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Atom lasers, coherent states, and coherence. I. Physically realizable ensembles of pure states
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A laser, be it an optical laser or an atom laser, is an open quantum system that produces a coherent beam of
bosons~photons or atoms, respectively!. Far above threshold, the stationary staterss of the laser mode is a
mixture of coherent-field states with random phase, or, equivalently, a Poissonian mixture of number states.
This paper answers the question: can descriptions such as these, ofrss as a stationary ensemble of pure states,
be physically realized? Here physical realization is as defined previously by us@H. M. Wiseman and J. A.
Vaccaro, Phys. Lett. A250, 241 ~1998!#: an ensemble of pure states for a particular system can be physically
realized if, without changing the dynamics of the system, an experimenter can~in principle! know at any time
that the system is in one of the pure-state members of the ensemble. Such knowledge can be obtained by
monitoring the baths to which the system is coupled, provided that coupling is describable by a Markovian
master equation. Using a family of master equations for the~atom! laser, we solve for the physically realizable
~PR! ensembles. We find that for any finite self-energyx of the bosons in the laser mode, the coherent-state
ensemble is not PR; the closest one can come to it is an ensemble of squeezed states. This is particularly
relevant for atom lasers, where the self-energy arising from elastic collisions is expected to be large. By
contrast, the number-state ensemble is always PR. As the self-energyx increases, the states in the PR ensemble
closest to the coherent-state ensemble become increasingly squeezed. Nevertheless, there are values ofx for
which states with well-defined coherent amplitudes are PR, even though the atom laser is not coherent~in the
sense of having a Bose-degenerate output!. We discuss the physical significance of this anomaly in terms of
conditional coherence~and hence conditional Bose degeneracy!.

DOI: 10.1103/PhysRevA.65.043605 PACS number~s!: 03.75.Fi, 03.65.Yz, 42.50.Lc, 05.30.2d
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I. INTRODUCTION

In elementary presentations of quantum optics it is m
or less an axiom that a laser field is represented by a cohe
stateua&. Recently, it has been argued that this representa
is a fiction, albeit a convenient one@1#. The essential argu
ment is that no commonly employed process at optical
quencies produces an electric field having a nonzero ave
amplitude. While this point of view is certainly defensib
@2#, it perhaps obscures the fact that there is something
cial about laser light.

In Ref. @3#, one of us argued that what is special abo
laser light is that it is well approximated by a noiseless cl
sical electromagnetic wave. Four quantitative criteria w
given, none of which require a mean field, so there is
dispute with Ref.@1#. The least familiar, and so most impo
tant, of these criteria is that the output flux of the las
~bosons per unit time! must be much greater than its spect
linewidth. Put another way, the coherence time of a true la
must be much greater than the mean temporal separatio
photons in the output beam. This is typically satisfied
many orders of magnitude in optical lasers, but is not sa
fied by ordinary thermal sources.

This concept of quantum coherence is quite distinct fr
the elementary idea that a laser is in a coherent state. Ind
it is compatible with theoretical models for typical laser pr
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cesses@4,5#, which imply that the state of the cavity mod
for a laser far above threshold is a mixture of coherent sta
of all phases. That is to say, the stationary-state matrix of
laser mode can be written as

rss5E df

2p
uuaueif&^uaueifu, ~1.1!

whereuau25m is the mean number of photons in the lase
It would be tempting to interpret Eq.~1.1! to mean that

the laser really is in a coherent stateuuaueif& of definite
phasef, but we do not know what that phase is. Howev
this temptation must be resisted because the stationary-
matrix can also be written as

rss5 (
n50

`

e2m
mn

n!
un&^nu, ~1.2!

which would seem to imply that the laser really is in a nu
ber stateun&, but we do not know which number it is.

The ‘‘unknown coherent state’’ description and the ‘‘u
known number state’’ description aremathematically equiva-
lent representations of the stationary-state matrixrss. How-
ever, in the physical context thatrss is the stationary state o
an open quantum system indynamical equilibrium, the two
representations arenot physically equivalent. This idea is at
the heart of this paper and the following paper@6#. In this
paper we investigate whether these, and other pure-state
sembles arephysically realizable. We will show that under
©2002 The American Physical Society05-1
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some circumstances, the ‘‘unknown coherent state’’ desc
tion is not physically realizable, in contrast to the ‘‘unknow
number state’’ description, which is. In the following pap
we look at the question of the howrobustthe ensembles are
We find that even among physically realizable ensemble
physical distinction may be drawn based upon thesurvival
time, the average time that a member of the ensemble
mains close to its original state when left to evolve under
system dynamics. Both of these concepts, the physical r
izability of pure-state ensembles, and the robustness of s
ensembles, were introduced in an earlier paper by us@7#.

Before proceeding further, it is necessary to clarify wh
we mean by ‘‘physically realizable’’~PR!. A stationary pure-
state ensemble of a given system is PR if it is possib
without altering the dynamics of the system, to know that its
state at equilibrium is definitely one of the pure states in
ensemble. Of course, we cannot predict which pure state
forehand. It may seem contradictory to say that the system
equilibrium is mixed, but that, nevertheless, we can know
to be in a pure state. The resolution is that, by monitoring
system’s environment, the system state can, under suit
circumstances, be collapsed over time into a pure state.
ing simply an example of a quantum measurement, this p
cess, called anunraveling @8#, will be stochastic.On aver-
age, the system evolution is not changed and the ensemb
pure states produced by the unraveling is guaranteed t
equivalent to the equilibrium mixed state.

From this description it should be apparent that the qu
tion of whether an ensemble is PR or not cannot be de
mined from the stationary mixed staterss. Rather, it depends
upon the dynamics~reversible and irreversible! that pro-
duced the stationary state. Indeed, the unraveling to a
state is realized by monitoring the environment of the s
tem, the same environment that produces the irreversible
namics of the system. It would not be justifiable to introdu
some new reservoir to allow a new measurement to be m
Even if that did not change the stationary state of the sys
@such as would be the case for adding a quantum nonde
lition ~QND! measurement of boson number to a laser#, it
would change the dynamics of the system, and hence
would be investigating adifferent system.

The fact that different dynamics can lead to the sa
stationary mixed state is easy to see for the case of a la
Any process that commutes with boson number will not a
the stationary laser staterss, since its eigenstates are th
number states, as shown by Eq.~1.2!. An example of an
irreversible process that commutes with boson numbe
phase diffusion. This is relevant to all current lasers, wh
have some phase diffusion in excess of the standard l
~although see Ref.@9# for theoretical proposals for lasers th
have phase diffusion below the standard limit!. There are
also reversible processes that commute with boson num
such as degenerate four-wave mixing. While this dynamic
unimportant in most of the optical lasers, it is expected to
very significant inatom lasers.

An atom laser is a device that produces an output beam
bosonic atoms analogous to an optical laser’s beam of p
tons @3#. The idea for an atom laser was published indep
dently by a number of authors@10–13#, shortly after the first
04360
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achievement of Bose-Einstein condensation~BEC! of a di-
lute atomic gas@14–16#. There have since been some impo
tant experimental advances in the coherent release of pu
@17,18# and beams@19,20# of atoms from a condensate. Be
cause the condensate is not replenished in these experim
the output coupling cannot continue indefinitely, so these
vices are only the first steps towards achieving a cw at
laser.

Even though the atoms in the current BEC experime
are weakly interacting in the sense of forming a gas rat
than a liquid, elastic collisions may dominate the dynam
of the condensate. This self-interaction does not directly a
the number of atoms in the condensate, and is analogou
four-wave mixing,~that is, ax (3) nonlinearity!, in optics. In
this paper we show that the presence of this nonlinearity
an enormous influence on what ensembles of pure state
physically realizable. It also determines the laser linewid
and in this paper, we explore the connection, between
presence of a PR coherent amplitude, and the coherenc
the laser output.

This paper is organized as follows. In Sec. II we expla
in detail our concept of physically realizable pure-state
sembles for open quantum systems. In Sec. III we pres
our atom-laser model, including self-interactions and ph
diffusion. In Sec. IV we apply the formalism of Sec. II to th
atom-laser model and set up the framework for calculat
the PR ensembles. We calculate the PR ensembles in Se
and derive various scaling laws for the ensembles as a fu
tion of the self-interaction and phase diffusion. We conclu
in Sec. VI with a summary and a discussion of the interp
tation and implications of our work.

II. PHYSICALLY REALIZABLE ENSEMBLES

A. The master equation

Open quantum systems generally become entangled
their environment, and this causes their state to beco
mixed. In many cases, the system will reach an equilibri
mixed state in the long time limit. A cw laser or atom laser
a system of this sort, and we will restrict our consideration
such systems. It is common to refer to the environment
these systems as a reservoir and, accordingly, we use
terms~environment and reservoir! interchangeably here.

If the system is weakly coupled to the environmental r
ervoir, and many modes of the reservoir are roughly equ
affected by the system, then one can make the Born
Markov approximations in describing the effect of the en
ronment on the system@21#. Tracing over~that is, ignoring!
the state of the environment leads to a Markovian evolut
equation for the state matrixr of the system, known as a
quantum master equation. The most general form of the
quantum master equation that is logically valid is the Lin
blad form @22#

ṙ52 i @H,r#1 (
k51

K

D@ck#r[Lr, ~2.1!

where for arbitrary operatorsA andB,
5-2
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ATOM LASERS, COHERENT STATES, . . . . I . . . PHYSICAL REVIEW A 65 043605
D@A#B[ABA†2$A†A,B%/2. ~2.2!

