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As discussed in the preceding pap®viseman and Vaccaro, preceding paper, Phys. Re§5A043605
(2002], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states
with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if
either, of these descriptions pfg as a stationary ensemble of pure states, is more natural. In the preceding
paper we concentrated upon the question of whether descriptions such as these are physically (@®zable
In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is
one for which the pure states that comprise it survive relatively unchanged for a long time under the system
evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser
model: the self-energy of the bosons in the laser mode, and the excess phasemd¢efind that these most
robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal
laser limit (v=x=0), the most robust states are coherent states. As the phase noise or phase dispersion is
increased througlr or the self-interaction of the bosons respectively, the most robust states become more
and more amplitude squeezed. We find scaling laws for these states, and give analytical derivations for them.
As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the
most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the
guantum coherence of the laser output is manifest in the most robust PR ensemble being an ensemble of states
with a well-defined coherent amplitude. This lends support to our approach of regarding robust PR ensembles
as the most natural description of the state of the laser mode. It also has interesting implications for atom lasers
in particular, for which phase dispersion due to self-interactions is expected to be large.
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I. INTRODUCTION is true. If it were true then there should be some way of
finding out which coherent state the laser is in without af-
A laser is a device that produces a coherent beam dEcting its dynamics. We found that if there is any self-
bosons. The meaning of the word “coherent” in this context€nergy in the laser modeuch as g nonlinearity for an
is discussed at length in a paper by one oflisIn particu-  optical laser, osswave scattering for an atom lagethen it
lar, a coherent output does not mean that the output, or thi§ in factnot possible to physically realize the coherent-state
laser mode itself, is in a coherent state. Rather, as has lorg’Sémble in Eq(1.2). By contrast, it is always possible to
been recognizef?], the stationary-state matrix for the laser Physically realize the number-state ensemble in Ed).

. . i i 3)_[; i i _
mode is a mixture of number states. In the far-above thresh. For an k|1deal Itaste(twnc:\ no x i like r:jo?klllnearlLty, the un 0
old limit, this mixture is Poissonian with mean, nown coherent-staté description an € unknown number-

state description are both physically realizatf). Given

% n that they are mathematically equivalent, why is the former
Pe= D e‘“'u—|n)<n|. (1.1)  description ubiquitous and the latter rare? The answer, as was
n=0 n! pointed out some time ago by Gea-Banacloghis differ-

) . ) ential survival times. An ideal laser prepared in a coherent
This state matrix can also be represented as a mixture @fate will remain close to that initial state for a time of order

coherent states, k1, wherek is the bare decay rate of the cavity. By con-
trast, a laser prepared in a number state will be likely to
_ J’ d—¢||a|ei¢><|a|ei‘f’| (1.2 remain in that state only for a time of order '/, whereu
Pss™ | 27 ’ ' is the mean number as above.

This result, derived also in Reff5], was taken further by
where|a|?= u. Gea-Banacloche in Reff6] using the early model for a laser
On the basis of this second representation, one mighkith saturation due to Sargent, Scully, and Lafah Gea-
claim that the laser really is in a coherent stdtge'?), but  Banacloche considered pure states with mean photon number
that one cannot knowa priori what the phasep is. In the  equal to that of the laser at steady state, and calculated their
preceding papdi3] we have investigated whether this claim purity at later times. He showed that the pure state that had
the slowest initial rate of decay of purity was, in general, a
slightly amplitude-squeezed state rather than a coherent
*Electronic address: h.wiseman@gu.edu.au state.
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There seems little doubt, then, that it is most useful toferred states” of open quantum systems as those states that
consider an ideal laser to be in a coherent statenearly remain relatively pure for a long time. This idea can be
coherent stadeof unknown phase. However, it is an open thought of as a “predictability sieve[11]. That is, the pre-
question whether this is true of a nonideal laser, that is, &erred states are those for which the future dynamics are
laser with additional noise or dispersion of some form. An-predictable, in the sense that there is some projective ques-
other open question is how this issue relates to the quantuifon (Is the system in some particular statétat is likely to
coherence of the output of such a nonideal device. give the result “yes.”

The particular laser system of interest here is the atom Our approach, as introduced in R¢@] and applied to
laser[1]. An important difference between an atom laser andesonance fluorescence by one of us and Biddy, is to
an optical laser is that the interatomic interactions cannot bénd the maximally robust unraveling. This approach shares
neglected. This gives rise to @%)-like nonlinearity in the some similarities with other approaches. It has, however, a
laser mode. As noted above, this affects the physical realisuite of four distinctive characteristics that we enumerate be-
ability of ensembles, and we also expect it to affect theifow.

robustness.
A robustness analysis for a Bose-Einstein condensate has 1. Ensembles of pure states
been done by one of us with Barnett and Burri@it This First, we considered not a single pure state, but an en-

produced results similar to that of Gea-BanaclofBk al-  semble of pure states. This is appropriate for situations where
though it was based on the fidelif] that measures the the open system comes to a mixed equilibrium state. The
overlap of the initial state with the state at a later time. How-ensemble of pure states that we consider must be a represen-
ever, the authors of Reff7] only calculated the initial rate of tation of that equilibrium mixed state. That is, the system has
decay of the fidelity, and this is not affected by any Hamil-a certain probability of being in one of those pure states, as
tonian terms. Hence the self-energy played no role in thisn Egs.(1.1) and(1.2). Recently, Disi and Kiefer[14] have
analysis. Moreover, the treatment, like that of Gea-also considered ensembles of pure states in a similar context.
Banaclochd6], considered only a single pure state to repre-  Without considering such an ensemble, it is necessary to
sent the state of the condensate. Thus it does not give, ifut somead hocrestriction on the pure states considered so
general, a representation of the steady state on par with E¢hat they have some relevance to the actual state the system
(1.1 or Eq.(1.2. is in at equilibrium. For example, as noted above, Gea-
In this paper we give an analysis that treats the dynamicganaclochd 6] considered only pure states having the same
of an atom laser at all times and that incorporates an enmean photon number as the equilibrium state of the laser
semble of pure states. It takes into account Hamiltoniarmodel under consideration.
terms and gives a robust representation of the steady state.
We consider both the problem of finding the most robust 2. Physical realizability
ensemble, and the most robust PR ensemble. Since en- gecond, in Ref[9] we placed a restriction on the en-

sembles are realized by unraveling the master equii@h  sembles of pure states that we consider: they must be physi-
finding the most robust PR ensemble is equivalent to findinga|ly realizable. By this we mean that it should be possible,
the maximally robust unravelinga concept introduced by us ithout altering the evolution of the system, to know that its
in Ref. [9]- ) ) . ) state at equilibrium is definitely one of the pure states in the
A review of maximally robust unravelings, including @ ensemble, buwhichparticular pure state cannot be predicted
comparison with other approaches, is given in Sec. II. In Segyeforehand. Disi and Kiefer[14] have considered a similar
[l we present _the equations for determining the maximallycondition, although they do not make the connection with
robust unravelingMRU) for an atom-laser model. We con- physical realizability and measurement. In this paper we also
centrate upon continuous Markovian unravelings, which give:onsider ensembles without the constraint of physical realiz-
ensgmbles of Gaussian states, and also consider uncogility, as it is of interest to see how active that constraint is.
strained Gaussian ensembles. In Sec. IV we present the nu- we have considered in detail the issue of physical realiz-
merical solutions for these equations, concentrating on thﬁbility of ensembles of pure states in the preceding pggler
asymptotic behavior in the limit of large nonlinearigyand  Here we merely remind the reader of some key points and
phase noise. The concluding Sec. V is a discussion of our terminology. An ensemble for a system obeying a Markovian
results and their relation to atom-laser coherence, and somgaster equation is physically realized by monitoring the

suggestions for future work. baths to which it is coupled. This leads to amraveling[17]
of the master equation into a stochastic equation for a pure
II. MAXIMALLY ROBUST UNRAVELINGS state. In steady state, the pure state will move ergodically

within some(perhaps infinite ensemble of pure states. This
is how an unraveling defines an ensemble, with the weight-
The idea of robustness has it origins in studies of decoing of each member being the proportion of time the system
herence and the classical linit—7,10—-15. Decoherence is spends with that state.
the process by which an open quantum system becomes en-
tangled with its environment, thereby causing its state to be-
come mixed. However, not all pure states decohere with Third, in Ref.[9] we defined robustness in terms of the
equal rapidity. In particular, ZureklO] defined the “pre- fidelity or survival probability of the pure states rather than

