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Atom lasers, coherent states, and coherence II. Maximally robust ensembles of pure states
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As discussed in the preceding paper@Wiseman and Vaccaro, preceding paper, Phys. Rev. A65, 043605
~2002!#, the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states
with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if
either, of these descriptions ofrss as a stationary ensemble of pure states, is more natural. In the preceding
paper we concentrated upon the question of whether descriptions such as these are physically realizable~PR!.
In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is
one for which the pure states that comprise it survive relatively unchanged for a long time under the system
evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser
model: the self-energyx of the bosons in the laser mode, and the excess phase noisen. We find that these most
robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal
laser limit (n5x50), the most robust states are coherent states. As the phase noise or phase dispersion is
increased throughn or the self-interaction of the bosonsx, respectively, the most robust states become more
and more amplitude squeezed. We find scaling laws for these states, and give analytical derivations for them.
As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the
most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the
quantum coherence of the laser output is manifest in the most robust PR ensemble being an ensemble of states
with a well-defined coherent amplitude. This lends support to our approach of regarding robust PR ensembles
as the most natural description of the state of the laser mode. It also has interesting implications for atom lasers
in particular, for which phase dispersion due to self-interactions is expected to be large.

DOI: 10.1103/PhysRevA.65.043606 PACS number~s!: 03.75.Fi, 03.65.Yz, 42.50.Lc, 05.30.2d
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I. INTRODUCTION

A laser is a device that produces a coherent beam
bosons. The meaning of the word ‘‘coherent’’ in this conte
is discussed at length in a paper by one of us@1#. In particu-
lar, a coherent output does not mean that the output, or
laser mode itself, is in a coherent state. Rather, as has
been recognized@2#, the stationary-state matrix for the las
mode is a mixture of number states. In the far-above thre
old limit, this mixture is Poissonian with meanm,

rss5 (
n50

`

e2m
mn

n!
un&^nu. ~1.1!

This state matrix can also be represented as a mixtur
coherent states,

rss5E df

2p
uuaueif&^uaueifu, ~1.2!

whereuau25m.
On the basis of this second representation, one m

claim that the laser really is in a coherent stateuuaueif&, but
that one cannot knowa priori what the phasef is. In the
preceding paper@3# we have investigated whether this clai
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is true. If it were true then there should be some way
finding out which coherent state the laser is in without
fecting its dynamics. We found that if there is any se
energy in the laser mode~such as ax (3) nonlinearity for an
optical laser, ors-wave scattering for an atom laser!, then it
is in factnot possible to physically realize the coherent-sta
ensemble in Eq.~1.2!. By contrast, it is always possible t
physically realize the number-state ensemble in Eq.~1.1!.

For an ideal laser~with no x (3)-like nonlinearity!, the un-
known coherent-state description and the unknown num
state description are both physically realizable~PR!. Given
that they are mathematically equivalent, why is the form
description ubiquitous and the latter rare? The answer, as
pointed out some time ago by Gea-Banacloche@4#, is differ-
ential survival times. An ideal laser prepared in a coher
state will remain close to that initial state for a time of ord
k21, wherek is the bare decay rate of the cavity. By co
trast, a laser prepared in a number state will be likely
remain in that state only for a time of orderk21/m, wherem
is the mean number as above.

This result, derived also in Ref.@5#, was taken further by
Gea-Banacloche in Ref.@6# using the early model for a lase
with saturation due to Sargent, Scully, and Lamb@2#. Gea-
Banacloche considered pure states with mean photon num
equal to that of the laser at steady state, and calculated
purity at later times. He showed that the pure state that
the slowest initial rate of decay of purity was, in general
slightly amplitude-squeezed state rather than a cohe
state.
©2002 The American Physical Society06-1
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H. M. WISEMAN AND JOHN A. VACCARO PHYSICAL REVIEW A65 043606
There seems little doubt, then, that it is most useful
consider an ideal laser to be in a coherent state~or nearly
coherent state! of unknown phase. However, it is an ope
question whether this is true of a nonideal laser, that is
laser with additional noise or dispersion of some form. A
other open question is how this issue relates to the quan
coherence of the output of such a nonideal device.

The particular laser system of interest here is the a
laser@1#. An important difference between an atom laser a
an optical laser is that the interatomic interactions canno
neglected. This gives rise to ax (3)-like nonlinearity in the
laser mode. As noted above, this affects the physical rea
ability of ensembles, and we also expect it to affect th
robustness.

A robustness analysis for a Bose-Einstein condensate
been done by one of us with Barnett and Burnett@7#. This
produced results similar to that of Gea-Banacloche@6#, al-
though it was based on the fidelity@8# that measures the
overlap of the initial state with the state at a later time. Ho
ever, the authors of Ref.@7# only calculated the initial rate o
decay of the fidelity, and this is not affected by any Ham
tonian terms. Hence the self-energy played no role in
analysis. Moreover, the treatment, like that of Ge
Banacloche@6#, considered only a single pure state to rep
sent the state of the condensate. Thus it does not give
general, a representation of the steady state on par with
~1.1! or Eq. ~1.2!.

In this paper we give an analysis that treats the dynam
of an atom laser at all times and that incorporates an
semble of pure states. It takes into account Hamilton
terms and gives a robust representation of the steady s
We consider both the problem of finding the most rob
ensemble, and the most robust PR ensemble. Since
sembles are realized by unraveling the master equation@9,3#,
finding the most robust PR ensemble is equivalent to find
themaximally robust unraveling, a concept introduced by u
in Ref. @9#.

A review of maximally robust unravelings, including
comparison with other approaches, is given in Sec. II. In S
III we present the equations for determining the maxima
robust unraveling~MRU! for an atom-laser model. We con
centrate upon continuous Markovian unravelings, which g
ensembles of Gaussian states, and also consider un
strained Gaussian ensembles. In Sec. IV we present the
merical solutions for these equations, concentrating on
asymptotic behavior in the limit of large nonlinearityx and
phase noisen. The concluding Sec. V is a discussion of o
results and their relation to atom-laser coherence, and s
suggestions for future work.

II. MAXIMALLY ROBUST UNRAVELINGS

A. Comparison with other approaches

The idea of robustness has it origins in studies of de
herence and the classical limit@4–7,10–15#. Decoherence is
the process by which an open quantum system become
tangled with its environment, thereby causing its state to
come mixed. However, not all pure states decohere w
equal rapidity. In particular, Zurek@10# defined the ‘‘pre-
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ferred states’’ of open quantum systems as those states
remain relatively pure for a long time. This idea can
thought of as a ‘‘predictability sieve’’@11#. That is, the pre-
ferred states are those for which the future dynamics
predictable, in the sense that there is some projective q
tion ~Is the system in some particular state?! that is likely to
give the result ‘‘yes.’’

Our approach, as introduced in Ref.@9# and applied to
resonance fluorescence by one of us and Brady@16#, is to
find the maximally robust unraveling. This approach sha
some similarities with other approaches. It has, howeve
suite of four distinctive characteristics that we enumerate
low.

1. Ensembles of pure states

First, we considered not a single pure state, but an
semble of pure states. This is appropriate for situations wh
the open system comes to a mixed equilibrium state. T
ensemble of pure states that we consider must be a repre
tation of that equilibrium mixed state. That is, the system h
a certain probability of being in one of those pure states
in Eqs.~1.1! and~1.2!. Recently, Dio´si and Kiefer@14# have
also considered ensembles of pure states in a similar con

Without considering such an ensemble, it is necessar
put somead hocrestriction on the pure states considered
that they have some relevance to the actual state the sy
is in at equilibrium. For example, as noted above, G
Banacloche@6# considered only pure states having the sa
mean photon number as the equilibrium state of the la
model under consideration.

