)a' 6% )/ VN,, and since the parenthesis is NenceNg, + W;"ﬁ‘l’a: Noat AleAa+O(1/N,) must be
only of order VN, this term does not contribute to the conserved. Sincd. is of orderNg, we must have a refation
present order. such as Eq(3.13. The weak time dependence of the number
Because of the exact relati¢B.2) the mean value of Eq. Of condensed particles indicate that essentially all particles

: = — S tay in the condensate modes and this justifies the description
(3.5 must vanish to all orders ifN,. The VN, contribution S i ! .
vanish due to the Gross-Pitaevskii equati@B). The next of the system by single-mode approximations. Note, how-

. . . ex ex ever, that such single-mode calculations must be performed
order is obtained by expandii@e” and®," in Eq. (3.9), and with care. A calculation that completely ignores the noncon-

we get densed particles only contains the first two terms in Eq.
d o (3.12, but the remaining terms are of the same order as the
0=an[< —i a+Hoya)d)él)+gaaNa(2|<I>a|2CI>gl) first and should be kept in the calculation. As we shall see
below these terms gives rise to the same interaction as in the
+<I>§(I)él)*)+gabNb(<Daq)b¢§,l)*+‘Daq’§¢él) zgr?sltt-:-énmtode approximation but with a different coupling
D20 (3.10 For theAs the equation of motion reads
b a . .
Due to the projection operatdp, this equation admits the Aa Aaq
inclusion of an overall phase i®{", i.e., id®!/dt may al A, Ay S
have a contributiot®d, . Again we prefer to have the i i = Lo i +(Noa—Ng)a+ (Ngp,—Np) B,
simplest possible equation far and choose/"=0. With a a
this choice the equation fab{! is linear and homogeneous [\g [\g

so thatd ! vanishes if it vanishes at=0". In Ref.[15] it is (3.14
shown that®{"=0 in thermal equilibrium as we have just

shown before the resonant puldel), and since the conden- where the vectors and,é are given by

sate wave function is exactly the same before and after the

pulse, as described in E(R.3), we have —
(1) _ gaa\/N—a|q)a>
dL(1)=0 (3.1) \/W—M) >
for all t. o 7| TN R (3.19
*
o _gaa\/N_a|q)a>
D. Order Ng: Bogoliubov approximation _gab\/ﬁ—b@m
With the result(3.11), we can now calculate the derivative
in Eq. (3.4) to orderN? and we get and
d. . — .
. _ 2 _ —
'aa_gaa<q)a||(ba| |q)a>(N0a Na)a gab\/N—a|¢'a>
G Pl 0of2.) (R, betpp| G VNelP) 516
— Gar N |3

+ GaaVNZ((@4][ Dol %A o+ Al D, |2 D 0))a

+gab\/ﬁ—b«@amygCDa°Ab+Agoq);q)b|q)a>)év
(3.12 and where the matrixX is

—gbb\/W_bICD’D
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Hgpat QalaaNal 4/ ?Qq Qagab\/m‘ba‘bﬁ Qo QafaaNa®3Q% Qagab\/m(baq)bQ;
ngab\/mq);q)an Happ+ QuIbuNb| @5/ 2Qp ngab\/m‘baq’b(?; QuGbsNs®5Q}
“Qi0eaNa®i?Qs  —QigaNING®EPEQ  —Hopa~ Qi0aaNal al?Q)  — Q2 0an NIN,@E D4Q}
—Qégabmfb;‘bma — Qb gbuNu P 2Qyp —ngabmfba@m; —Hgpp— Qf GppNp| Py 2QF

(3.17

Here we have introduced the projec®f that projects onto Theu,’s and thev,’s can be any functions perpendicular to
the space orthogonal tsb%): QX =1—|dX)(d%| (note P, andP}, respectively, but the whole set must be chosen
that Q% #Q;= Q.). The first part of Eq(3.14 containing such that the entire space perpendicular to the condensates
the operatorL corresponds to the equation derived for amodes can be spanned by the vectors. A convenient choice of
single component in Refl15]. With a fixed number of par- the functions is discussed in Sec. V.

