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Multiply quantized vortices in trapped Bose-Einstein condensates
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~Received 10 August 2001; published 18 March 2002!

Vortex configurations in rotating Bose-Einstein condensed gases trapped in power-law and anharmonic
potentials are studied. When the confining potential is steeper than harmonic in the plane perpendicular to the
axis of rotation, vortices with quantum numbers larger than one are energetically favorable if the interaction is
weak enough. Features of the wave function for small and intermediate rotation frequencies are investigated
numerically.
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I. INTRODUCTION

Trapped Bose-Einstein condensed gases provide a n
kind of condensed matter system that can sustain quan
vortices, as has been realized in the recent years@1–4#. Fea-
tures that differ from those in macroscopic superfluid s
tems are expected here. The fact that these systems are
and that the parameter regime where the vortex core siz
comparable to the system size is attainable, in princi
opens up for the possibility for vortices in these systems
have a circulation quantum numberq larger than unity.

It is well known that multiply quantized vortices are n
thermodynamically stable in spinless, macroscopic, and
mogeneous superfluids, because the energy of a vortex
pends on the square of the circulation, and therefore
singly quantized vortices with a finite spatial separation h
lower energy than one doubly quantized, while giving t
system the same angular momentum@5#. However, multiply
quantized vortices may well be energetically favorable
systems that do not fulfill the criteria of being homogeneo
spinless, and macroscopic. The assumption of homogen
is not met in superconductors with pinning forces, whe
indeed doubly quantized vortices are observed@6#. In 3He-A,
where the order parameter is not a scalar due to spin deg
of freedom, a lattice of doubly quantized vortices with fille
cores has recently been observed@7#. The argument also fails
in spatially confined systems where the vortex cores are
much smaller than the system, such as mesoscopic supe
ducting disks, where vortices with large quantum numb
have been predicted@8#.

In condensed Bose gases confined in harmonic-oscill
potentials, it has been found both analytically@9#, numeri-
cally @10,11#, and variationally@11# that multiply quantized
vortices are not energetically favorable, and no quant
numbers larger than unity have been observed experim
tally @3,4#. However, none of these studies has conside
whether altering the power law of the confining potential c
open up for the existence of multiply quantized vortices.
this paper, we shall give rigorous criteria for the thermod
namic stability of multiply quantized vortices in trappe
Bose-Einstein condensates, and show the decisive
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played by the shape of the potential.
The system under study is a gas of bosons of massm in an

external potentialV(r ), dilute enough and at sufficiently low
temperature that it is well described by the Gross-Pitaev
equation@12–14#

i\
]c~r ,t !

]t
52

\2

2m
¹2c~r ,t !1V~r !c~r ,t !

1U0uc~r ,t !u2c~r ,t !2VL̂zc~r ,t !. ~1.1!

The so-called condensate wave functionc(r ,t) is normal-
ized to the number of particlesN in three dimensions, and to
the number of particlesn per unit length in two dimensions
The coefficientU0 in front of the nonlinear term is the inter
action strength, defined asU054p\2a/m, where a is the
s-wave scattering length. It turns out that the effective m
sure of interaction strength in two dimensions is the prod
4pna, which we shall denote byg. In three dimensions, the
corresponding quantity depends on the trapping potentia

A centrifugal term is present in the Gross-Pitaevskii eq
tion, corresponding to a rotation of the trap with the fr
quencyV about thez axis. At certain critical valuesVcq of
the rotation frequency, we expect there to be a discrete t
sition between states of different circulation numbers, so t
when Vcq11.V.Vcq , a state with total circulation quan
tum numberq is the ground state@5#. The critical frequencies
are functions of the coupling strengthU0 @15#.

When the Gross-Pitaevskii equation is valid, the total e
ergy of the system is given by the mean-field energy fu
tional

E5E drFc* ~r !S 2
\2

2m
¹21V~r !2VL̂zDc~r !

1
1

2
U0uc~r !u4G . ~1.2!

We shall in the following be concerned with the lowes
energy solutions of the Gross-Pitaevskii equation~1.1! for a
range of values of the driving frequencyV, interaction
strengthU0, and for different external potentialsV. The pa-
per is organized as follows. In Sec. II, we present an anal
study of systems contained in three- and two-dimensio
power-law and anharmonic traps. In Sec. III, we illustra
these findings numerically for the two-dimensional case a
,
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study some features of the different states with small
intermediate circulation quantum numbers. Section IV p
vides a conclusion.

II. VORTEX CONFIGURATIONS IN POWER-LAW
AND ANHARMONIC TRAPS

We shall now analytically determine the criteria for th
thermodynamic stability of multiply quantized vortices b
the means of perturbation theory. In Ref.@9#, it was shown
that multiply quantized vortices are never the minimu
energy state in a system that is harmonically confined in
x-y plane, and we will here extend the same analysis to
case when the confinement is steeper than harmonic.