2. Physical realizability

Second, in Ref.@9# we placed a restriction on the en
sembles of pure states that we consider: they must be ph
cally realizable. By this we mean that it should be possib
without altering the evolution of the system, to know that
state at equilibrium is definitely one of the pure states in
ensemble, butwhichparticular pure state cannot be predict
beforehand. Dio´si and Kiefer@14# have considered a simila
condition, although they do not make the connection w
physical realizability and measurement. In this paper we a
consider ensembles without the constraint of physical rea
ability, as it is of interest to see how active that constraint

We have considered in detail the issue of physical rea
ability of ensembles of pure states in the preceding paper@3#.
Here we merely remind the reader of some key points
terminology. An ensemble for a system obeying a Markov
master equation is physically realized by monitoring t
baths to which it is coupled. This leads to anunraveling@17#
of the master equation into a stochastic equation for a p
state. In steady state, the pure state will move ergodic
within some~perhaps infinite! ensemble of pure states. Th
is how an unraveling defines an ensemble, with the weig
ing of each member being the proportion of time the syst
spends with that state.

3. Survival probability

Third, in Ref. @9# we defined robustness in terms of th
fidelity or survival probability of the pure states rather th
6-2
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ATOM LASERS, COHERENT . . . II. . . . PHYSICAL REVIEW A 65 043606
their purity. That is, we consider how close the states rem
to their original state under the master equation evoluti
rather than just how close they remain to a pure state. T
means that Hamiltonian evolution alone can affect the
bustness of states~whereas it does not affect their purit
except in conjunction with the irreversible terms!. It might
be thought that this is an undesirable feature. However
will be shown, using the survival probability gives resu
that accord with the usual concept of coherence in las
This contrasts with the results that are obtained using pu
which we also consider at the end of this paper~Sec. V C!.

4. Survival time

The final aspect of our work that differs from most prev
ous approaches@6,12–14# is that we quantify the robustnes
by the survival time.~This time was previously called th
fidelity time in Ref.@7#!. It is the time taken for the surviva
probability to fall below some predefined threshold. This
as opposed to considering the rate of decay of the surv
probability at the initial time. That rate is actually identical
half the initial rate of decay of the purity, and hence is ind
pendent of any Hamiltonian terms. It is only by consideri
the robustness over some finite time that the Hamilton
terms will contribute.

B. Unraveling the master equation

In this section, we briefly reiterate the discussion in R
@3# on how the master equation is unraveled to yield a pu
state ensemble. The most general form of the Markov
master equation is@18#

ṙ52 i @H,r#1 (
k51

K

D@ck#r[Lr, ~2.1!

where for arbitrary operatorsA andB,

D@A#B[ABA†2$A†A,B%/2 . ~2.2!

We assume this to have a unique stationary staterss. It can
be represented in terms of pure states as

rss5(
n

`nPn , ~2.3!

where thePn are projection operators and the`n are positive
weights summing to unity. We will call the~possibly infinite!
set of ordered pairs,

E5$~Pn ,`n!:n51,2, . . .%, ~2.4!

an ensembleE of pure states. There are continuously in
nitely many ensemblesE that representrss. Our aim is to
find the ‘‘best’’ or ‘‘most natural’’ representation forrss.

Our first requirement is that the ensemble be physic
realizable. This is possible if the environment of the syst
is monitored, leading to a stochastic quantum trajectory
the system state. Assuming that the initial state of the sys
is pure, the quantum trajectory for its projector will be d
scribed by the stochastic master equation~SME!
04360
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dP5dt@L1U~ t !#P. ~2.5!

Here the superoperatorU, which we will call an unraveling,
does not affect the average evolution of the system, but
serves the idempotency ofP. In the long-time limit the sys-
tem will be in some pure statePn , with some probabilitỳ n
such that Eq.~2.3! is satisfied. Since the states and weigh
will depend on the unravelingU, we denote the resultan
stationary ensemble by

EU5$~Pn
U ,`n

U!:n51,2, . . .%. ~2.6!

For practical reasons explained in Ref.@3#, we restrict our
investigation of the~atom! laser to continuous Markovian
unravelings~CMUs!. As was shown in Ref.@3#, under a lin-
earization of the dynamics these lead to Gaussian pure s
as the members of the ensemblesEU. As mentioned above
we will also consider ensembles, in particular Gaussian
sembles, which are not constrained by the requiremen
physical realizability. This is in order to see the importan
of this requirement in constraining the most natural e
sembles.

C. Quantifying the robustness

1. Survival probability

Imagine that the system has been evolving under a
ticular unravelingU from an initial state at time2` to the
stationary ensemble at the present time 0. It will then be
the statePn

U with probability`n
U . If we now cease to monitor

the system then the state will no longer remain pure,
rather will relax towardrss under the evolution of Eq.~2.1!.

This relaxation to equilibrium will occur at different rate
for different states. For example, some unravelings will te
to collapse the system att50 into a pure state that is ver
fragile, in that the system will not remain in that state f
very long. In this case the ensemble would rapidly becom
poor representation of the observer’s current knowled
about the system. Hence we can say that such an ensem
a ‘‘bad’’ or ‘‘unnatural’’ representation ofr. Conversely, an
unraveling that produces robust states would remain an
curate description for a relatively long time. We expect su
a ‘‘good’’ or ‘‘natural’’ ensemble to give more intuition abou
the dynamics of the system. We interpret the most rob
ensemble as the ‘‘best’’ or ‘‘most natural’’ of such ensemble

In most of this paper we quantify therobustnessof a
particular statePn

U by its survival probabilitySn
U(t). This is

the probability that the system would be found~by a hypo-
thetical projective measurement! to be still in the statePn

U at
time t. It is given by@19#

Sn
U~ t !5Tr @Pn

UeLtPn
U#. ~2.7!

Since we are considering an ensembleEU we must define the
average survival probability

SU~ t !5(
n

`n
USn

U~ t !. ~2.8!
6-3
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H. M. WISEMAN AND JOHN A. VACCARO PHYSICAL REVIEW A65 043606
In the limit t→` the ensemble-averaged survival probabil
will tend towards the stationary value

SU~`!5Tr @rss
2 #. ~2.9!

This is independent of the unravelingU and is a measure o
the mixedness ofrss.

2. Comparison with purity

As noted in Sec. II A 3 above, it is more common in d
cussions of robustness to use purity rather than surv
probability. The purity of a state at timet can be quantified as

pn
U~ t !5Tr @~eLtPn

U !2#. ~2.10!

The ensemble average of this quantity is also initially un
and approaches Tr@rss

2 # as t→`. Alternatively, the purity
could be quantified as the maximum overlap of any p
stateP̃n(t) with the evolved mixed state

p̃n
U~ t !5max

P̃n(t)

Tr @ P̃n~ t !~eLtPn
U!#. ~2.11!

For Gaussian states~see Sec. III! these quantities are simpl
related byp̃n

U(t)52/@111/pn
U(t)#.

The survival probability has a number of advantages o
purity. First, we motivated our robustness criterion from t
desire forEU to remain a good description of the system
once the unraveling ceases. That is, we wish to be abl
usefully regard the members of the ensembleEU as the states
the system is ‘‘really’’ in at steady state. This is better qua
tified by the survival probability because the purity effe
tively takes into account only how close the stateeLtPn re-
mains to some pure stateP̃n(t) @introduced in Eq.~2.11!#,
not how close it remains to the original statePn . An en-
semble constructed by considering the purity would thus
general, only remain a good description of the system
including the deterministic~but not necessarily unitary! evo-
lution of its members fromPn to P̃n(t) after the unraveling
ceases. This time evolution would negate the idea that
ensemble of statesPn is the best representation of the syste
at steady state.

