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Bogoliubov theory of entanglement in a Bose-Einstein condensate
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We consider a Bose-Einstein condensate that is illuminated by a short resonant light pulse that coherently
couples two internal states of the atoms. We show that the subsequent time evolution prepares the atoms in an
interesting entangled state called a spin-squeezed state. This evolution is analyzed in detail by developing a
Bogoliubov theory that describes the entanglement of the atoms. Our calculation is a consistent expansion in
1/AN, whereN is the number of particles in the condensate, and our theory predicts that it is possible to
produce spin-squeezing by at least a factor of 1/AN. Within the Bogoliubov approximation this result is
independent of temperature.
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I. INTRODUCTION

One of the main problems in the experimental explo
tions of entanglement is the engineering of a controlled
teraction between individual quantum particles. Such an
teraction among the particles is automatically present
Bose-Einstein condensed dilute atomic gases@1–3#, where
the experimental results show clear signatures of the c
sions of the particles. It is, therefore, natural to try to expl
this interaction to create entanglement and a number of
posals have appeared that use the collisional interactio
entangle the atoms in the condensate@4–11#.

In Ref. @4# we proposed a realistic experiment where t
atoms in a Bose-Einstein condensate are illuminated b
single resonant pulse. After this pulse the system evo
freely, and the collisional interaction among the particles p
pares the atoms in an entangled state. The created enta
state even has practical applications in atomic clocks, wh
it can be used to increase the precision significantly@12#. In
@4# we presented an approximate simulation of the cond
sate dynamics, where the state vector was expanded on
spaces containing a different number of atoms, and where
spatial wave function in each subspace was evolved with
Gross-Pitaevskii equation. This calculation indicated tha
substantial entanglement can be created, but the validit
the ansatz used in the calculation and the behavior of
proposal at nonzero temperature is difficult to determ
from the simulation. An exact calculation with a stochas
method@8# has later confirmed that the proposal is inde
capable of producing substantial entanglement. But due
the noise in this calculation, it is difficult to estimate th
exact amount of entanglement from this procedure and
method is also difficult to apply in the regime where mo
experiments are currently operating.

In this paper we investigate the proposal@4# in more de-
tail. We first develop a Bogoliubov theory for a two
component condensate and then we apply it to describe
entanglement of the atoms in the condensate. Our theory
consistent expansion in the ratio between noncondensed
condensed particles and the validity of the approximati
can directly be investigated for a given experimental c
figuration. To lowest order, the Bogoliubov theory can
used to describe the effect of a nonvanishing temperat
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and our theory indicates that within the Bogoliubov appro
mation the created entanglement is independent of temp
ture. The results of the Bogoliubov theory agrees very w
with the results of the approximate method used in Ref.@4#
and thus confirms the validity of this method.

A. Considered experimental setup

We consider a collection ofN atoms with two internal
statesa andb. We assume that we first create a condens
consisting only of atoms in the internal statea. After the
preparation of the condensate a fast resonant pulse is ap
to the atoms. The pulse is assumed to be much faster
any other time scale in the problem, so that the only action
the pulse is to mix the internal statesua&→ cos(f/2)ua&
1sin(f/2)ub& and ub&→ cos(f/2)ub&2sin(f/2)ua&. The
theory developed in Sec. III and IV applies for all values
the anglef but we only go into details with the case whe
the resonant interaction is ap/2 pulsef5p/2. In this paper
we shall describe our atoms in the second quantization u
field operatorsĈa and Ĉb , and we calculate the time evo
lution in the Heisenberg picture, where the action of t
pulse is given by

Ĉa~rW ,t501!5cosS f

2 D Ĉa~rW ,t502!

2sinS f

2 D Ĉb~rW ,t502!,

~1.1!

Ĉb~rW ,t501!5cosS f

2 D Ĉb~rW ,t502!

1sinS f

2 D Ĉa~rW ,t502!

(t502 and t501 denotes the time just before and after t
pulse!. After the pulse we let the system evolve and perfo
a measurement on it at a later time.

The resonant pulse splits the condensate into ana and ab
component with a well-defined phase between them; if o
applies a new pulse shortly after the first, it is possible
produce interferences between the two component and,
©2002 The American Physical Society10-1
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transfer all the atoms back into thea state. As the two com-
ponents evolve with time there is nothing to maintain t
relative phase between them, and the relative phase
spread in time because each of the two components do
have a well-defined number of particles@13–15#. Due to the
spreading of the relative phase, the magnitude of interfere
terms such aŝĈa

†Ĉb& will decrease with time and it will no
longer be possible to see interferences between the two c
ponents. This process is referred to as phase collapse.

Instead of focusing on the interferences between the c
densates it is fruitful to consider other observables of
system. By considering fluctuations in the particle numb
one can show that the time evolution prepares the atom
an entangled state called a spin-squeezed stated.

B. Spin-squeezing

Suppose that we prepareN atoms in an equal superpos
tion of two internal state (ua&1ub&)/A2 and measure the
number of particles in thea state. Because the particles a
independent of each other the result of the measurement
be a distributed according to the binomial distribution with
mean valueN̄a5N/2 and a varianceN/4. A spin-squeezed
state is a state where the atoms are prepared in a sui
entangled state such that the variance~or noise! of this mea-
surement is reduced.

A more convenient way to represent the atoms is to c
sider each atom as a spin-1/2 particle with the internal st
ua& and ub& representing the spin-up and spin-down sta
respectively. In this language the noise in the counting
tistics is represented by the variance of theJz operator
(DJz)

2, where the collectiveJx , Jy , and Jz operators are
obtained by summing the spin operators for the individ
atoms. Expressed in terms of the spin operators, s
squeezing is the reduction of the noise ofJz ~or any other
spin component!. Recently the first experimental realization
of such spin-squeezed states have been achieved@16–19#.

In Ramsey spectroscopy, as used for instance in ato
clocks, a signal is recorded that is proportional to the len
of the spin in a given direction, say thex direction, and the
noise of the signal is proportional to the noise of a s
componentJu5cos(u)Jz1sin(u)Jy perpendicular to the mea
spin. The precision of atomic clocks is currently limited b
the spin noise (DJu)2 @20#, and by using a spin-squeeze
state where this noise is smaller than in the unsquee
states, which are used today, it is possible to increase
precision of the clock. Winelandet al. @12# have analyzed
this possibility and have shown that the frequency varia
can be reduced by a factor of

ju
25

N~DJu!2

^Jx&
2

, ~1.2!

by preparing the atoms in a spin-squeezed state withju
2,1.

This points to an interesting application of spin-squee
states in atomic clocks.

It has also been shown that a reduction of the squee
parameter below unityju

2,1 requires the atoms to be in a
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entangled state@4#, and to quantify the entanglement th
may be obtained in the considered experimental setup,
shall determine the reduction of the squeezing parameterju

2 .
A different characterization of the squeezing is presented
Ref. @21#, where the depth of entanglement in a collection
atoms is identified.

To see that the proposed experimental setup produ
squeezing we shall first consider the short-time evolution.
time t501 we have ju

251 for all u, and to prove that
squeezing is produced, it is sufficient to show that the ti
derivative ofju

2 is negative for a suitable choice ofu.
In the limit of very low temperatures a collection of atom

with two internal statesa andb are described by the secon
quantized Hamiltonian

H5 (
j 5a,b

E d3r Ĉ j
†~rW !H0,jĈ j~rW !