A. Comparison with other approaches

3. Survival probability
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their purity. That is, we consider how close the states remain dP=dt[ L+ U(t)]P. (2.5
to their original state under the master equation evolution,

rather than just how close they remain to a pure state. Thiglere the superoperatdf, which we will call an unraveling,
means that Hamiltonian evolution alone can affect the rodoes not affect the average evolution of the system, but pre-
bustness of stategvhereas it does not affect their purity, serves the idempotency & In the long-time limit the sys-
except in conjunction with the irreversible term# might  tem will be in some pure stafe,, with some probability,

be thought that this is an undesirable feature. However, asuch that Eq(2.3) is satisfied. Since the states and weights

will be shown, using the survival probability gives results will depend on the unraveling/, we denote the resultant
that accord with the usual concept of coherence in laserstationary ensemble by

This contrasts with the results that are obtained using purity,
which we also consider at the end of this paffeec. V Q. E“={(Pzr{,g)ﬁ’):n=1,2, o (2.6)
4. Survival time For practical reasons explained in RES], we restrict our

The final aspect of our work that differs from most previ- investigation of the(atom laser to continuous Markovian
ous approachds$,12—14 is that we quantify the robustness unravelingslCMUs). As was shown in Ref.3], under a lin-
by the survival time(This time was previously called the earization of the dynamics these lead to Gaussian pure states
fidelity time in Ref.[7]). It is the time taken for the survival as the members of the ensembl&$ As mentioned above,
probability to fall below some predefined threshold. This iswe will also consider ensembles, in particular Gaussian en-
as opposed to considering the rate of decay of the survivalembles, which are not constrained by the requirement of
probability at the initial time. That rate is actually identical to physical realizability. This is in order to see the importance
half the initial rate of decay of the purity, and hence is inde-of this requirement in constraining the most natural en-
pendent of any Hamiltonian terms. It is only by consideringsembles.
the robustness over some finite time that the Hamiltonian

terms will contribute. C. Quantifying the robustness
B. Unraveling the master equation 1. Survival probability

In this section, we briefly reiterate the discussion in Ref. Imagine that the system has been evolving under a par-

[3] on how the master equation is unraveled to yield a pure'gcular unraveling/ from an initial state at time-« to the

state ensemble. The most general form of the Markoviar?tationary ensemble at the present time 0. It will then be in
master equation E18] the stateP¥ with probability p%. If we now cease to monitor

the system then the state will no longer remain pure, but
) K rather will relax towardpss under the evolution of Eq2.1).
p=—i[H,p]+ > Dlcp=Lp, (2.1 This relaxation to equilibrium will occur at different rates
k=1 for different states. For example, some unravelings will tend
to collapse the system &0 into a pure state that is very
fragile, in that the system will not remain in that state for
D[A]B=ABA"'—{ATA,B}/2. (2.2)  very long. In this case the ensemble would rapidly become a
poor representation of the observer’s current knowledge
We assume this to have a unique stationary gigielt can  about the system. Hence we can say that such an ensemble is
be represented in terms of pure states as a “bad” or “unnatural” representation op. Conversely, an
unraveling that produces robust states would remain an ac-
2.3 curate description for a relatively long time. We expect such
' a “good” or “natural” ensemble to give more intuition about
the dynamics of the system. We interpret the most robust
where theP, are projection operators and the are positive  ensemble as the “best” or “most natural” of such ensembles.

where for arbitrary operator& and B,

Pss:; 9nPn,

weights summing to unity. We will call th@ossibly infinite In most of this paper we quantify thebustnessof a
set of ordered pairs, particular stateP? by its survival probabilityS{(t). This is
the probability that the system would be foutimy a hypo-

E={(Pn.pn)in=12,..}, (24 thetical projective measuremeno be still in the statd" at

an ensembl& of pure states. There are continuously infi- time t. Itis given by[19]

nitely many ensembleg that represenpgs. Our aim is to
find the “best” or “most natural” representation fgs;.

Our first requirement is that the ensemble be physical
realizable. This is possible if the environment of the syste
is monitored, leading to a stochastic quantum trajectory fo
the system state. Assuming that the initial state of the system
is pure, the quantum trajectory for its projector will be de- S“(t)=2 PU(t). 2.8
scribed by the stochastic master equatiSME) moonn

SH(t)=Tr[ P4e“'PY]. 2.7)

ly.. . .
r#lnce we are considering an ensembtewe must define the
Average survival probability
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In the limitt— oo the ensemble-averaged survival probability tion in terms of the coherence of the laser output. We will

will tend towards the stationary value show that this is so in the Discussion section.
One limit in which quite different results are to be ex-
() =Tr[pZ]. (2.9  pected from using purity rather than survival probability is

that in which the Hamiltonian part of the dynamics domi-
This is independent of the unravelidgand is a measure of nates. As will be shown, this limit is highly relevant for the
the mixedness Ofs. atom laser.
Formally, we split the Liouvillian superoperatdr as
2. Comparison with purity

As noted in Sec. Il A 3 above, it is more common in dis- L= Lin+ XLrev, (212

cussions of robustness to use purity rather than survival .
probability. The purity of a state at tintecan be quantified as Wherey is a large parameter and
K

Ure\ LipU\2

Po(t)=Tr[(e7Pn)"). (210 Linp= 2, Dledp, (2.13
The ensemble average of this quantity is also initially unity,
and approaches [pﬁs] as t—oo. Alternatively, the purity Lew=—1i[H,p]. (2.19

could be quantified as the maximum overlap of any pure o o
stateP,(t) with the evolved mixed state The reversibility 0L, implies that
PY(t) =maxTr [P, (t)(e“'PY)]. (2.11) TALweB]=~Tr[BLeAl (219
Pn(t) and so TfALA]=0, for arbitrary operatoré& andB.
To first order in time, both the survival probability and the
For Gaussian statdsee Sec. I)ithese quantities are simply purity depend only upon the irreversible term:
related byp¥(t)= 21+ 1/p4(t)].

