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Atom lasers, coherent states, and coherence. I. Physically realizable ensembles of pure states
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A laser, be it an optical laser or an atom laser, is an open quantum system that produces a coherent beam of
bosons(photons or atoms, respectivilf-ar above threshold, the stationary statgeof the laser mode is a
mixture of coherent-field states with random phase, or, equivalently, a Poissonian mixture of number states.
This paper answers the question: can descriptions such as theggasfa stationary ensemble of pure states,
be physically realized? Here physical realization is as defined previously bi.ugl. Wiseman and J. A.
Vaccaro, Phys. Lett. 50, 241(1998]: an ensemble of pure states for a particular system can be physically
realized if, without changing the dynamics of the system, an experimentdincarinciple) know at any time
that the system is in one of the pure-state members of the ensemble. Such knowledge can be obtained by
monitoring the baths to which the system is coupled, provided that coupling is describable by a Markovian
master equation. Using a family of master equations for(&en) laser, we solve for the physically realizable
(PR ensembles. We find that for any finite self-enepsgyf the bosons in the laser mode, the coherent-state
ensemble is not PR; the closest one can come to it is an ensemble of squeezed states. This is particularly
relevant for atom lasers, where the self-energy arising from elastic collisions is expected to be large. By
contrast, the number-state ensemble is always PR. As the self-epargseases, the states in the PR ensemble
closest to the coherent-state ensemble become increasingly squeezed. Nevertheless, there areyValues of
which states with well-defined coherent amplitudes are PR, even though the atom laser is not ¢whgrent
sense of having a Bose-degenerate ogtpife discuss the physical significance of this anomaly in terms of
conditional coherencénd hence conditional Bose degenejacy
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I. INTRODUCTION cessed4,5], which imply that the state of the cavity mode
for a laser far above threshold is a mixture of coherent states
In elementary presentations of quantum optics it is moreof all phases. That is to say, the stationary-state matrix of the
or less an axiom that a laser field is represented by a coherel@tser mode can be written as
state| ). Recently, it has been argued that this representation
is a fiction, albeit a convenient orjé¢]. The essential argu- _ f d_¢||a|ei¢><|a|ei¢| 1.1)
ment is that no commonly employed process at optical fre- Pss™ | 2 ' '
guencies produces an electric field having a nonzero average 5 ) )
amplitude. While this point of view is certainly defensible Where|e|*=u is the mean number of photons in the laser.
[2], it perhaps obscures the fact that there is something spe- It would be tempting to interpret Eq1.1) to mean that
cial about laser light. the laser really is in a coherent stdier|e'?) of definite
In Ref. [3], one of us argued that what is special aboutPhases, but we do not know what that phase is. However,
laser light is that it is well approximated by a noiseless clasthis temptation must be resisted because the stationary-state
sical electromagnetic wave. Four quantitative criteria werénatrix can also be written as
given, none of which require a mean field, so there is no
dispute with Ref[1]. The least familiar, and so most impor-
tant, of these criteria is that the output flux of the laser
(bosons per unit timemust be much greater than its spectral
linewidth. Put another way, the coherence time of a true lasewhich would seem to imply that the laser really is in a num-
must be much greater than the mean temporal separation bér statdn), but we do not know which number it is.
photons in the output beam. This is typically satisfied by The “unknown coherent state” description and the “un-
many orders of magnitude in optical lasers, but is not satisknown number state” description aneathematically equiva-
fied by ordinary thermal sources. lent representations of the stationary-state mapgx How-
This concept of quantum coherence is quite distinct fromever, in the physical context thatis the stationary state of
the elementary idea that a laser is in a coherent state. Indeeah open quantum system dynamical equilibriumthe two
it is compatible with theoretical models for typical laser pro- representations aneot physically equivalenfThis idea is at
the heart of this paper and the following papét. In this
paper we investigate whether these, and other pure-state en-
*Electronic address: h.wiseman@gu.edu.au sembles arghysically realizable We will show that under

Pss™ 2 e‘“—'|n><n|, (1.2
n=0 n:
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some circumstances, the “unknown coherent state” descripachievement of Bose-Einstein condensatiBEC) of a di-
tion is not physically realizable, in contrast to the “unknown lute atomic ga$14—16. There have since been some impor-
number state” description, which is. In the following paper tant experimental advances in the coherent release of pulses
we look at the question of the howbustthe ensembles are. [17,18 and beam$19,2( of atoms from a condensate. Be-
We find that even among physically realizable ensembles, gause the condensate is not replenished in these experiments,
physical distinction may be drawn based upon suevival the output coupling cannot continue indefin_itel_y, so these de-
time the average time that a member of the ensemble rezices are only the first steps towards achieving a cw atom
mains close to its original state when left to evolve under thd@Ser: . _
system dynamics. Both of these concepts, the physical real- Even though the atoms in the current BEC experiments
izability of pure-state ensembles, and the robustness of su@{® Weakly interacting in the sense of forming a gas rather
ensembles, were introduced in an earlier paper b7lis than a liquid, elastic <_:oII|S|ons may dominate the_dynamlcs
Before proceeding further, it is necessary to clarify whatOf the condensate. Th|_s self-interaction does npt directly alter
we mean by “physically realizable(PR). A stationary pure- the number 'of' atoms in the cg?nden'sate,.anq is analogous to
state ensemble of a given system is PR if it is possiblefour-wave mixing,(that is, ay'® nonlinearity, in optics. In
without altering the dynamics of the systemknow that its this paper we _show that the presence of this nonlinearity has
state at equilibrium is definitely one of the pure states in thé €normous influence on what ensembles of pure states are
ensemble. Of course, we cannot predict which pure state b@_hys!cally realizable. It also determines thg laser linewidth,
forehand. It may seem contradictory to say that the system &d in this paper, we explore the connection, between the
equilibrium is mixed, but that, nevertheless, we can know if°résence of a PR coherent amplitude, and the coherence of
to be in a pure state. The resolution is that, by monitoring théhe laser output. _ _
system’s environment, the system state can, under suitable ThiS paper is organized as follows. In Sec. Il we explain
circumstances, be collapsed over time into a pure state. B&) detail our concept of physically realizable pure-state en-
ing simply an example of a quantum measurement, this prosémbles for open quantum systems. In Sec. Ill we present
cess, called amnraveling[8], will be stochasticOn aver- ~ OUr a_tom-laser model, including self-lnt_eractlons and phase
age the system evolution is not changed and the ensemble ghiffusion. In Sec. IV we apply the formalism of Sec. Il to th_e
pure states produced by the unraveling is guaranteed to gtom-laser model and set up the framework for calg:ulatmg
equivalent to the equilibrium mixed state. the PR gnsem_bles. We.calculate the PR ensembles in Sec. V
From this description it should be apparent that the ques"%‘nd derive various sca_llng laws for the'ens_embles as a func-
tion of whether an ensemble is PR or not cannot be detefion of the self-interaction and phase diffusion. We conclude
mined from the stationary mixed staig.. Rather, it depends N S€c. VI with a summary and a discussion of the interpre-
upon the dynamicgreversible and irreversiblethat pro-  tation and implications of our work.
duced the stationary state. Indeed, the unraveling to a pure

state is realized by monitoring the environment of the sys- Il. PHYSICALLY REALIZABLE ENSEMBLES
tem, the same environment that produces the irreversible dy- _
namics of the system. It would not be justifiable to introduce A. The master equation

some new reservoir to allow a new measurement to be made. open quantum systems generally become entangled with

Even if that did not change the stationary state of the systefhejr environment, and this causes their state to become
[such as would be the case for adding a quantum nondemenixed. In many cases, the system will reach an equilibrium
lition (QND) measurement of boson number to a I&s#r  mixed state in the long time limit. A cw laser or atom laser is
would change the dynamics of the system, and hence ongsystem of this sort, and we will restrict our consideration to
would be investigating alifferent system such systems. It is common to refer to the environment of
The fact that different dynamics can lead to the samgpese systems as a reservoir and, accordingly, we use both
stationary mixed state is easy to see for the case of a |as%rms(environment and reservoiinterchangeably here.
Any process that commutes with boson number will not alter |t the system is weakly coupled to the environmental res-
the stationary laser statgs, since its eigenstates are the gpyojr, and many modes of the reservoir are roughly equally
number states, as shown by Hd.2). An example of an  affected by the system, then one can make the Born and
irreversible process that commutes with boson number igjarkov approximations in describing the effect of the envi-
phase diffusion. This is relevant to all current lasers, whichygnment on the systefi21]. Tracing over(that is, ignoring
have some phase diffusion in excess of the standard limghe state of the environment leads to a Markovian evolution
(although see Ref9] for theoretical proposals for lasers that equation for the state matrix of the system, known as a
have phase diffusion below the standard ljmithere are guantum master equatiorThe most general form of the

also reversible processes that commute with boson numbejyantum master equation that is logically valid is the Lind-
such as degenerate four-wave mixing. While this dynamics igaq form[22]

unimportant in most of the optical lasers, it is expected to be
very significant inatom lasers i K
An atom laser is a device that produces an output beam of p=—i[H,p]+ > Dlcdp=CLp, (2.1
bosonic atoms analogous to an optical laser’s beam of pho- k=1
tons[3]. The idea for an atom laser was published indepen-
dently by a number of authof40-13, shortly after the first where for arbitrary operator& and B,
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D[A]BEABAT_{ATA,B}/Z (2.2 described by projective measurements on the system, be-
cause the system is not being directly measured. Rather, the
If the master equation has a unique stationary statewe  monitoring of the environment leads to a grad(ah aver-

will assume it doeks then that is defined by age decrease in the system'’s entropy.
_ If the system is initially in a pure state then, under perfect
Lpss=0. (2.3 monitoring of its environment, it will remain in a pure state.