If the master equation has a unique stationary state~as we
will assume it does!, then that is defined by

Lrss50. ~2.3!

This assumption requires thatL be time independent. In
many quantum-optical situations, one is only interested
the dynamics in the interaction picture, in which the fr
evolution at optical frequencies is removed from the st
matrix. Indeed, for quantum systems driven by a class
field, it may be necessary to move into such an interac
picture in order to obtain a time-independent Liouvillian s
peroperatorL.

The stationary-state matrixrss can be expressed as a
ensemble of pure states as follows:

rss5(
n

`nPn , ~2.4!

where thePn are rank-one projection operators

Pn5ucn&^cnu, ~2.5!

and the`n are positive weights summing to unity. We wi
call the ~possibly infinite! set of ordered pairs,

E5$~Pn ,`n!:n51,2, . . .%, ~2.6!

an ensembleE of pure states. Note that there is no restricti
that the projectorsPn be mutually orthogonal. This mean
that there are continuously infinitely many ensemblesE that
representrss. As noted in Introduction, only some of thes
are physically realizable.

B. Unravelings

In the situation where a Markovian master equation c
be derived, it is possible~in principle! to continually measure
the state of the environment on a time scale that is la
compared to the reservoir correlation time but small co
pared to the response time of the system. This effectiv
continuous measurement is what we will call ‘‘monitoring
In such systems, monitoring the environment does not
rupt the system-reservoir coupling and the system will c
tinue to evolve according to the master equation if one
nores the results of the monitoring.

By contrast, if one does take note of the results of mo
toring the environment, then the system will no longer ob
the master equation~except on average!. Because the
system-reservoir coupling causes the reservoir to become
tangled with the system, measuring the former’s state yie
information about the latter’s state. This will tend to undo t
increase in the mixedness of the system’s state caused b
coupling.

If one is able to make perfect rank-one projective~i.e.,
von Neumann@23#! measurements of the reservoir state, w
negligible time delay from when it interacted with the sy
tem, then the system state will usually collapse toward
pure state. However, this is not a process that itself can
04360
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described by projective measurements on the system,
cause the system is not being directly measured. Rather
monitoring of the environment leads to a gradual~on aver-
age! decrease in the system’s entropy.

If the system is initially in a pure state then, under perfe
monitoring of its environment, it will remain in a pure stat
Then the effect of the monitoring is to cause the system
change its pure state in a stochastic and~in general! nonlin-
ear way. Such evolution has been called a quantum trajec
@8#, and can be described by a nonlinear stochastic Sc¨-
dinger equation@24–26#. The nonlinearity and stochasticit
are present because they are a fundamental part of mea
ment in quantum mechanics.

Although a stochastic Schro¨dinger equation is conceptu
ally the simplest way to define a quantum trajectory, in t
work we will instead use the stochastic master equat
~SME! @28–32#.

This has four general advantages. First, it can describe
purification of an initially mixed state. Second, it can eas
be generalized to describe the situation where not all ba
are monitored perfectly, and the conditioned state never
comes pure~as we will consider in Sec. VI!. Third, it is
easier to see the relation between the quantum trajecto
and the master equation that the system still obeys on a
age. Fourth, the form of the SME is invariant under stoch
tic U~1! transformations of the state vector, which can ra
cally alter the appearance~but not the substance! of the
stochastic Schro¨dinger equation@33#.

Assuming that the initial state of the system is pure,
quantum trajectory for its projectorP will be described by
the SME as

dP5dt@L1U~ t !#P. ~2.7!

Here L is the Liouvillian superoperator from the mast
equation, andU is a stochastic superoperator that is, in ge
eral, nonlinear in its operation onP. It also depends on the
operatorsck as defined in Eq.~2.1!, and is constrained by the
following two equations, which must hold for arbitrary ran
one projectorsP,

$P,~L1U!P%1dt@UP#@UP#5~L1U!P, ~2.8!

E @UP#50. ~2.9!

The first of these properties ensures thatP1dP is also a
rank-one projector; that is, that the state remains pure.
second ensures that

dE @P#5LE@P#dt, ~2.10!

whereE denotes the ensemble average with respect to
stochasticity ofU. This stochasticity follows from Eq.~2.8!,
which requires the termdt@UP#@UP# to be nonzero; the fi-
niteness of this term indicates thatU is highly singular.

Because the ensemble average of the system still ob
the master equation, the stochastic master equation~or
equivalently the stochastic Schro¨dinger equation! is said to
unravel the master equation@8#. It is now well known@34#
that there are many~in fact continuously many! different
5-3
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H. M. WISEMAN AND JOHN A. VACCARO PHYSICAL REVIEW A65 043605
unravelings for a given master equation, corresponding
different ways of monitoring the environment.

For simplicity we will call U an unraveling. Each unrav
eling gives rise to an ensemble of pure states

EU5$~Pn
U ,`n

U!:n51,2, . . .%, ~2.11!

wherePn
U are the possible pure states of the system at ste

state, and̀ n
U are their weights. For master equations with

unique stationary staterss, the SME~2.7! is ergodic overEU

and`n
U is equal to the proportion of time the system spen

in statePn
U . The ensembleEU representsrss in that

(
n

`n
UPn

U5rss, ~2.12!

as guaranteed by Eq.~2.10!.

C. Continuous Markovian unravelings

To determine whether an ensembleE is a PR ensembleEU

requires a search through the set, call itJ, of all possible
unravelingsU. This set is extremely large. Although the st
chasticity in the superoperatorsU can always be written in
terms of quantum jumps, these jumps range in size fr
being infinitesimal, to being so large that the system s
after the jump is always orthogonal to that before the ju
@35#.

Another complication is that the unraveling need not
Markovian, even though the master equation is. It might
thought that the measurement must be Markovian sinc
must obtain full information from the environment immed
ately after it has interacted with the system in order that
conditioned system state remain pure. This rules out spe
detection, for example, where the conditioned system sta
not pure because it is entangled with the state of the spe
filters @36#. However, the way in which the measureme
obtains information from the environment may not be ind
pendent of the history of the system. For example, the
rameters defining the measurement may depend on prev
measurement results, resulting in anadaptivemeasurement
as discussed in Ref.@37#.

From these considerations we see that a search ove
possible unravelings would not be practical. Thus it is use
to consider a smaller~but still continuously infinite! set D
containing only unravelings that are continuous and Mark
ian ~CM!. A continuous~but not differentiable! time evolu-
tion arises from infinitely small~and infinitely frequent!
jumps@8,37#. In this case the probability distribution for th
pure states obeying the SME satisfies a Fokker-Planck e
tion. On this basis it has been argued that these unrave
are the natural ones to consider for quantum systems
pected to show quasiclassical behavior@35#. The measure-
ment will be Markovian provided the measurement para
etersujk ~defined below! are constants.

For the general master equation~2.1! the elementsU of D
can be written as@7,33#
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U~ t !dt5 (
k51

K

H@dWk* ~ t !ck#. ~2.13!

HereH@A# is a nonlinear superoperator defined, for arbitra
operatorsA andB, by

H@A#B[AB1BA†2Tr@AB1BA†#B, ~2.14!

and thedWk(t) are the infinitesimal increments of a comple
multidimensional Wiener process@38# satisfying

E @dWk#50, ~2.15!

dWj~ t !dWk* ~ t !5dt d jk , ~2.16!

dWj~ t !dWk~ t !5dt ujk . ~2.17!

The only condition on the complex numbersujk5uk j is that
the corresponding complex symmetric matrixu must satisfy
@33#

iui<1. ~2.18!

This comes from the requirement that the following expr
sion must be non-negative,

E F S (
k

zkdWk1c.c.D 2G , ~2.19!

for an arbitraryK vector of complex numberszW.
Some insight into the measurement parametersujk may

be found by considering the simple case with one irrevers
term; that is,K51 so that there is just one complex numb
u in Eq. ~2.17!. For specificity, say, the system is an optic
cavity with annihilation operatora, damped through one-en
mirror with decay ratek. Then the continuous Markovian
unravelings correspond to two independent homodyne de
tion apparatuses@8#, each of efficiency 1/2. If the local os
cillator phases areu1 and u2 then u5(e2iu11e2iu2)/2. The
two photocurrentsI 1(t) and I 2(t), normalized to have unit
shot noise, are given by@8,32#

I p~ t !dt5Ak/2^e2 iupa1eiupa†&dt1dWp~ t !, ~2.20!

where dW1 and dW2 are independent Wiener increment
We can combine the photocurrents to make a complex sig

J~ t !dt5@eiu1I 1~ t !dt1eiu2I 2~ t !dt#/A2 ~2.21!

5Ak^a1ua†&dt1dW~ t !, ~2.22!

wheredW(t)5@eiu1dW1(t)1eiu2dW2(t)#/A2 is a complex
Wiener increment satisfying

dW* ~ t !dW~ t !5dt, dW~ t !dW~ t !5udt. ~2.23!

That is, it has the same correlations as thedW(t) occurring
in the stochastic master equation, and is in fact the sa
noise process.

If the two local oscillator phases are chosen to be ident
then uuu51 and both apparatuses measure the same qua
5-4
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ture of the cavity mode. If they are chosen to be in quad
ture, with u12u25p/2, then u50 and two orthogona
quadratures are measured each with efficiency 1/2. In gen
0<uuu<1, and for anyuÞ0, different amounts of informa
tion are obtained about the two cavity-field quadratures. T
information gained tends to reduce the cavity field to a s
with correspondingly different quadrature uncertainties. T
gives an idea as to how different unravelings can give ris
different ensembles.