1
1

2 (
j 5a,b

gj j E d3r Ĉ j
†~rW !Ĉ j

†~rW !Ĉ j~rW !Ĉ j~rW !

1gabE d3r Ĉa
†~rW !Ĉb

†~rW !Ĉa~rW !Ĉb~rW !, ~1.3!

whereH0,j is the one-particle Hamiltonian for atoms in sta
j including the kinetic energy and the external trapping p
tential Vj (rW ), andgjk54p\2as, jk /M is the strength of the
interaction between particles of typej and k, expressed in
terms of the scattering lengthas, jk and the atomic massM.
Here we have assumed that there are no spin changing
lisions. A specific experimental setup where it is possible
exclude such spin changing collision with sodium atoms
an optical trap is described in@4#.

With the Hamiltonian~1.3! we may find the equation o
motion for the field operatorĈa by taking the commutator
with the Hamiltonian~using\51)

i
d

dt
Ĉa5H0,aĈa1gaaĈa

†ĈaĈa1gabĈb
†ĈbĈa . ~1.4!

For brevity most of the equations in this papers will only
presented for the field operator for thea component. The
corresponding equations for theb component can be
achieved by exchanging subscriptsa andb. Since we work in
the Heisenberg picture, essentially all operators and fu
tions appearing in this paper will depend on time, and
brevity we shall in most cases omit the time argument
operators and functions. Unless specified otherwise opera
and functions, such as the field operatorsĈa andĈb in Eq.
~1.4! should always be considered as functions of the timt.
From the derivative in Eq.~1.4! we calculate the time deriva
tive of the squeezing parameterju

2 at the timet501, and by
using the relation~1.1! with f5p/2 we can express the de
rivative in terms of the field operators before the pulse
0-2
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BOGOLIUBOV THEORY OF ENTANGLEMENT IN A . . . PHYSICAL REVIEW A65 043610
d

dt
ju

25sin~2u!
gaa1gbb22gab

2N

3E d3r ^Ĉa
†~rW ,t502!2Ĉa~rW ,t502!2&. ~1.5!

If gaa1gbbÞ2gab we can always choose the angleu such
that the expression on the right-hand side is negative and
exact equation immediately proves that squeezing will
produced. The time derivative is proportional to the tw
point correlation function that in the limit of an ideal con
densate isN(N21)*d3r uFu4 where F is the condensate
wave function before the pulse.

The above argument shows that squeezing will be p
duced but it does not quantify the amount of squeezing
is produced. A simple estimate of the squeezing can be
tained by making a single-mode approximation to each of
components. In this approximation the part of the Ham
tonian ~1.3! that is responsible for spin-squeezing can
written as@4,7,8#

Hspin5xJz
2 , ~1.6!

with the coupling constantx given by

x~ t !5E d3r
gaauFa

exu41gbbuFb
exu422gabuFa

exu2uFb
exu2

2
,

~1.7!

whereFa
ex (Fb

ex) is the condensate wave function for pa
ticles of typea (b) ~the ‘‘ex’’ is used to indicate the exac
wave function because it will later be important to disti
guish it from low-order approximations to it!.

The squeezing arising from the Hamiltonian~1.6! can be
solved analytically@22#. The obtainable squeezing is a
proximatelyju

2'N22/3, and this indicate that strong squee
ing can be produced if the condensate contains a large n
ber of atoms. The validity of the arguments leading to
Hamiltonian~1.6! are not quite clear from the derivation, an
it is the main purpose of this paper to investigate the valid
of this simple description. As we shall see below, the Ham
tonian~1.6! is indeed a good approximation to the dynam
of the system but the coupling constant~1.7! has to be modi-
fied slightly. To obtain this result we describe the system
Bogoliubov theory.

C. Bogoliubov theory

The Hamiltonian~1.3! and the resulting Eq.~1.4! are far
too complicated to be solved in general and approximati
have to be applied. Here we shall determine the time ev
tion from the Hamiltonian~1.3! by applying the Bogoliubov
approximation. The standard formulation of the Bogoliub
approximation assumes a broken symmetry such that
field operators have a nonvanishing mean value^Ĉa(rW ,t)&
5AN̄aFa

ex(rW ,t), whereN̄a is the mean number of particle
of type a. The Bogoliubov method proceeds by splitting t
field operators according to
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Ĉa~rW ,t !5ANaFa
ex~rW ,t !1dĈa~rW ,t !,

Ĉb~rW ,t !5ANbFb
ex~rW ,t !1dĈb~rW ,t !. ~1.8!

The idea behind this splitting is that the fluctuationsdĈa and
dĈb are much smaller than the contribution of the conde
sates, and simple equations for the field operators are
tained by expanding the Hamiltonian~1.3! to low order in
the dĈs.

The splitting ~1.8! gives some nice properties, such
simple commutation relations for thedĈ operators, but un-
fortunately it is not well suited for our present purpose.
we shall see below, the phase collapse and entanglem
mainly arise from the evolution of the atoms in the conde
sate modes. In Eq.~1.8! the quantum fluctuations of the con
densate modes and fluctuations perpendicular to these m
are treated equally, and this is not a good approximation
the system. In a direct numerical integration we have fou
that thedĈ ’s grow very quickly due to the dynamics in th
condensate modes so that the assumptions of the th
break down after a short period of time@23#.

To circumvent the problems associated with the splitt
~1.8! we employ a different splitting that enables a bet
description of the evolution in the condensate modes

Ĉa~rW ,t !5âFa
ex~rW ,t !1dĈa~rW ,t !,

Ĉb~rW ,t !5b̂Fb
ex~rW ,t !1dĈb~rW ,t !, ~1.9!

where the operatorâ and b̂ obey bosonic commutation rela
tions @ â,â†#51 and@ â,b̂#50. In this paper we shall derive
the time evolution of the field operators by assuming that
fluctuationsdĈa anddĈb are much smaller than the contr
butions from the condensate modes. An approach simila
ours has previously been considered in Refs.@15,24,25#
where particle-number conserving Bogoliubov approxim
tions are derived. We shall generalize these previous res
to a situation where the atoms can be in two different inter
states and where the number of atoms in each of the s
may not be well defined. This generalization enables us
describe the collapse of the relative phase between the
condensates and the entanglement of the atoms, which
shown to arise from the time evolution of the operatorsâ and
b̂.

In Sec. II we present the assumptions used in the Bo
liubov description@15,24# and in Sec. III we derive the equa
tions of motion for the relevant operators. In Sec. IV w
solve these equation and in Sec. V we apply our theory to
considered experimental setup described in Sec. I A. Fina
we end the paper with a conclusion in Sec. VI.

II. ASSUMPTIONS

In this section we describe the assumptions of our the
which is presented in Secs. III and IV. The assumptions
methods used here are very similar to the two theories
rived for a one-component condensate by Castin and D
0-3
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@15# and by Gardiner@24#. These two derivations are equiva
lent but use two different approaches. Castin and Dum de
equations of motion for the relevant field operators and th
equations are approximated by inserting a splitting as in
~1.9! and neglecting high-order terms indĈ. In the work of
Gardiner the approximations are made to the Hamilton
where terms of high order indĈ are neglected before th
equations of motion are derived. Here we choose to foll
the derivation and notation of Castin and Dum in Ref.@15#
very closely. In order to make the paper self-contained
reproduce most of the calculations of Castin and Dum.