Another reason for preferring the survival probabili
comes from imagining that the unravelingU continues after
t50. In that case one can calculate aconditional survival
probability, being the overlap of the pure conditional sta
with the pure initial state. The ensemble average of this c
ditional survival probability is simply the survival probabi
ity Sn

U(t) defined in Eq.~2.7! above. Thus the concept o
survival probability still applies even for the conditional ev
lution. By contrast, the conditional purity of the unravel
state would always be unity, and consequently has no r
tion to the unconditional purity defined in Eq.~2.10!. The
latter thus has no simple interpretation for the unraveled e
lution.

The final reason for preferring survival probability, a
ready noted in Sec. II A 3, is that it yields results for t
atom laser that have a clear and simple physical interpr
04360
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tion in terms of the coherence of the laser output. We w
show that this is so in the Discussion section.

One limit in which quite different results are to be e
pected from using purity rather than survival probability
that in which the Hamiltonian part of the dynamics dom
nates. As will be shown, this limit is highly relevant for th
atom laser.

Formally, we split the Liouvillian superoperatorL as

L5Lirr1xLrev, ~2.12!

wherex is a large parameter and

Lirrr5 (
k51

K

D@ck#r, ~2.13!

Lrevr52 i @H,r#. ~2.14!

The reversibility ofLrev implies that

Tr @ALrevB#52Tr @BLrevA# ~2.15!

and so Tr@ALrevA#50, for arbitrary operatorsA andB.
To first order in time, both the survival probability and th

purity depend only upon the irreversible term:

S~ t !511t Tr @PLirrP#, ~2.16!

p~ t !5112t Tr @PLirrP#. ~2.17!

For longer times, both expressions will~in general! be domi-
nated in the large-x regime by the reversible term, but i
different ways:

S~ t !.11x2~ t2/2!Tr @PLrev
2 P#, ~2.18!

p~ t !.11xt2 Tr @P~LirrLrev2LrevLirr!P#. ~2.19!

The Hamiltonian term directly affects the survival probab
ity, but it affects the purity only in combination with th
irreversible term.

3. Survival time

The above analysis shows that the difference between
rity and survival probability only shows up at finite time
Thus the best way to characterize robustness is to look n
the initial rate of decay of the survival probability, but at th
time it takes to fall below some threshold valueL satisfying

1.L.Tr @rss
2 #. ~2.20!

The ensemble survival time for a particular unraveling wou
then be defined as

t U5min$t:SU~ t !5L%. ~2.21!

Note that this time is thefirst time for whichSU(t)5L. The
survival probability is not necessarily monotonically d
creasing and in some simple examples there will be m
solutions to the equationSU(t)5L @16#.
6-4
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A natural choice ofL, suggested in Ref.@9#, is the maxi-
mum eigenvalue ofrss:

L5 lim
n→`

~Tr @rss
n # !1/n ~2.22!

5max$l jPIR:rssQj5l jQj ,Qj5Qj
2%. ~2.23!

This can be shown to satisfyL.Tr @rss
2 # as follows. Let the

eigenvalues ofrss be ordered such thatL5l1>l2>l3•••.
Then

Tr @rss
2 #5L21(

j 52
l j

2 ~2.24!

,L21(
j 52

Ll j ~2.25!

5L21L~12L!5L. ~2.26!

Here the strict inequality holds unless all eigenvalues ofrss
are equal.

In the absence of any monitoring of the bath, the projec
Q1 would be one’s best guess for what pure state the sys
is in at steady state. The chance of this guess being corre
simply L, which is obviously independent of timet. Using
this L, the survival timet U could thus be interpreted as th
time at which the initial statePn

U ceases (on average) to b
any better than Q1 as an estimate of which pure state
occupied. In other words, the ensembleEU is obsolete at time
t U.

In this paper we do not use this choice forL, for reasons
to be explained later. This brings a certain degree of arbitr
ness into the analysis. However, as we show, the most
portant and interesting results we obtain are independen
the choice ofL.

Having chosen a particular value forL, the survival time
t U quantifies the robustness of an unravelingU. Let the set
of all unravelings be denotedJ. Then the subset ofmaximally
robustunravelingsJM is

JM5$RPJ:tR>t U ; UPJ%. ~2.27!

As noted above, in practice it may be necessary to restric
analysis to continuous Markovian unravelingsD, and the
corresponding subsetDM . Even if JM has many element
R1 ,R2 , . . . , these different unravelings may give the sam
ensembleER5ER15ER25•••. In this caseER is the most
natural ensemble representation of the stationary solutio
the given master equation. When we consider ensembles
are not constrained by the condition of physical realizabil
we will denote the most robust of these byER. That is, we
reserve the calligraphicR to denote a robust unraveling.
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III. MRUs FOR THE „ATOM … LASER

A. The master equation

The master equation we use for the~atom! laser is the
same as that in the preceding paper@3#. In the interaction
picture, and measuring time in units of the output decay r
it is

ṙ5~mD@a†#A@a†#211D@a#1ND@a†a# !r

2 iC@~a†a!2,r#. ~3.1!

The parametersN and C represent excess phase noise a
self-interaction energy, respectively. This has the station
solution expressed in Eqs.~1.1! and ~1.2!, with mean boson
numberm.

To make progress on this equation we linearized it arou
a mean field by making the replacement

a5Am1~x1 iy !/2, ~3.2!

with x andy Hermitian. The linearized master equation ha
Gaussian solution with moments

mmn5^~xmyn!sym& ~3.3!

given by

m10~ t !5m10~0!w, ~3.4!

m01~ t !5m01~0!2xm10~0!~12w!, ~3.5!

m20~ t !5m20~0!w2112w2, ~3.6!

m11~ t !5m11~0!w2x$11w@m20~0!22#1w2@12m20~0!#%,

~3.7!

m02~ t !5m02~0!1~21n!t22xm11~0!~12w!

12x2$t1@m20~0!22#~12w!

1@12m20~0!#~12w2!/2%, ~3.8!

wherew[e2t, x54mC, andn54mN. The long-time limit
of this is a Wigner function

Wss~x,y!}exp~2x2/2! ~3.9!

with amplitude quadrature~x! variance of unity and phas
quadrature~y! variance of infinity. This is what is expecte
as the linearized version of the stationary state of Eq.~1.1!.

The conditions for the output of the laser to be cohere
in the sense of having an atom flux much greater than
linewidth ~as conventionally defined! are simply stated in
terms of the dimensionless self-energyx and excess phas
diffusionsn @3#

x!m3/2, ~3.10!

n!m2. ~3.11!
6-5
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B. The unraveled master equation

Under a continuous Markovian unraveling the long-tim
solutions for the linearized stochastic dynamics are s
Gaussian@3#. In fact, the evolution of the second-order m
mentsm20,m02,m11 is deterministic. This means that for
given unravelingU the stationary ensemble will consist o
Gaussian pure states all having the same second-order
ments. They are distinguished only by their first-order m
mentsx̄5m10,ȳ5m01, which therefore take the role of th
index n in Eq. ~2.6!. The different ensembles themselves a
indexed by another pair of numbers,m11,m20, which play
the role ofU in Eq. ~2.6!. We do not needm02 because the
purity of the unraveled states implies that

m20m022m11
2 51. ~3.12!