For a master equation withK Lindblad terms the problem
of finding the ensembles that are physically realizable
some continuous Markovian unraveling~CMU! reduces to
determining the boundary$ujk :iui50% of a region inK(K
11)-dimensional Euclidean space. Even for a modera
sized K ~for example,K53 is needed for the atom-lase
problem!, this is a surprisingly large space, which is difficu
to search efficiently. For that reason we adopt in this pap
different search strategy, which will be explained in S
IV C.

D. Quantum-state diffusion

There is an interesting continuous Markovian unraveli
which has some special properties, for the case whereui j
[0 @39,33#. In this case each complex Wiener processdW
can be decomposed into real Wiener processesdWa, dWb as

dWk5~dWk
a1 idWk

b!/A2 ~2.24!

such that dWk
adWj

a5dWk
bdWj

b5d jkdt, and dWk
adWj

b50.
This unraveling is invariant under the complete set of lin
transformations of the Lindblad operators,

cm→Umncn , ~2.25!

that leaves the master equation invariant. HereUmn is an
arbitrary unitary matrix.

This unraveling was introduced by Gisin and Perciv
@40#, under the name of quantum-state diffusion~QSD!, as a
microscopic model for decoherence. In the optical contex
has been interpreted as the unraveling resulting from het
dyne detection@26# or from equal-efficiency homodyne de
tection of orthogonal quadratures~as discussed above!, al-
though it can also arise in atomic detection schemes as
@27#. It has been suggested by Rigo and Gisin@35# that the
QSD unraveling is a natural way to discover the class
limit for a quantum system. Along similar lines, Dio´si and
Kiefer @41# have suggested that the QSD unraveling is
most robust unraveling, or close to the most robust unra
ing ~see the following paper@6# for a detailed discussion o
this concept!. Thus, as well as considering the set of all e
sembles physically realizable from CMUs, we will also p
particular attention to the ensemble arising from the spe
instance of QSD.

E. Discontinuous unravelings

Although most of our calculations are restricted to CMU
there will be one occasion where we need to consider
following discontinuous unravelings of the master equat
~2.1!:
04360
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Uk , ~2.26!

where

Uk~ t !rdt5@dNk~ t !2dtlk~r!#S ckrck
†

lk~r!
2r D . ~2.27!

Here thedNk(t) are point processes defined by

dNj~ t !dNk~ t !5d jkdNk~ t !, ~2.28!

E @dNk#5lk~r!dt[Tr@rck
†ck#dt. ~2.29!

It is easy to verify that this unraveling satisfies the necess
conditions of Eqs.~2.8! and~2.9!. This unraveling~quantum
jumps! is the most commonly used for numerical simulati
of master equations@42#.

III. THE „ATOM … LASER

The system we wish to consider in this paper is the~atom!
laser. As noted in Introduction, we take a laser to be a dev
that produces a coherent output, in the sense explaine
Ref. @3#. An atom laser is thus a device that produces a
herent beam of bosonic atoms, analogous to the cohe
beam of photons from an optical laser.

A. The master equation

A generic model for a laser was derived in Ref.@3#. It
describes a single-mode field having annihilation operatoa,
evolving under linear damping and nonlinear amplificatio
The nonlinearity in the amplification is due to depletion
the source~the gain medium in optical lasers! and is essentia
for a coherent output to form. In the interaction picture, a
measuring time in units of the decay rate, the master eq
tion is

ṙ5mD@a†#~A@a†#1ns!
21r1D@a#r. ~3.1!

The two terms on the right describe saturated gain and
decay due to the coupling of the laser mode to the out
beam, respectively. Herens is the saturation boson numbe
m is a ~typically! large parameter,D is as defined in Eq.
~2.2!, and for arbitrary operatorsA andB,

A@A#B5@A†AB1BA†A#/2. ~3.2!

For simplicity we take the limit wherens can be ignored
compared toaa†. Strictly, this requires the limitns!1, be-
cause the smallest eigenvalue ofaa† is 1. However, for a
laser at steady state the mean boson number is typic
much greater than 1, and only boson numbers close to
mean are occupied with any significant probability. In t
above model the mean number is approximatelym2ns in the
limit of large m. Hence in the limitm@ns,1 we can ignorens
in Eq. ~3.1!. The resultant far-above-threshold laser mas
equation was first explicated in Ref.@43#.

Having made this simplification, we now introduce mo
terms into Eq.~3.1! in order to create a more realistic mode
5-5
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First, we introduce a term describing additional phase di
sion. This will be present in optical lasers for all sorts
technical reasons such as thermal motion of the cavity m
rors. In an atom laser it may also be present for more fun
mental reasons, such as collisions between uncondense
oms ~in the source modes! and atoms in the laser-mod
condensate. Treating this phase diffusion as a Markov
process, it is described by a Lindblad superoperator of
form ND@a†a#, whereN is the phase diffusion rate in unit
of the decay rate.

The second new term we introduce is peculiar to at
lasers: the self-energy of atoms in the condensate. Th
described by a Hamiltonian equal to\C(a†a)2, with

C5
2p\as

km E d3r uc~r !u4, ~3.3!

wherec(r ) is the wave function for the condensate mode,as
is thes-wave scattering length, andk is the unit-valued de-
cay rate of the condensate. Like the extra phase-diffus
term, this term has no effect on boson number; it only affe
the phase of the field. However, it is strictly not a pha
diffusion term, but rather a dispersive term. It would arise
an optical laser in a medium with a nonlinear refractive
dex.

Putting the four terms~gain, loss, phase diffusion, an
self-energy! together, the total master equation is

ṙ5~mD@a†#A@a†#211D@a#1ND@a†a# !r

2 iC@~a†a!2,r#. ~3.4!

That this is of the Lindblad form follows from the identity

D@a†#A@a†#215E
0

`

dqD@a†e2qaa†/2#. ~3.5!

The stationary solution is a Poissonian mixture of num
states with meanm, just as expressed in Eqs.~1.1! and~1.2!:

rss5E df

2p
uAmeif&^Ameifu5 (

n50

`

e2m
mn

n!
un&^nu.

~3.6!

B. The linearized master equation

The master equation~3.4! is rather difficult to deal with
because of the nonlinearities in both the gain term and
self-energy term. To make it more tractable we linearize t
equation for a state localized about a mean field^a&5Am.
We make the replacement

a5Am1~x1 iy !/2 ~3.7!

and get, to second order inx andy,

ṙ5~1/4!$D@x1 iy #1~11n!D@x#1D@y#1H@ i ~xy1yx!/2

2 ixx2#%r, ~3.8!

where
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n54Nm>0, x54mC ~3.9!

andH is the superoperator defined in Eq.~2.14!, which here
is serving as a convenient way to describe the Hamilton
evolution. We have ignored a contribution to the lineariz
Hamiltonian that is proportional toa†a as this simply indi-
cates a frequency shift that can be removed in the interac
picture.

To solve this master equation, we use the Wigner rep
sentationW(x,y) @21#. We make a Gaussian ansatz

W~x,y!5expF m20m02

m20m022m11
2 S 2

~x2m10!
2

2m20

1
m11~x2m10!~y2m01!

m20m02

2
~y2m01!

2

2m02
D G Y ~2pAm20m022m11

2 !.

~3.10!

Substituting this into Eq.~3.8! yields the following ordinary
differential equations for the moments:

ṁ1052m10, ~3.11!

ṁ0152xm10, ~3.12!

ṁ20522m2012, ~3.13!

ṁ1152m112xm20, ~3.14!

ṁ02522xm11121n. ~3.15!

The solution is easy to find

m10~ t !5m10~0!w, ~3.16!

m01~ t !5m01~0!2xm10~0!~12w!, ~3.17!

m20~ t !5m20~0!w2112w2, ~3.18!

m11~ t !5m11~0!w2x$11w@m20~0!22#1w2@12m20~0!#%,
~3.19!

m02~ t !5m02~0!1~21n!t22xm11~0!~12w!12x2$t

1@m20~0!22#~12w!1@12m20~0!#~12w2!/2%.

~3.20!

Here we are using the abbreviationw[e2t.

C. Coherence

Having solved for the dynamics of our~atom! laser
model, we can now answer the question, is it a true las
That is, does it satisfy the criteria for a coherent output
detailed in Ref.@3#. The first two criteria will be satisfied
5-6
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provided the output coupling is realized in a suitable w
The next two relate to the quantum noise of the state,
depend upon the dynamics.

First, the laser intensity should be well defined. Althou
this criterion is strictly defined in terms of the output of th
laser, it will be satisfied if the boson number of the las
mode itself is well defined. In the present case this is clea
so provided the mean number satisfies

m@1, ~3.21!

as the ratio of the standard deviation to the mean is equa
1/Am.

Second, the laser phase should be well defined in
sense that the phase should stay approximately constant
the time between the emission of one boson and the n
With a unit damping rate, this time is equal tom21. Rigor-
ously, we require that the magnitude of the first-order coh
ence function

g(1)~ t !5^a†~ t !a~0!&/^a†a& ~3.22!

remain close to unity fort5m21. For the current system w
can rewrite this expression as

g(1)~ t !5m21 Tr@a†eLt~arss!# ~3.23!

5m21E df Tr@a†eLt

3~auAmeif&^Ameifu!#. ~3.24!

Now becauseL is a phase-independent superoperator,
trace here is independent off. Thus the integral can be
dropped and we can rewrite this as

g(1)~ t !5~1/a* !Tr@a†eLtua&^au#, ~3.25!

where uau25m. Thus, the requirement thatg(1)(t).1 for t
5m21 is exactly equivalent to requiring that the syste
initially in a coherent state of mean numberm, still has a
phase variance much less than unity after a timet5m21.