The survival probability has a number of advantages over S(t) =1+t Tr[PL;,P], (2.16
purity. First, we motivated our robustness criterion from the
desire forE¥ to remain a good description of the system p(t)=1+2t Tr[PL;,P]. (217

once the unraveling ceases. That is, we wish to be able to ) . . .
usefully regard the members of the ensenBlas the states ©OF longer times, both expressions wik general be domi-
the system is “really” in at steady state. This is better quan-Nat€d in the large: regime by the reversible term, but in
tified by the survival probability because the purity effec- different ways:

tively takes into account only how close the statéP,, re-

mains to some pure state,(t) [introduced in Eq(2.11)],

not how close it remains to the original stafg. An en- — 2 A _ _

semble constructed by considering the purity would thus, in PIO=1HXTIP(LirLiev™ Lrevlin) PI. - (2.19
general, only remain a good description of the system byrne Hamiltonian term directly affects the survival probabil-
including the deterministi¢but not necessarily unitargvo- ity, but it affects the purity only in combination with the
lution of its members fronP,, to P,(t) after the unraveling irreversible term.

ceases. This time evolution would negate the idea that the

ensemble of stateR,, is the best representation of the system 3. Survival time

at steady state. . . . The above analysis shows that the difference between pu-
Another reason .for preferring the .SUW'V?' probability rity and survival probability only shows up at finite times.

comes from imagining that the unravelibgcontinues after 11,5 the hest way to characterize robustness is to look not at

t=0. In that case one can calculatecanditional survival = 0 jnitial rate of decay of the survival probability, but at the

probability, being the overlap of the pure conditional stat€;yq i takes to fall below some threshold valtesatisfying
with the pure initial state. The ensemble average of this con-

ditional survival probability is simply the survival probabil- 1>A>Tl’[p25]. (2.20

ity SH(t) defined in Eq.(2.7) above. Thus the concept of °

survival probability still applies even for the conditional evo- The ensemble survival time for a particular unraveling would
lution. By contrast, the conditional purity of the unraveledthen be defined as

state would always be unity, and consequently has no rela-

S(t)=1+ x2(t22)Tr[PLZ P], (2.18

tion to the unconditional purity defined in EqR.10. The rU=min{t: (t)=A}. (2.2)
latter thus has no simple interpretation for the unraveled evo-
lution. Note that this time is théirst time for whichS¥(t)=A. The

The final reason for preferring survival probability, al- survival probability is not necessarily monotonically de-
ready noted in Sec. Il A3, is that it yields results for the creasing and in some simple examples there will be many
atom laser that have a clear and simple physical interpretasolutions to the equatio8“(t)=A [16].
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A natural choice ofA, suggested in Ref9], is the maxi- lll. MRUs FOR THE (ATOM) LASER

mum eigenvalue Opsg: A. The master equation

. N1 The master equation we use for tfetom laser is the
A=1im (Tr[pgd) (222 same as that in the preceding papé}. In the interaction
e picture, and measuring time in units of the output decay rate,
it is
=maxX\ielR:p -=)\»Q-,Q-=Q-2- 2.2 :
X\ LQ=1Q;,Q=Qj} (2.23 p=(uD[a'lA[a’]" 1+ D[a]+ND[a'a])p
i )2
This can be shown to satisfy>Tr[p§5'] as follows. Let the IC[(a’a)%p]. @

eigenvalues opgs be ordered such that=N;=\,=N\3- - -. :
Tr?en Pss 1= ns The parameter®\ and C represent excess phase noise and

self-interaction energy, respectively. This has the stationary
solution expressed in Egél.1) and(1.2), with mean boson
21 a2 2 numberz.
Tripsd=A +j22 Aj (2.24 To make progress on this equation we linearized it around
a mean field by making the replacement

<APE 2 AN (2.25 a=u+(x+iy)/2, 3.2
P

with x andy Hermitian. The linearized master equation has a
Gaussian solution with moments

=A%+ A(1-A)=A. (2.26
Mmn= <(men)sym> (3.3
Here the strict inequality holds unless all eigenvaluep Qf .
are equal. given by
In the absence of any monitoring of the bath, the projector _
Q; would be one’s best guess for what pure state the system H1o(8) = 1o OW, 34
is in at steady state. The chance of this guess being correct is _
simply A, which is obviously independent of tinte Using #o1(t) = po2(0) = xp10(0) (1= W), (3.9
this A, the survival timer" could thus be interpreted as the 5 5
time at which the initial stat®" ceases (on average) to be poo(t) = pog )W+ 1—w*, (3.9

any better than @ as an estimate of which pure state is 5
occupied. In other words, the ensemBléis obsolete at time  #11(1) = ©12(0)W—x{1+W[ 150(0) = 2]+ W1~ u»(0) 1},

Y. (3.7
In this paper we do not use this choice for for reasons
to be explained later. This brings a certain degree of arbitrari- HoAt) = oA 0) + (2+ v)t—2x n12(0) (1 —w)
ness into the analysis. However, as we show, the most im- 2
L] ) + + — —
portant and interesting results we obtain are independent of 2x [ 0) = 2](1=w)
the choice ofA. +[1— u20(0)](1—W?)/2}, (3.9

Having chosen a particular value fdr, the survival time
Y quantifies the robustness of an unraveliigLet the set wherew=e™!, y=4uxC, andv=4uN. The long-time limit
of all unravelings be denotell Then the subset ohaximally  of this is a Wigner function
robustunravelingsly, is
Wd X,y) = exp( — x?/2) (3.9
Iu={Redr"=71V Uel}. (220 \ith amplitude quadraturéx) variance of unity and phase
guadraturely) variance of infinity. This is what is expected
As noted above, in practice it may be necessary to restrict thas the linearized version of the stationary state of Ed).
analysis to continuous Markovian unravelinBs and the The conditions for the output of the laser to be coherent,
corresponding subsdd,, . Even if J, has many elements in the sense of having an atom flux much greater than the
R1,R,, ..., these different unravelings may give the samelinewidth (as conventionally defingdare simply stated in
ensembleER=ER1=ER2=. .. |n this caseEX is the most terms of the dimensionless self-energyand excess phase
natural ensemble representation of the stationary solution dfiffusions v 3]
the given master equation. When we consider ensembles that

are not constrained by the condition of physical realizability, x<u®, (3.10
we will denote the most robust of these Bf. That is, we
reserve the calligraphi® to denote a robust unraveling. v<pu?. (3.11
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B. The unraveled master equation P
11

Under a continuous Markovian unraveling the long-time B=—""—, (3.1
solutions for the linearized stochastic dynamics are still Haottoz™ K11
Gaussiar 3]. In fact, the evolution of the second-order mo-
ments wop, Loz, 11 1S deterministic. This means that for a Moo
given unraveling// the stationary ensemble will consist of LA 3.17
M20M027™ M11

Gaussian pure states all having the same second-order mo-
ments. They are distinguished only by their first-order mo-

mentsx= w19,y = o1, Which therefore take the role of the

indexn in Eq. (2.6). The different ensembles themselves are

indexed by another pair of numberg,,, .9, Which play
the role ofi/ in Eq. (2.6). We do not neegkq, because the
purity of the unraveled states implies that

(3.12

However, it should be noted that the mapping frémto
11, M20 IS, IN general, many to one.
The ensemble can thus be represented as

EY={(P{5.055) XY} (3.13

where the second-order moments of the pure sﬁ’é{t@are
determined by the unravelirig.
The weighting function is flat foy and forx is given by

(3]

P =[2m(1— pa0) ]~ Y2exp{—x4[2(1— pa0) 1}
(3.19

2 _
Mooz M7= 1.

It is convenient to use a new notation for the second-order

moments,

Mo2

—= (319
M20M02~ M11

a=

For pure states satisfying E€.12), we have(as in the pre-
ceding papef3])

a=po2;  B=H11, Y= M2o- (3.19

The different ensembles are now indexed by the painj.