However, it should be noted that the mapping fromU to
m11,m20 is, in general, many to one.

The ensemble can thus be represented as

EU5$~Px̄,ȳ
U ,` x̄,ȳ

U !: x̄,ȳ%, ~3.13!

where the second-order moments of the pure statePx̄,ȳ
U are

determined by the unravelingU.
The weighting function is flat forȳ and for x̄ is given by

@3#

`U~ x̄!5@2p~12m20!#
21/2exp$2 x̄2/@2~12m20!#%.

~3.14!

It is convenient to use a new notation for the second-or
moments,

a5
m02

m20m022m11
2

, ~3.15!
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b5
m11

m20m022m11
2

, ~3.16!

g5
m20

m20m022m11
2

. ~3.17!

For pure states satisfying Eq.~3.12!, we have~as in the pre-
ceding paper@3#!

a5m02; b5m11; g5m20. ~3.18!

The different ensembles are now indexed by the pair (b,g).
Not all pairs (b,g) correspond to physically realizable en
sembles. The method for determining the pairs that co
spond to PR ensembles is described in the preceding p
@3#, and the constraints that apply are simplyg.0 and

~22xb121n!~22g12!2~b1xg!2>0. ~3.19!

C. Survival probability

We are interested in the survival probability of the sta
Px̄,ȳ

U . It is convenient to consider the corresponding Wign
functions,Wx̄,ȳ

U (x,y). Obviously, the survival probability is
independent ofȳ so we will drop this subscript, and setȳ
50 for ease of calculation. For Gaussian states the Wig
function is a bivariate Gaussian distribution with the m
mentsmmn defined above. The state with initial momen
mmn(0) will evolve into a state with momentsmmn(t) given
by Eqs.~3.4!–~3.8!. We will denote the Wigner function for
the former stateWx̄(x,y,0) and that for the latterWx̄(x,y,t).
The survival probability of the statePx̄

U is given by@20#
Sx̄~ t ![Tr @Px̄e
LtPx̄#54pE dxdyWx̄~x,y,0!Wx̄~x,y,t ! ~3.20!

54pE dx dyN~0!expF m20~0!m02~0!

m20~0!m02~0!2m11~0!2 S 2
~x2 x̄!2

2m20~0!
1

m11~0!~x2 x̄!y

m20~0!m02~0!
2

y2

2m02~0!
D G

3N~ t !expF m20~ t !m02~ t !

m20~ t !m02~ t !2m11~ t !2 S 2
~x2 x̄w!2

2m20~ t !
1

m11~ t !~x2 x̄w!„y1x x̄~12w!…

m20~ t !m02~ t !
2
„y1x x̄~12w!…2

2m02~ t ! D G , ~3.21!
u-
where

N5~2pAm20m022m11
2 !21. ~3.22!

This survival probability should be averaged over allx̄,
weighted by the distribution~3.14! to get

SU~ t !5E dx̄Sx̄~ t !`U~ x̄!. ~3.23!
Thus S(t) is given by a triple Gaussian integral that eval
ates to the following:

SU~ t !52A ~a tg t2b t
2!/@11~12g0!Rt#

~a01a t!~g01g t!2~b01b t!
2

, ~3.24!

where
6-6
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Rt5a01a tw
212b txwz1g tx

2z22
~a01a tw1b txz!2

a01a t

2
@~b01b t!~a01a tw1b txz!2~a01a t!~b01b tw1g txz!#2

~a01a t!@~a01a t!~g01g t!2~b01b t!
2#

, ~3.25!
we

r

e

l
a

lar
e

w

ch

la
e

n

nt

ost

he
ous
tes
by

e (
r
ly in

e
n of
rd-

we
e to

an
the

dis-
ility

l

ase
or
ost
lso
wherez[12w anda,b,g are as in Eqs.~3.15!–~3.17!, and
mmn are as in Eqs.~3.4!–~3.8!. Note that att50 the state is
pure, so thata05m02,b05m11,g05m20 as previously. The
survival probabilitySU(t) is thus a function of the initial-
state parametersg0 andb0, and the dynamical parametersn
andx.

D. The survival time

Following the general theory described in Sec. II C 3,
define the survival timet U as the smallest~in this case it will
be the only! solution to the equation

SU~t U !5L, ~3.26!

whereL is a constant satisfying

1.L.Tr @rss
2 #. ~3.27!

From the solution~1.1! of the nonlinear dynamics, the lowe
bound onL is, for m@1,

Tr @rss
2 #5~4pm!21/2. ~3.28!

In the same limit, the largest eigenvalue forrss is

lim
n→`

An Tr @rss
n #5~2pm!21/2. ~3.29!

From these expressions it is evident that there would b
problem in choosing Eq.~3.29! for L: it is very close to the
value for Tr@rss

2 #5(4pm)21/2. This means that the surviva
time would be equal to the time by which the system h
relaxed almost to the equilibrium mixed state. In particu
its phase would necessarily be poorly defined by this tim
which means that the linearization of the dynamics that
have been using would not be valid.

If instead we start with the solution~3.9! of the linearized
dynamics, we have an even worse situation:

Tr @rss
2 #5 lim

n→`

An Tr @rss
n #50. ~3.30!

In this case the survival time would always be infinite, whi
is not helpful.

Because of these problems, we have not chosen the
est eigenvalue ofrss for L. Instead we have investigated th
dependence oftR on L for various values, namely,L
50.5,0.2,0.1,0.05. As will be shown, the most robust e
semble~that with the largest survival time! is substantially
independent ofL. Unless otherwise stated we chooseL to
be the midpoint of the two bounds in Eq.~3.27!, namely,
04360
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L51/2. ~3.31!

E. Unconstrained Gaussian ensembles

Finding the most robust PR ensembleER consists of a
searching for the maximumt in the region ofb-g space
allowed by the PR constraint. To determine how importa
this constraint is in determiningER, we also search for the
maximumt in all of b-g space~subject only to 0,g<1).
The ensemble picked out by this search we will call the m
robust unconstrained ensemble and denoteER. Although we
call in unconstrained, it is in fact constrained to be of t
same form as the ensembles resulting from a continu
Markovian unravelings. That is, it consists of Gaussian sta
with identical second-order moments distinguished only
their mean amplitude and phase.

IV. RESULTS

A. Varying x with nÄ0

First we present the results for no excess phase noisn
50) to see the effect of varying the self-energy parametex.
Because our results are numerical, we present them most
a graphical form.

1. Evolution at xÄ0 and xÄ50

Figure 1 shows the evolution of various initially pur
Gaussian quantum states under the linearized evolutio
Eqs.~3.4!–~3.8!. We represent these states by the 1-standa
deviation ellipses of the Wigner function. In each case
choose the initial mean location of the state in phase spac
be x̄5 ȳ50, and, for the last two cases, forȳ50, x̄5
6A3/2 as well.

The first case in Fig. 1~a! is for n50,x50, and an initial
coherent state. The ellipses are plotted fort50,3,10. The
middle time is the ensemble-averaged survival time for
ensemble of coherent states; that is, the time at which
ensemble-averaged survival probabilityS(t) drops to 1/2.
For the particular case of the coherent state there is no
tinction between the ensemble-averaged survival probab
and the survival probability of a single coherent stateSx̄(t).
That is because thex varianceg of a coherent state is equa
to unity, the ensemble-averagedx variance, so that perforce
x̄50. Note that the only dynamics in evidence here is ph
diffusion, causing they variance of the state to increase. F
x5n50, the coherent state ensemble is in fact the m
robust ensemble. This can be verified analytically. It is a
physically realizable, as shown in the preceding paper@3#.
6-7
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The second case in Fig. 1~b! is again for an initial coher-
ent state but withn50,x550, plotted fort50,0.0678,0.2.
Again the middle time is the survival time for the cohere
state. Note that it is almost two orders of magnitude sma
than the coherent state survival time forx50. The effect of
the largex is to rapidly shear the state. This is because
a†2a2 nonlinearity amounts to an intensity-dependent f
quency shift. The coherent-state ensembleEua&, however, is
not the most robust ensemble forx550.