Without loss of generality we can take the initial cohere
state to beuAm&. Then m10(0)5m01(0)5m11(0)50, m20
5m0251, andy is the phase quadrature. Assuming that
phase uncertainty remains relatively small, we can make
approximation

f5
y

2Am
. ~3.26!

From Eq.~3.17!, the mean phase remains zero,

^f~ t !&5
m01~ t !

2Am
50 ~3.27!

while the phase variance increases as

^f2~ t !&5
m02~ t !

4m
. ~3.28!
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Substitutingt5m21!1 into Eq.~3.20! yields

^f2~ t !&5
11~21n!m211x2m22

4m
. ~3.29!

For the phase to remain well defined we require this to
much less than unity. Since we already requirem@1, this
gives the extra conditions

x!m3/2, ~3.30!

n!m2. ~3.31!

In a typical optical laser~and certainly in some models o
atom lasers@10#!, n@1. This means that excess phase diff
sion dominates the intrinsic phase diffusion~which gives the
2 in the 21n term!. In a typical atom laser, it is also likely
that excess phase diffusion will dominate. However, as lo
asn!m2 the laser will remain coherent. Sincen54Nm, this
is equivalent to the condition

N!m. ~3.32!

This expression places an upper bound on the phase d
sion rateN for the device to be considered a laser.

For an optical laser any nonlinear refractive index is u
ally small andx!1. For an atom laserx is likely to be much
greater than 1, as we will discuss in Sec. VI D. To be a t
atom laser it is necessary for it to remain much less th
m3/2. Sincex54mC the phase coherence condition places
upper bound on the condensate self-energy in Eq.~3.3! of

C!m1/2. ~3.33!

IV. UNRAVELING THE „ATOM … LASER

We now wish to consider monitoring the environment
the laser in order to realize physically an ensemble of p
states. This would be very difficult to do experimentally, as
would require monitoring all reservoirs for the device, i
cluding the source of bosons~the gain medium! and the
sources of phase diffusion as well as the laser output. H
ever, in principle, these things can be done provided that
laser evolution is well approximated by a Markovian mas
equation.

A. Realizing the number-state ensemble

Before turning to continuous Markovian unravelings, w
consider a discontinuous unraveling to show how the
semble consisting of number states can always be reali
Using the atom-laser master equation~3.4! in the Lindblad
form ~3.5!, we can apply the unraveling of Sec II E, whe
the Lindblad operators are

c05a, ~4.1!

cN5ANa†a, ~4.2!

plus a continuum of Lindblad operators
5-7
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cq5Ama†e2qaa†/2 for qP@0,̀ !. ~4.3!

Each of these operators either leaves the number state
changed, or turns it into another number state. Since
Hamiltonian Ca†a†aa also leaves a number state u
changed, it follows that if the system is initially in a numb
state, it will simply jump between number states under t
unraveling. Moreover, it can be shown that an arbitrary i
tial state will tend towards some number state under
unraveling. In this way it is clear that the number-state
semble~1.2! can always be physically realized.

B. The continuous Markovian unravelings

As mentioned in Sec. II C, we are principally concern
with continuous Markovian unravelings. In this case, fro
the master equation~3.4!, the SME is

dP5dtH mE
0

`

dqD@a†e2qaa†/2#1D@a#1ND@a†a#J P

1AmE
0

`

dqH@dWq* ~ t !a†e2qaa†/2#P1H@dW0* ~ t !a#P

1ANH@dWN* ~ t !a†a#P2 idt@C~a†a!2,P#. ~4.4!

Here dW0 is a zero-mean white-noise term. If we defin
z0(t)5dW0(t)/dt we have

E @z0* ~ t !z0~ t8!#5d~ t2t8!, ~4.5!

and likewise forzN and zq for eachq. We say that these
white-noise terms aredistinct because the cross terms a
zero, for example,

E @z0* ~ t !zN~ t8!#50. ~4.6!

Now we wish to linearize. First note that

AmE
0

`

dqzq* ~ t !a† exp~2qaa†/2!

.AmE
0

`

dqzq* ~ t !e2mq/2Am@11~x1 iy2mxq!/2Am#

~4.7!

5~c number!1
y

2E0

`

dq izq* ~ t !e2mq/2

1
x

2E0

`

dq zq* ~ t !e2mq/2~12q! ~4.8!

[~c number!1@yz2* ~ t !1xz3* ~ t !#/2, ~4.9!

where z2(t) and z3(t) are distinct complex normalize
white-noise terms as usual.

Using this, we linearize Eq.~4.4! as
04360
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dP5~1/4!dt$D@x1 iy #r1~11n!D@x#r1D@y#r1H@ i ~xy

1yx!/2#1H@2 ixx2#%P1~1/2!$H@dW0* ~ t !~x1 iy !#

1A11nH@dW1* ~ t !x#1H@dW2* ~ t !y#%P, ~4.10!

where we have defined a new white-noise sou
A11ndW1(t)5dW3(t)1AndWN(t). We could have ob-
tained this result directly from the linearized form of th
master equation~3.8!, but this derivation makes the physic
origin of the noise terms apparent.

The three complex white-noise sourcesdWj5z jdt are
distinct in the above sense that

E @z i* ~ t !z j~ t8!#5d i j d~ t2t8!. ~4.11!

However, they can still be correlated in the sense that

E @z i~ t !z j~ t8!#5ui j d~ t2t8!, ~4.12!

where theui j are constrained only by Eq.~2.18!. Thed func-
tion in time in Eq. ~4.12! is not required to reproduce th
master equation. It is a consequence of our restriction
Markovian unravelings.

Now, it is a remarkable fact about the stochastic mas
equation ~4.10! that it takes Gaussian states to Gauss
states. This will be true for any diffusive stochastic mas
equation that is at most second order inx or y. The signifi-
cance in this case is that we can again use the ansatz~3.10!,
and we need only the equations of motion for the five m
ments. We find the following equations~to be interpreted in
the Itô sense@38#!:

dm10/dt52m101Re$z0* ~ t !@m20211 im11#

1z1* ~ t !A11n@m20#1z2* ~ t !@m111 i #%,

~4.13!

dm01/dt52xm101Re$z0* ~ t !@ im022 i 1m11#

1z1* ~ t !A11n@m112 i #1z2* ~ t !@m02#%,

~4.14!

dm20/dt5222m202Re@~m2021!21m11
2 1~11n!m20

2 1m11
2

111u00* ~m20211 im11!
21u11* ~11n!m20

2

1u22* ~m111 i !212u01* A11n~m20211 im11!m20

12u02* ~m20211 im11!~m111 i !12u12* A11n~m11

1 i !m20#/2, ~4.15!

dm02/dt522xm11121n2Re@~m0221!21m11
2 1~11n!

3~m11
2 11!1m02

2 1u00* ~ im022 i 1m11!
21u11*

3~11n!~m112 i !21u22* m02
2 12u01* A11n~ im02

2 i 1m11!~m112 i !12u02* ~ im022 i 1m11!m02

12u12* A11n~m112 i !m02#/2, ~4.16!
5-8
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dm11/dt52m112xm202Re$~m20211 im11!~2 im021 i

1m11!1~11n!~m112 i !m201m02~m112 i !

1u00* ~m20211 im11!~ im022 i 1m11!1u11*

3~11n!m20~m112 i !1u22* m02~m111 i !

1u01* A11n@~m20211 im11!~m112 i !1m20

3~ im022 i 1m11!#1u12* A11n@m20m02

1~m111 i !~m112 i !#

1u02* @~ im022 i 1m11!~m111 i !

1~m20211 im11!m02#%/2. ~4.17!

C. The stationary solutions

From these equations we see that the evolution of
second-order momentsm20,m02,m11 is deterministic. This
means that for a given unravelingU the stationary ensembl
will consist of Gaussian pure states all having the sa
second-order moments. They are distinguished only by t
first-order momentsx̄5m10,ȳ5m01, which therefore take
the role of the indexn in Eq. ~2.11!. The different ensemble
themselves are indexed by another pair of numb
m11,m20, which play the role ofU in Eq. ~2.11!. We do not
needm02 because the purity of the unraveled states imp
that

m20m022m11
2 51. ~4.18!

However, it should be noted that the mapping fromU to
m11,m20 is in general many to one as discussed below.

We now introduce a new notation for the second-or
moments,

a5m02; b5m11; g5m20. ~4.19!

The different ensembles are now indexed by the pair (b,g).
Of course not all pairs (b,g) correspond to physically real
izable ensembles. Since the ensemble we are considerin
evolved to a steady state att50, the only valid pairs mus
satisfy Eqs.~4.15!–~4.17! with the left-hand sides set to zero
This gives three simultaneous equations that, on splittingui j
into realr i j and imaginaryhi j components, can be written a

12g2~11n/2!g22b25r 00@~g21!22b2#/2

1r 11~11n!g2/21r 22~b221!/2

1h00b~g21!1h22b

1r 01A11ng~g21!1r 02

3~g22!b1r 12A11ngb

1h01A11ngb1h02~b21g21!

1h12A11ng, ~4.20!
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22xb1~11n/2!~12b2!2a21a

5r 00@b22~a21!2#/21r 11~11n!~b221!/2

1r 22a
2/21h00b~a21!1h11~11n!~2b!

1r 01A11n~b21a21!1r 02ba1r 12A11nba

1h01A11n~a22!b1h02~a21!a1h12A11n~2a!,

~4.21!