ticles in thea and theb states this is the only contributionto  The u andv functions play the same role as the mode
this order. In a situation where we cannot ignore the fluctuafunction in ordinary Bogoliubov theory and it is an advan-
tions in the particle numbers there are additional contributage to choose the standard normalization

tions due to the last two terms in E(.14). Physically, we

can understand the origin of these terms by considering a (U Ua )+ {Upil Upir ) = (v advar ) = (Vo Vbir ) = Skier »
subspace with a given number of particle§ and N, (of

type a and b, respectively. In this subspace the Gross-  (v¥ U )+ (Vi Up) — (UEJvak) — (UE vk ) =0.
Pitaevskii equations are not the best approximations to the (4.2
evolution of the condensate mode because they contain the

average valuebl, andN, rather than\/;, and.\;, . From the With thls normalization we may express the expansion op-
structure of the last two terms in EB.14) it is seen that eratorsc, in terms of theA operators

these terms corrects for the “wrong” value of the particle

numbers. The approximate method used in REfsl4] is Ck=(UarloA g+ (UploAp— (vae AL~ (vpiloAf,

designed to capture this dependence on the particle numbers 4.3

and in Sec. V we show that the results obtained with the

present method are very similar to the result obtained irand from the commutation relatigm\!,A,]=Q, we find

Refs.[4,14] that thec,s obey bosonic commutation relatiofi,,c; ]
IV. SOLVING THE EQUATIONS =Sy and[Ccy,C,/]=0.

With the Eqs(3.12 and(3.14) we have derived the equa-
tions of motion to the desired accuracy, and in this section _ '
we solve these equations. The solution is obtained by ex- To evolve the expansiof.1) we need to choose the time
panding theh operators on a suitable set of mode functionséVolution of the mode functions. A convenient choice is
att=0". The time evolution of these modes is chosen such

B. Time evolution

that the first term in Eq(3.14) is automatically taken into |Uaid [Uaid
account and we then treat the last two terms in Bql4). | d| |upw _r [Upi) (4.4
Finally the solution for the\ operators is inserted into Eq. dtf jvad | 7 lva | '
(3.12, which is then solved.

Vbl |Ubk>

; -0+
A. Expansion att=0 With this choice of time evolution, the normalizati¢h.2) is

Instead of having the operatofls, and A, that have both  conserved and so is the commutation relation of thep-

a spatial part and an operator character, it is convenient tgrators. Indeed, the time evolution@fonly comes from the
expandA, and A, on a set of vectors that take the spatial fluctuations in the number of particles and is given by
dependence into account. In such an expansion, the expan-

sion coefficients become operators and we have i%f?k:(NOa—Na)fakﬂL(NOb—Nb)fbka 4.5
A, |Uai lvi
A, = | Juge 3 B where
Al e |vak T lub | @ Fak=((Uail (Upil, = (vards = (vl - @,
Ag LI |uBi Fok=((Uaid,(Uoil, = (vard, = (voil) - B- (4.9
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This equation is easily solved and by using tNag andN, the two condensates and the entanglemen'g of the atoms. For
do not depend on time to this order of approximation, wesimplicity we shall not be as general as in the preceding
find sections and we only consider a symmetric interaction that
we describe below.
Ci(t) = C(t=07) =i (Noa—Na) Fay(t)
A. Symmetric interaction

~1(Noo=Np)Foil®), @7 We consider the symmetric situation whegg,=9pp
where the function§ 5, andFy, are defined by fgab_,and where the first pulg@.l) is a7/2 pulse such that
. Na=N,. We assume a system with a fixed total number of
Fak(t)=J dt’ f (t"), particlesN=2N,, so that we have
0
t Noa—Na=— (Ngp— Np) = (Noa — Ngp)/2+ O(N).
Fbk(t):fodt’fbk(t'). 4.8 G-