We assume that the atoms are cooled to a very low t
perature such that a condensate is formed before the p
that mixes the two internal states. The condensate wave f
tion is determined from the one-body density operator tha
given by

^rW 8ura,1urW &5^Ĉa
†~rW !Ĉa~rW 8!&. ~2.1!

Mathematically, the definition of a condensate is thatra,1 has
an eigenvalue

ra,1uFa
ex&5Na

exuFa
ex&, ~2.2!

which is much larger than all other eigenvalues (Na
ex;N,

whereN is the total number of atoms!, and the spatial mode
function is given byFa

ex(rW ).
The resonant pulse mixes the field operators as descr

by Eq.~1.1!, and by using that the initial state is the vacuu
of Ĉb(t502) we find that ra,1(t501)5rb,1(t501)
5ra,1(t502)/2. After the pulse the stateuFa

ex(t502)& is
still an eigenvalue of the density operatorra,1 with eigen-
valueNa

ex(t501)5Na
ex(t502)/2, so that we have a compo

nent of the condensate in both thea and theb state with
wave functions

Fa
ex~rW ,t501!5Fb

ex~rW ,t501!5Fa
ex~rW ,t502!. ~2.3!

The condensate mode functionsFa
ex andFb

ex can be used
to define a splitting of the field operator as in Eq.~1.9!, and
to describe the squeezing we need to determine the
evolution ofdĈa and â. To derive the equations of motio
for these operators it will be convenient to have an expr
sion for them in terms of the field operatorĈa . By normal-
izing uFa

ex& to unity we obtain

â5E d3rFa
ex* ~rW !Ĉa~rW ! ~2.4!

and

dĈa~r !5E d3r 8^rW uQa
exurW 8&Ĉa~rW 8!, ~2.5!

whereQa
ex is the projector on the subspace perpendicula

uFa
ex&, Qa

ex512uFa
ex&^Fa

exu. To simplify the notation we
introduce the operand+ to denote the action of an operatorO
onto a field operator such asĈa,
04361
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O+Ĉa5E d3rOurW &Ĉa~rW ! ~2.6!

(+ is also used in Ref.@15#!. With this notation Eqs.~2.4! and
~2.5! can be written in the simpler form

â5^Fa
exu+Ĉa ,

dĈa5Qa
ex+Ĉa . ~2.7!

Our calculation assumes a condensate of weakly inter
ing atoms (as

3r!1 wherer is the atomic density! at very
low temperatureT'0. In this limit the fraction of noncon-
densed atoms is very small,dN/N;102221023 @26#. The

field operatorĈa has matrix-elements scaling asAN̄a from
the condensed atoms and contributions of orderAdNa from
the noncondensed atoms, whereN̄a anddNa are the average
number of particles and the number of uncondensed parti
of type a. Due to the small ratio between noncondensed a
condensed particles it is useful to perform an expansion

the field operatorĈa in terms ofAdNa /N̄a. Formally this
expansion is achieved by taking the limit

N̄a→`,

N̄agaa5const, ~2.8!

while keeping a constant ratio between the scattering len
and between the number of particles in thea and theb states.
Below we show thatdNa is of order unity in this limit, and

our expansion in terms ofAdNa /N̄a becomes an expansio

in 1/AN̄a ~note that since we have a fixed ratioN̄a /N̄b this

also corresponds to an expansion in 1/AN̄b).

III. EXPANSION IN POWERS OF 1 ÕAN̄A

In this section we present the explicit expansion in pow

of 1/AN̄a. The expansion procedure is implemented by co
sidering the time evolution of the operator@27#

L̂a
ex~rW ,t !5

1

AN̄a

â†~ t !dĈa~rW ,t !. ~3.1!

From the definition of the condensate wave function~2.2!
and the splitting~1.9! follows that the expectation value o
L̂a

ex vanish exactly at all times

^L̂a
ex~rW ,t !&50. ~3.2!

As we shall show below,L̂a
ex is of order unity in the limit

in Eq. ~2.8! so that the number of noncondensed atoms
proaches a constant in this limit. To perform our expans
we write the operatorL̂a

ex and the wave function as a serie
of terms
0-4
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BOGOLIUBOV THEORY OF ENTANGLEMENT IN A . . . PHYSICAL REVIEW A65 043610
L̂a
ex5L̂a1

1

AN̄a

L̂a
(1)1

1

N̄a

L̂a
(2)1•••,

Fa
ex5Fa1

1

AN̄a

Fa
(1)1

1

N̄a

Fa
(2)1•••, ~3.3!

and we derive equations for each of the terms order by or
Since we require that the exact wave function is normali

to all orders in 1/AN̄a, the lowest-order contribution mus
also be normalized̂FauFa&51.

The procedure in this section is to calculatedL̂a
ex/dt and

dâ/dt to order k in 1/AN̄a (k521,0) and take the mea

value ^L̂a
ex& that must vanish to all orders in 1/AN̄a. With

this procedure we calculate the contributions to the field
erator to orderN̄a

0 . The main difference compared to th
derivation of Castin and Dum in Ref.@15# is that in their
derivation the number of atoms of typea is fixed. This means
that N̂0a2N̄a , whereN̂0a5â†â is the number operator fo
the condensed particles, is only of orderN̄a

0;1 because the
difference only arises due to the noncondensed particles
our situation the distribution on different number states i

binomial distribution with a width;AN̄a and hence the op

eratorN̂0a2N̄a is of orderAN̄a.

A. Basic equations forL̂a
ex and â

As a starting point for our calculation we use the tim
derivatives of the operatorsL̂a

ex and â. By taking the time
derivative of Eqs.~2.4! and ~2.5! and using the definition o
L̂a

ex ~3.1! we obtain the expressions

i
d

dt
â5 i F S d

dt
^Fa

exu D +Ĉa1^Fa
exu+

d

dt
ĈaG ~3.4!

and

i
d

dt
L̂a

ex5
i

AN̄a

F â†Qa
ex+S d

dt
Ĉa2â

d

dt
uFa

ex& D
1S S d

dt
Ĉa

†D +uFa
ex&1Ĉa

†+
d

dt
uFa

ex& D dĈa

2â†uFa
ex&S d

dt
^Fa

exu D +dĈaG . ~3.5!

In these expressions the only time derivatives are of the w
function Fa

ex and the field operatorĈa . By substituting the
splitting of the field operators in Eq.~1.9! into the right-hand
side of the time derivative ofĈa in Eq. ~1.4! and inserting
this into the above expressions we may find equations
motion for L̂a

ex and â involving different powers ofdĈa .
Below we shall only consider the two lowest-order contrib
tions toL̂a

ex and â, and it is sufficient to keep the terms th
04361
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are linear indĈa . Equivalently, this corresponds to neglec
ing the terms of higher than second order in thedĈ opera-
tors in the Hamiltonian if we had used the approach of G
diner @24#, where the approximation are made to t
Hamiltonian rather than in the equations of motion.