2xg2ab2~11n/2!gb5r 00b~g2a!/21r 11~11n!gb/2

1r 22ba/21h00@b21~a21!

3~g21!#/21h11~11n!

3~2g!/21h22a/2

1r 01A11ngb1r 02@b211

1~g22!a#/21r 12A11n

3~ag1b211!/21h01

3A11n@b2111~a22!g#/2

1h02ba, ~4.22!

wherea is to be read as (11b2)/g.
These three equations are nonlinear in (b,g) but linear in

the 12 real variables (r i j ,hi j ). This means that if the value
of g andb are known then the three equations can be sol
for r i j ,hi j . Since there are only three equations for the
unknown variables, the resulting linear system is nonsingu
and an~uncountably! infinite number of solutions are pos
sible. We denote the family of such solutionsFj

5$r i j
(j) ,hi j

(j) : i , j 50,1,2%, indexed byj. Physically this arises
because many different unravelingsU may lead to the same
steady-state ensemble (b,g). The question of whether a
given pair of values ofg andb represents a physically rea
izable state then becomes the problem of determin
whether any of the solutionsFj for the correlation coeffi-
cientsui j

(j)5r i j
(j)1 ihi j

(j) satisfy the conditioniu(j)i<1 in Eq.
~2.18!. This problem can be solved by finding the solutio
FJ that gives the smallest value foriui , and checking if this
is less than 1.

The above method determines the boundary betw
those ensembles that are physically realizable and those
are not by finding, explicitly, the parameters of the unrav
ings that satisfyiu(j)i51. There is an alternate, but equiv
lent, approach@44# based on the central idea of Ref.@45#.
This allows one to take an arbitrary ensemble and ch
whether it is possible, by monitoring the environment, for t
state of the system to be restricted to members of the
semble over arbitrary time intervals. The ensemble is ph
cally realizable if, and only if, this can be done witho
changing the ensemble-average dynamics. The advantag
this alternate approach is that the parameters of the unra
ing need not be calculated explicitly and so the compu
tional task can be greatly reduced. Moreover, it is possible
find the boundary between physically realizable and non
5-9
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alizable ensembles in a closed analytic form. The details
tangential to the scope of the present paper and are exp
elsewhere@44#. We note here, however, that the PR region
given byb andg values satisfyingg.0 and

~2xb222n!~222g!2~b1xg!2>0. ~4.23!

We have verified this analytic result with numerical solutio
obtained using the former approach, for all cases prese
below.

D. The stationary ensemble

The stationary solution of the linearized master equat
~3.8! has a Wigner function that is independent of phase~y!
and has the following amplitude~x! dependence:

Wss~x!}~2p!21/2exp~2x2/2!. ~4.24!

This is as expected from the stationary solution of the
master equation, Eq.~3.6!. A flat phase distribution linearize
into a flaty distribution.

As shown above, the long-time solution of the SME~4.9!
is an ensemble of Gaussian pure states in which the sec
order momentsm20,m11,m02 are identical in all members o
the ensemble, butx̄5m10 and ȳ5m01 are allowed to vary.
The ensemble is thus represented as

EU5$~` x̄,ȳ
U ,Px̄,ȳ

U !: x̄,ȳPR%, ~4.25!

where the second-order moments of the pure statePx̄,ȳ
U are

determined by the unravelingU.
The weighting functioǹ x̄,ȳ

U for the members of the en
semble is Gaussian. This follows from the fact that E
~4.13!, ~4.14! for x̄ and ȳ describe in steady state~where the
second-order moments are constant! a two-dimensional
Ornstein-Uhlenbeck process@38#. Such a process has a st
tionary probability distribution that is Gaussian.

Rather than deriving this stationary Gaussian distribut
` x̄,ȳ

U from the Ornstein-Uhlenbeck process, we can deriv
more simply by noting that it must satisfy

rss5E dx̄dȳ` x̄,ȳ
U Px̄,ȳ

U . ~4.26!

This is guaranteed by the fact that the SME is equivalen
the master equation on average. Evidentlyȳ should always
have a flat weighting distribution, andx̄ should have the
weighting distribution

`U~ x̄!5@2p~12m20!#
21/2exp@2 x̄ 2/2~12m20!#.

~4.27!

This ensures that

Wss~x!}E dȳE dx̄`U~ x̄!Wx̄,ȳ
U ~x,y!, ~4.28!

whereWx̄,ȳ
U (x,y) is the Wigner function ofPx̄,ȳ

U .
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V. PR ENSEMBLES FOR THE „ATOM … LASER

In this section we present our results for the physica
realizable ensembles for the~atom! laser.

A. Realizing the number-state ensemble

Before turning to the effect of varying the dynamical p
rametersx andn we briefly return to the physical realizabi
ity of the number-state ensemble. We showed in Sec. IV
above that this ensemble can be realized by a discontinu
unraveling. The analog of the number states in the lineari
regime we have been considering are the infinitely squee
states withg5b50, a5`. We expect that these state
should be PR using a CM unraveling. This expectation
met, in that these state parameters are a solution of
~4.20!–~4.22! for u0051, u1151, u22521, and all other
ujk50.

B. Varying x with nÄ0

First we present the results showing the effect of vary
x for fixed n50. As we have established above, a PR e
semble from a CMU can be represented by the pair of nu
bers (g,b). Thus the set of all PR ensembles can be rep
sented by a region ing-b space @0,1#3(2`,`). The
boundaries of this region, given by Eq.~4.23!, are shown in
Fig. 1 for various values ofx. A number of features of this
plot are evident. First, for any nonzero value ofx, the
coherent-state ensemble is not PR. Second, asx increases the
PR ensembles become increasingly removed from

FIG. 1. Representation of physically realizable ensembles, a
ing from general continuous Markovian unravelings~CMU!, for n
50 and various values ofx. The shaded regions represent values
g andb @and thusa5(11b2)/g# that can be realized by monitor
ing. The progressively darker shaded regions correspond to va
of x of 0, 1, 4, 16, and 1000 and are bounded by solid, dash
dash-dotted, dotted, and dash-dot-dot curves, respectively.
(g,b) value of the closest-to-coherent~CC! ensemble in each re
gion is marked as a filled circle on the boundary. The crosses m
the (g,b) values of the quantum-state diffusion~QSD! ensembles
for the same set ofx andn values, with thex values reducing from
left to right.
5-10
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coherent-state ensemble. Third, the boundary of the PR
sembles is asymmetric inb for x.0, with a larger negative
b region.

The first point can easily be proven analytically. Coher
states are given bya5g51 andb50 for which Eq.~4.23!
gives2x2>0. That is, coherent states are physically rea
able only forx50.

We quantify the second point by defining theclosest-to-
coherent~CC! ensembleas that for which the states hav
maximum overlap with a coherent state. The overlap of t
Gaussian states with the same mean amplitudes and co
ance parametersa,b,g anda1 ,b1 ,g1 is

2/A~a11a!~g11g!2~b11b!2. ~5.1!

If one of these is a coherent state, witha15g151, b150,
this reduces to

2/A21a1g. ~5.2!

Thus, to find the closest-to-coherent ensemble we sim
find the minimuma1g5g1(11b2)/g in the PR region of
g-b space.

The closest-to-coherent ensemble for each value ofx is
represented in Fig. 1 as a filled circle on the boundary of
respective PR region. The states in these ensembles be
more squeezed (g→0) and have a greaterx-y covariance as
x increases. This trend is shown in more detail in Fig
where we plot the parametersa, b, andg for the closest-
to-coherent PRE as a function ofx. By finding the minimum
of g1(11b2)/g subject to the constraint Eq.~4.23! and
expanding aboutg50 and 1/x50 we find the parameters o
the CC ensemble for largex scale as

FIG. 2. The parameters for the physically realizable ensem
that is closest to a coherent ensemble~CC! as a function ofx with
n50. The ensembles arise from general continuous Markovian
ravelings. These parameters are the phase-quadrature variancaCC

~dotted line!, the amplitude-quadrature variancegCC ~dashed line!,
and the covariancebCC ~dash-dot line! for the members of this
ensemble. Also shown for comparison are thin solid curves re
sentingx1/2 andx21/2.
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aCC.
2

33/4
x1/2, ~5.3!

gCC.
2

31/4
x21/2, ~5.4!

bCC.2
1

31/2
. ~5.5!

Also plotted in the figure are two lines representingx1/2 and
x21/2 for comparison. One can clearly see the 1/2 power-l
scaling fora andg.

The third point, i.e., the increasing asymmetry of the P
regions in Fig. 1, is due to the self-energy of the condens
embodied by the term containing (a†a)2 in Eq. ~3.4!. In the
Wigner phase-space representation, this term by itself p
duces a ‘‘phase shearing;’’ that is, the angular velocity of
point (x,y) depends on the distance.Am(11x) from the
origin @46#. In our linearized model of the atom laser, th
effect of this term is to shear the circular contours of a c
herent state into ellipses. Equation~3.19! indicates that these
ellipses have a negative covariance. When monitoring
reservoirs it will, therefore, be easier to realize states wit
negative covariance. Hence, the PR regions become m
asymmetric allowing more negative-b regions as the nonlin-
earity parameterx increases.