We also assume that the trapping potentials for the two dif-
Finally, by inserting Eqs(4.1) and (4.7) into Eq.(3.12 we  ferentinternal states are identical, spherically symmetric, and
obtain harmonicV,=V,= 1/2mw?r2. With this symmetric choice
of interactions the condensate wave functions are exactly the
d. . _ same for the two components of the condenshig=®,,
I 4;2=(Noa— Na)( Jaal Pal [P a]?| Do) =®. Furthermore the symmetry can also be exploited in the
Bogoliubov modes. We divide the sum oveiin Eq. (4.1)
o o into a sum over terms that are even under the exchange of
a+(Ngp—Np) andb (+ modes$ and terms that are odd under exchange of
aandb (— modey, i.e., we have

+22 Im(f5F a0
k=1

X gab<q)a||q)b|2|q)a>+22 |m(f;kak)>é |Uak> |U;> |UE>
o |Upiy u) —lu)
oc A A A 1020 = ) or vy | (5.2
> fzk(t)ck(t:0+)+fak(t)CE(t=0+))a. ak k k
K= vk lvg) —|v)
(4.9

In the remainder of the paper the superscript@and — on
The expression in Eq4.9) has the solution operators and functions will refer to these even and odd
R modes. The symmetry of the modes is reflected in the func-
a(t)y=exg —i{7.(t)+O,(t)}]a(t=0"%), (4.10 tions defined in Sec. IV that obey

where the Hermitian operat@a(t) is just the time integral fox==fais
from O tot of the three terms multiplying on right-hand F—
side of Eq.(4.9. The phasey, arises because the term in- Fo=*Fax- (5.3

volving thec, andcy operators does not commute with itself £ these relations we find that the two components have
at different times. By differentiating the expression in EQ.ihe same phase

(4.10 with respect to time and using the Baker-Hausdorff
relation a few times, we find that E@4.10 is indeed a Na= T (5.4
solution of Eq.(4.9) if the phase is given by
. and from the second relation and E§.1) follows that the
v, , , operators describing th¢ modes are independent of time
r0=3 [ atmFaena. @
7 Ao 0 5
A derivation of this phase and a geometrical interpretation of dtCk e ©.9
it can be found iM28]. With the expressior4.10 we have
finished our derivation of the evolution of the field operator.

- . B. Initial conditions
In the following section we apply the developed theory to

describe phase collapse and entanglement. To evaluate the time evolution of physical quantities we
need to relate the different operators after the resonant pulse
V. APPLICATION OF THE THEORY (1.1) to the similar operators before the pulse. The relation

between the operators before and after the pulse is com-
In this section we apply the theory developed in Secs. llipletely describe by Eq(l.1) and below we extract some
and IV to describe the collapse of the relative phase betweeresult from the general relations.
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Before the resonant pulgé.1) we assume that a conden- of the mode functiongu, (07)) and the state of the conden-
sate is formed in the state and that there are no particles insate. In our numerical work described below, we choose the
theb state. This means tha{t=0") is of order\N whereas U, s to be the excited states of the Gross-Pitaevskii Hamil-

b(t=0") is of order unity so that we have from Eqd.1)  tonian before the pulse.
and (2.3 [29],
C. Phase collapse

i[é(O‘)—B(O‘)]%é(O‘)/\/E, We now investigate the collapse of the relative phase be-
V2 tween the two components of the condensate. As a quantita-
tive measure of the collapse we use the reduction of the
) 1 . R ) mean spin in thex direction that is defined byJ,)
b(t=0")= T[a(O‘H—b(O‘)]wa(O‘)/\E. (5.6 =Re((J.)), wherel, is given in terms of the fields opera-