Not all pairs (3,y) correspond to physically realizable en-
sembles. The method for determining the pairs that corre-
spond to PR ensembles is described in the preceding paper

[3], and the constraints that apply are simply0 and
(—2xB+2+v)(—2y+2)—(B+xy)?=0. (3.19

C. Survival probability

We are interested in the survival probability of the states
P%V' It is convenient to consider the corresponding Wigner
functions,\/\/%y(x,y). Obviously, the survival probability is
independent ofy so we will drop this subscript, and sgt
=0 for ease of calculation. For Gaussian states the Wigner
function is a bivariate Gaussian distribution with the mo-
ments u,, defined above. The state with initial moments
mmn(0) will evolve into a state with momenis,,,(t) given
by Egs.(3.4—(3.8). We will denote the Wigner function for
the former stat&\V,(x,y,0) and that for the latteWWy(x,y,t).
The survival probability of the state is given by[20]

S)—((t)ETr[P;e“P;]=4wf dxdyW(X,y,0) Wx(X,y,t) (3.20
_ #20(0) 02 0) (x=%)?  p1(0)(x—X)y y?
~ar | dXdVMO)eX’{ o 00 0)— iad 02 220 ' 12 0)ead0)  2100)
Moo t) poo(t) ( (X=XW)?  wg5(H) (X=XW) (Y + xX(1—w)) (y+X7(1_W))2)
- - , 3.2
XM”EX'{ Do) — D2 28zlD srad O oA D 210D @29
|
where Thus S(t) is given by a triple Gaussian integral that evalu-
ates to the following:
N= (27 poouor— i) . (322

This survival probability should be averaged over =l
weighted by the distributioi3.14) to get

st)= J dxS(t) pH(x). (3.23

\/ (ayy—BAI[1+(1— y)R]
(@t ay)(Yo+ v — (Bo+ B2

(1)

(3.29

where
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(ao+ aW+ Bix2)?
Ri=aqp+ ath-l— 2BxwWz+ yt)(zzz— 2ot 2
_ [(Bot B (gt aw+ Bix2) — (ot a) (Bot+ B+ x2)1? (3.25
(ot ap[(ag+a)(vot+ v —(Bot B2
|

wherez=1-w anda, 3,y are as in Eqs(3.15—(3.17), and A=1/2. (3.31)
Mmn are as in Eqs(3.4—(3.8). Note that at=0 the state is
pure, so thatg= gy, Bo= K11, Yo= Moo @S previously. The
state parameterg, and 8y, and the dynamical parameters oo .
and . Finding the most robust PR ensemt#& consists of a

searching for the maximumr in the region of 8-y space
allowed by the PR constraint. To determine how important
this constraint is in determining”, we also search for the

Following the general theory described in Sec. Il C 3, Wepaximum ~ in all of 8-y space(subject only to 6<y<1).
define the survival time“as the smalledin this case itwill  The ensemble picked out by this search we will call the most
be the only solution to the equation robust unconstrained ensemble and deSteAlthough we

D. The survival time

Uy =A, (3.26 call in unconstrained, it is in fact constrained to be of the
same form as the ensembles resulting from a continuous
whereA is a constant satisfying Markovian unravelings. That is, it consists of Gaussian states
with identical second-order moments distinguished only by
1>A>Tr[p]. (3.27  their mean amplitude and phase.

From the solutior(1.1) of the nonlinear dynamics, the lower
bound onA is, for u>1,

Tr{pZ]=(4mu) Y2 (3.28

In the same limit, the largest eigenvalue fog is

IV. RESULTS
A. Varying x with »=0

First we present the results for no excess phase naise (
=0) to see the effect of varying the self-energy parameter
Because our results are numerical, we present them mostly in

lim YTr[pl)=(27pu) Y2 (3.29 @ graphical form.

o 1. Evolution at y=0 and xy=50
From these expressions it is evident that there would be a Figure 1 shows the evolution of various initially pure
problem in Chzoosmg Eq:i'lz,zg) for_ Atitis very close to the Gaussian quantum states under the linearized evolution of
value for Tf ps=(4mun) = This means that the survival Eqs.(3.4—(3.8). We represent these states by the 1-standard-

time would be equal to the time by which the system hasjeviation ellipses of the Wigner function. In each case we

relaxed almost to the equilibrium mixed state. In particular,choose the initial mean location of the state in phase space to

its phase would necessarily be poorly defined by this timebe 7=V=0 and. for the last two cases f§:0 =

which means that the linearization of the dynamics that we,_ /312 as well. ' '

have been using would not be valid. - i
If instead we start with the solutio3.9) of the linearized

dynamics, we have an even worse situation:

The first case in Fig. (@) is for v=0,y=0, and an initial
coherent state. The ellipses are plotted fe10,3,10. The
middle time is the ensemble-averaged survival time for an
ensemble of coherent states; that is, the time at which the
ensemble-averaged survival probabilBt) drops to 1/2.
For the particular case of the coherent state there is no dis-
In this case the survival time would always be infinite, whichtinction between the ensemble-averaged survival probability
is not helpful. and the survival probability of a single coherent stgt&t).

Because of these problems, we have not chosen the lardhat is because thevariancey of a coherent state is equal
est eigenvalue gb.for A. Instead we have investigated the to unity, the ensemble-averaged/ariance, so that perforce
dependence ofr® on A for various values, namelyA  x=0. Note that the only dynamics in evidence here is phase
=0.5,0.2,0.1,0.05. As will be shown, the most robust en-diffusion, causing the variance of the state to increase. For
semble(that with the largest survival timas substantially y=v=0, the coherent state ensemble is in fact the most
independent ofA. Unless otherwise stated we choaseto  robust ensemble. This can be verified analytically. It is also
be the midpoint of the two bounds in E.27), namely, physically realizable, as shown in the preceding papér

Tr{pZ]= lim YTr[pi]=0. (3.30

n—oe
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x>0, and that it is actually in the direction opposite to the

(b)

6: 1E ] ! ': r ! Y: rotation caused by the shearing. That is, as the most robust
JF 1k b 1t E state evolves it passes through a point where the squeezing is
- 1t . 1t . purely in the amplitude. Because thevariancey® of the
i 1t ] 1r ] states in this ensemblER is less than unity, the different
2 JF p min 1 members ofER have different values of. The three initial
i 1 1 1F 1 states we show, witk=0 andx= */3/2, are typical mem-
& = 1F il N N EIR B B E bers of the ensemble. The states into which these members of
- 1t i 1L i the most robust ensemble evolve are plotted tfe10.100
2r 1rF 7] Ir n =R (the survival tim¢ andt=0.2 [as in Fig. 1b)]. Note
Bl 8 1t . that the survival time is significantly larger than that for the
4F U dE . 4k - coherent state ensemble in FigblL
C 1t ] 1 ] The final plot, Fig. 1d), shows typical members of the
Ll Lok 01, JC0 11 T most robust PR ensembE”®. That is, the most robust en-
-1 01 -1 01 101 semble that can be realized by unraveling the master equa-
x * * x tion. It is very similar to the most robust unconstrained en-

sembleER, also being highly amplitude squeezed wigff
=0.092. The three times at which its evolution is plotted are
=0, t=0.098= 7", andt=0.2[as in Figs. 1) and Xc)].