The third case in Fig. 1~c! is the most robust uncon
strained ensembleER for n50,x550, as determined by th
numerical method discussed in Sec. III. Three memberx̄
50,6A3/2, of this ensemble are displayed. Note that tht
50 state is a highly amplitude-squeezed state. In fact,
not purely amplitude squeezed; thex-y covariancebR5m11
is equal to 0.225. In general, the angleu between the major
axis of the ellipse and they axis is

u5
1

2
arctan

2b

a2g
5

1

2
arctan

2bg

11b22g2
. ~4.1!

In the limit of small g and b this becomesu.bg. In this
case, withgR50.100, we haveuR51.2°. This angle of rota-
tion is almost too small to make out in the figure. It is ne
ertheless interesting that this slight rotation persists for

FIG. 1. Evolution of ~initially pure! Gaussian quantum state
under the linearized laser master equation for four different ca
The states are represented by the 1-standard-deviation ellipse o
Wigner function. In all the cases we choose the initial mean loca

of the state in phase space to bex̄5 ȳ50, and for the last two we

additionally havex̄56A3/2. For all four cases the excess pha
diffusion is n50. For ~a! we havex50 and an initially coherent-
state~which forms the most robust ensemble in this case!. For ~b!
we havex550 and again an initially coherent state. For Fig.~c! we
havex550 but the initial states are members of the most rob
unconstrained ensembleER for this x. For ~d! we havex550 but
the initial states are members of the most robust PR-constra
ensembleER for this x. In all cases the black ellipses are fort
50, the dark gray ellipses fort5t ~the appropriate ensemble
averaged survival time!, and the light gray ellipses for a still late
time. Details of these times are given in the main text.
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x.0, and that it is actually in the direction opposite to t
rotation caused by the shearing. That is, as the most ro
state evolves it passes through a point where the squeezi
purely in the amplitude. Because thex variancegR of the
states in this ensembleER is less than unity, the differen
members ofER have different values ofx̄. The three initial
states we show, withx̄50 andx̄56A3/2, are typical mem-
bers of the ensemble. The states into which these membe
the most robust ensemble evolve are plotted fort50.100
5tR ~the survival time! and t50.2 @as in Fig. 1~b!#. Note
that the survival time is significantly larger than that for t
coherent state ensemble in Fig. 1~b!.

The final plot, Fig. 1~d!, shows typical members of th
most robust PR ensembleER. That is, the most robust en
semble that can be realized by unraveling the master e
tion. It is very similar to the most robust unconstrained e
sembleER, also being highly amplitude squeezed withgR

50.092. The three times at which its evolution is plotted a
t50, t50.0985tR, and t50.2 @as in Figs. 1~b! and 1~c!#.
Note that the survival timetR is marginally smaller than tha
for the unconstrained ensemble,t R. The principal difference
from Fig. 1~c! is that thex-y covariance has the opposit
sign, with bR520.092. This corresponds to a rotation
uR520.48°, a rotation that is accentuated as the evolut
progresses. Again, the initial rotation is almost too small
see in the figure, but it is a persistent feature for largex.

From Fig. 1 it is evident that the evolved states from t
initial state with x̄50 in the robust cases of Fig. 1~c! at t
50.100 and Fig. 1~d! at t50.098 are much closer to th
initial state than the evolved state in the coherent case of
1~b! is at timet50.0678. This is despite the fact that all o
these times are the respective survival times at which
survival probability drops to 1/2. However, the evolve
states from the initial states withx̄56A3/2 in Figs. 1~c! and
1~d! have a lower overlap with their initial states than do
the evolved coherent state of Fig. 1~b!. This clearly illus-
trates that the survival probability is necessarily a property
the whole ensemble of states, not of a single member. Fig
1 also shows that the survival probability decays for differe
reasons in different cases. In case of Fig. 1~a! it decays be-
cause the evolved state becomes more mixed, due to p
diffusion. In case of Fig. 1~b! it decays primarily because th
evolved state changes shape~shearing! while remaining rela-
tively pure. In cases of Figs. 1~c! and 1~d! it decays substan
tially because the mean position of the evolved state mo
away from that of the initial states in phase space. In Fig
we compare the ensemble-averaged survival probabilityS(t)
for the four cases in Fig. 1. Note that the time scale for c
~a! (x50) differs from that used for cases~b!, ~c!, and ~d!
(x550). For short times the survival probability for th
coherent-state ensembleEua& @Fig. 1~b!# is greater than the
survival probability for the most robust ensemblesER @Fig.
1~c!# andER @Fig. 1~d!#. Indeed, the gradient of the surviva
probability for the coherent-state ensemble att50 is much
less than that of the most robust ensembles. This underl
the importance of the survival time, rather than the init
rate of decay of survival probability, to quantify robustne
At short times the survival probability generally decays li
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ATOM LASERS, COHERENT . . . II. . . . PHYSICAL REVIEW A 65 043606
early, due to irreversible processes, as discussed in
II C 2. A coherent state minimizes this form of decoheren
resulting in an almost quadratic behavior ofSua&(t) for t
&x2150.02. This can be understood from the asympto
analytical expression in Eq.~2.18! for the survival probabil-
ity for a master equation with a large reversible term. T
expression only applies to the survival probability of a sin
state, but is applicable to a coherent-state ensemble bec
all members are effectively identical. It need not, and inde
does not, apply to the more robust ensembles. In compar
with the coherent-state ensemble, the most robust ensem
are affected more by irreversible evolution in short times
less by the interplay of reversible and irreversible terms
longer times.

2. Most robust unconstrained ensemble for varyingx

Having looked in detail atx50 and x550 we now
present an overview forx ranging from 1 to 10 000. In this
section we concentrate upon the most robust unconstra
ensemble. In Fig. 3 we plot the second-order mome
aR,bR,gR defining the most robust unconstrained ensem
ER, as a function ofx. We also plot the survival timet R for
this ensemble and, for comparison, the survival timet ua& for
an ensemble consisting of coherent states.

For values ofx less than about 7.7, the members of t
most robust unconstrained ensemble are close to cohe
states, withaR'gR51 and bR&1. As noted above, the
states are sheared in theoppositedirection to the shearing
produced byx. At x'7.7 there is a discontinuity in all stat
parameters. Below this value the maximum survival timet
lies on the boundaryg51. Above this value, what was pre
viously a local maximum at some pointg,1 becomes a
global maximum, hence the jump in the parameters. Thi
shown by the contour plots oft versusg andb in Fig. 4.

FIG. 2. Decay of the ensemble-averaged survival probability
time for the four cases represented in Fig. 1. The horizontal
measures timet. For case~a! it is scaled in units of the bare lifetime
of the laser mode, and for cases~b!, ~c!, and~d! it is scaled in units
100 times smaller. That is, the survival probabilities actually d
much more quickly for the last three cases.
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As x becomes large, all of the curves plotted in Fig.
tend to become straight lines on the log-log plot. It is thus
easy matter to read off the following power laws from t
gradients of these lines:

aR;x2/3, ~4.2!

bR;x21/3, ~4.3!

tR.gR;x22/3. ~4.4!