2 tors byJ+=\If;o\Ifb. By inserting the splitting in Eq(1.9),
These approximations should be handled with care sincesing the approximation in E¢5.6), and introducing the\'s
they violate both the commutation relation and unitarity. Thewe obtain
sign ~ in Eq. (5.6) means that the operators have approxi- o A —
mately the same matrix elements. <J+>=(aTb)+(A;oAb)+O(1/\/N—a). (5.10

The operatorsf:k+ can be related to the operators tat

—0~ by using Eq.(4.3. Inserting the approximate relations The first term in this expression represents the time evolution
in Eq. (5.6) we obtain of the condensed atoms and the second term is the contribu-

tion from the noncondensed atoms. At short times the first

6;('[: 0h)= \/§[<uk+(o+)|o[\a(o—) — (v;(o+)|o]\;(o—)], term is of ordeN, whereas the second term is of order unity.

5.7 However, as We_shall see below, the time scale of the col-
N lapse scales aﬁ/N_a and sincedA ,/dt is of order unity, the
where we have introduced/a operator before ther/2 pulse  second contribution may become comparable to the first at
A4(07)=a'(07)/yN6W¥,(07) that is also used in Ref. the collapse time. We shall only work in the dynamically
[15]. As the other A operators, this operator can be Stable regiongay<gaa. In the opposite casgap>9gaa it is
expanded on a set of Bogoliubov moded (07) energetically favoraple for the two compor_lents to separatg o)
N . _ At - that any asymmetry in the two wave functions can grow with
=Z1Cai(07)[Uak(07)) +Ca(07)[vai(07)),  where  the  ime and the system is dynamically unstafld]. By using
mode functions obey orthogonality relations similar to Eq.ihe same techniques as was used to show a similar result in
(4.2). In [15] it is shown that by a suitable choice of the [15], one can show that equation of motion for this and
modesua(0~)) and|v(07)) the pseudoparticle operators s 'in Eq. (4.4 corresponds to the time evolution of a per-
cak(07) are the Bogoliubov operators describing excitationsturbation of the condensate wave function perpendicular to
of the condensates, and the ground state is the vacuum e wave function itself. Hence the stability of the system is
these operators. The simplest relation between the operatogetermined by the stability of the solution of the Gross-
before and after the pulse is obtained by choosingPitaevskii equation, and if the system is dynamically un-
[uf (0"))=|ua(07))/V2 and |v (07))=|va(07))/\2.  stable the number of noncondensed particles is expected to
With these modes the operators describing quasiparticle exgrow exponentially with time, so that the approximations
citations in the+ modes are exactly the same as the operaperformed here are invalid. On the other hand, in the region

a(t=0%)=

tors describing excitations before the pulse 0ab<U0aa it is energetically favorable for the two components
R R to be overlapping so that the system is dynamically stable
Cp (t=0")=cg(t=0"). (5.8 and the number of noncondensed particles performs small

oscillations in time. This behavior is confirmed by direct
To find the initial condition for the operatofg we again humerical integrations of the equations. In the stable region

use relation4.3) and the approximation in E45.6) and we  the contribution from noncondensed particles remain much
find [29] smaller than the contribution of the condensed particles, and

in the following we ignore the second term in E§.10.

1 A When we insert the solution in E4.10 into Eq.(5.10
Cr (t=07)=— —=[a"(07)(u (07)|e8¥,(07)—a(0™) we see that the phase collapse arises from the difference of
VN, the angles®,—0,. By using the relation$5.1) and(5.3),

A the difference in the angles may be expressed as
X(0, (01)]e8W[(07)]. (5.9

The simplest initial condition is obtained by choosing ©,—®,=(Ngs—Ng)\+4 Re( > Farc(t=0M)],

lvi (07))=0. With this choicec, (0") is proportional to K=t

5\ifb(0‘). Since the initial state is the vacuum M%(O‘) (5.11

the initial state for?:k’ is also the vacuum state independentwhere the functior\ is determined by
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d - L
a)\:(gaa_ gab)<(I)||(I)|2|(I)>+4 Im( IZI 1:ak*Fak> 0.95 A
X A
(5.12 R IV
+ . . . . 0.85 [ A