C. The effect of nonzeron

Nonzero values ofn, as defined in Eq.~3.9!, correspond
to the presence of excess phase diffusion, which will tend
overcome the phase-shearing effect. This makes it easie
physically realize states that are closer to coherent state
Fig. 3 we plot the boundaries of the PR ensembles fon
510 for the same set of values ofx as in Fig. 1. The CC
ensembles are also shown as filled circles. The PR reg

le

n-

e-

FIG. 3. Representation of physically realizable ensembles s
lar to Fig. 1 but forn510.
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are generally broader as expected, and this allows the
ensemble to be closer to a coherent state than for corresp
ing x values in Fig. 1.

The parameters for the CC ensembles forn5100 as a
function ofx are plotted in Fig. 4. Comparing with Fig. 2 w
note that the presence of the excess phase diffusion in F
allows ensembles very close to coherent states~i.e., with a
'g'1, b'0) for x up to of ordern1/2. This can be verified
analytically from Eq.~4.23!. However, as the value ofx
increases beyond this to the order ofn, the effect of the
nonzeron value becomes less significant and the curves
proach the same asymptotes as in Fig. 2.

The physically realizable region forx50 includes the
point b50, g51 for all values ofn. Hence the closest-to
coherent PR ensemble is trivially an ensemble of cohe
states in this case. The situation is different for nonzerox.
Figure 5 shows the parameters for the closest-to-coheren

FIG. 4. The parameters for the closest-to-coherent physic
realizable~CC PR! ensemble as a function ofx similar to Fig. 2 but
here withn5100. The excess phase diffusion allows the realizat
of states very close to coherent states untilx;n1/2.

FIG. 5. The parameters of the closest-to-coherent physically
alizable~CC PR! ensemble similar to Fig. 2 but here as a functi
of n and withx5100.
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ensemble as a function ofn for x5100. Forn'0 the values
of a, b, and g are approximately the same as the cor
sponding values atx5100 in Fig. 2. However, asn increases
to become much larger thanx, the effect of the self-energy
term becomes less significant and the phase diffusion be
to dominate. Then, forn*x2 the closest-to-coherent en
semble approaches a set of coherent states asa,g→1.

D. Comparison with quantum-state diffusion

The unraveling given by QSD is more restrictive than th
of the general continuous Markovian unraveling treated he
Specifically, for the QSD unraveling,a, b, andg must sat-
isfy Eqs. ~4.20!–~4.22! for ui j 5r i j 1 ihi j 50 instead of any
ui j fulfilling iui<1. We find this yields the analytic solu
tions for the QSD ensemble

aQSD5
11A128xb14M ~12b2!

2
, ~5.6!

gQSD5
211A114M ~12b2!

2M
, ~5.7!

bQSD5
~2114M2F !x1AG2E

4~x21M !
, ~5.8!

where

M[11n/2, ~5.9!

E[~24M22!x2132M318M2, ~5.10!

F[4A~M11/4!21x2, ~5.11!

G[2~4M21x2!F. ~5.12!

The crosses in Figs. 1 and 3 represent the QSD ensemble
the same set ofx andn values as the CC PR ensembles. T
corresponding value ofx for the crosses reduces from left t
right. One immediately notices that the QSD ensembles
well inside of the PR boundary indicating that, for modera
x and n values, the QSD unraveling is significantly mo
restrictive than the general continuous Markovian unravel
explored here. Moreover, the QSD ensembles are m
squeezed~smallerg values! than the corresponding CC en
sembles.

We note that the QSD ensemble is significantly squee
even for the ideal photon-laser limit ofx5n50 for which
the QSD ensemble is given bya5(A511)/2'1.62, b50
and g5(A521)/2'0.62. We can trace the origin of thi
squeezing as follows. The second term on the right-hand
of Eq. ~3.4! represents the output coupling of the laser.
mentioned above, QSD corresponds to equal-efficiency
modyne detection of a pair of orthogonal quadratures. Th
in QSD the monitoring of the output will tend to localize th
state of the laser onto a coherent state. No squeezing
therefore originate from this term. The squeezing must the
fore originate from the nonlinear amplification process re
resented by the first term on the right-hand side of Eq.~3.4!.
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Indeed, the nonlinear amplification restricts the amplitu
noise through depletion of the source. In our lineariz
model, this corresponds to restricted noise inx. Evidently,
the monitoring of the reservoir modes associated with
amplification is a partial measurement ofx and this leads to
the squeezing ofx.

It is interesting to compare this with the general CM
treated in the previous subsection. This is less restrictive t
QSD since, for example, it allows theunbalancedmonitor-
ing of two quadratures of the output field. In particular,
correlation value ofu00521 corresponds to the monitorin
of just they quadrature. This would tend to localize the sta
of the laser mode onto a state with reducedy fluctuations and
thus counteract thex-quadrature squeezing effect from th
nonlinear amplification. Similar remarks apply to unraveli
the gain process itself. The net effect is that the general c
tinuous Markovian unravelings can physically realize coh
ent states forx5n50 whereas QSD does not.

Despite these differences, thea andg scaling laws for the
QSD ensemble follow the samex61/2 power laws as the
closest-to-coherent ensemble although with a different p
actor. In Fig. 6 we plot the parameters for the QSD ensem
for n50 as a function ofx. Comparing with Fig. 2 we note
that the QSD ensemble begins more squeezed for smax,
but for largex the two ensembles approach similar degre
of squeezing. In fact, from Eqs.~5.6!–~5.8! we find the scal-
ing laws

aQSD.A2x1/2, ~5.13!

gQSD.A2x21/2, ~5.14!

bQSD.21, ~5.15!

which should be compared with Eqs.~5.3!–~5.5!.
In Fig. 7 we plot the parameters for QSD ensemble

x50 as a function ofn. The QSD ensembles are high
squeezed for increasingn and, indeed, we find

FIG. 6. The parameters of the ensemble arising from quant
state diffusion~QSD! as a function ofx with n50. The labeling
follows Fig. 2.
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aQSD.
1

A2
n1/2, ~5.16!

gQSD.A2n21/2, ~5.17!

bQSD50. ~5.18!

This is perhaps surprising given that one does not usu
associate enhanced squeezing with large phase diffus
However, the monitoring of the reservoir corresponding
the phase diffusion is effectively an incomplete measurem
of the variablea†a, which, in our linearized model Eq.~3.8!,
is represented by the termnD@x/2#. The monitoring there-
fore tends to localize the state of the laser onto an eigens
of x. The strength or rate of these measurements incre
with n. In QSD there is no mechanism to counteract t
associated squeezing of thex quadrature, and so the squee
ing increases withn. In contrast, the general continuous Ma
kovian unraveling allows unbalanced monitoring of all bath
In particular, withu11521, the phase diffusion is unravele
as a pure noise process~stochastically changing the phase
the state, but yielding no information about it!. This allows
the closest-to-coherent CMU ensemble to be comprised
coherent states for the same parameters as for Fig. 7.

VI. DISCUSSION

A. Summary

The atom laser, even under with the simplifying appro
mations we have made, is an open quantum system with
dynamics. Some aspects of the dynamics, such as ex
phase diffusion~parametrized byn) and phase dispersio
caused by atomic interactions~parametrized byx), do not
affect the stationary state. That is because the stationary
is a Poissonian mixture of number states. In this paper
have investigated the representations of this mixed stat
ensembles of pure states. The diagonal representation~num-
ber states! is one such ensemble, and the random-ph
coherent-state ensemble is another. Although mathematic

- FIG. 7. Similar to Fig. 6 but as a function ofn with x50. The
thin solid curves represent values ofn1/2 andn21/2.
5-13
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equivalent, we have found that such representations are
physically equivalent, as only some of them can be phy
cally realized through monitoring the system. Moreover,
dynamical parameterx, which does not affect the stationar
state at all, radically determines which pure-state ensem
are PR. In particular, for anyxÞ0, the ensemble of coheren
states with unknown phase is not PR.

As the nonlinearityx is increased, the PR ensembles b
come increasingly removed from the coherent-state
semble. To be specific, the ensemble of states that are cl
to coherent states consists of states that are ampli
squeezed~but slightly rotated!, with a phase quadrature var
ance increasing as

aCC;x1/2. ~6.1!

As x increases the CC ensemble becomes more sque
until eventually the linearization leading to the above res
breaks down. This indicates that it is not possible to phy
cally realize an ensemble with a well-defined coherent a
plitude for ax this large. This occurs whenaCC;m, in other
words,x;m2. Note that this is larger than the critical valu
x;m3/2 at which the laser becomes incoherent, according
the analysis of Sec. III C.

The situation is quite different in terms of the exce
phase diffusion parametern. As n increases~with x50) the
coherent-state ensemble remains PR. This is true even w
n.m2, the value at which the laser becomes incoherent
shown in Sec. III C. Moreover, phase diffusion tends to un
the nonlinear effects of the self-energy. In the limitn→`,
the coherent-state ensemble is PR for any finite value ofx.

B. Interpretation

In Ref. @3#, the coherence condition for a laser, that t
output flux be much greater than the linewidth, was mo
vated by the requirement that the laser have a well-defi
phase. This follows from the following argument. The las
phase remains fairly constant over the coherence time~the
reciprocal of the linewidth!. However, this phase only ha
meaning if it can be measured, and this requires a ma
scopic field~i.e., many bosons! to be produced in the outpu
over one coherence time. As derived in Sec. III C, this c
dition requiresx!m3/2 andn!m2.

From the results of this paper there seems to be a prob
with this motivation for this definition of coherence. The
are values ofx betweenm3/2 andm2, andn betweenm2 and
`, for which the atom laser is not coherent and yet for wh
it is possible to physically realize laser states with we
defined coherent amplitudes.