These results clearly show that asx increases, the most ro
bust states become increasingly amplitude squeezed. F
Eq. ~4.1! the scaling law for the rotation angle of th
squeezed state is

uR;x21. ~4.5!

These scalings withx can be understood by considering th
causes of the decay in the survival probability from Eq
~3.4!–~3.8!. A typical highly amplitude-squeezed state mem
ber of the most robust ensemble has a mean amplitu
quadraturex̄ of order unity. From Eq.~3.5!, the meany
quadrature will therefore change in a timet!1 by an amount
of order xt. This will result in the significant decay of th
survival probability if the changext is of the order of stan-
dard deviationa1/2 of the y quadrature for that squeeze
state; in other words, ift5t where

t;a1/2x21. ~4.6!

This reduction in overlap due to the motion of the me
phase of the states is clearly illustrated in Fig. 1~c! for the
initial states withx̄56A3/2. The survival probability will
also be affected by an increase in the phase-quadrature

n
is

p

FIG. 3. Parameters for the most robust unconstrained Gaus
ensembleER as a function ofx with n50. These parameters are th
phase-quadrature varianceaR ~dotted line!, the amplitude-
quadrature variancegR ~dashed line!, the covariancebR ~dash-dot
line!, and the survival timetR for the members of this ensemble
For comparison, we also plot the survival timet ua& ~dash-dot-dot
line! of a coherent-state ensemble. Both survival times are in u
of the bare lifetime of the laser mode.
6-9
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H. M. WISEMAN AND JOHN A. VACCARO PHYSICAL REVIEW A65 043606
ancem02. From Eq.~3.8!, the dominant terms for short time
arem02(t)2a522xbt1x2gt2. Evidently a positive value
of the initial x-y covarianceb can, at some timet, cancel the
increase in the phase variance caused by the nonzero in
amplitude varianceg. This effect will maximize the surviva
probability if the cancellation occurs at a time of order t
survival timet. This gives the second condition

t;g21bx21. ~4.7!

This effect is most easily seen for thex̄50 initial state in
Fig. 1~c!, where the phase variance at the survival time
little changed from its initial value whereas the phase va
ance a short time later is significantly changed. Lastly,
consider the effect of motion and diffusion in thex direction.
From Eq.~3.6!, the amplitude-quadrature variance increa
at a rate of order unity. It will cause a drop in the surviv
probability once the increase is comparable to the init
amplitude varianceg, which is att;g. From Eq.~3.4! the
mean amplitudex̄ decays to 0 at the rate of unity, but th
will only cause a significant drop inS(t) when the decreas
in amplitude is of the order of the amplitude standard dev
tion, that is fort;g21/2, which is much longer. Thus th
third condition is just

t;g;a21. ~4.8!

Once again, thex̄50 initial state in Fig. 1~c! shows that
there is indeed a significant increase in the amplitude v
ance att equal to the survival time.

Clearly, the maximum survival time occurs when the thr
times in Eqs.~4.6!–~4.8! are comparable. The unique sol
tions to the three analytical scaling relations~4.6!–~4.8! are
the scaling laws found numerically and given in Eqs.~4.2!–
~4.4! above.

Not only doest R scale in the same way asgR, it actually
asymptotes togR for large x. This is a consequence of ou
choice L51/2, as will be shown later. In any case, th
ensemble-averaged survival time clearly decreases withx, so

FIG. 4. Contour plots of the survival timet as a function ofg
andb. In ~a! n50 andx57.7 and in~b! n50 andx550. In each
plot the heavy curves represent contours oft ~in units of the bare
lifetime of the laser mode! and the shaded region represents sta
that are physically realizable~PR!. Crosses mark the positions o
the maximally robust ensembles~MRE!.
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that the nonlinearity causes a loss of robustness in the sy
even under a maximally robust unraveling. However, t
loss of robustness is much worse for other ensembles.
example, the coherent-state ensembleEua& has a survival
time that varies as

t ua&;x21, ~4.9!

as shown by the dash-dot-dot curve in Fig. 3. Thus for la
x the description of the laser steady state in terms of
highly amplitude-squeezed states of the most robust
semble is much more useful than the conventional coher
state description.

The scaling in Eq.~4.9! can be easily derived from Eq
~3.8!. Even more simply, it can in fact be derived from th
asymptotic analytical formula in Eq.~2.18! for the survival
probability for a master equation with a large reversible ter
With P a coherent state with x̄50 and Lrevr5
2 i @(x/4)x2,r# we find for the solutionS(t)51/2,

t5A8 x21. ~4.10!

Even the coefficient here is a reasonable approximation
Fig. 3 shows.

3. Most robust physically realizable ensemble for varyingx

Having examined the most robust unconstrained
semble, we now determine the effect of the physical rea
ability constraint asx varies from 1 to 10 000. This is show
in Fig. 5. It can be seen from this plot that the ensem
parameters differ from those in Fig. 3 for allx. That is, the
PR constraint is active for allx. There is no discontinuity in
the parameters, because Eq.~3.19! keeps the state away from
the maximum oft in b-g space. This is illustrated clearly in
Fig. 4, where the shaded regions represent the PR states
also clear from Fig. 4 that, for largex, b is effectively con-
strained to be negative, which is why we plot6b rather than
just b in Fig. 5. That is, the shearing is in the directio
induced by the nonlinearity, rather than in the opposing
rection as adopted by an unconstrained ensemble. The
ensemble is, not surprisingly, more physically reasonable

Despite these differences, the scaling laws foraR, ubRu,
gR andtR are the same for the most robust PR ensembleER

as for the most robust unconstrained ensemble, that is,

aR;x2/3, ~4.11!

2bR;x21/3, ~4.12!

tR;gR;x22/3. ~4.13!

The scalings foraR, gR, and tR can be derived using the
same reasoning as in the preceding case. The scaling fobR

arises as follows. For robustness the system would like
haveb positive, as argued above. The constraint forces i
be negative, which is whyER is always constrained, and i
situated on the boundary of the PR region inb-g space. For
x large andg small, the boundary of the PR region can
found from Eq.~3.19! to be

s
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2b5xg2/4, ~4.14!

which here scales asx21/3.

B. Varying n

We turn now to the effect of excess phase noisen. Figure
6 is an overview of the most robust PR ensemble forx50
and for n ranging from 1 to 10 000. The behavior is ve
simple. Forn&2.3 the most robust states are coherent sta
As n increases they become increasingly squeezed states
all values ofn we haveb50 ~which is therefore not plot-
ted!, indicating that the most robust states are purely am
tude squeezed. The scaling laws derived from this plot a

aR;n1/2, ~4.15!

gR;n21/2, ~4.16!

tR.gR;n21/2. ~4.17!

This ensemble is not constrained by the PR constraint~3.19!.
These scalings can again be deduced by arguments simi
those in Sec. IV A 2. Unlike the nonlinearx term, phase
diffusion does not cause motion of the mean position o
typical squeezed state. Rather, from Eq.~3.8!, it simply
causes the phase-quadrature variance to increase linea
nt. The survival probability will drop significantly in this
time if nt is comparable to the original phase variancea.
From the increase in the amplitude variance we gett;g
;a21 as in Sec. IV A 2. The maximum survival time occu
when these two times are comparable, givingtR;n21/2 and
aR;n1/2, as found numerically.