Then the effect of the monitoring is to cause the system to

This assumption requires tha be time independent. In change its pure state in a stochastic sindgeneral nonlin-
many quantum-optical situations, one is only interested in 9 P

the dynamics in the interaction picture, in which the freeSar way. Such evolution has been called a quantum trajectory

evolution at optical frequencies is removed from the statgg]’ and can be described by a nonlinear stochastic Schro

matrix. Indeed, for quantum systems driven by a classicaﬁiinger equatior24-2§. The nonlinearity and stochasticity

field, it may be necessary to move into such an interactiof © present because they are a fundamental part of measure-

picture in order to obtain a time-independent Liouvillian Su_ment In quantum mech_amcs.. . L
peroperator’. Although a stochastic Schilimger equation is conceptu-

The stationary-state matrigss can be expressed as an ally the simple_st way to define a quantum trajectory, in tr_\is
ensemble of pure states as follows: work we will instead use the stochastic master equation
(SME) [28-32.
This has four general advantages. First, it can describe the
psszz #nPns (2.9 purification of an initially mixed state. Second, it can easily
. be generalized to describe the situation where not all baths
are monitored perfectly, and the conditioned state never be-
comes pure(as we will consider in Sec. VI Third, it is
AR (2.5)  easier to see the relation between the quantum trajectories
and the master equation that the system still obeys on aver-
and thegp, are positive weights summing to unity. We will age. Fourth, the form of the SME is invariant under stochas-

where theP,, are rank-one projection operators

call the (possibly infinite set of ordered pairs, tic U(1) transformations of the state vector, which can radi-
cally alter the appearancédut not the substanteof the
E={(Pn.9n):n=12,..}, (2.6)  stochastic Schinger equatiori33].

) o Assuming that the initial state of the system is pure, the
an ensembl& of pure states. Note that there is no restnctlonquanwm trajectory for its projectd® will be described by
that the projectord®, be mutually orthogonal. This means he SME as

that there are continuously infinitely many ensemtitethat
represenfpss. As noted in Introduction, only some of these dP=dt[ L+ U(t)]P. (2.7
are physically realizable.
Here £ is the Liouvillian superoperator from the master
B. Unravelings equation, and/ is a stochastic superoperator that is, in gen-
eral, nonlinear in its operation dA. It also depends on the

In the situation where a Markovian master equation canyseratorg, as defined in Eq2.1), and is constrained by the
be derived, it is possiblén principle) to continually measure  ¢5)15wing two equations, which must hold for arbitrary rank-
the state of the environment on a time scale that is largge projectors

compared to the reservoir correlation time but small com-

pared to the response time of the system. This effectively {P.(L+UP}+dt{UPI[UP]=(L+U)P, (2.9
continuous measurement is what we will call “monitoring.”
In such systems, monitoring the environment does not dis- E[UP]=0. (2.9

rupt the system-reservoir coupling and the system will con-

tinue to evolve according to the master equation if one ig-The first of these properties ensures tRatdP is also a

nores the results of the monitoring. _rank-one projector; that is, that the state remains pure. The
By contrast, if one does take note of the results of monisecond ensures that

toring the environment, then the system will no longer obey

the master equationexcept on average Because the dE[P]= L& P]dt, (2.10
system-reservoir coupling causes the reservoir to become en-

tangled with the system, measuring the former’s state yieldsvhere £ denotes the ensemble average with respect to the
information about the latter’s state. This will tend to undo thestochasticity of/. This stochasticity follows from Eq2.8),
increase in the mixedness of the system’s state caused by théich requires the terdt[Z/P][/P] to be nonzero; the fi-
coupling. niteness of this term indicates thdtis highly singular.

If one is able to make perfect rank-one projective., Because the ensemble average of the system still obeys
von Neumanii23]) measurements of the reservoir state, withthe master equation, the stochastic master equation
negligible time delay from when it interacted with the sys-equivalently the stochastic Sclidiager equationis said to
tem, then the system state will usually collapse towards ainravelthe master equatiof8]. It is now well known[34]
pure state. However, this is not a process that itself can bthat there are manyin fact continuously manydifferent
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unravelings for a given master equation, corresponding to K
different ways of monitoring the environment. Uut)ydt= E HIAW (t)ci]. (2.13
For simplicity we will callZ/ an unraveling. Each unrav- k=1

eling gives rise to an ensemble of pure states HereH[ A] is a nonlinear superoperator defined, for arbitrary

operatorsA and B, by
EY={(P4,p%:n=12,.. .}, 2.11) T T
H[A]B=AB+BA'-TI[AB+BA'|B, (2.14

wherePY are the possible pure states of the system at steadynd thed W(t) are the infinitesimal increments of a complex
state, andplr{ are their weights. For master equations with amultidimensional Wiener proce$88] satisfying
unique stationary states,, the SME(2.7) is ergodic oveEY

andgoﬁ’ is equal to the proportion of time the system spends E[dW]=0, (219
in stateP},. The ensembl&” representpin that AW, ()W (1) =dt 5., (2.16
dW,(t)dW,(t)=dt uy,. 2.1
S oiPi=pus 212 (A=t 24
The only condition on the complex numberg=u,; is that
the corresponding complex symmetric matmixnust satisfy
as guaranteed by E¢2.10. [33]

C. Continuous Markovian unravelings ul=1. (.19
To determine whether an ensemHBlés a PR ensemblgY ~ This comes from the requirement that the following expres-

requires a search through the set, call,itof all possible ~Sion must be non-negative,

unravelingg/. This set is extremely large. Although the sto-

chasticity in the superoperatoscan always be written in &

terms of quantum jumps, these jumps range in size from

being infinitesimal, to being so large that the system state -

after the jump is always orthogonal to that before the jumpfor an arbitraryK vector of complex numbers

[35]. Some insight into the measurement parametgrsmay
Another complication is that the unraveling need not bebe found by considering the simple case with one irreversible

Markovian, even though the master equation is. It might bderm; that isK=1 so that there is just one complex number

thought that the measurement must be Markovian since # in Eq. (2.17). For specificity, say, the system is an optical

must obtain full information from the environment immedi- cavity with annihilation operatos, damped through one-end

ately after it has interacted with the system in order that thénirror with decay ratex. Then the continuous Markovian

conditioned system state remain pure. This rules out spectrgnravelings correspond to two independent homodyne detec-

detection, for example, where the conditioned system state #0n apparatusefs], each of efficiency 1/2. If the local os-

not pure because it is entangled with the state of the spectréillator phases ar@,; and 6, thenu=(e*%1+e?%)/2. The

filters [36]. However, the way in which the measurementtwo photocurrentd,(t) andl,(t), normalized to have unit

obtains information from the environment may not be inde-shot noise, are given b8,32]

pendent of the history of the system. For example, the pa-

2

: (2.19

(2 z dW,+c.c.
K

rameters defining the measurement may depend on previous lp(Ddt=k/2(e™ ra+e pal)dt+dW,(t), (2.20
measurement results, resulting in ataptivemeasurement, . i .
as discussed in Ref37] g P where dW; and dW, are independent Wiener increments.

From these considerations we see that a search over fMYe can combine the photocurrents to make a complex signal

possible unravelings would not be practical. Thus it is useful, ) io

to consider a smallefbut still continuously infinite set D Jdt=[e"y(hdt+e 2 (Ddt)\2 (221
containing only unravelings that are continuous and Markov- . +
ian (CM). A continuous(but not differentiablgtime evolu- - \/;(a+ua ydt+dwW(t), (2.29
tion arises from infinitely small(and infinitely frequent heredW(t) =Tel “1d W (1) + el 2d W (1) 1/ /2 i |
jumps[8,37]. In this case the probability distribution for the VV\\//isrrEr inérzamg?ﬂt satiélsy?nge 2(D)/2 is a complex
pure states obeying the SME satisfies a Fokker-Planck equa-
tion. On this basis it has been argued that these unravelings dW*s (H)dW(t)=dt, dW(t) dW(t)=udt. (2.23

are the natural ones to consider for quantum systems ex-

pected to show quasiclassical behai8s]. The measure- That is, it has the same correlations as dw¥(t) occurring
ment will be Markovian provided the measurement paramin the stochastic master equation, and is in fact the same

etersu;, (defined below are constants. noise process.
For the general master equatit¢thl) the elementé/ of D If the two local oscillator phases are chosen to be identical
can be written a$7,33] then|u|=1 and both apparatuses measure the same quadra-
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ture of the cavity mode. If they are chosen to be in quadra-

ture, with 6,— 6,==/2, thenu=0 and two orthogonal U=2 U, (2.26
: . K

guadratures are measured each with efficiency 1/2. In general

0<|u|=<1, and for anyu+ 0, different amounts of informa- \yhere

tion are obtained about the two cavity-field quadratures. The

information gained tends to reduce the cavity field to a state CkpCE
with correspondingly different quadrature uncertainties. This U(t) pdt=[dNy(t) —dtNy(p)] m—P)- (2.27
gives an idea as to how different unravelings can give rise to K
different ensembles. Here thedN,(t) are point processes defined by
For a master equation witk Lindblad terms the problem
of finding the ensembles that are physically realizable by dN; (1) dN(t) = 6 dNi (1), (2.28
some continuous Markovian unravelif@MU) reduces to .
determining the boundarju;y :|u| =0} of a region inK(K E[ANk]=Ay(p)dt=Tr] pc,Ci]dt. (2.29

+1)-dimensional Euclidean space. Even for a moderately . . . . -
) P ¥t is easy to verify that this unraveling satisfies the necessary

sizedK (for example,K=3 is needed for the atom-laser " ; :
problem, this is a surprisingly large space, which is difficult F:OI’IdItIOhS of Egs(2.8) and(2.9). This unravelingquantum

to search efficiently. For that reason we adopt in this paper ijmpg ,'[S the m(t)_st Cognmonly used for numerical simulation
different search strategy, which will be explained in Sec.Of master equation2].