B. Order AN̄a: Gross-Pitaevskii equations

The largest terms in the expression in Eq.~3.5! are the

terms on the first line. These two terms are of orderAN̄a, but
with a suitable definition of the wave functionuFa

ex& the two

contributions cancel each other to leading order inAN̄a, and
L̂a

ex is of orderN̄a
0 . By using Eqs.~1.4! and~1.9! and keeping

only the dominant contribution from the condensed partic
we get

i
d

dt
L̂a

ex5AN̄aQa+S HGP,a2 i
d

dtD uFa&1O~N̄a
0!, ~3.6!

where we have introduced the Gross-Pitaevskii Hamilton

HGP,a5H0,a1gaaN̄auFau21gabN̄buFbu2. ~3.7!

In Eq. ~3.6! we have replaced the number operators by th
leading order contributionsâ†â'N̄a and â†â†ââ'N̄a

2 . The
difference between the leading order and the operators i
higher order and will be taken into account below. From E

~3.6! follows that theAN̄a contribution toL̂a
ex vanishes if we

choose

S 2 i
d

dt
1HGP,aD uFa&5z~ t !uFa&. ~3.8!

The term on the right side introduces an optional phase
tor on the wave functionuFa& (z must be real due to the
normalization condition!. Since all measurable quantities a
expressed in terms of the field operator~1.9!, we can intro-
duce any phase factor onuFa& if we include the opposite
phase factor onâ. Here we shall choose the simplest possib
phase evolution ofâ and we setz50 so that Eq.~3.8! re-
duces to the usual time-dependent Gross-Pitaevskii equa
With this choice ofz the equation of motion forâ cancels to
leading orderidâ/dt5O(N̄a

0).

C. Order N̄a
0 : Fa

„1…Ä0

In this subsection we shall show that the lowest-ord
correction to the wave functionFa

(1) vanishes exactly in the
considered experimental situation. To show this, we cons
the mean value of Eq.~3.5! to orderN̄a

0 ,
0-5
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i
d

dt
^L̂a~rW !&5AN̄a^rW uQa

ex+S H0,a1gaaN̄auFa
exu2

1gabN̄buFb
exu22 i

d

dtD uFa
ex&1O~1/AN̄a!.

~3.9!

When calculating the mean value of the third term in E

~3.5! ^dĈa
†/dtdĈa&/AN̄a we need to consider mean valu

such asgaa^ââ†â†dĈa&/AN̄a. These terms do not vanis
and at first sight they might seem to contribute to the pres
order. But sincê L̂a

ex& vanishes, this term may be rewritte

asgaa^(N̂0a2N̄a)â†dĈa&/AN̄a, and since the parenthesis

only of order AN̄a this term does not contribute to th
present order.

Because of the exact relation~3.2! the mean value of Eq

~3.5! must vanish to all orders inAN̄a. TheAN̄a contribution
vanish due to the Gross-Pitaevskii equation~3.8!. The next
order is obtained by expandingQa

ex andFa
ex in Eq. ~3.9!, and

we get

05Qa+F S 2 i
d

dt
1H0,aDFa

(1)1gaaN̄a~2uFau2Fa
(1)

1Fa
2Fa

(1)* !1gabN̄b~FaFbFb
(1)* 1FaFb* Fb

(1)

1uFbu2Fa
(1)!G . ~3.10!

Due to the projection operatorQa this equation admits the
inclusion of an overall phase inFa

(1) , i.e., idFa
(1)/dt may

have a contributionz (1)Fa . Again we prefer to have the
simplest possible equation forâ and choosez (1)50. With
this choice the equation forFa

(1) is linear and homogeneou
so thatFa

(1) vanishes if it vanishes att501. In Ref.@15# it is
shown thatFa

(1)50 in thermal equilibrium as we have jus
shown before the resonant pulse~1.1!, and since the conden
sate wave function is exactly the same before and after
pulse, as described in Eq.~2.3!, we have

Fa
(1)~ t !50 ~3.11!

for all t.

D. Order N̄a
0 : Bogoliubov approximation

With the result~3.11!, we can now calculate the derivativ
in Eq. ~3.4! to orderN̄a

0 and we get

i
d

dt
â5gaa^FauuFau2uFa&~N̂0a2N̄a!â

1gab^FauuFbu2uFa&~N̂0b2N̄b!â

1gaaAN̄a~^FauuFau2+L̂a1L̂a
†+uFau2uFa&!â

1gabAN̄b~^FauFb* Fa+L̂b1L̂b
†+Fa* FbuFa&!â,

~3.12!
04361
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where we have replaced expressions such asâ†â†ââ

2â†âN̄a with their lowest-order contributions (N̂0a

2N̄a)N̄a . The right-hand side is seen to be a Hermitian o
erator multiplied byâ. This does not contribute to the tim
derivative of the number operatorN̂0a , so that we have

d

dt
N̂0a5O~N̄a

0!. ~3.13!

This relation is consistent withL̂a being of order unity. The
number of particles of typea is a conserved quantity an

henceN̂0a1dĈa
†+dĈa5N̂0a1L̂a

†+L̂a1O(1/AN̄a) must be

conserved. SinceL̂a is of orderN̄a
0 , we must have a relation

such as Eq.~3.13!. The weak time dependence of the numb
of condensed particles indicate that essentially all partic
stay in the condensate modes and this justifies the descrip
of the system by single-mode approximations. Note, ho
ever, that such single-mode calculations must be perform
with care. A calculation that completely ignores the nonco
densed particles only contains the first two terms in E
~3.12!, but the remaining terms are of the same order as
first and should be kept in the calculation. As we shall s
below these terms gives rise to the same interaction as in
single-mode approximation but with a different couplin
constant.

For theL̂s the equation of motion reads

i
d

dtF L̂a

L̂b

L̂a
†

L̂b
†

G5L+F L̂a

L̂b

L̂a
†

L̂b
†

G1~N̂0a2N̄a!aW 1~N̂0b2N̄b!bW ,

~3.14!

where the vectorsaW andbW are given by

aW 5uFau2F gaaAN̄auFa&

gabAN̄buFb&

2gaaAN̄auFa* &

2gabAN̄buFb* &

G ~3.15!

and

bW 5uFbu2F gabAN̄auFa&

gbbAN̄buFb&

2gabAN̄auFa* &

2gbbAN̄buFb* &

G ~3.16!

and where the matrixL is
0-6
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F HGP,a1QagaaN̄auFau2Qa QagabAN̄aN̄bFaFb* Qb QagaaN̄aFa
2Qa* QagabAN̄aN̄bFaFbQb*

QbgabAN̄aN̄bFa* FbQa HGP,b1QbgbbN̄buFbu2Qb QbgabAN̄aN̄bFaFbQa* QbgbbN̄bFb
2Qb*

2Qa* gaaN̄aFa*
2Qa 2Qa* gabAN̄aN̄bFa* Fb* Qb 2HGP,a2Qa* gaaN̄auFau2Qa* 2Qa* gabAN̄aN̄bFa* FbQb*

2Qb* gabAN̄aN̄bFa* Fb* Qa 2Qb* gbbN̄bFb*
2Qb 2Qa* gabAN̄aN̄bFaFb* Qb* 2HGP,b2Qb* gbbN̄buFbu2Qb*

G .