ote that the survival time™ is marginally smaller than that
for the unconstrained ensembiel. The principal difference
from Fig. 1(c) is that thex-y covariance has the opposite
sign, with B®=—0.092. This corresponds to a rotation of
#%=—0.48°, a rotation that is accentuated as the evolution

we havey=50 and again an initially coherent state. For Rig.we progresses. Again, the initial rotation is almost too small to

have y=50 but the initial states are members of the most robus€€ in the.figurg,.but i_t is a persistent feature for layge
unconstrained ensembiR for this y. For (d) we havey =50 but From Fig. 1 it is evident that the evolved states from the

the initial states are members of the most robust PR-constraineiitial state withx=0 in the robust cases of Fig(d att
ensembleER for this y. In all cases the black ellipses are for =0.100 and Fig. (d) at t=0.098 are much closer to the
=0, the dark gray ellipses for=r (the appropriate ensemble- initial state than the evolved state in the coherent case of Fig.
averaged survival timeand the light gray ellipses for a still later 1(b) is at timet=0.0678. This is despite the fact that all of
time. Details of these times are given in the main text. these times are the respective survival times at which the
survival probability drops to 1/2. However, the evolved

states from the initial states with= = \/3/2 in Figs. 1c) and
1(d) have a lower overlap with their initial states than does
the evolved coherent state of Fig(bL This clearly illus-
frates that the survival probability is necessarily a property of
the whole ensemble of states, not of a single member. Figure
& also shows that the survival probability decays for different
‘reasons in different cases. In case of Fip) it decays be-
cause the evolved state becomes more mixed, due to phase
) P . diffusion. In case of Fig. (b) it decays primarily because the
T_he third case ,{n Fig. (&) is the most rob_ust Uncon- - eyolved state changes shapbearing while remaining rela-
strained ensemblE™ for »=0,x=50, as determined by the 1 nure. In cases of Figs(d) and Xd) it decays substan-
numerical method discussed in Sec. lll. Three members, tially because the mean position of the evolved state moves
=0,%/3/2, of this ensemble are displayed. Note thattthe away from that of the initial states in phase space. In Fig. 2
=0 state is a highly amplitude-squeezed state. In fact, it isve compare the ensemble-averaged survival probalSiity
not purely amplitude squeezed; they covariance8R=p,;  for the four cases in Fig. 1. Note that the time scale for case
is equal to 0.225. In general, the angldetween the major (a) (y=0) differs from that used for caséb), (c), and(d)

FIG. 1. Evolution of(initially pure) Gaussian quantum states
under the linearized laser master equation for four different case
The states are represented by the 1-standard-deviation ellipse of t
Wigner function. In all the cases we choose the initial mean locatio
of the state in phase space toyey=0, and for the last two we
additionally havex= =/3/2. For all four cases the excess phase
diffusion is v=0. For (a) we havey=0 and an initially coherent-
state(which forms the most robust ensemble in this ¢afer (b)

The second case in Fig( is again for an initial coher-
ent state but withw=0,y=50, plotted fort=0,0.0678,0.2.
Again the middle time is the survival time for the coherent
state. Note that it is almost two orders of magnitude smalle
than the coherent state survival time fpr=0. The effect of
the largey is to rapidly shear the state. This is because th
a'a? nonlinearity amounts to an intensity-dependent fre
guency shift. The coherent-state ensentbl&, however, is
not the most robust ensemble fpr=50.

axis of the ellipse and thg axis is (x=50). For short times the survival probability for the
coherent-state ensembi8® [Fig. 1(b)] is greater than the
o Earcta 28 _ Earcta 2By .1 survival probability for the most robust ensemble? [Fig.
2 a—y 2 1+ p2— 72' ' 1(c)] andE™ [Fig. 1(d)]. Indeed, the gradient of the survival

probability for the coherent-state ensemblda a0 is much
In the limit of small y and 8 this become®)=Bv. In this less than that of the most robust ensembles. This underlines
case, withyR=0.100, we have#)R=1.2°. This angle of rota- the importance of the survival time, rather than the initial
tion is almost too small to make out in the figure. It is nev-rate of decay of survival probability, to quantify robustness.
ertheless interesting that this slight rotation persists for alAt short times the survival probability generally decays lin-
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) o FIG. 3. Parameters for the most robust unconstrained Gaussian
FIG. 2. Decay of the ensemble-averaged survival probability ingngembleER as a function of¢ with »=0. These parameters are the

time for the four cases represented in Fig. 1. The horizontal aXi%hase-quadrature variance® (dotted ling, the amplitude-

measures timé For casda) it is scaled in units of the bare lifetime quadrature variance® (dashed ling the covariances® (dash-dot

of the laser mode, and for cas, (c), and(d) it is scaled in units  jing) and the survival time™ for the members of this ensemble.

100 times smaller. That is, the survival probabilities actually dropgg, comparison, we also plot the survival tinm (dash-dot-dot

much more quickly for the last three cases. line) of a coherent-state ensemble. Both survival times are in units
of the bare lifetime of the laser mode.

early, due to irreversible processes, as discussed in Sec. o
Il C 2. A coherent state minimizes this form of decoherence, AS x becomes large, all of the curves plotted in Fig. 3

resulting in an almost quadratic behavior gf*>(t) for t tend to become straight lines on the log-log plot. It is thus an

<y ~1=0.02. This can be understood from the asymptoticcaSy matter to read off the following power laws from the

analytical expression in E42.18 for the survival probabil- 9radients of these lines:

ity for a master equation with a large reversible term. This aR~ 23 4.2)
expression only applies to the survival probability of a single ’ '
state, but is applicable to a coherent-state ensemble because BR~ 13 4.3
all members are effectively identical. It need not, and indeed ' '
does not, apply to the more robust ensembles. In comparison R YR~ 20, (4.4)

with the coherent-state ensemble, the most robust ensembles

are affected more by irreversible evolution in short times butrhese results C|ear|y show that ﬁs'ncreasesl the most ro-

less by the interplay of reversible and irreversible terms inpyst states become increasingly amplitude squeezed. From

longer times. Eq. (4.1) the scaling law for the rotation angle of the
squeezed state is

2. Most robust unconstrained ensemble for varying

R~y L. (4.5
Having looked in detail aty=0 and y=50 we now
present an overview foy ranging from 1 to 10000. In this These scalings witly can be understood by considering the
section we concentrate upon the most robust unconstraineshuses of the decay in the survival probability from Egs.
ensemble. In Fig. 3 we plot the second-order moment$3.4)—(3.8). A typical highly amplitude-squeezed state mem-
aR, BR ¥R defining the most robust unconstrained ensembléer of the most robust ensemble has a mean amplitude-
ER, as a function ofy. We also plot the survival timeR for quadrature; of order unity. From Eq.(3.5), the meany
this ensemble and, for comparison, the survival tinfé for  quadrature will therefore change in a tife 1 by an amount
an ensemble consisting of coherent states. of order xt. This will result in the significant decay of the
For values ofy less than about 7.7, the members of thesurvival probability if the changgt is of the order of stan-
most robust unconstrained ensemble are close to coherefiard deviationa*’? of the y quadrature for that squeezed
states, witha®"~y"=1 and gR<1. As noted above, the state: in other words, if= 7 where
states are sheared in tloppositedirection to the shearing
produced byy. At y~7.7 there is a discontinuity in all state ~at?y L, (4.6)
parameters. Below this value the maximum survival time
lies on the boundary= 1. Above this value, what was pre- This reduction in overlap due to the motion of the mean
Vious|y a local maximum at some p0|m<1 becomes a phase of the Sta'gs is Clearly illustrated in FIgZ)JfOI’ the
global maximum, hence the jump in the parameters. This isnitial states withx= =+ /3/2. The survival probability will
shown by the contour plots af versusy and 8 in Fig. 4. also be affected by an increase in the phase-quadrature vari-

043606-9



H. M. WISEMAN AND JOHN A. VACCARO PHYSICAL REVIEW A65 043606

(a) (b) that the nonlinearity causes a loss of robustness in the system

1.5

unconstrained MREZ— T even under a maximally robust unraveling. However, this
— unconstrained MRE .