IV C.
Ill. THE (ATOM) LASER

D. Quantum-state diffusion The system we wish to consider in this paper is(ttem
There is an interesting continuous Markovian unrave|ing’|aser. As noted in |ntr0ducti0n, we take a laser to be a device
which has some special properties, for the case whgre that produces a coherent output, in the sense explained in
=0 [39,33. In this case each complex Wiener procesy  Ref.[3]. An atom laser is thus a device that produces a co-

beam of photons from an optical laser.

dWi= (dWe+idWD)/ 2 (2.24
A. The master equation
such thatdWidW?= dWRdWP= §,dt, and dWEdWP=0.
This unraveling is invariant under the complete set of linea
transformations of the Lindblad operators,

r A generic model for a laser was derived in RE3]. It
describes a single-mode field having annihilation operator
evolving under linear damping and nonlinear amplification.
c,—U,.C,, (2.25  The nonlinearity in the amplification is due to depletion of
the sourcdthe gain medium in optical lasgrand is essential
that leaves the master equation invariant. Herg, is an  for a coherent output to form. In the interaction picture, and
arbitrary unitary matrix. measuring time in units of the decay rate, the master equa-
This unraveling was introduced by Gisin and Percivaltion is
[40], under the name of quantum-state diffusi@8SD), as a _
microscopic model for decoherence. In the optical context, it p=upD[a'](Ala']+ng) 1p+D[a]p. (3.9
has been interpreted as the unraveling resulting from hetero-
dyne detect|0r[26] or from equa|-efﬁciency homodyne de- The two terms on the rlght describe saturated gain and the
tection of orthogonal quadraturéas discussed aboyeal-  decay due to the coupling of the laser mode to the output
though it can also arise in atomic detection schemes as wefeam, respectively. Heng is the saturation boson number,
[27]. It has been suggested by Rigo and Gig88] that the 4 is a (typically) large parameterD is as defined in Eq.
QSD unraveling is a natural way to discover the classical2.2), and for arbitrary operator& andB,
limit for a quantum system. Along similar lines, Bioand
Kiefer [41] have suggested that the QSD unraveling is the A[A]B=[ATAB+BA'A]/2. (3.2
most robust unraveling, or close to the most robust unravel
ing (see the following papdi6] for a detailed discussion of
this concept Thus, as well as considering the set of all en-
sembles physically realizable from CMUs, we will also pay
particular attention to the ensemble arising from the speci
instance of QSD.

For simplicity we take the limit wher@g can be ignored
compared taaa'. Strictly, this requires the liming<1, be-
cause the smallest eigenvalue ad' is 1. However, for a
laser at steady state the mean boson number is typically
uch greater than 1, and only boson numbers close to the
mean are occupied with any significant probability. In the
above model the mean number is approximagetyng in the
limit of large . Hence in the limitu>ng,1 we can ignoreg
Although most of our calculations are restricted to CMUs,in Eq. (3.1). The resultant far-above-threshold laser master
there will be one occasion where we need to consider thequation was first explicated in R¢#3].
following discontinuous unravelings of the master equation Having made this simplification, we now introduce more
(2.D: terms into Eq(3.1) in order to create a more realistic model.

E. Discontinuous unravelings

043605-5



H. M. WISEMAN AND JOHN A. VACCARO PHYSICAL REVIEW A65 043605

First, we introduce a term describing additional phase diffu- v=4Nu=0, x=4uC (3.9
sion. This will be present in optical lasers for all sorts of
technical reasons such as thermal motion of the cavity mirand is the superoperator defined in E§.14), which here
rors. In an atom laser it may also be present for more fundais serving as a convenient way to describe the Hamiltonian
mental reasons, such as collisions between uncondensed airolution. We have ignored a contribution to the linearized
oms (in the source mod¢sand atoms in the laser-mode Hamiltonian that is proportional ta'a as this simply indi-
condensate. Treating this phase diffusion as a Markoviacates a frequency shift that can be removed in the interaction
process, it is described by a Lindblad superoperator of theicture.
form ND[a'a], whereN is the phase diffusion rate in units ~ To solve this master equation, we use the Wigner repre-
of the decay rate. sentationW(x,y) [21]. We make a Gaussian ansatz

The second new term we introduce is peculiar to atom

lasers: the self-energy of atoms in the condensate. This is Moo (X— m10)?
described by a Hamiltonian equal #C(a'a)?, with W(x,y)=ex 7
M20M02™ M11 H20
2mhag
= 3 4 (X— w10 (y—
C=—— Jd rly(r)|4, (3.3 L kX~ Ko (Y= tod
M 2002
where(r) is the wave function for the condensate maoalge, (Y= 1)
is the swave scattering length, andis the unit-valued de- - &) / (27 poomor— 1),
cay rate of the condensate. Like the extra phase-diffusion 202
term, this term has no effect on boson number; it only affects (3.10

the phase of the field. However, it is strictly not a phase

diffusion term, but rather a dispersive term. It would arise ingpstituting this into Eq(3.8) yields the following ordinary
an optical laser in a medium with a nonlinear refractive in-gitferential equations for the moments:

dex.

Putting the four termggain, loss, phase diffusion, and ﬂlo:—Mlo, (3.12)
self-energy together, the total master equation is

bZ(MD[aT]A[aT]_1+D[a]+ND[aTa])p Mo1= ~ XM10, (3.12
—ic[(a'a)?p]. (34 Ha0= ~ 2pa0+ 2, (3.13

That this is of the Lindblad form follows from the identity -
M11= ~ M11™ XM20 (3.19

_ * _gaat ,

z{&anqlzjgdmxa% qaa’/z], (3.5 fop=— 2x 1yt 2+ v. (3.19

The stationary solution is a Poissonian mixture of number "€ solution is easy to find

states with meap, just as expressed in Eq4.1) and(1.2):

H1o(t) = pa0(0)W, (3.1

Pss f S—ﬁ Vue'?)(Vue' =n§o ef”ﬁ—!nlnxnl- por(H) = por(0) ~ X1 0)(1-w),  (3.17)
S poo(t) = poo O) W2+ 1—w?, (3.19

B. The linearized master equation wa1(t) = p12(0)W— x{ 1+ W[ pog(0) — 2]+ W2 1— ﬂzo((%)]l}é)

The master equatio8.4) is rather difficult to deal with
because of the nonlinearities in both the gain term and the B 2
self-energy term. To make it more tractable we linearize this HoAt) = po 0) + (24 »)t=2x 1 (0) (1~ W) +2x 7t

equation for a state localized about a mean figly=/x. [ ao(0)—2](1—W) +[1— pog(0)J(1—W2)/2}.
We make the replacement
(3.20
a=Ju+(x+iy)/2 (3.7 .

Here we are using the abbreviatior=e™".
and get, to second order xandy,
) C. Coherence
p=(U{DIx+iy]+ (1+v)DIx]+ DLy]+ HLI(xy+yx)/2 Having solved for the dynamics of ou@tom laser
—ixx?]}p, (3.9 model, we can now answer the question, is it a true laser?
That is, does it satisfy the criteria for a coherent output as
where detailed in Ref[3]. The first two criteria will be satisfied
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provided the output coupling is realized in a suitable way.Substitutingt=u~1<1 into Eq.(3.20 yields
The next two relate to the quantum noise of the state, and
depend upon the dynamics. ) 1+Q2+v)u +x2u?
First, the laser intensity should be well defined. Although (p°(1))= o : (3.29
this criterion is strictly defined in terms of the output of the
laser, it will be satisfied if the boson number of the laserFor the phase to remain well defined we require this to be
mode itself is well defined. In the present case this is clearlynuch less than unity. Since we already require 1, this
so provided the mean number satisfies gives the extra conditions

us>1, (3.21 x<u®? (3.30

ii/t—he ratio of the standard deviation to the mean is equal to o (3.31)
M.