and\(t=07)=0. The first term in the time evolution in Eq. y x a
(5.11) is the same as the one obtained from the time evolu- 08 > S s, s 4
tion with a Hamiltonian such as Ed1.6). The coupling 075 |+ xo y ot
strength(1.7) was derived by only considering the contribu- P f f AR
tion from the condensate modes, and this coupling constant '

is the same as the first term in the correct coupling strength 0.65 0 2'0 4'0 6'0 8‘0 100

in Eq. (5.12. The second term in Eq5.12 represents a

modification of the coupling constant due to the Bogoliubov we

modes. The atoms in the condensate mode does give the FiG. 1. Modification of the coupling constant due to the Bogo-
largest contribution to the Hamiltoniad.3), but we do not  jjubov modes. The figure shows the raticoetween the average of
obtain the correct coupling constant by only considering thehe correct coupling constaah/dt (5.12 and the average of the
terms from the condensate modes, because it is the fluctugingle-mode value(1.7) for agap/@saa=0 (+), asap/asaa
tions of these terms, and not the terms them self, that give-0.5 (X), andas 4p/as22=0.93 (A). The last value corresponds
rise to phase collapse and squeezing. The fluctuations are tfthe value fofF = 1,Mg= = 1) sodium atom$30]. In the limit of
lower order and are comparable to the contributions from theery weak interactionsy{~3/2w),  approaches the estimate in
Bogoliubov modes, and the Bogoliubov modes are to be inEq. (1.7), and in the Thomas-Fermi limity>w) it approaches
cluded. The Hamiltoniar{1.6) is, however, still valid pro- 7/10 as predicted in Ref14].

vided that we use the correct coupling constant in(GdL2.

The presence of the second term in H§.12 only  Cillations in time and the last exponential in E§.13 is of
Changes the Coup"ng constant S||ght|y Referem con- minor importance. The phase COIIapse arises from the cosine
siders the same situatidby a different methodand in the i Eg. (5.13. The value of(J,) is reduced by a factor &/
Thomas-Fermi limit f/w>1, whereu is the chemical po- Whenk~y2/(N—1) and the collapse time is roughly given
tentia) it is shown that the effective coupling constant is by
approximately 7/10 of the coupling constant in Ef.7). The
functions f,, and F_, appearing in the second term in Eq. Y (5.14
(5.12 comes from the change in the condensate wave func- ¢ N—1 7;’ ’
tions due to the fluctuations in the number of particles in
Statesa and b OutSide the the ThomaS'Fermi regim-e thewhere;is the average of the Coup”ng constant in En?)
condensate wave functions are less affected by the interaince y is proportional to I, t. scales as/N.
tions and are closer to the ground state of the harmonic po-
tential that is independent of the number of particles of type
a and b. We, therefore, expect that the contribution of the
second term becomes smaller if we go away from the We now turn to the calculation of spin-squeezing. The
Thomas-Fermi limit. This is indeed confirmed by a numeri-calculation of spin-squeezing is more complicated than the
cal integration of the equations. In Fig. 1 we show the ratio Calculation of the phase collapse because squeezing is a
between the slopes of linear approximations to the time inlower-order phenomena. The operators describing the noise
tegrals of Eqs(5.12 and (1.7). In the noninteracting limit are the square of the angular-momentum operators and in-
(u=~3wl2), Eq.(1.7) gives the correct coupling constant and

D. Spin-squeezing

in the Thomas-Fermi limit 4> ) the correct coupling con- 50000

stant(5.12 approaches 7/10 of Eq1.7). Note, that this is 40000 |

only true for a time average of the coupling strength. The

expression in Eq(5.12 have larger oscillation in time. 30000 |
If we ignore the noncondensed particles, the initial state is .

a Fock state withN particles of typea in the condensate 20000 |

mode and the vacuum df andc, for all k. By using the
exact relations in Eq5.6) we can calculate the shape of the
phase collapse