The resolution of this problem is straightforward for th
case of largen. The motivation in Ref.@3# relied upon a
measurement of the phasefrom the laser output. By contrast,
the ensembles we have considered in this paper are p
cally realized by monitoringall of the reservoirs of the lase
In particular, that means monitoring the reservoirs that p
duce the excess phase diffusionn. If we only allow for moni-
toring of the output of the laser, the stochastic master eq
tion will not preserve purity. After linearization, th
following equation results:
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dr5~1/4!dt$D@x1 iy #r1~11n!D@x#r1D@y#r1H@ i ~xy

1yx!/2#1H@2 ixx2#%r1~1/2!H@dW* ~ t !~x1 iy !#r.

~6.2!

Here there is only one stochastic term, from monitoring
laser output. The best strategy for trying to realize states w
well-defined coherent amplitudes is clearly to measure
phase quadrature of the output. This corresponds todWdW
52dt.

Under these conditions, the differential equations for
second-order moments of the conditioned state are

ṁ205222m202m11
2 , ~6.3!

ṁ1152m112xm202~m0221!m11, ~6.4!

ṁ02522xm11121n2~m0221!2. ~6.5!

If we setx50, the steady-state solutions are

m2051, ~6.6!

m1150, ~6.7!

m02511A21n. ~6.8!

In the limit of largen ~which is the potential problem area!,
the phase quadrature variance scales asn1/2. The states lose
their coherent amplitude as the linearization breaks dow
a5m02;m. That is to say, atn;m2. This is precisely the
regime identified in Sec. III C as that for which the las
output loses its coherence.

Unfortunately ~or perhaps fortunately from the point o
view of provoking new concepts!, a similar analysis for large
x does not hold. Instead, withn5O(1) andx@1 the solu-
tions of Eqs.~6.3!–~6.5! are

m20.25/4x21/2, ~6.9!

m11.2A2, ~6.10!

m02.23/4x1/2. ~6.11!

This is an extremely sheared state, with phase quadra
variance scaling asx1/2. It loses its well-defined phase onl
for x;m2, which is the same scaling as found above wh
all the reservoirs were unraveled. In particular, form3/2,x
,m2, measuring the output has determined the phase of
laser even though this should not be possible by the a
ment in Ref.@3# because the flux is less than the linewidt

The difference between largen and largex can be under-
stood as follows. There are three Lindblad terms in the
earized master equation~3.8!. When n50 they are all of
roughly the same size. Thus restricting the monitoring to j
one of the three reservoirs~the first one, the output! has
relatively little effect on the conditioned states. It is mu
like monitoring all reservoirs, but with a reduced efficienc
Indeed, the conditioned state in this case is not far from
pure state, withm20m022m11

2 52 ~compared to 1 for a pure
5-14
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state!. By contrast, withn large the phase-diffusion Lindbla
term is much larger than the other two. Then if one is o
able to monitor the output one is necessarily losing mos
the information about the system. This leads to qualitativ
different conditioned states, with much reduced pur
(m20m022m11

2 .An@1).
The existence of the regimem3/2,x,m2 where the laser

output is incoherent, but where the phase can in fact be
termined suggests that the concept of coherence time is m
subtle than the standard definition in terms of the first-or
coherence function used in Ref.@3# and in Sec. III C above
The coherence time is also used to define whether or no
laser beam is Bose degenerate, and, as discussed in Re@3#,
the criterion is the same. That is, the output is Bose deg
erate if and only if many bosons come out ‘‘with the sam
phase’’~that is, within one coherence time!. Thus the presen
paradox has implications that go beyond the present dis
sion, and impact on concepts such as Bose degenerac
well, as will be discussed below.

C. Conditional coherence and conditional degeneracy

One way to understand the above results is that the a
laser form3/2,x,m2 is ‘‘conditionally coherent.’’ The stan-
dard coherence conditionx,m3/2 can be derived from the
requirement that̂(df)2(t)&,1 at t51/m, the time between
atoms in the output. Here (df)2(t).y2(t)/4m is the phase
variance of the state at timet, which was a coherent state
t50. That this implies the conditionx,m3/2 can be seen
simply as follows. Forx large and for a time as short as 1/m,
the irreversible evolution can be ignored and the phase
certainty is due to theCa†a†aa Hamiltonian. For the linear-
ized theory, this turns into the Hamiltonianx(x/2)2, wherex
is the amplitude quadrature. This causes the phase quadr
to change as

y~ t !5y~0!2xtx~0!, ~6.12!

where the mean frequency shift has been removed as
been consistently done before. For a coherent state of
mean phase we haveȳ(0)50, ^y(0)2&51 and x̄(0)
50, ^x(0)2&51. Thus fort51/m we get

^@y~ t !2 ȳ~ t !#2&511x2t2511x2/m2. ~6.13!

This is of order 4m ~indicating the loss of coherence! for x
;m3/2.

The coherent state is the most convenient state to use
this calculation, as explained in Sec. III C. But of course it
also possible to represent the atom laser as a mixtur
states with smaller amplitude uncertainty than a cohe
state, and, as we have seen, to physically realize such
sembles. The average result must be the same, but the d
are different. Consider a minimum-uncertainty pure st
with V5^@x(0)2 x̄(0)#2&51/̂ y(0)2&, where the initial
mean phase has again been taken to be zero. The mean
evolves as

ȳ~ t !52xt x̄~0!, ~6.14!
04360
y
f

y

e-
re
r

he

n-

s-
as

m

n-

ure

as
ro

for

of
nt
n-

ails
e

ase

and the phase quadrature variance as

^@y~ t !2 ȳ~ t !#2&51/V1x2t2V ~6.15!

To reproduce the stationary state that has a unit variance
must consider an ensemble of different values forx̄(0), with
mean zero and variance 12V. Thus the total phase varianc
over the ensemble,

^@y~ t !2 ȳ~ t !#2&1E @ ȳ2#51/V1x2t2V1x2t2E @ x̄~0!2#

51/V1x2t2 ~6.16!

cannot be less than that from a coherent state~with V51).
In this picture, the increase in the phase uncertainty is

sum of an intrinsic phase uncertainty increase and that du
an uncertainty in thefrequencyof the field. The former is due
to an initial quantum uncertaintyV in the amplitude quadra
ture, and the latter to a classical uncertainty 12V in the
initial mean amplitude quadrature. The loss of coherenc
thus partly due to the addition of different interference ter
oscillating at different frequencies. For example, interferi
parts of the output field separated in time byt would give a
different interference pattern depending on the frequen
Over a time of order unity~the bare decay time!, the mean
amplitude will sample all possible values so the frequen
will also vary. The average interference pattern measu
over a time long compared to this will thus be washed
due to the different frequencies, and the experimenter wo
conclude that the output was incoherent ifx2t2;m for t
;1/m.

If, however, oneknows~as the experimenter! the initial
mean amplitudex̄(0), then one knows what frequency t
expect in one’s interference pattern. Then rather than sim
averaging the interference patterns over some long time,
could correct for the mean frequency shift before doing
average. Then the only contribution to the visibility of th
interference pattern will be the intrinsic phase quadrat
variance

^@y~ t !2 ȳ~ t !#2&51/V1x2t2V. ~6.17!

From this conditional point of view, the laser output will
cease to be coherent only when

4m;1/V1x2~1/m!2V. ~6.18!

Solving for x gives

x;mAV21~4m2V21!. ~6.19!

To maintain coherence for the largest possiblex, we mini-
mize this with respect toV to get

x;2m2 ~6.20!

at V;1/2m. This is the upper limit of the regionm3/2,x
,m2 where a well-defined coherent amplitude is physica
realizable but the output is not coherent in the usual se
Now we can see that a physical realization giving the we
defined coherent amplitude in this regime~such as that giv-
5-15
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ing the closest-to-coherent ensemble! is precisely what is re-
quired to recover coherence, in a conditional sense.

The concept of conditionally coherent goes hand in ha
with that of conditionally Bose degenerate. Under the st
dard definition, the atom-laser output in the regimem3/2,x
,m2 is not Bose degenerate. Specifically, there is no m
that can be identifieda priori in the output and that has
large mean occupation number. But under an unraveling
the atom-laser dynamics, such a mode can be identifie
this regime: it is a mode corresponding to the frequency
can be inferred from the knowledge of the amplitude of
condensate. As with the case of conditional coherence, a
mode will have to be chosen after a short time, since
frequency explores the full range on a time scale of or
unity. But at a particular instant of time, the knowledge o
tained from monitoring the reservoirs of the system~or even
just the output, as seen above! is sufficient to allow a highly
occupied mode to be identified.

We can perhaps clarify the concept of conditional Bo
degeneracy as follows. Consider a system withN modes, and
N particles. The multiparticle state

r5uN1,02,03 , . . . ,0N&^N1,02,03 , . . . ,0Nu ~6.21!

is clearly Bose degenerate, just as the state

r5u11,12,13 , . . . ,1N&^11,12,13 , . . . ,1Nu ~6.22!

is not. But what about the state

r5N21 (
m51

N

u . . . ,0m22,0m21 ,Nm,0m11,0m12 , . . . &

3^ . . . ,0m22,0m21 ,Nm,0m11,0m12 , . . . u? ~6.23!

The mean occupation number of any mode is clearly one
it is not Bose degenerate in the usual sense. But also cle
if one had access to this state then after finding a sin
particle, one would know in what state the remainingN21
particles would lie. Thus the state would have becomecon-
ditionally Bose degenerate. We believe that the above state
a good toy description of a short section of the output of
atom laser in the interesting regime ofm3/2,x,m2, where
the different modes represent different frequencies.