Second, the laser phase should be well defined in the | 4 typical optical lasefand certainly in some models of
sense that the phase shou_ld stay approximately constant ovgm laser§10]), »>1. This means that excess phase diffu-
the time between the emission of one bosoni?nd.the nextion dominates the intrinsic phase diffusiauhich gives the
With a unit dar_nplng rate, this tl_me is equal ,to -Rigor- 5 inthe 2+ » term). In a typical atom laser, it is also likely
ously, we require that the magnitude of the first-order cohergnat excess phase diffusion will dominate. However, as long
ence function asv<u? the laser will remain coherent. Sinee= 4N, this

is equivalent to the condition
gW(H)=(a'(a(0))/(a'a) (3.22 q
remain close to unity fot= 1. For the current system we N<u. (3.32

can rewrite this expression as This expression places an upper bound on the phase diffu-

gO(t)=p LT a’e M (apsd] (3.23  Sion rateN for the device to be considered a laser.
For an optical laser any nonlinear refractive index is usu-

ally small andy<<1. For an atom lasey is likely to be much
=,u,_1f d¢ Tra’et greater than 1, as we will discuss in Sec. VI D. To be a true
atom laser it is necessary for it to remain much less than
X (a] Ve ?)(Vue ). (3.24¢  p¥2 Sincex=4uC the phase coherence condition places an

upper bound on the condensate self-energy in(E® of
Now becausel is a phase-independent superoperator, the

trace here is independent @f. Thus the integral can be C<u'? (3.33
dropped and we can rewrite this as
g(l)(t) — (1/a*)Tr[aTea|a><a|], (3.25 IV. UNRAVELING THE (ATOM) LASER

5 . 1) We now wish to consider monitoring the environment of
Whe[?|“| = w. Thus, the requirement that)(t)=1 for t  ho jaser in order to realize physically an ensemble of pure

=p ~ is exactly equivalent to requiring that the system,giates. This would be very difficult to do experimentally, as it
initially in a coherent state of mean numbgr still b?s & would require monitoring all reservoirs for the device, in-
phase variance much less than unity after a time. . cluding the source of bosonghe gain medium and the
Without loss of generality we can take the initial coherentgg,rces of phase diffusion as well as the laser output. How-
state to be|\u). Then uio(0)=oi(0)=11(0)=0, wz0  ever, in principle, these things can be done provided that the

=po2=1, andy is the phase quadrature. Assuming that theaser evolution is well approximated by a Markovian master
phase uncertainty remains relatively small, we can make thequation.

approximation

A. Realizing the number-state ensemble

p= (3.26 Before turning to continuous Markovian unravelings, we
consider a discontinuous unraveling to show how the en-
semble consisting of number states can always be realized.
Using the atom-laser master equati@y4) in the Lindblad

form (3.5), we can apply the unraveling of Sec Il E, where

N
=l

From Eq.(3.17), the mean phase remains zero,

(p(1))= For() =0 (3.27  the Lindblad operators are
2\u
Co=2a, (4.1
while the phase variance increases as
cy=+Na'a, 4.2
(#7(1)) = 2otV (3.28
du ' plus a continuum of Lindblad operators
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cq=\/ﬁaTe‘qaaT’2 for qe[0). (4.3  dP=(U4dy{D[x+iy]p+(1+»)D[x]p+Dlylp+H[i(Xy

.5 .
Each of these operators either leaves the number state un- Ty HL =P+ (U2 EHIAW (1) (xHiy)]
changed, or tums it into another number state. Since the 4 T4 yH[dW (t)x]+H[dWE (1)y]}P, (4.10
Hamiltonian Ca'a'aa also leaves a number state un-
changed, it follows that if the system is initially in a number where we have defined a new white-noise source
state, it will simply jump between number states under this\/1+ ydW, (t) =dWs(t) + JvdWy(t). We could have ob-
unraveling. Moreover, it can be shown that an arbitrary ini-tained this result directly from the linearized form of the
tial state will tend towards some number state under thignaster equatiofi3.8), but this derivation makes the physical
unraveling. In this way it is clear that the number-state enorigin of the noise terms apparent.
semble(1.2) can always be physically realized. The three complex white-noise source¥V,={;dt are
distinct in the above sense that

, , o ELEF (D)= 8;0(t—t"). (4.1)
As mentioned in Sec. Il C, we are principally concerned
with continuous Markovian unravelings. In this case, fromHowever, they can still be correlated in the sense that
the master equatio(8.4), the SME is
ELGMD ) ]=u;6(t—t"), (4.12

* _aaa’
Mfo dqD[a’e %]+ Dla]+ND[a'a]} P where theu;; are constrained only by E¢.18. The § func-
tion in time in Eq.(4.12 is not required to reproduce the

B. The continuous Markovian unravelings

dP=dt

% ; master equation. It is a consequence of our restriction to
+ \/;f dgH[dW; (t)a'e 922 2]P+H[dW; (t)a]P  Markovian unravelings.
0 Now, it is a remarkable fact about the stochastic master
+NH[dW(t)ata]P—idt[C(ata)2,P]. (4.4)  equation(4.10 that it takes Gaussian states to Gaussian
states. This will be true for any diffusive stochastic master
Here dW, is a zero-mean white-noise term. If we define equation that is at most second orderxinr y. The signifi-

Zo(t)=dW,(t)/dt we have cance in this case is that we can again use the a34id),
and we need only the equations of motion for the five mo-
£y Zo(t)]= S(t—t), a4 ments. We find the following equatiorit be interpreted in
ELL (D Lo(t)]=6(t—t") 495 e Ito sense(38]):

and likewise for{y and {, for eachq. We say that these du/dt=— w.nt RE £* (1 1+

white-noise terms arelistinct because the cross terms are H1o #10t RELG (D kzo paa]

zero, for example, + T (OVI+ v ool + 5 (D[ paatil},
ELL5(DLN(E)]=0. (4.6 .13

duor/dt=— xu10+ Re[ L5 (D)[i o= i+ p14]
+ T OV v =i 1+ 55 (D[ oz},
\/;f dqgi (t)a’ exp(—qaa'r2) (4.14
0
oo/ dt=2— 200~ RE (poo— 1)2+ ufy+ (14 v) uiet+ u2y

+ 1+ Ugg( oo 1+ ) 2 Hudy(1+ v) o

Now we wish to linearize. First note that

~ i | dagg e #ul1+ Ockiy - pxap/2 ]

(47) +u§2(ﬂll+|)2+ 2U31\ 1+ V(ILL20_1+I/-L1]_)M20
y (= . a2 +2u8( poo— 1 +i gy (gt i) +2uTV1+ (g
=(c numbej+ —f dqifg(t)e ~a
2Jo i) pooll2, (4.15
X e 2]
+§J dqga‘(t)e_”q/z(l—q) (4.9 dpoo/dt= —2xp11+ 2+ v—Rd (poy—1)%+ i)+ (1+v)
0
X2+ 1) + pdot ud(i pop— i+ myn)?+uly
=(c numbey+[yZ3 (1) +x43 (D112 “.9 X (14 ) (pgg=1)2+ Uyt 2081 1 ro
where {,(t) and {3(t) are distinct complex normalized =i+ p) (=) + 2081 =i+ 11 o2
white-noise terms as usual. . ]
Using this, we linearize Eq4.4) as +2u7V 1+ v(pa1— 1) po2l/2, (4.19
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duqr/dt=—pa1— xpao— RE[(poo— 1+ipg0) (—ipopti —2xB+(1+v/2)(1- %)~ a’+a
+p1) +(1+v) (1= 1) oot mod w1 1) =rod B2 (a—1)?)/2+r4(1+v) (B2~ 1)/2
+Ugo( a0~ L+ipg) (i pmop— i+ py) +U7; +120°/2+ hogB(a—1)+hyy(1+v) (= B)
X (14 v) proo 11— 1) + Uppto 11t 1) +ro1+v(BP+a—1)+rgBa+tril+vBa
FugVI+ o[ (pmoo— 1+ipen) (pa— i)+ pog +hoVl+v(a=2)B+hela—1)a+hil+v(—a),
X (1 prog—1+ p12) ]+ UV 1+ v ootz (4.29
+(puti)(p—i)] —xy—aB—(1+vi2)yB=roB(y—a)l2+r1(1+v)yBI2
+ugd (i op— i+ p1) (g1 1) +rpBal2+hod B2+ (a—1)
+ (oo~ 141 p1) ool }/2. (4.17) X(y=1)]2+hy(1+v)
X(_ ’}/)/2+ hzzalz
C. The stationary solutions
+ronl+vyB+rod B2+1
From these equations we see that the evolution of the o YRt Todf
second-order momentgag, moz,m11 IS deterministic. This +(y—2)a]l2+ri 1+
means that for a given unravelidgthe stationary ensemble 5
will consist of Gaussian pure states all having the same X(ay+po+1)/2+ho
sfecond-order moments. They are distir_lguished only by their X Tt o[ B2+ 1+ (a—2)y]/2
first-order moments<= wq0,Y= o1, Which therefore take
the role of the indexi in Eq. (2.11). The different ensembles +hoBa, (4.22

themselves are indexed by another pair of numbers,

f11, 20, Which play the role ot/ in Eq. (2.1). We do not ~ wherea is to be read as (£ %)/y.

needu, because the purity of the unraveled states implies These three equations are nonlinear ) but linear in

that the 12 real variablesrj ,h;;). This means that if the values
of v and B are known then the three equations can be solved

Maokor— miy=1. (418 for r;;,h;;. Since there are only three equations for the 12

unknown variables, the resulting linear system is nonsingular

However, it should be noted that the mapping frémto ~ and an(uncountably infinite number of solutions are pos-

111,20 iS IN general many to one as discussed below. sible. We denote the family of such solutions,

We now introduce a new notation for the second—order={ri(,§) ,hi(f) :i,j=0,1,2, indexed by¢. Physically this arises
moments, because many different unravelingsmay lead to the same
steady-state ensemblg3,(y). The question of whether a
given pair of values ofy and 8 represents a physically real-
izable state then becomes the problem of determining
whether any of the solutions, for the correlation coeffi-
cientsu{?'=r {9 +ih{") satisfy the conditioffu¥||<1 in Eq.

a=poy; BT M1, Y= Hoo- (4.19

The different ensembles are now indexed by the pairj.
Of course not all pairsg,y) correspond to physically real- . N .
izable ensembles. Since the ensemble we are considering 12' tTh.'S prt(;]blem CI?n tbe lsol\;ed by f(ljndrl]ng kthe _sf()tthlon
evolved to a steady state &t 0, the only valid pairs must . EI atﬁjlvesl e smallest value fful, and checking if this
satisfy Eqs(4.15—(4.17) with the left-hand sides set to zero. IS less than L.