1 . loss of robustness is much worse for other ensembles. For
i example, the coherent-state ensemBl® has a survival

. ] time that varies as

A0~ x71, (4.9

-0.5 ¢ -

q \/"PR MRE | as shown by the dash-dot-dot curve in Fig. 3. Thus for large

0_7/ x the description of the laser steady state in terms of the

: ‘ ! ! highly amplitude-squeezed states of the most robust en-
0 02 04 06 08 10 02 04 06 08 1  gempleis much more useful than the conventional coherent-
¥ v state description.

FIG. 4. Contour plots of the survival timeas a function ofy The scaling in Eq(4.9)_can b.e easily derlv.ed from Eq.
andg. In (a) v=0 andy="7.7 and in(b) »=0 andy="50. In each (3.9. Even more §|mply, it can in fact be derived frqm the
plot the heavy curves represent contoursrdfn units of the bare asympt_o_tlc analytical formula_ n Eq2'18) for the su_rV|vaI
lifetime of the laser modeand the shaded region represents stated’robability for a master equation with a large reversible term.
that are physically realizabléPR). Crosses mark the positions of With P a coherent state withx=0 and Lp=
the maximally robust ensembl¢SIRE). —i[(x/4)x?,p] we find for the solutiorS(7)=1/2,

anceuwg,. From Eq.(3.8), the dominant terms for short times T= \/§X’1. (4.10

are uoy(t) — a=—2xBt+ x*yt2. Evidently a positive value

of the initial x-y covarianceB can, at some timg cancel the Even the coefficient here is a reasonable approximation, as
increase in the phase variance caused by the nonzero initidfig. 3 shows.

amplitude variance. This effect will maximize the survival

probability if the cancellation occurs at a time of order the 3. Most robust physically realizable ensemble for varying

survival time 7. This gives the second condition Having examined the most robust unconstrained en-
P semble, we now determine the effect of the physical realiz-
=y Bx (4.7) ability constraint ag varies from 1 to 10 000. This is shown

— in Fig. 5. It can be seen from this plot that the ensemble
This effect is most easily seen for the=0 initial state in  parameters differ from those in Fig. 3 for gll That is, the
Fig. 1(c), where the phase variance at the survival time ispR constraint is active for ajf. There is no discontinuity in
little changed from its initial value whereas the phase varithe parameters, because E819 keeps the state away from
ance a short time later is significantly changed. Lastly, Wahe maximum ofr in 8-y space. This is illustrated clearly in
consider the effect of motion and diffusion in tkelirection.  Fig. 4, where the shaded regions represent the PR states. It is
From Eq.(3.6), the amplitude-quadrature variance increase$|so clear from Fig. 4 that, for large, 3 is effectively con-
at a rate of order unity. It will cause a drop in the survival gtrained to be negative, which is why we ptof rather than
probability once the increase is comparable to the initial—just B in Fig. 5. That is, the shearing is in the direction
amplitude variancey, which is at7~y. From Eq.(3.4) the  jnquced by the nonlinearity, rather than in the opposing di-
mean amplitudex decays to O at the rate of unity, but this rection as adopted by an unconstrained ensemble. The PR
will only cause a significant drop i§(7) when the decrease ensemble is, not surprisingly, more physically reasonable.
in amplitude is of the order of the amplitude standard devia- Despite these differences, the scaling lawsddr, | 8%,
tion, that is for 7~y Y2, which is much longer. Thus the y® and7® are the same for the most robust PR enser@ffle

third condition is just as for the most robust unconstrained ensemble, that is,
T~y~a h (4.9 aR~ x5 (4.11)

Once again, thex=0 initial state in Fig. 1c) shows that — BR~ "1 (4.12

there is indeed a significant increase in the amplitude vari-

ance at equal to the survival time. TR~ R ™28, (4.13

Clearly, the maximum survival time occurs when the three
times in Egs.(4.6)—(4.8) are comparable. The unique solu- The scalings fora®, y%, and 7* can be derived using the
tions to the three analytical scaling relatiofs6)—(4.8) are  same reasoning as in the preceding case. The scalingfor
the scaling laws found numerically and given in Egs2—  arises as follows. For robustness the system would like to
(4.4) above. have g positive, as argued above. The constraint forces it to

Not only doesr R scale in the same way a8, it actually  be negative, which is whi® is always constrained, and is
asymptotes toy” for large y. This is a consequence of our situated on the boundary of the PR regionginy space. For
choice A=1/2, as will be shown later. In any case, the y large andy small, the boundary of the PR region can be
ensemble-averaged survival time clearly decreasesyyigio  found from Eq.(3.19 to be
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FIG. 5. Parameters for the ensemB® arising from the maxi- FIG. 6. Parameters for the ensemBE arising from the maxi-

mally robust unravelingR as a function ofy with v=0. As in Fig. ~ mally robust unravelingR as a function ofv with y=0. As in Fig.

3 we plota® (dotted ling, y® (dashed lingand = 8* (dash-dot 3 we plota™ (dotted ling, ¥* (dashed ling and the survival time
lines. We also plot the survival time™ (solid line) of this en- 7% (solid line). We do not plot3® because it is identically zero. For
semble and, for comparison, the survival timé’ (dash-dot-dot ~comparison we also plot the survival time” (dash-dot-dottexof

line) of a coherent-state ensemble. Both of these times are in unit®@ coherent-state ensemble. Both of these times are in units of the

of the bare lifetime of the laser mode. bare lifetime of the laser mode.

A2 The survival time decreases with increasingand, once
B=xv/4, (4.14 o Y )
again, it asymptotes te'* for large v. For comparison we

_ also plot the survival time!® for a coherent-state ensemble.
which here scales gg~ 2. This scales as

B. Varying v T~ (4.18
We turn now to the effect of excess phase nais€igure  so that for larger the most robust ensemble is much more

6 is an overview of the most robust PR ensemble)ferO  robust than the coherent-state ensemble. This scaling can be

and for » ranging from 1 to 10000. The behavior is very derived from the short-time asymptotic analytic expression

simple. Forv=<2.3 the most robust states are coherent statesn Eq. (2.16). Since the excess phase diffusion dominates the

As v increases they become increasingly squeezed states. Fewolution for largev, we have approximately

all values ofr we haveB=0 (which is therefore not plot-

ted), indicating that the most robust states are purely ampli- S(7)=1+ vt T{PD[x/2]P}. (4.19

tude squeezed. The scaling laws derived from this plot are ) ) ] ) )
Again, this expression only applies to a single state or an

a®~ 12, (4.15 ensemble such as the coherent-state ensemble where all

members are effectively identical. In the latter case it evalu-

ates simply to - vt/4.