~3.17!
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Here we have introduced the projectorQa* that projects onto
the space orthogonal touFa* &: Qa* 512uFa* &^Fa* u ~note
that Qa* 5” Qa

†5Qa). The first part of Eq.~3.14! containing
the operatorL corresponds to the equation derived for
single component in Ref.@15#. With a fixed number of par-
ticles in thea and theb states this is the only contribution to
this order. In a situation where we cannot ignore the fluctu
tions in the particle numbers there are additional contrib
tions due to the last two terms in Eq.~3.14!. Physically, we
can understand the origin of these terms by considerin
subspace with a given number of particlesNa and Nb ~of
type a and b, respectively!. In this subspace the Gross
Pitaevskii equations are not the best approximations to
evolution of the condensate mode because they contain
average valuesN̄a andN̄b rather thanNa andNb . From the
structure of the last two terms in Eq.~3.14! it is seen that
these terms corrects for the ‘‘wrong’’ value of the partic
numbers. The approximate method used in Refs.@4,14# is
designed to capture this dependence on the particle num
and in Sec. V we show that the results obtained with t
present method are very similar to the result obtained
Refs.@4,14#.

IV. SOLVING THE EQUATIONS

With the Eqs.~3.12! and~3.14! we have derived the equa
tions of motion to the desired accuracy, and in this sect
we solve these equations. The solution is obtained by
panding theL̂ operators on a suitable set of mode functio
at t501. The time evolution of these modes is chosen su
that the first term in Eq.~3.14! is automatically taken into
account and we then treat the last two terms in Eq.~3.14!.
Finally the solution for theL̂ operators is inserted into Eq
~3.12!, which is then solved.

A. Expansion at tÄ0¿

Instead of having the operatorsL̂a andL̂b that have both
a spatial part and an operator character, it is convenien
expandL̂a and L̂b on a set of vectors that take the spati
dependence into account. In such an expansion, the ex
sion coefficients become operators and we have

F L̂a

L̂b

L̂a
†

L̂b
†

G5 (
k51

`

ĉkF uuak&

uubk&

uvak&

uvbk&

G 1 ĉk
†F uvak* &

uvbk* &

uuak* &

uubk* &

G . ~4.1!
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The ua’s and theva’s can be any functions perpendicular
Fa andFa* , respectively, but the whole set must be chos
such that the entire space perpendicular to the condens
modes can be spanned by the vectors. A convenient choic
the functions is discussed in Sec. V.

The u and v functions play the same role as the mo
function in ordinary Bogoliubov theory and it is an adva
tage to choose the standard normalization

^uakuuak8&1^ubkuubk8&2^vakuvak8&2^vbkuvbk8&5dkk8 ,

^vak* uuak8&1^vbk* uubk8&2^uak* uvak8&2^ubk* uvbk8&50.
~4.2!

With this normalization we may express the expansion
eratorsĉk in terms of theL̂ operators

ĉk5^uaku+L̂a1^ubku+L̂b2^vaku+L̂a
†2^vbku+L̂b

† ,
~4.3!

and from the commutation relation@L̂a
† ,L̂a#5Qa we find

that the ĉks obey bosonic commutation relations@ ĉk ,ĉk8
†

#

5dkk8 and @ ĉk ,ĉk8#50.

B. Time evolution

To evolve the expansion~4.1! we need to choose the tim
evolution of the mode functions. A convenient choice is

i
d

dtF uuak&

uubk&

uvak&

uvbk&

G5L+F uuak&

uubk&

uvak&

uvbk&

G . ~4.4!

With this choice of time evolution, the normalization~4.2! is
conserved and so is the commutation relation of theĉk op-
erators. Indeed, the time evolution ofĉk only comes from the
fluctuations in the number of particles and is given by

i
d

dt
ĉk5~N̂0a2N̄a! f ak1~N̂0b2N̄b! f bk , ~4.5!

where

f ak5~^uaku,^ubku,2^vaku,2^vbku!•aW ,

f bk5~^uaku,^ubku,2^vaku,2^vbku!•bW . ~4.6!
0-7
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This equation is easily solved and by using thatN̂0a andN̂0b
do not depend on time to this order of approximation,
find

ĉk~ t !5 ĉk~ t501!2 i ~N̂0a2N̄a!Fak~ t !

2 i ~N̂0b2N̄b!Fbk~ t !, ~4.7!

where the functionsFak andFbk are defined by

Fak~ t !5E
0

t

dt8 f ak~ t8!,

Fbk~ t !5E
0

t

dt8 f bk~ t8!. ~4.8!

Finally, by inserting Eqs.~4.1! and ~4.7! into Eq. ~3.12! we
obtain

i
d

dt
â5~N̂0a2N̄a!S gaa^FauuFau2uFa&

12(
k51

`

Im~ f ak* Fak!D â1~N̂0b2N̄b!

3S gab^FauuFbu2uFa&12(
k51

`

Im~ f ak* Fbk!D â

1S (
k51

`

f ak* ~ t !ĉk~ t501!1 f ak~ t !ĉk
†~ t501!D â.

~4.9!

The expression in Eq.~4.9! has the solution

â~ t !5exp@2 i $ha~ t !1Q̂a~ t !%#â~ t501!, ~4.10!

where the Hermitian operatorQ̂a(t) is just the time integral
from 0 to t of the three terms multiplyingâ on right-hand
side of Eq.~4.9!. The phaseha arises because the term in
volving theĉk andĉk

† operators does not commute with itse
at different times. By differentiating the expression in E
~4.10! with respect to time and using the Baker-Hausdo
relation a few times, we find that Eq.~4.10! is indeed a
solution of Eq.~4.9! if the phase is given by

ha~ t !5 (
k51

` E
0

t

dt8 Im@Fak~ t8! f ak* ~ t8!#. ~4.11!

A derivation of this phase and a geometrical interpretation
it can be found in@28#. With the expression~4.10! we have
finished our derivation of the evolution of the field operat
In the following section we apply the developed theory
describe phase collapse and entanglement.

V. APPLICATION OF THE THEORY

In this section we apply the theory developed in Secs.
and IV to describe the collapse of the relative phase betw
04361
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the two condensates and the entanglement of the atoms
simplicity we shall not be as general as in the preced
sections and we only consider a symmetric interaction t
we describe below.

A. Symmetric interaction

We consider the symmetric situation wheregaa5gbb
Þgab , and where the first pulse~1.1! is ap/2 pulse such that
N̄a5N̄b . We assume a system with a fixed total number
particlesN52N̄a , so that we have

N̂0a2N̄a52~N̂0b2N̄b!5~N̂0a2N̂0b!/21O~N̄a
0!.

~5.1!

We also assume that the trapping potentials for the two
ferent internal states are identical, spherically symmetric,
harmonicVa5Vb51/2mv2r 2. With this symmetric choice
of interactions the condensate wave functions are exactly
same for the two components of the condensateFa5Fb
5F. Furthermore the symmetry can also be exploited in
Bogoliubov modes. We divide the sum overk in Eq. ~4.1!
into a sum over terms that are even under the exchangea
andb (1 modes! and terms that are odd under exchange
a andb (2 modes!, i.e., we have

F uuak&

uubk&

uvak&

uvbk&

G5F uuk
1&

uuk
1&

uvk
1&

uvk
1&

G or F uuk
2&

2uuk
2&

uvk
2&

2uvk
2&

G . ~5.2!