This gives three simuitaneous equations that, on spitting (2% N TR CEEUETE 8, R e et
into realr;; and imaginanh;; components, can be written as —_ re phy y
are not by finding, explicitly, the parameters of the unravel-

ings that satisfyju(®)||=1. There is an alternate, but equiva-

1= y=(1+v2)y* = BP=rod (y—1)*= BlI2 lent, approact44] based on the central idea of RE#A5].
1 45(1+ 0) Y212+ T o B2—1)/2 This aIonv_s one .to take an .arb_itrary ense_mble and check
whether it is possible, by monitoring the environment, for the
+hgeB(y—1)+hyyB8 state of the system to be restricted to members of the en-
semble over arbitrary time intervals. The ensemble is physi-
+ropVl+vy(y—=1)+ro; cally realizable if, and only if, this can be done without

. e changing the ensemble-average dynamics. The advantage of
X(y=2)BtriVitvyp this alternate approach is that the parameters of the unravel-
+ho 1+ vyB+ho B2+ y—1) ing need not be calculated explicitly and so the computa-
tional task can be greatly reduced. Moreover, it is possible to
+hoy1+ vy, (4.20  find the boundary between physically realizable and nonre-
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alizable ensembles in a closed analytic form. The details are 5
tangential to the scope of the present paper and are explore 4
elsewherd44]. We note here, however, that the PR region is ;

2

given by 8 and y values satisfyingy>0 and I ——

(2xB—2-v)(2=2y)—(B+x¥)?=0. (423 L

f I I I

We have verified this analytic result with numerical solutions « 0 ~ rast -)g.z..__
obtained using the former approach, for all cases presente | + '+ ........... le‘:
below. — x=.2f‘ \_'_,':
2 216, N
D. The stationary ensemble -3 ," "i
The stationary solution of the linearized master equation -4 """ ., =
(3.8 has a Wigner function that is independent of phage 5 R RS R |
and has the following amplitude) dependence: 0 0.2 0.4 . 0.6 0.8 1

—-12 2
WedX)ox(27m) exXp(—x7/2). (4.24 FIG. 1. Representation of physically realizable ensembles, aris-

ing from general continuous Markovian unravelingvu), for »

This is as expected from the stationary solution of the fu”=0 and various values ¢f. The shaded regions represent values of

master equation, E@3.6). A flat phase distribution linearizes y and 8 [and thuse—(1+ 62)/y] that can be realized by monitor-

into a flaty distribution. . . .
. . ing. The progressively darker shaded regions correspond to values
As shown above, the long-time solution of the SME9) of x of 0, 1, 4, 16, and 1000 and are bounded by solid, dashed,

is an ensemble of Gaussian pure states in which the SeConfi‘ésh-dotted, dotted, and dash-dot-dot curves, respectively. The

order momentseyo, 411, o are identical in all members of (), ) value of the closest-to-coherefC) ensemble in each re-
the ensemble, but=w,o andy= o, are allowed to vary. gion is marked as a filled circle on the boundary. The crosses mark

The ensemble is thus represented as the (y,B) values of the quantum-state diffusiéQSD) ensembles
for the same set of andv values, with they values reducing from
EV={(piy Py Xy e R}, (429 left to right.
where the second-order moments of the pure sﬁ%’t@are V. PR ENSEMBLES FOR THE (ATOM) LASER
determined by the unraveling. In this section we present our results for the physically

The weighting functioryolx{—y for the members of the en- realizable ensembles for tifatom laser.

semble is Gaussian. This follows from the fact that Egs.

(4.13, (4.14 for x andy describe in steady sta(_wherg the A. Realizing the number-state ensemble

second-order moments are constamat two-dimensional ) ) ]

Ornstein-Uhlenbeck proce§88]. Such a process has a sta-  Before turning to the effect of varying the dynamical pa-

tionary probability distribution that is Gaussian. rametersy and v we briefly return to the physical realizabil-
Rather than deriving this stationary Gaussian distributiodty Of the number-state ensemble. We showed in Sec. IV A

oY from the Ornstein-Uhlenbeck process, we can derive ibove that this ensemble can be realized by a discontinuous
mx());e simply by noting that it must satisfy ’ unraveling. The analog of the number states in the linearized

regime we have been considering are the infinitely squeezed
states withy=p8=0, a=%. We expect that these states

pss=f dxdypi P (4.260  should be PR using a CM unraveling. This expectation is
met, in that these state parameters are a solution of Egs.

This is guaranteed by the fact that the SME is equivalent t(§4'2_0)_(4'22) for ug=1, u;3=1, up=-1, and all other
the master equation on average. Evidentighould always ik~
have a flat weighting distribution, and should have the . th pe
weighting distribution B. Varying x with »=0
First we present the results showing the effect of varying
PUX) =[27(1— pa0) ]~ Y2exd —x?/2(1— ua0)]. x for fixed v=0. As we have established above, a PR en-
(4.27 semble from a CMU can be represented by the pair of num-
bers (y,B). Thus the set of all PR ensembles can be repre-
This ensures that sented by a region iny-8 space[0,1]X(—%,). The
boundaries of this region, given by E@.23, are shown in
Fig. 1 for various values of. A number of features of this
plot are evident. First, for any nonzero value gf the
coherent-state ensemble is not PR. Secong,iasreases the
whereWZ(x,y) is the Wigner function oP%. PR ensembles become increasingly removed from the

o= [ a7 [ dUow iy, @29
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FIG. 2. The parameters for the physically realizable ensemble FIG. 3. R ati f ohsicall lizabl bl .
that is closest to a coherent ensemii€) as a function ofy with - 9. Representation of physically realizable ensembles simi-
lar to Fig. 1 but forv=10.

v=0. The ensembles arise from general continuous Markovian un-
ravelings. These parameters are the phase-quadrature vasighce
(dotted ling, the amplitude-quadrature variang&® (dashed ling

and the covariancg®® (dash-dot ling for the members of this
ensemble. Also shown for comparison are thin solid curves repre-
sentingy*? and y 2

2

CC__ 1/2
= 33/4)( ’

a

(5.3

2
cC ~12
YoTgmaX

coherent-state ensemble. Third, the boundary of the PR en- (5.9
sembles is asymmetric i@ for y>0, with a larger negative
B region.

The first point can easily be proven analytically. Coherent
states are given byg=y=1 andB=0 for which Eq.(4.23
gives — x?=0. That is, coherent states are physically realiz-
able only fory=0.

We quantify the second point by defining thivsest-to- Also plotted in the figure are two lines representipd’ and
coherent(CC) ensembleas that for which the states have x~*?for comparison. One can clearly see the 1/2 power-law
maximum overlap with a coherent state. The overlap of twoscaling fora and vy.

Gaussian states with the same mean amplitudes and covari- The third point, i.e., the increasing asymmetry of the PR
ance parameters, 3,y anday,B,,y; IS regions in Fig. 1, is due to the self-energy of the condensate
embodied by the term containing’@)? in Eq. (3.4). In the
2IN(ay+ a)(yi+v)—(B1+ B)>. Wigner phase-space representation, this term by itself pro-
duces a “phase shearing;” that is, the angular velocity of the
point (x,y) depends on the distanceu(1+x) from the
origin [46]. In our linearized model of the atom laser, the
effect of this term is to shear the circular contours of a co-
herent state into ellipses. Equatit19 indicates that these
ellipses have a negative covariance. When monitoring the
reservoirs it will, therefore, be easier to realize states with a
Thus, to find the closest-to-coherent ensemble we simplyegative covariance. Hence, the PR regions become more
find the minimuma + y=y+(1+ 8%)/y in the PR region of  asymmetric allowing more negatiye+egions as the nonlin-

¥-B space. _ earity parametey increases.
The closest-to-coherent ensemble for each valug of

represented in Fig. 1 as a filled circle on the boundary of the
respective PR region. The states in these ensembles become
more squeezedy—0) and have a greatery covariance as Nonzero values ob, as defined in Eq(3.9), correspond

x increases. This trend is shown in more detail in Fig. 2to the presence of excess phase diffusion, which will tend to
where we plot the parametets B, andy for the closest- overcome the phase-shearing effect. This makes it easier to
to-coherent PRE as a function f By finding the minimum  physically realize states that are closer to coherent states. In
of y+ (14 B?)/y subject to the constraint Eq4.23 and Fig. 3 we plot the boundaries of the PR ensemblesifor
expanding abouy=0 and 14=0 we find the parameters of =10 for the same set of values gfas in Fig. 1. The CC

the CC ensemble for large scale as ensembles are also shown as filled circles. The PR regions

cC.__ _—
B o 31/2'

(5.5

(5.9

If one of these is a coherent state, with=y,=1, B,=0,
this reduces to

22+ a+y.