FIG. 5. Parameters for the ensembleER arising from the maxi-
mally robust unravelingR as a function ofx with n50. As in Fig.
3 we plot aR ~dotted line!, gR ~dashed line! and 6bR ~dash-dot
lines!. We also plot the survival timetR ~solid line! of this en-
semble and, for comparison, the survival timet ua& ~dash-dot-dot
line! of a coherent-state ensemble. Both of these times are in u
of the bare lifetime of the laser mode.
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The survival time decreases with increasingn, and, once
again, it asymptotes togR for large n. For comparison we
also plot the survival timet ua& for a coherent-state ensembl
This scales as

t ua&;n21, ~4.18!

so that for largen the most robust ensemble is much mo
robust than the coherent-state ensemble. This scaling ca
derived from the short-time asymptotic analytic express
in Eq. ~2.16!. Since the excess phase diffusion dominates
evolution for largen, we have approximately

S~t!.11nt Tr$PD@x/2#P%. ~4.19!

Again, this expression only applies to a single state or
ensemble such as the coherent-state ensemble wher
members are effectively identical. In the latter case it eva
ates simply to 12nt/4.

C. Varying L

The final parameter we wish to consider varying isL,
which defines the survival timet by the equationS(t)5L.
All of the results presented so far were forL50.5. In Fig. 7
we show the parametersaR andtR for the most robust en-
semble as a function ofx for n50 and for four values ofL.
For largex the slope of the curves are independent ofL.
Thus the scaling laws established in Sec. IV A are indep
dent of L. As L decreases, the survival timetR increases,
because it takes longer for the survival probability to dec
to that level.

DecreasingL also causes the phase varianceaR to in-
crease, indicating that the most robust states are more hi
squeezed. This is not unexpected, since the difference
tween the coherent-state ensemble and the most robus

its

FIG. 6. Parameters for the ensembleER arising from the maxi-
mally robust unravelingR as a function ofn with x50. As in Fig.
3 we plotaR ~dotted line!, gR ~dashed line!, and the survival time
tR ~solid line!. We do not plotbR because it is identically zero. Fo
comparison we also plot the survival timet ua& ~dash-dot-dotted! of
a coherent-state ensemble. Both of these times are in units o
bare lifetime of the laser mode.
6-11
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semble is expected to be greater at longer times by the a
ment in Sec. IV A 1. However, the relative increase inaR is
far less than the relative increase intR. In other words, the
most robust ensemble is only weakly dependent onL. Inter-
estingly, becausegR;1/aR, gR decreases asL decreases
while tR increases. Thus the asymptotic resultgR.tR can
only be true at one value ofL, namely,L51/2.

Figure 8 presents the same information as Fig. 7 does
for x50 and varyingn andL. Once again the scaling law
established in Sec. IV B are found to be independent ofL,
and in this case the different values foraR appear to asymp
tote. In this case, the value forn, above which the coherent

FIG. 7. Parameters for the ensembleER arising from the maxi-
mally robust unravelingR as a function ofx with n50 and for
variousL. The rising lines areaR and the falling lines aretR ~in
units of the bare lifetime of the laser mode!. The values ofL are 0.5
~solid line!, 0.2 ~dashed line!, 0.1 ~dash-dot line!, and 0.05~dotted
line!.

FIG. 8. Parameters for the ensembleER arising from the maxi-
mally robust unravelingR as a function ofn with x50 and for
variousL. The rising lines areaR and the falling lines aretR ~in
units of the bare lifetime of the laser mode!. The values ofL are 0.5
~solid line!, 0.2 ~dashed line!, 0.1 ~dash-dot line!, and 0.05~dotted
line!.
04360
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state ensemble ceases to be the most robust ensembl
creases for decreasingL. Above these values ofn the
amplitude squeezing in the most robust ensemble is alw
decreased asL is decreased. However, the difference
small ~and may vanish asn→`), so that the equationtR

.gR is again valid only forL51/2. The sum of these re
sults justifies our use of the single valueL51/2 for most of
this paper.

V. DISCUSSION

A. Summary

The atom laser is an open quantum system with rich
namics. In this paper we have explored a new way of ch
acterizing those dynamics: finding the maximally robust u
raveling@9#. This yields the most robustphysically realizable
ensembleER of pure statesPR that survive the best. By
‘‘surviving,’’ we mean remaining unaffected by the syste
dynamics. This ensemble is, we have argued, the most n
ral representation of the stationary-state matrixrss of the
laser; if one wished to regard the laser as being ‘‘really’’ in
pure state, then the most natural states to choose are
members of this ensemble. Although it is a time-independ
ensemble, it is drastically affected by alterations in the d
namics of the atom laser that do not change the station
state matrix.

We considered a simple model for the atom laser in wh
rss is a Poissonian mixture of number states of meanm.
Working in the linearized regime, we identified two releva
dynamical parameters that may be varied without alter
this stationary state. The first isx, which is proportional to
the strength of self-interaction of the atoms in the laser. T
second isn, which is proportional to the excess phase diff
sion of the laser above the standard quantum limit.

For x50 and n small, the most robust ensemble w
found to consist of coherent-states, with mean boson num
m but with all possible phases. This is the most comm
representation of the state of an optical laser, and so it is
surprising. In terms of the parameters we used in the pa
the ensemble consists of Gaussian pure states with ph
quadrature variancea51, amplitude-quadrature varianceg
51, and amplitude-phase covarianceb50.

As the self-energyx is increased, the most robust stat
cease to be coherent-states. In fact, for any nonzero valu
x, not only are the coherent states not the most robust st
but, in addition, they are not even physically realizable@3#.
For large values ofx the most robust statesPR are very
highly amplitude-squeezed states with amplitude-quadra
variancegR scaling asx22/3 and phase-quadrature varian
aR scaling asx2/3. The same effect occurs for large values
n, with scalings ofn21/2 andn1/2, respectively.

It is not known what value ofn would be appropriate to
model a realistic atom laser. However, it was argued in R
@3# that a typical value forx might be 1000. This implies tha
the most natural description of an atom laser would be
terms of highly amplitude-squeezed states, with the stand
deviation in the amplitude quadrature being of the order
6-12
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0.1. Excess phase noise would only increase the amoun
squeezing in the states in the most robust ensemble.

As noted above, our analysis was based on a linear
approximation for the laser dynamics. This is only valid
the states under consideration have a well-defined cohe
amplitude. Asx or n are increased indefinitely and the mo
robust states become more amplitude squeezed, this app
mation clearly breaks down. Specifically, it will break dow
when the phase variance predicted by the linearized ana
is of the order of unity; that is, when the phase-quadrat
varianceaR is of the order of mean boson numberm. From
the above scalings, for the linearization to remain valid,
require

x!m3/2, ~5.1!

n!m2. ~5.2!

Although we cannot say with confidence what the most
bust states are when the linearization breaks down, we
know that they must be states without a well-defined coh
ent amplitude~because that is why the linearization brea
down!. Therefore, the conditions in Eqs.~5.1! and~5.2! also
represent the conditions for the most robust states to be s
with well-defined coherent amplitudes. In other words, if a
only if these conditions are satisfied, the most natural
scription of the atom laser is in terms of states with a me
field.

B. Interpretation

We can now finally state the most important result of t
paper. The conditions~5.1! and~5.2! are identical to the pre
viously stated conditions~3.10! and ~3.11! for the output of
the device to be coherent. Here we mean coherent in
sense that the output is quantum degenerate, with m
bosons being emitted per coherence time. Without this c
dition the device could not be considered a laser at all, a
output would consist of independent atoms rather than a m
ter wave.

The significance of this result is thatthere is a perfect
correspondence between the ‘‘best’’ pure states for desc
ing the laser, and the coherence of its output. If the most
robust states have a well-defined coherent amplitude,
coherent-states, then the output is coherent. If the mos
bust states do not have a well-defined coherent amplitu
like number states, then the output is not coherent. This
found result establishes the usefulness of maximally rob
unravelings as an investigational tool for open quantum s
tems.