10000

0

0 50 100 150 200 250 300
N ” ot

(JX>=§CO§\“1()\)exp( -2 |F;k|2). (5.13

k=1 FIG. 2. Collapse of the relative phase between the two compo-
nents of the condensate. The mean value of the ghindecreases
An example of the phase collapse is shown in Fig. 2, whergue to the fluctuation in the number of particles in each of the
we show the phase collapse obtained by numerically intenternal states. The parameters a8Q uo/ IMIw=6X10"3,
grating the equations. The functiofg, perform small 0S-  agp,=as aa=285ap, aNdN=10".
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volve the expectation values of the product of four field op-js valid becausé~a to lowest order according to E¢5.6).

erators. Such a product is in itself of orddf but due to  \with these equations we can calculdfe J_) in Eq. (5.17)
interferences between different terms of orbérthe noise is  gng by doing a similar calculation fgd,J. ) we find

only of orderN. Hence to calculate the squeezing we need to

be very precise when we calculate the matrix elements. Here o N(N+1) N . - 1 Apagnn
we calculate all matrix elements to ordé¢iand omit terms of (Jy)= 8 E<Aa°Aa>_ 2 Re((a'a’bb)).
order N and smaller. (5.21)

We are interested in estimating the optimal squeezing ob-
tainable with the propos4#]. Experimentally it is possible By similar arguments we can also calculate
to optimize the measurement output by choosing the afigle ,mnn
such that the variance is minimized, and by minimizing the (3:3,+3,3,)=2 Im((a'a'ab)). (5.22
variance (\J,)? with respect tog we find that the minimum

variance is given by The matrix elements appearing in E¢5.21) and (5.22

cannot be calculated to the desired accuracy by only using

32432 — H2— 3221 (3.0+ 332 Eq. (4.10), because this equation does not go to high enough

(A\J@)fmnz< 2y VO 2y> {3l 3y32) , accuracy. We need to calculate the matrix elements to order
(515 N butin Eq.(4.10 we are omitting contributions ta of

order 14/N. The next order correction @ gives a contribu-
and that the optimal angle is determined by tion of orderN when inserted in Eq$5.22) and(5.22). How-
ever, we can use the conservation of the number of particles
(5.16 in ea_ch of the intemal state; to find .the remaining term in the
<J§_J§> ) ) matrix eI?ments without going to hlngleI’ order in the calcu-
lation of a. We split the exact operat@ appearing in Egs.
To calculate the varianceA(,)2,,, it is an advantage to (5.21) and(5.22) into the part that we have calculated so far
replaceJ, by the raising and lowering operatod§=(J,  a, and an additional ternda of order 1A/N,
—J.)/2i, so that, e.g.(J35)=(J,J_)2—Re((J.J.))/2, o
where we have used the symmetry to obtgih, J ) a=ay+ da. (5.23
=(J_J,). By expressing the raising and lowering operators R
in terms of the field operators, using the splittitigd), and At t=0" we havesa=0 and by using that the number of

3,3,+3,37
tar(20)=—< eyt 3,02

introducing theA , operator(3.1) we obtain particles in state anda/ja, are independent of time we find
(3.3_)=(aa)+(a'ab™B) + Ny((AfeA )+ (AleA,)), ag(t)da(t) +sa'(t)ag(t)
(5.1 =Al07)eR,(0) —Rlt)eA 1), (529

where we have neglected terms of ordﬁa. To calculate I .
the first two terms in this expression we use the fact that WeN ote, that we only need the lowest-order contribution of this

have conservation of the number of particles, and that term. and sincea(t)~a(0")~b(0")~b(t) according to
commutes with the Hamiltonian because we have no spifegs.(4.9) and(5.6), we can actually replaca, by by (this is
changing collisions. From the mean number of particles imecessary to complete the calculation bglow