(5.2

C. The effect of nonzerovr
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100

LLAALL DL LR ALL BN LLAL BN ALY I ensemble as a function effor y=100. Fory~0 the values
of @, B, andy are approximately the same as the corre-
sponding values g¢= 100 in Fig. 2. However, as increases
10 oc to become much larger thap the effect of the self-energy
term becomes less significant and the phase diffusion begins
to dominate. Then, forw=y? the closest-to-coherent en-
................... semble approaches a set of coherent states as-1.

P . D. Comparison with quantum-state diffusion

e ec i The unraveling given by QSD is more restrictive than that

0.1 ’ ¥ of the general continuous Markovian unraveling treated here.

Specifically, for the QSD unravelingy, B, andy must sat-

, isfy Egs.(4.20—(4.22 for u;j=rj;+ih;;=0 instead of any

0.01 ol vl vl el u;; fulfilling [lu<1. We find this yields the analytic solu-
0.1 1 10 X 100 1000 10000 tions for the QSD ensemble

FIG. 4. The parameters for the closest-to-coherent physically QSD 1+ \/1—8X,8+4M(1—,82)
realizable(CC PR ensemble as a function gfsimilar to Fig. 2 but as = 2 : (5.9

here withv=100. The excess phase diffusion allows the realization
— — 2
')/QSDZ 1+J1+4M(1—-B9)

of states very close to coherent states uptil 22

2M 1 (5'7)
are generally broader as expected, and this allows the CC
ensemble to be closer to a coherent state than for correspond-
ing x values in Fig. 1. B(gSD:(_lJr‘”\/I_F)XJr VG—E (5.9
The parameters for the CC ensembles #6r 100 as a 4(x%*+M) ’
function of y are plotted in Fig. 4. Comparing with Fig. 2 we
note that the presence of the excess phase diffusion in Fig.\#here
allows ensembles very close to coherent stétes, with « _
~y~1, B~0) for y up to of orderv*’?. This can be verified M=1+v/2, (5.9
lytically f Eq.(4.23. H h I
analytically from Eq.(4.23. However, as the value of E=(24M—2) x2+ 32M3+ 8M?2, (5.10

increases beyond this to the order of the effect of the

nonzerov value becomes less significant and the curves ap- A M UAZ+ 2

proach the same asymptotes as in Fig. 2. F=4V(M+1/4)%+ X%, (5.13)
The physically realizable region foy=0 includes the

point =0, y=1 for all values ofv. Hence the closest-to-

coherent PR ensemble is trivially an ensemble of coherenfpg ¢rosses in Figs. 1 and 3 represent the QSD ensembles for
states in this case. The situation is different for nonzero o same set of and v values as the CC PR ensembles. The
Figure 5 shows the parameters for the closest-to-coherent P&)rresponding value of for the crosses reduces from left to
right. One immediately notices that the QSD ensembles lie
well inside of the PR boundary indicating that, for moderate
x and v values, the QSD unraveling is significantly more
restrictive than the general continuous Markovian unraveling
Q. _ explored here. Moreover, the QSD ensembles are more
squeezedsmaller y values than the corresponding CC en-
sembles.
- We note that the QSD ensemble is significantly squeezed
even for the ideal photon-laser limit gf=v=0 for which
the QSD ensemble is given hy=(\5+1)/2~1.62, =0
__________________ AT iy and y=(/56—1)/2~0.62. We can trace the origin of this
0.1 kN squeezing as follows. The second term on the right-hand side
of Eq. (3.4 represents the output coupling of the laser. As
mentioned above, QSD corresponds to equal-efficiency ho-
001 il vl il il modyne detection of a pair of orthogonal quadratures. Thus,
0.1 1 10 N 100 1000 10000 in QSD the monitoring of the output will tend to localize the
state of the laser onto a coherent state. No squeezing can
FIG. 5. The parameters of the closest-to-coherent physically retherefore originate from this term. The squeezing must there-
alizable(CC PR ensemble similar to Fig. 2 but here as a function fore originate from the nonlinear amplification process rep-
of v and with y=100. resented by the first term on the right-hand side of Bd).

G=2(4M?+ y?)F. (5.12

100

B

10

.......
_____

Lt
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FIG. 6. The parameters of the ensemble arising from quantum- FIG. 7. Similar to Fig. 6 but as a function efwith x=0. The
state diffusion(QSD) as a function ofy with »=0. The labeling thin solid curves represent values ©f? and v~ 2.
follows Fig. 2.

1

Indeed, the nonlinear amplification restricts the amplitude aQSDZTV”Z, (5.1
noise through depletion of the source. In our linearized 2
model, this.corresponds to restricted noisexkjEvident_ly, QSO 5,12
the monitoring of the reservoir modes associated with the ye=N2Y (5.17
amplification is a partial measurementofind this leads to QSD
the squeezing of. p="=0. (5.18

It is interesting to compare this with the general CMU his is perhaps surprising given that one does not usuall
treated in the previous subsection. This is less restrictive tha-rq P P P 99 y

QSD since,for xampl,  allows thamblancednontor. | esocise Manced squeesig wih large phase difusin
ing of two quadratures of the output field. In particular, a ' 9 P 9

correlation value ofig= —1 corresponds to the monitoring the phase diffusion is effectively an incomplete measurement

of just they quadrature. This would tend to localize the state.Of the variablea'a, which, in our linearized model E¢3.8),

of the aser mode onto a state with redugelicruations and ¢ SRR 2 ae AL T2 OCIEED e
thus counteract the-quadrature squeezing effect from the of x. The strength or rate of these measurements ir?creases
nonlinear amplification. Similar remarks apply to unraveling i 9

the gain process itself. The net effect is that the general coﬁ'y'th S tlnd QSD th_ere I;‘Stbr:o mgchtamsm :;) cotl;]nteract the
tinuous Markovian unravelings can physically realize coherSsocialed squeezing ot thguadrature, and so the squeez-
ent states foy= =0 whereas QSD does not. ing increases withv. In contrast, the general continuous Mar-

Despite these differences, theand y scaling laws for the kovian unraveling allows unbalanced monitoring of all baths.
QSD ensemble follow the ’Samﬂ,z power laws as the In particular, withu,,= — 1, the phase diffusion is unraveled

closest-to-coherent ensemble although with a different prel“:’1s a pure noise procegstochastically changing the phase of

actor. In Fig. 6 we plot the parameters for the QSD ensembl he state, but yielding no information about his alloyvs
for »=0 as a function ofy. Comparing with Fig. 2 we note e closest-to-coherent CMU ensemble to be comprised of

that the QSD ensemble begins more squeezed for spall coherent states for the same parameters as for Fig. 7.
but for largey the two ensembles approach similar degrees
of squeezing. In fact, from Eq5.6)—(5.8) we find the scal-

ing laws A. Summary

VI. DISCUSSION

aQSP= [, 112 (5.13 The atom laser, even _under with the simplifying approx@-
' mations we have made, is an open quantum system with rich
dynamics. Some aspects of the dynamics, such as excess

yOSP=\2x 17, (5.14 phase diffusion(parametrized byr) and phase dispersion
caused by atomic interactiorfparametrized byy), do not
BP=—1, (5.19 affect the stationary state. That is because the stationary state
is a Poissonian mixture of number states. In this paper we
which should be compared with Eq%.3—(5.5). have investigated the representations of this mixed state as

In Fig. 7 we plot the parameters for QSD ensemble forensembles of pure states. The diagonal representation-
x=0 as a function ofv. The QSD ensembles are highly ber statesis one such ensemble, and the random-phase
squeezed for increasingand, indeed, we find coherent-state ensemble is another. Although mathematically
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equivalent, we have found that such representations are nafp=(1/4)dt{D[x+iy]p+(1+»)D[x]p+Dlylp+H[i(xy
physically equivalent, as only some of them can be physi-
cally realized through monitoring the system. Moreover, the +yX)/2]+H[ =i xx*1}p+ (U2 H[dW* (1) (x+iy) p.
dynamical parametey, which does not affect the stationary 6.2
state at all, radically determines which pure-state ensembles
are PR. In particular, for any+# 0, the ensemble of coherent Here there is only one stochastic term, from monitoring the
states with unknown phase is not PR. laser output. The best strategy for trying to realize states with

As the nonlinearityy is increased, the PR ensembles be-well-defined coherent amplitudes is clearly to measure the
come increasingly removed from the coherent-state enphase quadrature of the output. This corresponadsVitd W
semble. To be specific, the ensemble of states that are closest—dt.
to coherent states consists of states that are amplitude Under these conditions, the differential equations for the
squeezedbut slightly rotategl with a phase quadrature vari- second-order moments of the conditioned state are
ance increasing as , )

aCC 12 6.1) M20= 2= 2120~ 115 (6.3

As y increases the CC ensemble becomes more squeezed H11= ~ R~ Xtoo~ (o2 D ia, 64
until eventually the linearization leading to the above result . 2
breaks down. This indicates that it is not possible to physi- Moz= ~2xp1rt 2+ v = (o~ D)% (6.9
cally realize an ensemble with a well-defined coherent am

. . . . If we sety=0, the steady-state solutions are
plitude for ay this large. This occurs whem®“~ u, in other X y

words, y~ u2. Note that this is larger than the critical value ma0=1, (6.6)

x~ 12 at which the laser becomes incoherent, according to

the analysis of Sec. Il C. n11=0, (6.7
The situation is quite different in terms of the excess

phase diffusion parametet As v increasegwith y=0) the Mo=1+2+v. (6.9

coherent-state ensemble remains PR. This is true even when

v>u?, the value at which the laser becomes incoherent, ak the limit of largev (which is the potential problem arga

shown in Sec. IIl C. Moreover, phase diffusion tends to unddhe phase quadrature variance scales'és The states lose

the nonlinear effects of the self-energy. In the limits o, their coherent amplitude as the linearization breaks down at

the coherent-state ensemble is PR for any finite valug.of = oy~ . That is to say, ab~u?. This is precisely the

regime identified in Sec. Ill C as that for which the laser

output loses its coherence.