In the remainder of the paper the superscripts1 and 2 on
operators and functions will refer to these even and o
modes. The symmetry of the modes is reflected in the fu
tions defined in Sec. IV that obey

f bk
6 56 f ak

6 ,

Fbk
6 56Fak

6 . ~5.3!

From these relations we find that the two components h
the same phase

ha5hb ~5.4!

and from the second relation and Eq.~5.1! follows that the
operators describing the1 modes are independent of time

d

dt
ĉk

150. ~5.5!

B. Initial conditions

To evaluate the time evolution of physical quantities w
need to relate the different operators after the resonant p
~1.1! to the similar operators before the pulse. The relat
between the operators before and after the pulse is c
pletely describe by Eq.~1.1! and below we extract som
result from the general relations.
0-8
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Before the resonant pulse~1.1! we assume that a conden
sate is formed in thea state and that there are no particles
theb state. This means thatâ(t502) is of orderAN whereas
b̂(t502) is of order unity so that we have from Eqs.~1.1!
and ~2.3! @29#,

â~ t501!5
1

A2
@ â~02!2b̂~02!#'â~02!/A2,

b̂~ t501!5
1

A2
@ â~02!1b̂~02!#'â~02!/A2. ~5.6!

These approximations should be handled with care s
they violate both the commutation relation and unitarity. T
sign ' in Eq. ~5.6! means that the operators have appro
mately the same matrix elements.

The operatorsĉk
1 can be related to the operators att

502 by using Eq.~4.3!. Inserting the approximate relation
in Eq. ~5.6! we obtain

ĉk
1~ t501!5A2@^uk

1~01!u+L̂a~02!2^vk
1~01!u+L̂a

†~02!#,

~5.7!

where we have introduced aL̂ operator before thep/2 pulse
L̂a(02)5â†(02)/ANdĈa(02) that is also used in Ref
@15#. As the other L̂ operators, this operator can b
expanded on a set of Bogoliubov modesL̂a(02)
5(kĉak(0

2)uuak(0
2)&1 ĉak

† (02)uvak(0
2)&, where the

mode functions obey orthogonality relations similar to E
~4.2!. In @15# it is shown that by a suitable choice of th
modesuuak(0

2)& anduvak(0
2)& the pseudoparticle operato

ĉak(0
2) are the Bogoliubov operators describing excitatio

of the condensates, and the ground state is the vacuu
these operators. The simplest relation between the oper
before and after the pulse is obtained by choos
uuk

1(01)&5uuak(0
2)&/A2 and uvk

1(01)&5uvak(0
2)&/A2.

With these modes the operators describing quasiparticle
citations in the1 modes are exactly the same as the ope
tors describing excitations before the pulse

ĉk
1~ t501!5 ĉak~ t502!. ~5.8!

To find the initial condition for the operatorsĉk
2 we again

use relation~4.3! and the approximation in Eq.~5.6! and we
find @29#

ĉk
2~ t501!52

1

AN̄a

@ â†~02!^uk
2~01!u+dĈb~02!2â~02!

3^vk
2~01!u+dĈb

†~02!#. ~5.9!

The simplest initial condition is obtained by choosin
uvk

2(01)&50. With this choiceĉk
2(01) is proportional to

dĈb(02). Since the initial state is the vacuum ofdĈb(02)
the initial state forĉk

2 is also the vacuum state independe
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of the mode functionsuuk
2(01)& and the state of the conden

sate. In our numerical work described below, we choose
uk

2s to be the excited states of the Gross-Pitaevskii Ham
tonian before the pulse.

C. Phase collapse

We now investigate the collapse of the relative phase
tween the two components of the condensate. As a quan
tive measure of the collapse we use the reduction of
mean spin in thex direction that is defined bŷ Jx&
5Re(̂ J1&), whereJ1 is given in terms of the fields opera
tors byJ15Ĉa

†+Ĉb . By inserting the splitting in Eq.~1.9!,

using the approximation in Eq.~5.6!, and introducing theL̂ ’s
we obtain

^J1&5^â†b̂&1^L̂a
†+L̂b&1O~1/AN̄a!. ~5.10!

The first term in this expression represents the time evolu
of the condensed atoms and the second term is the cont
tion from the noncondensed atoms. At short times the fi
term is of orderN̄a whereas the second term is of order uni
However, as we shall see below, the time scale of the

lapse scales asAN̄a and sincedL̂a /dt is of order unity, the
second contribution may become comparable to the firs
the collapse time. We shall only work in the dynamica
stable regiongab,gaa . In the opposite casegab.gaa it is
energetically favorable for the two components to separat
that any asymmetry in the two wave functions can grow w
time and the system is dynamically unstable@14#. By using
the same techniques as was used to show a similar resu
@15#, one can show that equation of motion for theu’s and
v ’s in Eq. ~4.4! corresponds to the time evolution of a pe
turbation of the condensate wave function perpendicula
the wave function itself. Hence the stability of the system
determined by the stability of the solution of the Gros
Pitaevskii equation, and if the system is dynamically u
stable the number of noncondensed particles is expecte
grow exponentially with time, so that the approximatio
performed here are invalid. On the other hand, in the reg
gab,gaa it is energetically favorable for the two componen
to be overlapping so that the system is dynamically sta
and the number of noncondensed particles performs s
oscillations in time. This behavior is confirmed by dire
numerical integrations of the equations. In the stable reg
the contribution from noncondensed particles remain m
smaller than the contribution of the condensed particles,
in the following we ignore the second term in Eq.~5.10!.

When we insert the solution in Eq.~4.10! into Eq. ~5.10!
we see that the phase collapse arises from the differenc
the anglesQ̂a2Q̂b . By using the relations~5.1! and ~5.3!,
the difference in the angles may be expressed as

Q̂a2Q̂b5~N̂0a2N̂0b!l14 ReS (
k51

`

Fak
2 * ĉk

2~ t501!D ,

~5.11!

where the functionl is determined by
0-9
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d

dt
l5~gaa2gab!^FuuFu2uF&14 ImS (

k51

`

f ak
2 * Fak

2 D
~5.12!

andl(t501)50. The first term in the time evolution in Eq
~5.11! is the same as the one obtained from the time evo
tion with a Hamiltonian such as Eq.~1.6!. The coupling
strength~1.7! was derived by only considering the contrib
tion from the condensate modes, and this coupling cons
is the same as the first term in the correct coupling stren
in Eq. ~5.12!. The second term in Eq.~5.12! represents a
modification of the coupling constant due to the Bogoliub
modes. The atoms in the condensate mode does give
largest contribution to the Hamiltonian~1.3!, but we do not
obtain the correct coupling constant by only considering
terms from the condensate modes, because it is the fluc
tions of these terms, and not the terms them self, that g
rise to phase collapse and squeezing. The fluctuations a
lower order and are comparable to the contributions from
Bogoliubov modes, and the Bogoliubov modes are to be
cluded. The Hamiltonian~1.6! is, however, still valid pro-
vided that we use the correct coupling constant in Eq.~5.12!.