the a stateN. :<\i, P ) we find With the above relation we are finally able to calculate the
aore e relevant matrix elements. Using the splitting in E§.23,
<5Té>:ﬁa+ O(NO) (5.18 the initial condition in Eq.(5.6), the time evolution in Eq.
a’ b ~ ~ ~
- (4.10, and replacinga(t=0")Ta(t=0") with N—A(t
and from(J2)=N/4=((¥]-W,—N,)?) we find =07)TA,(t=0")=N—-2A,(t=07)TA,(t=0") we obtain
nin N(N+1 PO — N(N+1) N(N-1)
<(a*a)2>=(T)—N<A£°Aa>+0(\/N—a), ()=—5———g —cos'(2n)
(5.19 w
~ ~ ~ ~ _ -2
and with this expression ard?= (¥ oW ,+ W [oW,)?) we Xex;{ 821 IFa ) (5.29
get
and
momnsn N(N—1) e —
(a'ab'B)=———~N(Al-A.) + O(VN,). NN-1)
(5.20 (JZJy+JyJZ)=—Tc0 (N)sin(\)
In AtThAeATIaAst equatl9? Awe have_ made. a replacement Xexp(—ZE |Fak|2)' (5.26
(6W bbb 5\Ifa>=N/2<AaoAa>+O(\/N_a). This replacement k=1
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o ot

FIG. 3. Time evolution of the squeezing calculated by a numeri-  FIG. 4. Squeezing between the tWe=1M=*1) hyperfine
cal integration(full line) and from the approximate Hamiltonian states in sodium. The parameters are the same as in Fig. 2 except

(1.6) (dashed curve The parameters are the same as in Fig. 2.  8san/3saa=0.93. The full curve is the result of a numerical simu-
lation and the dashed curve is from the Hamilton{are).

By inserting these two expressions into B§.19 we can  yonian (1 6) are in very good agreement with the numerical
find the minimum variance and with the expression{@y)  resyits. The result in Fig. 3 is very similar to the result ob-
in Eq. (5.13 we may find the squeezing paramefgr. tained with the same parameters but a different approximate
Note that we have not specified anything about the initialnethod in Ref[4], and our result thus supports the conclu-
state of the+ modes. Within the approximations used here,sjons reached in that paper.
the resultg5.25 and(5.26) only involve expectation values The difference in scattering length used in Fig. 3 is an
of operators for the- modes and the squeezing is indepen-exaggeration of the realistic parameters. If the experiment is
dent of the state of the- modes. If the condensate is at a performed with the two hyperfine statgs=1Mg= +1)in
nonzero temperature before the pulse, it can be described Rydium representing the internal stateandb as proposed
quasiparticle excitations, and these excitation are transferggl [4], the ratio between the scattering lengths is
into excitation in thet modes after the pulse. The modes as ab/8s 22~0.93[30]. In Fig. 4 we show the squeezing pro-
are always in the vacuum state independent of temperaturguced with this value of the ratio. Because the scattering
and the squeezing calculated here is, therefore, also indepengths are very close, the oscillations of the wave function
dent of temperature. Another nice property of E§s25 and  are much smaller, and the numerical curve and the result
(5.26 is that they only involve the functiorfs;, and not the  from Eqg.(1.6) are in better agreement.
number of noncondensed particles. Because the functions To create an entangled state the coupling congtantthe
F .k vanish for states with nonzero orbital angular momen-Hamiltonian (1.6) should be nonzero. So far we have ob-
tum, according to Eq(4.6), it is sufficient to determine the tained a nonzero coupling by having a difference in the
evolution of the Bogoliubov modes with vanishing orbital

angular momentum and this simplifies a numerical treatment 1
of the system significantly. 0.9