,}/R~ V71/2’ (4.16) p y v
C. Varying A

R R ,—102
TEY Ty o (4.1 The final parameter we wish to consider varyingAis

which defines the survival time by the equatiorS(7)=A.
This ensemble is not constrained by the PR constf8id9).  All of the results presented so far were fore=0.5. In Fig. 7
These scalings can again be deduced by arguments similarége show the parametees™ and 7~ for the most robust en-
those in Sec. IV A 2. Unlike the nonlinegy term, phase semble as a function of for v=0 and for four values oA.
diffusion does not cause motion of the mean position of &or large y the slope of the curves are independentAof
typical squeezed state. Rather, from E§.8), it simply  Thus the scaling laws established in Sec. IV A are indepen-
causes the phase-quadrature variance to increase linearly @ent of A. As A decreases, the survival timé& increases,
v7. The survival probability will drop significantly in this because it takes longer for the survival probability to decay
time if v7 is comparable to the original phase varianee to that level.
From the increase in the amplitude variance we gety DecreasingA also causes the phase variane® to in-
~a~lasin Sec. IV A 2. The maximum survival time occurs crease, indicating that the most robust states are more highly
when these two times are comparable, givifig- v~ Y?and  squeezed. This is not unexpected, since the difference be-

a®~ 2 as found numerically. tween the coherent-state ensemble and the most robust en-
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1000

state ensemble ceases to be the most robust ensemble, in-
creases for decreasing. Above these values of the
amplitude squeezing in the most robust ensemble is always
decreased a3\ is decreased. However, the difference is
small (and may vanish ag—x), so that the equation”™

=" is again valid only forA=1/2. The sum of these re-
sults justifies our use of the single valde=1/2 for most of

this paper.
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V. DISCUSSION

0.01 A. Summary

vl F vl v vl il NN

The atom laser is an open quantum system with rich dy-
0'001 1 L II\III| L 1 I\IIIII L 1 !IIIHI 1 III\III| 1 1L 111l 1 H _
b1 { 10 100 1000 10000 namics. In this paper we haye _explored a new way of char
X acterizing those dynamics: finding the maximally robust un-
raveling[9]. This yields the most robughysically realizable
ensembleE™ of pure statesP™ that survive the best. By

i S R S R “surviving,” we mean remaining unaffected by the system
variousA. The rising lines arex™ and the falling lines are™ (in dvnamics. This ensemble is. we have arqued. the most natu-
units of the bare lifetime of the laser mgd&he values of\ are 0.5 y ’ ’ 9 ’

(solid line), 0.2 (dashed ling 0.1 (dash-dot ling and 0.05(dotted '@l répresentation of the stationary-state mapix of the
line). laser; if one wished to regard the laser as being “really” in a
pure state, then the most natural states to choose are the

semble is expected to be greater at longer times by the arg&r]embers of this ensemble. Although it is a time-independent

mentin Sec. IV A 1. However. the relative increasen® is ensemble, it is drastically affected by alterations in the dy-
far less thaﬁ the reiative incréaseﬂﬁ. In other words, the namics of the atom laser that do not change the stationary-

most robust ensemble is only weakly dependenf\ornter- sta\t; matm:j d asimol del for the atom | in which
estingly, because™~ 1/a™, y* decreases a& decreases, € considered a simple model for the atom faser in whic

while 7% increases. Thus the asymptotic resyft=7% can  Pss is a Poissonian mixture of number states of mgan
only be true at one value of, namely,A = 1/2. Workmg in the linearized regime, we |der.1t|f|ed.two releva.nt

Figure 8 presents the same information as Fig. 7 does bifynamical parameters that may be varied without altering
for y=0 and varyingr and A. Once again the scaling laws this stationary state. The first js which is proportional to
established in Sec. IV B are found to be independent pf the strength of self-interaction of the atoms in the laser. The
and in this case the different values fef appear to asymp- second isv, which is proportional to the excess phase diffu-
tote. In this case, the value for above which the coherent- sion of the laser above the standard quantum limit.

For y=0 and » small, the most robust ensemble was
found to consist of coherent-states, with mean boson number
w but with all possible phases. This is the most common
representation of the state of an optical laser, and so it is not
surprising. In terms of the parameters we used in the paper,
the ensemble consists of Gaussian pure states with phase-
guadrature variance=1, amplitude-quadrature variange
=1, and amplitude-phase covariange 0.

As the self-energyy is increased, the most robust states
cease to be coherent-states. In fact, for any nonzero value of
X, hot only are the coherent states not the most robust states
but, in addition, they are not even physically realizal3¢
For large values ofy the most robust stateB™ are very
highly amplitude-squeezed states with amplitude-quadrature
variancey” scaling asy % and phase-quadrature variance

0.1 1 10 100 1000 10000  « scaling as¢?®. The same effect occurs for large values of
v v, with scalings ofy~Y2 and v'2, respectively.

FIG. 8. Parameters for the ensemBR arising from the maxi- It is not known what value of would be appropriate to
mally robust unraveling? as a function ofr with y=0 and for ~Model a realistic atom laser. However, it was argued in Ref.
variousA. The rising lines arex® and the falling lines are® (in  [3] that a typical value fog might be 1000. This implies that
units of the bare lifetime of the laser mod&he values of\ are 0.5  the most natural description of an atom laser would be in
(solid line), 0.2 (dashed ling 0.1 (dash-dot ling and 0.05(dotted  terms of highly amplitude-squeezed states, with the standard
line). deviation in the amplitude quadrature being of the order of

FIG. 7. Parameters for the ensemB® arising from the maxi-
mally robust unravelingR as a function ofy with »=0 and for
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0.1. Excess phase noise would only increase the amount of C. Comparison with purity

squeezing in the states in the most robust ensemble. ¢ js \worth pointing out that the relationship we have es-
As noted above, our analysis was based on a linearizefhp|ished between robust mean-field states and quantum de-

approximation for the _Iaser _dynamlcs. This is (_)nly valid if eneracy would not have been found had we used purity

the states under consideration have a well-defined coherep{iner than survival probability as the basis of our definition

amplitude. Asy or v are increased indefinitely and the most ¢, the most robust ensemble. Although there are no great
robust states become more amplitude squeezed, this approgjiterences between the two definitions as one varighere

mation clearly break_s down. Specifically, it yvill b_reak down is a great difference as one varigs This is to be expected
when the phase variance predicted by the linearized analysm)m the analysis in Sec. Il C 2, ag scales the self-energy

is of the c;{d_er of unity; that is, when the phase-quadratur;,miitonian, whereas' represents irreversible phase diffu-
variancea™ is of the order of mean boson numher From ;0
the a_tbove scalings, for the linearization to remain valid, we To prove this point, we have calculated the ensemble that
require maximizes the time it takes for the average purity of the
Y<p3? (5.1) member statefas defined in Eq(2.10] to drop to 1/2 under
the master equation evolution. We plot the parameters for
(5.2 this ensemble as a function gfin Fig. 9. For comparison
we also plot the phase-quadrature variandeand the sur-

Although we cannot say with confidence what the most rovival time 7 of the most robust ensemble as previously
bust states are when the linearization breaks down, we dgefined, in terms of survival probability. The ensemble pa-
know that they must be states without a well-defined coherfameters, when we use purity, obey scaling laws for large
ent amplitude(because that is why the linearization breaksbut they are different from scaling laws obtained by using the
down). Therefore, the conditions in Eq&.1) and(5.2) also  survival probability(Sec. VA2,

represent the conditions for the most robust states to be states R

with well-defined coherent amplitudes. In other words, if and at ~x (5.3
only if these conditions are satisfied, the most natural de-
scription of the atom laser is in terms of states with a mean
field.