The presence of the second term in Eq.~5.12! only
changes the coupling constant slightly. Reference@14# con-
siders the same situation~by a different method! and in the
Thomas-Fermi limit (m/v@1, wherem is the chemical po-
tential! it is shown that the effective coupling constant
approximately 7/10 of the coupling constant in Eq.~1.7!. The
functions f ak

2 and Fak
2 appearing in the second term in E

~5.12! comes from the change in the condensate wave fu
tions due to the fluctuations in the number of particles
statesa and b. Outside the the Thomas-Fermi regime t
condensate wave functions are less affected by the inte
tions and are closer to the ground state of the harmonic
tential that is independent of the number of particles of ty
a and b. We, therefore, expect that the contribution of t
second term becomes smaller if we go away from
Thomas-Fermi limit. This is indeed confirmed by a nume
cal integration of the equations. In Fig. 1 we show the ratiog
between the slopes of linear approximations to the time
tegrals of Eqs.~5.12! and ~1.7!. In the noninteracting limit
(m'3v/2), Eq.~1.7! gives the correct coupling constant an
in the Thomas-Fermi limit (m@v) the correct coupling con
stant ~5.12! approaches 7/10 of Eq.~1.7!. Note, that this is
only true for a time average of the coupling strength. T
expression in Eq.~5.12! have larger oscillation in time.

If we ignore the noncondensed particles, the initial stat
a Fock state withN particles of typea in the condensate
mode and the vacuum ofb̂ and ĉk

2 for all k. By using the
exact relations in Eq.~5.6! we can calculate the shape of th
phase collapse

^Jx&5
N

2
cosN21~l!expS 22(

k51

`

uFak
2 u2D . ~5.13!

An example of the phase collapse is shown in Fig. 2, wh
we show the phase collapse obtained by numerically in
grating the equations. The functionsFak

2 perform small os-
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cillations in time and the last exponential in Eq.~5.13! is of
minor importance. The phase collapse arises from the co
in Eq. ~5.13!. The value of^Jx& is reduced by a factor 1/e
whenl'A2/(N21) and the collapse time is roughly give
by

tc5A 2

N21

1

gx̄
, ~5.14!

wherex̄ is the average of the coupling constant in Eq.~1.7!.
Sincex is proportional to 1/N, tc scales asAN.

D. Spin-squeezing

We now turn to the calculation of spin-squeezing. T
calculation of spin-squeezing is more complicated than
calculation of the phase collapse because squeezing
lower-order phenomena. The operators describing the n
are the square of the angular-momentum operators and

FIG. 1. Modification of the coupling constant due to the Bog
liubov modes. The figure shows the ratiog between the average o
the correct coupling constantdl/dt ~5.12! and the average of the
single-mode value ~1.7! for as,ab /as,aa50 (1), as,ab /as,aa

50.5 (3), andas,ab /as,aa50.93 (n). The last value correspond
to the value foruF51,MF561& sodium atoms@30#. In the limit of
very weak interactions (m'3/2v), g approaches the estimate i
Eq. ~1.7!, and in the Thomas-Fermi limit (m@v) it approaches
7/10 as predicted in Ref.@14#.

FIG. 2. Collapse of the relative phase between the two com
nents of the condensate. The mean value of the spin^Jx& decreases
due to the fluctuation in the number of particles in each of
internal states. The parameters areas,aa /A\/M /v5631023,
as,bb5as,aa52as,ab , andN5105.
0-10
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volve the expectation values of the product of four field o
erators. Such a product is in itself of orderN2 but due to
interferences between different terms of orderN2 the noise is
only of orderN. Hence to calculate the squeezing we need
be very precise when we calculate the matrix elements. H
we calculate all matrix elements to orderN and omit terms of
orderAN and smaller.

We are interested in estimating the optimal squeezing
tainable with the proposal@4#. Experimentally it is possible
to optimize the measurement output by choosing the angu
such that the variance is minimized, and by minimizing t
variance (DJu)2 with respect tou we find that the minimum
variance is given by

~DJu!min
2 5

^Jz
21Jy

2&2A^Jz
22Jy

2&21^JzJy1JyJz&
2

2
,

~5.15!

and that the optimal angle is determined by

tan~2u!5
^JzJy1JyJz&

^Jz
22Jy

2&
. ~5.16!

To calculate the variance (DJu)min
2 , it is an advantage to

replaceJy by the raising and lowering operatorsJy5(J1

2J2)/2i , so that, e.g.,^Jy
2&5^J1J2&/22Re(̂ J1J1&)/2,

where we have used the symmetry to obtain^J1J2&
5^J2J1&. By expressing the raising and lowering operato
in terms of the field operators, using the splitting~1.9!, and
introducing theL̂a operator~3.1! we obtain

^J1J2&5^â†â&1^â†âb̂†b̂&1N̄a~^L̂b
†+L̂a&1^L̂a

†+L̂b&!,

~5.17!

where we have neglected terms of orderAN̄a. To calculate
the first two terms in this expression we use the fact that
have conservation of the number of particles, and thaJz
commutes with the Hamiltonian because we have no s
changing collisions. From the mean number of particles
the a stateN̄a5^Ĉa+Ĉa& we find

^â†â&5N̄a1O~N̄a
0!, ~5.18!

and from^Jz
2&5N/45^(Ĉa

†+Ĉa2N̄a)2& we find

^~ â†â!2&5
N~N11!

4
2N^L̂a

†+L̂a&1O~AN̄a!,

~5.19!

and with this expression andN25^(Ĉa
†+Ĉa1Ĉb

†+Ĉb)2& we
get

^â†âb̂†b̂&5
N~N21!

4
2N^L̂a

†+L̂a&1O~AN̄a!.

~5.20!

In the last equation we have made a replacem

^dĈa
†b̂b̂†dĈa&5N/2^L̂a

†+L̂a&1O(AN̄a). This replacement
04361
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is valid becauseb̂'â to lowest order according to Eq.~5.6!.
With these equations we can calculate^J1J2& in Eq. ~5.17!
and by doing a similar calculation for^J1J1& we find

^Jy
2&5

N~N11!

8
2

N

2
^L̂a

†+L̂a&2
1

2
Re~^â†â†b̂b̂&!.

~5.21!

By similar arguments we can also calculate

^JzJy1JyJz&52 Im~^â†â†âb̂&!. ~5.22!

The matrix elements appearing in Eqs.~5.21! and ~5.22!
cannot be calculated to the desired accuracy by only us
Eq. ~4.10!, because this equation does not go to high eno
accuracy. We need to calculate the matrix elements to o
N but in Eq. ~4.10! we are omitting contributions toâ of
order 1/AN. The next order correction toâ gives a contribu-
tion of orderN when inserted in Eqs.~5.21! and~5.22!. How-
ever, we can use the conservation of the number of parti
in each of the internal states to find the remaining term in
matrix elements without going to higher order in the calc
lation of â. We split the exact operatorâ appearing in Eqs.
~5.21! and~5.22! into the part that we have calculated so f
â0 and an additional termdâ of order 1/AN,

â5â01dâ. ~5.23!

At t501 we havedâ50 and by using that the number o
particles in statea andâ0

†â0 are independent of time we fin

â0
†~ t !dâ~ t !1dâ†~ t !â0~ t !