. Unfortunately (or perhaps fortunately from the point of
In Ref. [3], the coherence condition for a laser, that theyjew of provoking new conceptsa similar analysis for large

output flux be much greater than the linewidth, was moti-) qoes not hold. Instead, with=0(1) andy>1 the solu-

vated by the requirement that the laser have a well-defineflons of Egs.(6.3—(6.5) are

phase. This follows from the following argument. The laser

B. Interpretation

phase remains fairly constant over the coherence filme o= 25412, (6.9
reciprocal of the linewidth However, this phase only has
meaning if it can be measured, and this requires a macro- w1~ —2, (6.10
scopic field(i.e., many bosongo be produced in the output
over one coherence time. As derived in Sec. IIl C, this con- =212 (6.11)

dition requiresy< u®? and v< 2.

From the results of this paper there seems to be a problerhhis is an extremely sheared state, with phase quadrature
with this motivation for this definition of coherence. There variance scaling ag'2 It loses its well-defined phase only
are values ofy betweenu? and 12, and» betweenu? and  for y~ 2, which is the same scaling as found above when
%, for which the atom laser is not coherent and yet for whichall the reservoirs were unraveled. In particular, fot?<y
it is possible to physically realize laser states with well- < u?, measuring the output has determined the phase of the

defined coherent amplitudes. laser even though this should not be possible by the argu-
The resolution of this problem is straightforward for the ment in Ref.[3] because the flux is less than the linewidth.
case of largev. The motivation in Ref[3] relied upon a The difference between largeand largey can be under-

measurement of the phaem the laser outputBy contrast, stood as follows. There are three Lindblad terms in the lin-
the ensembles we have considered in this paper are phystarized master equatiof3.8. When »=0 they are all of
cally realized by monitoringll of the reservoirs of the laser. roughly the same size. Thus restricting the monitoring to just
In particular, that means monitoring the reservoirs that proone of the three reservoirghe first one, the outputhas
duce the excess phase diffusienf we only allow for moni-  relatively little effect on the conditioned states. It is much
toring of the output of the laser, the stochastic master equdike monitoring all reservoirs, but with a reduced efficiency.
tion will not preserve purity. After linearization, the Indeed, the conditioned state in this case is not far from a
following equation results: pure state, withuootgo— ,uil=2 (compared to 1 for a pure
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statg. By contrast, withv large the phase-diffusion Lindblad and the phase quadrature variance as
term is much larger than the other two. Then if one is only .
able to monitor the output one is necessarily losing most of (ly()—y(1)]5)=1NV+x*t?V (6.19
the information about the system. This leads to qualitatively ) ) .
different conditioned states, with much reduced purityTO reproduce the stationary state that has a unit variance, we
(aottop— 2= \v>1). must consider an ensemble of different valuesdd), with

The existence of the regime®?< y< u? where the laser mean zero and variance-1V. Thus the total phase variance
output is incoherent, but where the phase can in fact be déver the ensemble,
termined suggests that the concept of coherence time is more — — _
subtle than the standard definition in terms of the first-order ([Y(1)=Y(D)1%)+ELY*1=1N+ x*t?V+ x*t*€[x(0)?]
coherence function used in R¢8] and in Sec. Il C above. = 1IN+ 22 6.16
The coherence time is also used to define whether or not the '
laser beam is Bose degenerate, and, as discussed ifBRef. cannot be less than that from a coherent staith V=1).
the criterion is the same. That is, the output is Bose degen- |n this picture, the increase in the phase uncertainty is the
erate if and only if many bosons come out “with the samesym of an intrinsic phase uncertainty increase and that due to
phase”(that is, within one coherence timéThus the present  an uncertainty in thérequencyof the field. The former is due
paradox has implications that go beyond the present discugp an initial quantum uncertainty in the amplitude quadra-
sion, and impact on concepts such as Bose degeneracy fige, and the latter to a classical uncertainty \I in the

well, as will be discussed below. initial mean amplitude quadrature. The loss of coherence is
thus partly due to the addition of different interference terms
C. Conditional coherence and conditional degeneracy oscillating at different frequencies. For example, interfering

jparts of the output field separated in time tyould give a

different interference pattern depending on the frequency.
Over a time of order unitythe bare decay timethe mean

amplitude will sample all possible values so the frequency
will also vary. The average interference pattern measured
over a time long compared to this will thus be washed out
due to the different frequencies, and the experimenter would

One way to understand the above results is that the ato
laser foru®?< y< u? is “conditionally coherent.” The stan-
dard coherence conditiop< %2 can be derived from the
requirement tha¢(5¢#)?(t))<1 att=1/u, the time between
atoms in the output. Heresg)?(t) =y?(t)/4u is the phase
variance of the state at timewhich was a coherent state at

— . . . . 3/2
t=0. That this implies the conditioy<p™* can be seen .\ 4o iha: the output was incoherentyitt?>~ u for t
simply as follows. Foiy large and for a time as short aul/ U

the irreversible evolution can be ignored and the phase un- : I
VA Fot . : If, however, oneknows(as the experimentethe initial
certainty is due to th€a'a'aa Hamiltonian. For the linear- P

ized theory, this turns into the Hamiltoniar{x/2)2, wherex ~ Mean amplitudex(0), then one knows what frequency to

is the amplitude quadrature. This causes the phase quadratféP€ct in one’s interference pattern. Then rather than simply
to change as averaging the interference patterns over some long time, one

could correct for the mean frequency shift before doing the
y(t)=y(0)— xtx(0), (6.12  average. Then the only contribution to the visibility of the
interference pattern will be the intrinsic phase quadrature
where the mean frequency shift has been removed as haariance
been consistently done before. For a coherent state of zero _
mean phase we haveg/(0)=0, (y(0)®»=1 and x(0) (ly(h)—y()]?)=1N+x*t?V. (6.17)

_ 2\ _ _
=0, (x(0)%)=1. Thus fort=1/u we get From this conditional point of view, the laser output will

(YD) -YO D =1+ (22 =14 y2 2. 6.13 cease to be coherent only when
Au~1IN+ x%(1w)?V. (6.18
This is of order 4. (indicating the loss of coherenctor y
~u®?, Solving for y gives
The coherent state is the most convenient state to use for
this calculation, as explained in Sec. Ill C. But of course it is x~uNV  4p—-Vh), (6.19
also possible to represent the atom laser as a mixture of o . .
states with smaller amplitude uncertainty than a coherent® maintain coherence for the largest possipleve mini-
state, and, as we have seen, to physically realize such eflize this with respect t¥ to get
sembles. The average result must be the same, but the details 9,2 (6.20
are different. Consider a minimum-uncertainty pure state X7 :
with V=([x(0)—x(0)]%)=1Ky(0)?, where the initial at V~1/2x. This is the upper limit of the regiom¥2<y
mean phase has again been taken to be zero. The mean phasg? where a well-defined coherent amplitude is physically
evolves as realizable but the output is not coherent in the usual sense.
o . Now we can see that a physical realization giving the well-
y(t)=—xtx(0), (6.14 defined coherent amplitude in this regifgich as that giv-
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ing the closest-to-coherent ensembigeprecisely what is re- TABLE |. Parameters for recerfand proposedatom-laser ex-
quired to recover coherence, in a conditional sense. periments at various institutions.

The concept of conditionally coherent goes hand in hand
with that of conditionally Bose degenerate. Under the stan- MIT MPQ NIST Proposed
darc; Qefinition, the atom-laser outpl'Jt. in the regim%2<x X 910 1800 50 990
<u® is not Bose degenerate. Specifically, there is no modeIT 41x10F  21x10°  5.7x10P 2 0% 10

that can be identified priori in the output and that has a s
large mean occupation number. But under an unraveling of ',
the atom-laser dynamics, such a mode can be identified in
this regime: it is a mode corresponding to the frequency that “’m‘“/"/ 11 4.8 0.8 22
can be inferred from the knowledge of the amplitude of the @nin!/ 14 2.1 640 44
condensate. As with the case of conditional coherence, a new
mode will have to be chosen after a short time, since the
frequency explores the full range on a time scale of order
unity. But at a particular instant of time, the knowledge ob- It is clear that many interesting questions relating to the

tained from monitoring the reservoirs of the syst@meven coherence of an atom laser, the physical realizability of a
just the output, as seen abgve sufficient to allow a highly ~ coherent-state ensemble, the coherence of the output, and the

occupied mode to be identified. conditional coherence of the output, depend upon the value

We can perhaps clarify the concept of conditional Bosedf x. This prompts the question: what value does this param-
degeneracy as follows. Consider a system Witimodes, and  €ter have in experimental atom lasers? As discussed in Intro-