It must be emphasized that the link between the prese
or absence of a mean field inside the laser, and the pres
or absence of quantum coherence in the laser output, is
due to any simple relationship of definitions. Finding t
maximally robust ensemble is, as the diligent reader w
appreciate, a very involved process completely differ
from calculating the first-order coherence function. In p
ticular, the average survival time for the members of
most robust ensemble has in general no relationship with
coherence time.
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C. Comparison with purity

It is worth pointing out that the relationship we have e
tablished between robust mean-field states and quantum
generacy would not have been found had we used pu
rather than survival probability as the basis of our definiti
for the most robust ensemble. Although there are no g
differences between the two definitions as one variesn, there
is a great difference as one variesx. This is to be expected
from the analysis in Sec. II C 2, asx scales the self-energ
Hamiltonian, whereasn represents irreversible phase diffu
sion.

To prove this point, we have calculated the ensemble
maximizes the time it takes for the average purity of t
member states@as defined in Eq.~2.10!# to drop to 1/2 under
the master equation evolution. We plot the parameters
this ensemble as a function ofx in Fig. 9. For comparison
we also plot the phase-quadrature varianceaR and the sur-
vival time tR of the most robust ensemble as previous
defined, in terms of survival probability. The ensemble p
rameters, when we use purity, obey scaling laws for largex,
but they are different from scaling laws obtained by using
survival probability~Sec. V A 2!,

aR8;x1/2, ~5.3!

bR8'21/4, ~5.4!

tR8;gR8;x21/2. ~5.5!

As expected from Sec. II C 2, the purity half-life is muc
longer than the survival time for largex. Here we useR8
rather thanR to emphasize that we are using a differe
measure of robustness.

The scalings in Eqs.~5.3!–~5.5! can be derived analyti-
cally. For Gaussian states with momentsmmn(t), the purity at
time t is given by

Tr @r2~ t !#5p~ t !5@m20~ t !m02~ t !2m11
2 ~ t !#21/2. ~5.6!

For n50, g!1, b;1, x@1, andt!1, as appropriate here
the solutions~3.6!–~3.8!, together with the conditionp(t)
51/2, yield the following equation fort

3'2~11b2!t/g22xbt212x2gt3/31x2t4/3. ~5.7!

It is clear from the termO(t4) that t will scale asx21/2. To
maximizet, the termsO(t) andO(t3) imply that g should
scale asx21/2 in accord with Eq.~5.5!. The termsO(t) and
O(t2) then imply thatb should be positive, and of the orde
of unity. Indeed, for the unconstrained Gaussian ensem
ER8 we findb'1.8. With the constraint of Eq.~4.14!, we get
b negative and of order unity, as stated above.

The condition for the best purity-preserving states to ha
a well-defined coherent amplitude isaR8!m, which from
Eq. ~5.3! gives
6-13
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H. M. WISEMAN AND JOHN A. VACCARO PHYSICAL REVIEW A65 043606
x!m2. ~5.8!

This implies that there is a range of interaction streng
m3/2&x!m2 for which the purity analysis delivers a descri
tion of the laser in terms of states with a mean field ev
though the laser output is no longer coherent in the se
defined above. This regime can be interpreted in terms
nonstandard concept ofconditional coherence, explored in
detail in the preceding paper@3#. The basic idea is well illus-
trated by Fig. 1. If one knows the mean amplitude of t
state with an uncertainty much less than unity, as in Fig. 1~d!,
then the direction that it will move in in phase space can
predicted with accuracy. This motion~which amounts to dif-
ferent frequencies! can then be taken into account by th
output of experiments. Thus the spread in frequencies du
spread in amplitude can be compensated for~up to a point!.

D. Comparison with quantum-state diffusion

A particular PR ensemble of interest is that generated
the unraveling known as quantum-state diffusion~QSD!
@21,22#. This is merely a particularly simple and natural ty
of continuous Markovian unraveling. It has been sugges
@14# that the corresponding ensemble is a good candidate
the most robust ensemble. We investigated this ensemb
the preceding paper@3# and found analytically that its param
etersb and g have exactly the same scaling as the PR
sembleER8 based on maximizing the robustness as m
sured by purity. That is, withx,

aQSD.A2x1/2, ~5.9!

bQSD.21, ~5.10!

FIG. 9. Parameters for the maximally robust ensemble fon
50 as a function ofx as in Fig. 5 but using purity as a measure

robustness. As in previous figures we plotaR8 ~dotted line!, gR8

~dashed line!, bR8 ~dash-dot line!, andtR8 ~solid line!. Also shown
for comparison are theaR ~rising! andtR ~falling! curves from Fig.
5 as dash-dot-dot curves. Both times are in units of the bare lifet
of the laser mode.
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gQSD.A2x21/2, ~5.11!

and withn,

aQSD.
1

A2
n1/2, ~5.12!

bQSD50, ~5.13!

gQSD.A2n21/2. ~5.14!

Consequently, the QSD ensembleEQSD scales withx quite
differently from the maximally robust ensembleER accord-
ing to our definition based on maximizing the survival tim
Thus unlikeER, but like ER8, the coherence of its member
does not have a direct correspondence with the laser ou
coherence~in the conventional, unconditional sense!.

The correspondence~at least in scaling laws! between
EQSD and ER8 is actually in contrast to the result found b
Diósi and Kiefer~for a different system! @14#. They found
that PR states minimizing the loss of purity were differe
from states produced by QSD. However, as noted ear
they considered only the initial rate of loss of purity, which
insensitive to Hamiltonian terms. If they had consider
maximizing the half-life of the purity, as we have, they m
have obtained a different result.

E. Future work

There are at least three future directions for this wo
First, the insights into the atom laser that the maximally
bust unravelings analysis offers suggests that this techn
could be applied fruitfully to other open quantum systems
has already been applied to fluorescent atoms@16#, and could
also be applied to other quantum-optical systems@17#, and
other models for Bose-Einstein condensates in equilibri
with a reservoir@23#. These are all systems with nontrivia
dynamics, which could be more fully appreciated by det
mining the maximally robust unraveling.

Second, the difference between the analyses based on
vival probability and purity deserves further investigatio
As we showed, the purity analysis gives a description of
laser mode in terms of states with a well-defined coher
amplitude for high values ofx where the survival analysis
does not, and where the output is not coherent in the conv
tional sense. Nevertheless, the results do make sense in t
of conditional coherence@3#. Perhaps it is because purity
unaffected by the motion of the mean position of the state
phase space that it reflects conditional coherence, which
lies on knowledge of that motion to define the output mo
By contrast, the survival probabilityis affected by the motion
of the states, and hence reflects conventional coherence
averages over the different frequencies of rotation.

Finally, there are other approaches to quantifying the
bustness of unravelings apart from the survival probabi
and the purity. For example, one could measure how quic
the unraveling purifies the state, or how sensitive the pu
is to imperfections in the unravelings. Related ideas h
recently been explored@15,24#. These ideas could be be

e
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investigated in systems somewhat simpler than the atom
ser we have considered here. This would give an indica
of the robustness of the idea of robustness; that is, how
sitive the maximally robust unraveling is to the definition
robustness used, and which definitions agree.

To conclude, the clear and simple interpretation for
results we have obtained here for the atom laser vindic
our conviction @9# that maximally robust unravelings wil
e

-

s
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have an increasing role as a tool for understanding the
namics of open quantum systems.
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