5L̂a
†~01!+L̂a~01!2L̂a

†~ t !+L̂a~ t !. ~5.24!

Note, that we only need the lowest-order contribution of t
term, and sinceâ(t)'â(01)'b̂(01)'b̂(t) according to
Eqs.~4.9! and~5.6!, we can actually replaceâ0 by b̂0 ~this is
necessary to complete the calculation below!.

With the above relation we are finally able to calculate t
relevant matrix elements. Using the splitting in Eq.~5.23!,
the initial condition in Eq.~5.6!, the time evolution in Eq.
~4.10!, and replacingâ(t502)†â(t502) with N2L̂a(t
502)†L̂a(t502)5N22L̂a(t501)†L̂a(t501) we obtain

^Jy
2&5

N~N11!

8
2

N~N21!

8
cosN~2l!

3expS 28(
k51

`

uFak
2 u2D ~5.25!

and

^JzJy1JyJz&52
N~N21!

4
cosN~l!sin~l!

3expS 22(
k51

`

uFak
2 u2D . ~5.26!
0-11
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By inserting these two expressions into Eq.~5.15! we can
find the minimum variance and with the expression for^Jx&
in Eq. ~5.13! we may find the squeezing parameterju

2 .
Note that we have not specified anything about the ini

state of the1 modes. Within the approximations used he
the results~5.25! and~5.26! only involve expectation value
of operators for the2 modes and the squeezing is indepe
dent of the state of the1 modes. If the condensate is at
nonzero temperature before the pulse, it can be describe
quasiparticle excitations, and these excitation are transf
into excitation in the1 modes after the pulse. The2 modes
are always in the vacuum state independent of tempera
and the squeezing calculated here is, therefore, also inde
dent of temperature. Another nice property of Eqs.~5.25! and
~5.26! is that they only involve the functionsFak

2 and not the
number of noncondensed particles. Because the funct
Fak

2 vanish for states with nonzero orbital angular mome
tum, according to Eq.~4.6!, it is sufficient to determine the
evolution of the Bogoliubov modes with vanishing orbit
angular momentum and this simplifies a numerical treatm
of the system significantly.

In Fig. 3 we show the evolution of spin-squeezing w
the same parameters as in Fig. 2. In the figure we also s
the prediction of the Hamiltonian~1.6! with a coupling con-
stantx equal to the slope of a linear approximation tol. The
two curves are in reasonably good agreement with e
other. The deviation between the two curves is caused by
exponentials of theFak

2 functions in Eqs.~5.25! and ~5.26!,
i.e., by the dependence of the wave function on the num
of particles. After the resonant pulse the wave function is
longer in equilibrium because the repulsion of the atoms
suddenly reduced, and the size of the atomic cloud will
cillate in time. The oscillations of the wave function depe
on the number of atoms in each of the internal state,
because the state of the system is distributed on states
different number of atoms in each internal state, there is
uncertainty in the wave function that introduces noise a
reduces the squeezing. After the completion of a full osci
tion (vt'4, 9, 13, and 18!, the wave function has approx
mately its initial form independent of the number of atoms
each internal state (Fak

2 '0), and the results of the Hamil

FIG. 3. Time evolution of the squeezing calculated by a num
cal integration~full line! and from the approximate Hamiltonia
~1.6! ~dashed curve!. The parameters are the same as in Fig. 2.
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tonian ~1.6! are in very good agreement with the numeric
results. The result in Fig. 3 is very similar to the result o
tained with the same parameters but a different approxim
method in Ref.@4#, and our result thus supports the concl
sions reached in that paper.

The difference in scattering length used in Fig. 3 is
exaggeration of the realistic parameters. If the experimen
performed with the two hyperfine statesuF51,MF561& in
sodium representing the internal statesa and b as proposed
in @4#, the ratio between the scattering lengths
as,ab /as,aa'0.93@30#. In Fig. 4 we show the squeezing pro
duced with this value of the ratio. Because the scatter
lengths are very close, the oscillations of the wave funct
are much smaller, and the numerical curve and the re
from Eq. ~1.6! are in better agreement.

To create an entangled state the coupling constantx in the
Hamiltonian ~1.6! should be nonzero. So far we have o
tained a nonzero coupling by having a difference in t

FIG. 5. Squeezing created by a Bragg pulse as proposed in
@9#. At time t50 the trap is turned off and two components a
separated by a Bragg pulse. The full line is the result of a numer
integration and the dashed curve is the prediction from the Ha
tonian ~1.6!. The parameters areas,aa /A\/M /v5631024, as,bb

5as,aa , as,ab50, andN51.73106. These parameters are chos
such that they are similar to the parameters in Ref.@31#. The ratio
as,aa /A\/M /v5631024 corresponds to sodium atoms in a tra
with trapping frequencyv52p319 Hz before the trap is turned
off.

i- FIG. 4. Squeezing between the twouF51,MF561& hyperfine
states in sodium. The parameters are the same as in Fig. 2 e
as,ab /as,aa50.93. The full curve is the result of a numerical sim
lation and the dashed curve is from the Hamiltonian~1.6!.
0-12
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scattering lengthsas,aa1as,bbÞ2as,ab . From the approxi-
mate coupling constant in Eq.~1.7! we see thatx is also
nonzero if thea and theb atoms occupy two different re
gions in space, even if all scattering lengths are identical
Ref. @9# it was proposed to produce spin-squeezing by
placing the two internal statesa and b with two different
momentum states that are created by a Bragg pulse sh
after the trap has been turned off, i.e., exactly the same s
as used in@31#. This proposal has the advantage that
squeezing is now between atoms in the same internal s
and the squeezing is, therefore, better shielded from ph
decoherence caused for instance by fluctuating magn
fields. Also, this proposal could be used for rubidium ato
where the scheme that has been studied so far is not a
cable because the scattering lengths are almost identica

To investigate this situation we assume that the time
takes for the two momentum states to separate is very s
so that we can neglect the interaction during this separa
process. In this case there is no interaction between thea and
the b components and we can describe this situation by
ting as,ab50 andVa5Vb50 after the pulse. In Fig. 5 we
show the result of such a simulation with parameters sim
to the parameters in Ref.@31#. The calculation shows tha
strong squeezing can be produced with this proposal, bu
agreement with the Hamiltonian~1.6! is not as good in this
case because of the exponentials in Eqs.~5.25! and ~5.26!.
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VI. CONCLUSION

In this paper we have analyzed the scheme propose
Ref. @4# by describing the system with a number-conserv
Bogoliubov theory. The developed theory is a consistent
pansion in the ratio between noncondensed and conde
particles, and the validity of the calculations can be inve
gated in a given experimental configuration.

The results obtained in this paper show that stro
squeezing can indeed be produced by this method but
theory is not able to determine the precise limit of the o
tainable squeezing. The results of this paper agree with
result of the simplified Hamiltonian~1.6! that predict a re-
duction of the squeezing parameter by a factor of appro
mately N22/3, but we are ignoring terms of orderAdN/N.
From this we conclude that the obtainable squeezing is
least of orderAdN/N. The obtained results are independe
of the temperature of the condensate, and the only effect
nonvanishing temperature is that the approximations br
down a little earlier.
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