6.0<10°  4.0x10° 8.0x 10° 2.0x10°
kl/ 12 0.57 810 2.0

D. Experimental implications

N particles. The multiparticle state duction, a number of experimental groups have realized
Bose-Einstein condensates with output couplihg—20. A

p=|N1,0,,03, ...,Q){(N4,0,,05, ...,/ (6.2) cw atom laser would have to incorporate a mechanism for

replenishing the condensate so that the output coupling could

is clearly Bose degenerate, just as the state continue indefinitely. Nevertheless, we can take these experi-

ments as a possible indication for the parameter regime in
p=I111.1s .. W) (1nle s, [ (622 \yhich an atom laser may work. The figures below are de-
rived by setting the bare linewidtk of the laser equal to the
reciprocal of the lifetime of the condensates in the experi-
N ment, and the mean atom numbherequal to the initial oc-
p=N"1 E | 0m-20m-1,NmOns1,0ms2, - - .) cupation number of the condensate. The excess phase diffu-
=1 sionv we have ignored, and we have calculatedsing Egs.
(3.3 and(3.9.
Most of the current experiments are in the regime where

The mean occupation number of any mode is clearly one, S;pe ratio of the kinetic energy to the interaction energy is
it is not Bose degenerate in the usual sense. But also clearfTy Small[48]:

is not. But what about the state

X( .. ,0m-2.0m-1,NmOms1.0ms 2, - . .[2  (6.23

if one had access to this state then after finding a single 5
particle, one would know in what state the remainhg 1 " | «1. (6.24)
particles would lie. Thus the state would have becaoe- 64m’maw u2aZ

ditionally Bose degenerat®Ve believe that the above state is

a good toy description of a short section of the output of arHeremis the atomic massy is the mean trap frequency, and

atom laser in the interesting regime pf>< y<u?, where  ag is the scattering length as in E@.3). In this regime the

the different modes represent different frequencies. Thomas-Fermi approximation can be made, allowing us to
Finally, it is interesting to note that by employing feed- evaluatey analytically as

back based on QND atom number measurements, it is pos-

sible (within the current atom-laser modeb greatly reduce 4 [ 225u°mocaZ)

the linewidth [47]. Specifically, the linewidth may be re- =7\ x| -

duced by a factor of order'?, and the coherencén the

conventional sengeof the laser extended fromp=u®?to  The values ofy using the parameters of three recent experi-

x=p?. This is not quite an exact parallel with the above ments are compared in Table . The MiMassachusetts In-

results, because the feedback is based on a measurement thtittite of Technology experiment[17] represents the first

adds extra phase-diffusion) term, that is not required in “pulsed atom laser,” a quasicontinuous output couplit§]

the above analysigThis QND measurement is introduced was demonstrated at National Institute of Standards and

because it is a number measurement, and so is more easigchnology(NIST), and the MPQ(Max-Planck-Institut fu

realized than the phase-sensitive measurement necessaryQuantenoptik experiment[20] demonstrated a continuous

the above analysisNevertheless, it still illustrates the gen- output coupling.

(6.295

eral principle stated in Ref43], that “the practical signifi- All x values are in thee>1 regime on which we have
cance of{conditional analysdsis that conditioning is real- concentrated in this paper. Thus if these experiments could
ized by feedback.” be run with the same output coupling but with continuous
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replenishment of the condensate, the closest-to-coherent efameters of the experiments. We can write: |/ and /
semble that could be physically realized would be highly_|/p and so the ratioc//=D/u is also the ratio of the
amplitude squeezed. From E§.4), with x=1000 the stan-  nymper of atoms per output frequency mode to the steady-
dard deviation of the amplitude quadrature of these statesiate population in the cavity. Significant line narrowing,

would be about 0.2, compared to 1 for coherent states. Thugerefore, leads t®> u, that is, many more atoms per out-
it seems that it is wrong to think of an atom laser as being iyt mode than in the condensate.

a coherent state. _ . Ouranalysis assumes that we can treat the atomic conden-
Despite the banishing of the coherent-state descriptionsate as a single atomic-field mode. We now show how this
truly continuous versions of the experiments analyzed abovgssymption can be justified with realistic experimental con-
would produce an unconditionally cohereiitose degener- gitions. Only a single mode is needed if the condensate is, at
atg output. That is because the calculated valueg afre  most, only weakly coupled to the quasiparticle modes. There
always much less than®? so that Eq(3.30 above is sat-  are two important ways in which this coupling can arise. One
isfied. Interestingly, we can recast this condition in terms ofis que to the fact that the spatial form of the quasiparticle

the output fluxl = xu (atoms per unit timeas modes depends on the number of atoms in the condensate
4 111 and so fluctuation in the condensate number will cause an
2 . .
1>1 610 aswm-k 6.26 overlap between condensate and quasiparticle modes. How-
' 52 ' ever, provided the fluctuations in the condensate atom num-

ber occur on a time scale much longer than the dynamics of
This inequality depends very weakly on the dimensionlesghe condensate and quasiparticle modes, the system will
quantity in brackets because of the 11th root. For the abovevolve adiabatically and remain in the condensate mode.
three experiments this 11th root averages to 0.16, and rangd&us, the first requirement for minimal coupling to the qua-
only from 0.13 to 0.21. Hence we can state the coherencgiparticle modes is
condition for an atom laser in terms essentially independent
of the species and decay time las0.26w or min/ k>1, (6.29

I>T L (6.2 wherew,,, is the lowest of the trap frequencies. The other
) . . coupling mechanism is due to the linewidth of the conden-
That is, there should be many atoms emitted into the las&fate mode. In order to avoid adiabatic exchange of atoms
beam per oscillation period=2/w of the trap. This is  penyeen condensate mode and quasiparticle modes, we need
such a simple rule of thumb that it should be useful, but ity |inewidth to be much smaller than the spacing between
must be remembered that there is no direct physical connégne condensate mode and first excited mode. This difference

tipn between thg flux apd 'the trap f_re_quency. This resglt iSg simply the lowest trap frequency,,, [49]. Hence the
simply a numerical coincidence arising from the variousggcgng requirement for a single-mode analysis is
physical parameters for atomic Bose-Einstein condensation

in typipal traps. The se.colnd row of the table shows that this ominl /> 1. (6.30
condition is clearly satisfied for the parameters of the three
experiments and this suggest that the output field of ou
model atom laser would be degenerate.

The actual degree of degenerd2yf the output field, that
is, the number of atoms per output frequency mode, is give

X . ; S rating in the single-mode regime ag,,/x Or wnin// oOr
by thg quotient//” of the flux| and the Imewdth{. The ._are order unity. So besides not being continuously pumped,
linewidth for the atom laser model we are considering is

: i Ref.[47 the experiments also do not satisfy the single-mode criteria
given in Ref.[47] as of our model and thus require a pulsed, multimode analysis

Ve have tabulated figures for these parameters in Table | for
the three experiments and included further data for a pro-
osed experiment. The three experiments are clearly not op-

1412)/2 . such as that_ of Ref50]. Howevgr, it would not bg difficult
/i w1+ X2 for x=8ulm, (629 1O achieve single-mode operation by selecting different, but
2kxIN2mTW for x>+8ulr. experimentally reasonable, parameters. For example, the last

) column in the table shows the values for a sodium-atom laser
The third row of the table shows that, for the same paramiy a3 symmetric trap with frequencyw= w,= (27

eters as the experiments, the output field of the atom-laseg 25y Hz, output coupling rat&=7 s and mean atom

model is highly degenerate. number of u=10°. Both conditions, Eq.6.29 and Eq.

~ Itis interesting to compare the linewidth of the output g 30, are satisfied and so the coupling would be minimal in
field 7/ with the bare cavity linewidthc. The action of the  this case.

pump tends to reduce the linewidth far belawn the same
manner as an optical lasghe y— 0 limit of Eq. (6.28]. In

an atom laser, however, the nonlinearity converts intensity
fluctuations into phase fluctuations and this tends to broaden It is fitting to end by referring to the very beginning, that
the linewidth[the y—« limit of Eq. (6.28)]. Table | shows a s, the title of our paper. What does the physical realizability
range of values of the ratia// from below unity (line  of ensembles of pure states say about atom lasers, coherent
broadening to well above unity(line narrowing for the pa-  states and coherence?

E. Closing remarks
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First, they establish a basis on which it is possible todemonstrated, where it could not be in the absence of that
objectively discuss the existence of coherent states as thaowledge.
state for an atom laser. Sixth, unlike y, excess phase diffusiondoes not destroy
Second, they show that these coherent states can onijfie physical realizability of the coherent-state ensenfiole

exist (that is, be physically realizedor =0 (that is, in the  y=0), and in fact makes it easier to approach this ensemble
total absence of interactions between the ajoms for finite y.

Third, the existence of pure stateleseto coherent states Seventh, the existence of a regime=(x2) in which the

requiresy<1, which is a much stronger condition than the |aser output is incoherent but an ensemble of states with
x<w”" needed for the laser output to be coherdBose \yg|l-defined coherent amplitudémdeed, coherent stateis
degenerate _ _ _ physically realizable, does not require a new concept of co-
Fourth, the existence of states with well-defined coherengerence. Rather, by restricting the measurement of the atom
amplitude (that is, with phase variance small compared t0j5ser to the monitoring of its output beam itself, the physical

unity) requires y<u, a far weaker condition than that realizability of such an ensemble is restricted to the coherent-
needed for realizing coherent states, and also weaker thagiput regimer< 2.

that required for output coherence.

H H 3/2 2
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