In Fig. 3 we show the evolution of spin-squeezing with 08 ¢
the same parameters as in Fig. 2. In the figure we also show 07T
the prediction of the Hamiltoniaf.6) with a coupling con- , 067
stanty equal to the slope of a linear approximation\toThe % O'i
two curves are in reasonably good agreement with each 8'3 I
other. The deviation between the two curves is caused by the 0:2 |
exponentials of thé_, functions in Egs(5.25 and(5.26), 01t
i.e., by the dependence of the wave function on the number 0
of particles. After the resonant pulse the wave function is no

longer in equilibrium because the repulsion of the atoms is ot

S_udder_]Iy _reduced, and. th(.a size of the atomic Cl_OUd will 0s- FIG. 5. Squeezing created by a Bragg pulse as proposed in Ref.
cillate in time. The oscnlau_ons of the wave function depend[g]_ At time t=0 the trap is turned off and two components are
on the number of atoms in each of ,thej internal state, angeparated by a Bragg pulse. The full line is the result of a numerical
because the state of the system is distributed on states Wiffkegration and the dashed curve is the prediction from the Hamil-
different number of atoms in each internal state, there is afynjan (1.6). The parameters ara, ../ VA/MIw=6x10"%, aqup
uncertainty in the wave function that introduces noise and-5___ a_ . =0, andN=1.7x10F. These parameters are chosen
reduces the squeezing. After the completion of a full oscillasych that they are similar to the parameters in R&f). The ratio

tion (wt~4, 9, 13, and 18 the wave function has approxi- a,,./\A/M/w=6x10"* corresponds to sodium atoms in a trap
mately its initial form independent of the number of atoms inwith trapping frequencys=2mx19 Hz before the trap is turned
each internal stateF(,~0), and the results of the Hamil- off.
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scattering length®g 44+ aspp# 285 4p. From the approxi- VI. CONCLUSION

mate cou_pllng constant in EqL.7) we see thai;_)( is also In this paper we have analyzed the scheme proposed in
nonzero if thea and theb atoms occupy two d|ﬁ§aren§ '€ Ref.[4] by describing the system with a number-conserving
gions in space, even if all scattering Iengths are |<jent|cal. 'rBogoIiubov theory. The developed theory is a consistent ex-
Ref. [9] it was proposed to produce spin-squeezing by répansion in the ratio between noncondensed and condensed
placing the two internal states and b with two different  particles, and the validity of the calculations can be investi-
momentum states that are created by a Bragg pulse shorthysted in a given experimental configuration.
after the trap has been turned off, i.e., exactly the same setup The results obtained in this paper show that strong
as used in[31]. This proposal has the advantage that thesqueezing can indeed be produced by this method but the
squeezing is now between atoms in the same internal stateheory is not able to determine the precise limit of the ob-
and the squeezing is, therefore, better shielded from phaseainable squeezing. The results of this paper agree with the
decoherence caused for instance by fluctuating magnetiesult of the simplified Hamiltoniafl.6) that predict a re-
fields. Also, this proposal could be used for rubidium atomsduction of the squeezing parameter by a factor of approxi-
where the scheme that has been studied so far is not apptiately N~%3, but we are ignoring terms of ordgféN/N.
cable because the scattering lengths are almost identical. From this we conclude that the obtainable squeezing is at
To investigate this situation we assume that the time ifeast of ordery6N/N. The obtained results are independent
takes for the two momentum states to separate is very shoof the temperature of the condensate, and the only effect of a
so that we can neglect the interaction during this separationonvanishing temperature is that the approximations break
process. In this case there is no interaction between irel ~ down a little earlier.
the b components and we can describe this situation by set-
ting a; ,p=0 andV,=V,=0 after the pulse. In Fig. 5 we ACKNOWLEDGMENTS
show the result of such a simulation with parameters similar | am grateful to Klaus Mbmer and Uffe V. Poulsen for
to the parameters in Ref31]. The calculation shows that useful discussions and comments on the manuscript. This
strong squeezing can be produced with this proposal, but th@ork was supported by the Danish National Research Foun-
agreement with the Hamiltoniafi.6) is not as good in this dation through the Quantum Optics Cent@UANTOP) in
case because of the exponentials in E§25 and(5.26). Arhus.
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