Finally, it is interesting to note that by employing fee
back based on QND atom number measurements, it is
sible ~within the current atom-laser model! to greatly reduce
the linewidth @47#. Specifically, the linewidth may be re
duced by a factor of orderm1/2, and the coherence~in the
conventional sense! of the laser extended fromx&m3/2 to
x&m2. This is not quite an exact parallel with the abo
results, because the feedback is based on a measuremen
adds extra phase-diffusion (n) term, that is not required in
the above analysis.~This QND measurement is introduce
because it is a number measurement, and so is more e
realized than the phase-sensitive measurement necessa
the above analysis.! Nevertheless, it still illustrates the gen
eral principle stated in Ref.@43#, that ‘‘the practical signifi-
cance of@conditional analyses# is that conditioning is real-
ized by feedback.’’
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D. Experimental implications

It is clear that many interesting questions relating to
coherence of an atom laser, the physical realizability o
coherent-state ensemble, the coherence of the output, an
conditional coherence of the output, depend upon the va
of x. This prompts the question: what value does this para
eter have in experimental atom lasers? As discussed in In
duction, a number of experimental groups have realiz
Bose-Einstein condensates with output coupling@17–20#. A
cw atom laser would have to incorporate a mechanism
replenishing the condensate so that the output coupling c
continue indefinitely. Nevertheless, we can take these exp
ments as a possible indication for the parameter regime
which an atom laser may work. The figures below are
rived by setting the bare linewidthk of the laser equal to the
reciprocal of the lifetime of the condensates in the expe
ment, and the mean atom numberm equal to the initial oc-
cupation number of the condensate. The excess phase d
sionn we have ignored, and we have calculatedx using Eqs.
~3.3! and ~3.9!.

Most of the current experiments are in the regime wh
the ratio of the kinetic energy to the interaction energy
very small@48#:

S \

64p2mvm2as
2D 2/5

!1. ~6.24!

Herem is the atomic mass,v is the mean trap frequency, an
as is the scattering length as in Eq.~3.3!. In this regime the
Thomas-Fermi approximation can be made, allowing us
evaluatex analytically as

x5
4

7k S 225m2mv6as
2

\ D 1/5

. ~6.25!

The values ofx using the parameters of three recent expe
ments are compared in Table I. The MIT~Massachusetts In
stitute of Technology! experiment@17# represents the firs
‘‘pulsed atom laser,’’ a quasicontinuous output coupling@19#
was demonstrated at National Institute of Standards
Technology~NIST!, and the MPQ~Max-Planck-Institut fu¨r
Quantenoptik! experiment@20# demonstrated a continuou
output coupling.

All x values are in thex@1 regime on which we have
concentrated in this paper. Thus if these experiments co
be run with the same output coupling but with continuo

TABLE I. Parameters for recent~and proposed! atom-laser ex-
periments at various institutions.

MIT MPQ NIST Proposed

x 910 1800 50 990
IT 4.13106 2.13105 5.73106 2.93105

I /l 6.03107 4.03105 8.03108 2.03106

k/l 12 0.57 810 2.0
vmin /k 1.1 4.8 0.8 22
vmin /l 14 2.7 640 44
5-16
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replenishment of the condensate, the closest-to-coheren
semble that could be physically realized would be hig
amplitude squeezed. From Eq.~5.4!, with x51000 the stan-
dard deviation of the amplitude quadrature of these st
would be about 0.2, compared to 1 for coherent states. T
it seems that it is wrong to think of an atom laser as being
a coherent state.

Despite the banishing of the coherent-state descript
truly continuous versions of the experiments analyzed ab
would produce an unconditionally coherent~Bose degener-
ate! output. That is because the calculated values ofx are
always much less thanm3/2, so that Eq.~3.30! above is sat-
isfied. Interestingly, we can recast this condition in terms
the output fluxI 5km ~atoms per unit time! as

I @1.61vS as
4vm2k

\2 D 1/11

. ~6.26!

This inequality depends very weakly on the dimensionl
quantity in brackets because of the 11th root. For the ab
three experiments this 11th root averages to 0.16, and ra
only from 0.13 to 0.21. Hence we can state the cohere
condition for an atom laser in terms essentially independ
of the species and decay time asI @0.26v or

I @T21. ~6.27!

That is, there should be many atoms emitted into the la
beam per oscillation periodT52p/v of the trap. This is
such a simple rule of thumb that it should be useful, bu
must be remembered that there is no direct physical con
tion between the flux and the trap frequency. This resul
simply a numerical coincidence arising from the vario
physical parameters for atomic Bose-Einstein condensa
in typical traps. The second row of the table shows that
condition is clearly satisfied for the parameters of the th
experiments and this suggest that the output field of
model atom laser would be degenerate.

The actual degree of degeneracyD of the output field, that
is, the number of atoms per output frequency mode, is gi
by the quotientI /l of the flux I and the linewidthl . The
linewidth for the atom laser model we are considering
given in Ref.@47# as

l .H k~11x2!/2m for x,A8m/p,

2kx/A2pm for x.A8m/p.
~6.28!

The third row of the table shows that, for the same para
eters as the experiments, the output field of the atom-la
model is highly degenerate.

It is interesting to compare the linewidth of the outp
field l with the bare cavity linewidthk. The action of the
pump tends to reduce the linewidth far belowk in the same
manner as an optical laser@the x→0 limit of Eq. ~6.28!#. In
an atom laser, however, the nonlinearity converts inten
fluctuations into phase fluctuations and this tends to broa
the linewidth@thex→` limit of Eq. ~6.28!#. Table I shows a
range of values of the ratiok/l from below unity ~line
broadening! to well above unity~line narrowing! for the pa-
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rameters of the experiments. We can writek5I /m and l

5I /D and so the ratiok/l 5D/m is also the ratio of the
number of atoms per output frequency mode to the stea
state population in the cavity. Significant line narrowin
therefore, leads toD@m, that is, many more atoms per ou
put mode than in the condensate.

Our analysis assumes that we can treat the atomic con
sate as a single atomic-field mode. We now show how
assumption can be justified with realistic experimental c
ditions. Only a single mode is needed if the condensate is
most, only weakly coupled to the quasiparticle modes. Th
are two important ways in which this coupling can arise. O
is due to the fact that the spatial form of the quasiparti
modes depends on the number of atoms in the conden
and so fluctuation in the condensate number will cause
overlap between condensate and quasiparticle modes. H
ever, provided the fluctuations in the condensate atom n
ber occur on a time scale much longer than the dynamic
the condensate and quasiparticle modes, the system
evolve adiabatically and remain in the condensate mo
Thus, the first requirement for minimal coupling to the qu
siparticle modes is

vmin /k@1, ~6.29!

wherevmin is the lowest of the trap frequencies. The oth
coupling mechanism is due to the linewidth of the conde
sate mode. In order to avoid adiabatic exchange of ato
between condensate mode and quasiparticle modes, we
the linewidth to be much smaller than the spacing betw
the condensate mode and first excited mode. This differe
is simply the lowest trap frequencyvmin @49#. Hence the
second requirement for a single-mode analysis is

vmin /l @1. ~6.30!

We have tabulated figures for these parameters in Table
the three experiments and included further data for a p
posed experiment. The three experiments are clearly not
erating in the single-mode regime asvmin /k or vmin /l or
are order unity. So besides not being continuously pump
the experiments also do not satisfy the single-mode crit
of our model and thus require a pulsed, multimode analy
such as that of Ref.@50#. However, it would not be difficult
to achieve single-mode operation by selecting different,
experimentally reasonable, parameters. For example, the
column in the table shows the values for a sodium-atom la
in a symmetric trap with frequencyv5vmin5(2p
325) Hz, output coupling ratek57 s21 and mean atom
number of m5106. Both conditions, Eq.~6.29! and Eq.
~6.30!, are satisfied and so the coupling would be minimal
this case.

E. Closing remarks

It is fitting to end by referring to the very beginning, th
is, the title of our paper. What does the physical realizabi
of ensembles of pure states say about atom lasers, coh
states and coherence?
5-17
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First, they establish a basis on which it is possible
objectively discuss the existence of coherent states as
state for an atom laser.

Second, they show that these coherent states can
exist ~that is, be physically realized! for x50 ~that is, in the
total absence of interactions between the atoms!.

Third, the existence of pure statescloseto coherent states
requiresx!1, which is a much stronger condition than th
x!m3/2 needed for the laser output to be coherent~Bose
degenerate!.

Fourth, the existence of states with well-defined coher
amplitude ~that is, with phase variance small compared
unity! requires x!m2, a far weaker condition than tha
needed for realizing coherent states, and also weaker
that required for output coherence.

Fifth, to the regimem3/2&x!m2, a new concept of co-
herence~and Bose degeneracy! pertains, that ofconditional
coherence~or conditional Bose degeneracy!. In this regime,
knowing which member of physically realizable ensem
one has at a given point in time allows the coherence to
n

ev

p

ro

et

,

n,
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demonstrated, where it could not be in the absence of
knowledge.

Sixth, unlikex, excess phase diffusionn does not destroy
the physical realizability of the coherent-state ensemble~for
x50), and in fact makes it easier to approach this ensem
for finite x.

Seventh, the existence of a regime (n*m2) in which the
laser output is incoherent but an ensemble of states w
well-defined coherent amplitudes~indeed, coherent states! is
physically realizable, does not require a new concept of
herence. Rather, by restricting the measurement of the a
laser to the monitoring of its output beam itself, the physi
realizability of such an ensemble is restricted to the coher
output regimen!m2.
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