V<,u2.

BR ~—1/4, (5.4)

B. Interpretation e (5.9

We can now finally state the most important result of this
paper. The condition¢s.1) and(5.2) are identical to the pre- As expected from Sec. 1l C 2, the purity half-life is much
viously stated condition§3.10 and(3.11) for the output of longer than the survival time for large. Here we useRr’
the device to be coherent. Here we mean coherent in theather thanR to emphasize that we are using a different
sense that the output is quantum degenerate, with manyeasure of robustness.
bosons being emitted per coherence time. Without this con- The scalings in Eqs(5.3—(5.5 can be derived analyti-
dition the device could not be considered a laser at all, as itsally. For Gaussian states with momepig(t), the purity at
output would consist of independent atoms rather than a matime t is given by
ter wave.

The significance of this res:ult |s th#tere is a perfect . Tr[p2(1)]= p(t) = [ oo t) oo 1) — 2] Y2 (5.6
correspondence between the “best” pure states for describ-
ing the laser, and the coherence of its outplfitthe most )
robust states have a well-defined coherent amplitude, lik€0r »=0, y<1, B~1, xy>1, andt<1, as appropriate here,
coherent-states, then the output is coherent. If the most réhe solutions(3.6)—(3.8), together with the conditiorp(t)
bust states do not have a well-defined coherent amplitude; 1/2, yield the following equation for
like number states, then the output is not coherent. This pro-
found result establishes the usefulness of maximally robust 3~2(1+ B2 1l y—2x BT+ 2x %y 7313+ x?7*13. (5.7)
unravelings as an investigational tool for open quantum sys-

tems. _ |
i - It is clear from the ternO(7*) that 7 will scale asy™ 2 To
It must be emphasized that the link between the presencé ximize . the terms0(7) andO(+3) imply that ¥ should

or absence of a mean field inside the laser, and the presenmeal

—1/2 ; P
or absence of quantum coherence in the laser output, is n Falf ar?( _ Inl acr(]:ord V\;]'th Eqb(S's)' The tem(;sof(ﬂ anc(ij
due to any simple relationship of definitions. Finding the (7 )_t en imply that should be positive, and of the order
maximally robust ensemble is, as the diligent reader WiIIof }Jn|ty. Indeed, for the unconstrained Gaussian ensemble

appreciate, a very involved process completely differenE" we find 3~ 1.8. With the constraint of Ed4.14), we get
from calculating the first-order coherence function. In par-8 negative and of order unity, as stated above.
ticular, the average survival time for the members of the The condition for the best purity-preserving states to have

most robust ensemble has in general no relationship with the well-defined coherent amplitude th'<,u, which from
coherence time. Eq. (5.3) gives
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1000; T T TTTTIT T T TTTTITT T T \IIIIII T ¥ ||\|||| T T \III\: ’yQSDz\/EX_llz, (5.1])
F R .-""'.“‘:‘ .
100 £ e and with v,
i 1
10 = aQSD: S V1/2, (5.12)
e V2
1
E— TR B°P=0, (5.13
0.1 E— - QS0 \/Ey—uz_ (5.14
0.01 £ D AN - Consequently, the QSD ensemti&@SP scales withy quite
i ™ R differently from the maximally robust ensemii® accord-
0,001 bl ool el e pvornl g ing to our definition based on maximizing the survival time.
0.1 ! 10 X 100 1000 10000 Thys unlikeER, but like ER’, the coherence of its members

does not have a direct correspondence with the laser output
FIG. 9. Parameters for the maximally robust ensembleifor coherencdin the conventional, unconditional sense
=0 as a function ofy as in Fig. 5 but using purity as a measure of ~ The correspondencéat least in scaling lawsbetween

robustness. As in previous figures we plef’ (dotted ling, y*  EQSP andER’ is actually in contrast to the result found by

(dashed ling B*' (dash-dot ling and7*" (solid line). Also shown  Diosi and Kiefer(for a different system[14]. They found

for comparison are the™ (rising) and 7 (falling) curves from Fig.  that PR states minimizing the loss of purity were different

5 as dash-dot-dot curves. Both times are in units of the bare lifetim¢rom states produced by QSD. However, as noted earlier,

of the laser mode. they considered only the initial rate of loss of purity, which is
insensitive to Hamiltonian terms. If they had considered
maximizing the half-life of the purity, as we have, they may

X< (5.8 have obtained a different result.

This implies that there is a range of interaction strengths E. Future work
%< y < u* for which the purity analysis delivers a descrip-  There are at least three future directions for this work.
tion of the laser in terms of states with a mean field evergjrst, the insights into the atom laser that the maximally ro-
though the laser output is no longer coherent in the sensgst ynravelings analysis offers suggests that this technique
defined above. This regime can be interpreted in terms of g,yd e applied fruitfully to other open quantum systems. It
nonstandard concept anditional coherengeexplored in 55 already been applied to fluorescent atpi6g and could
detail in the preceding papgB]. The basic idea is wellillus- 5150 be applied to other quantum-optical systétid, and
trated by Fig. 1. If one knows the mean amplitude of thegther models for Bose-Einstein condensates in equilibrium
state with an uncertainty much less than unity, as in Fid., 1 \yith a reservoif23]. These are all systems with nontrivial
then the direction that it will move in in phase space can beﬂynamics, which could be more fully appreciated by deter-
predicted with accuracy. This motigwhich amounts to dif- mining the maximally robust unraveling.
ferent frequencigscan then be taken into account by the  gecond, the difference between the analyses based on sur-
output of experiments. Thus the spread in frequencies due tgya| probability and purity deserves further investigation.
spread in amplitude can be compensated@iprto a point.  As we showed, the purity analysis gives a description of the
laser mode in terms of states with a well-defined coherent
D. Comparison with quantum-state diffusion amplitude for high values of where the survival analysis
does not, and where the output is not coherent in the conven-
Yional sense. Nevertheless, the results do make sense in terms
of conditional coherencg3]. Perhaps it is because purity is
naffected by the motion of the mean position of the states in
hase space that it reflects conditional coherence, which re-
fes on knowledge of that motion to define the output mode.

A particular PR ensemble of interest is that generated b
the unraveling known as quantum-state diffusi@@SD)
[21,22. This is merely a particularly simple and natural type
of continuous Markovian unraveling. It has been suggeste
[14] that the corresponding ensemble is a good candidate f

the most robust ensemble. We investigated this ensemble \/ contrast, the survival probabiliig affected by the motion

the preceding pap¢8] and found analytically that its param- of the states, and hence reflects conventional coherence that

etersf3 and y have exactly the same scaling as the PR enI’:tverages over the different frequencies of rotation.

sembleE® based on maximizing the robustness as mea- Finally, there are other approaches to quantifying the ro-
sured by purity. That is, witfy, bustness of unravelings apart from the survival probability
and the purity. For example, one could measure how quickly

QSD__ 1/2 h - ... .
@ _\EX ' (5.9 the unraveling purifies the state, or how sensitive the purity
is to imperfections in the unravelings. Related ideas have

BP=—1, (5.10 recently been explorefil5,24]. These ideas could be best
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investigated in systems somewhat simpler than the atom ldzave an increasing role as a tool for understanding the dy-
ser we have considered here. This would give an indicatiomamics of open quantum systems.
of the robustness of the idea of robustness; that is, how sen-
sitive the maximally robust unraveling is to the definition of ACKNOWLEDGMENTS
robustness used, and which definitions agree.
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