The interaction can be treated perturbatively in this ana
sis, because if a multiply quantized vortex can ever
present, it will be so whenU0 is small. To see why, note tha
the vortex cores are large for weak interactions and v
versa@14,16#. Therefore, in the limit of largeU0, the vortices
are much smaller than the system size and the radius of
vature of the density profile. The result of a homogene
bulk system thus applies, namely, that a vortex array is
energetically favorable configuration. Therefore, we exp
multiply quantized vortices to show up only in the realm
small ~and possibly intermediate! U0, if at all.

Consider a Bose gas trapped in a cylindrically symme
power-law potential of powern, which in cylindrical coordi-
nates is written as

V~r ,f,z!5\vS r

dt
D n

1Vi~z!. ~2.1!

The trap frequencyv, which determines the strength of th
potential, defines a trap lengthdt5A\/mv. Since we will
treat the interaction to first order in perturbation theory,
dependence of the external potential on thez coordinate is
totally arbitrary as long as the problem remains separabl
the noninteracting limit, as is the case here. To higher ord
in the interaction, there will appear effects such as vor
bending. We shall hereafter neglect to mention the, for
purposes irrelevant,z-dependent term and its associated d
grees of freedom.

We first study the case of a harmonic potential,n52, and
briefly recapitulate the results of Ref.@9#. WhenU050, the
Gross-Pitaevskii equation is identical to the one-parti
Schrödinger equation, with well-known eigenstateswnrq

,
which are labeled by a radial and an axial quantum num
nr andq ~as well as a quantum number associated with thz
direction, irrelevant for our considerations!. The eigenener-
gies for the harmonic case including the centrifugal term

Enrq
harm5N\~v2V!q1N\v~11nr !. ~2.2!

We concentrate on the states with no radial nodesw0q , be-
cause these have the lowest energy for a given angular
mentumNq\. These are in fact vortices with quantum num
ber q. When the driving frequencyV is less than the trap
frequencyv, the q50 state is the ground state; whenV
5v, all the statesw0q are degenerate. WhenV.v, E de-
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creases with increasingq, and there is no ground state
Hence, in the noninteracting case all the critical frequenc
Vcq are equal to the trap frequencyv.

The interaction energy term now lifts the degeneracy
V5v and the critical frequenciesVcq split apart and assum
values less thanv. In Ref. @9# it was shown that if the ex-
pectation value of the total angular momentum is fixed
Lz5Nq\ andq>2, the lowest energy is attained not for th
multiply quantized vortex configurationsw0q , but for wave
functions that are written as a sum of noninteracting part
states of different angular momenta,

c~r !5(
q8

cq8w0q8~r !, ~2.3!

wherecq8Þ0 for someq8Þq, and (q8ucq8u
2q85q . These

lowest-energy states are vortex arrays and are thus the e
getically favorable states for any finite interaction streng
when the radial confinement is harmonic.

When the trapping powern in Eq. ~2.1! is larger than two,
the conclusions of Ref.@9# no longer hold. In this case, th
single-particle energy varies faster than linear with the an
lar momentum. This implies that in the noninteracting ca
pure multiply quantized vortex statesw0q have lower energy
than any superposition of the form of Eq.~2.3! with the same
average angular momentum. Hence, it takes a finite~albeit
possibly very small! interaction strengthU0 to overcome this
difference. We thus arrive at the important conclusion, t
for a finite but weak enough interaction, the multiply qua
tized vortex states are the minimum-energy configurati
within their respective ranges of external rotation frequen
V. When the interaction is strong enough, however,
larger interaction energy of the multiply quantized vort
states will overcome the difference in kinetic plus trap e
ergy, and the ground state will again be a vortex array. T
makes sense, since as we noted above, in the limit of str
interaction the results of the infinite and homogeneous c
apply. We stress that in order to arrive at this result, we
not need to know any details of the eigenstates of a gen
power-law potential: the fact that the energy depends str
ger than linearly on the angular momentum is enough.

For potentials weaker than harmonic,n,2, no rotation is
possible. The potential in a frame rotating with angular f
quencyV is V(r )2 1

2 Vr 2, which is not confining ifV.0
andV(r ) is weaker than harmonic. Therefore, a rotating st
in such a trap can be at most metastable@17#.

If a pure power-law potential that is steeper than harmo
may seem an artificial construction that is hard to fabricate
practice, we note that the analysis can be repeated fo
anharmonic potential,

V~r ,f,z!5
1

2
mv2r 2S 11l

r 2

dt
2D 1Vi~z!. ~2.4!

The important point is that for any positive anharmonicityl,
the single-particle energy varies faster than linear with
angular momentum. This again leads to the conclusion
multiply quantized vortices can exist in anharmonic traps
long asl.0 and the coupling is small.
4-2
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MULTIPLY QUANTIZED VORTICES IN TRAPPED . . . PHYSICAL REVIEW A65 043604
We have shown that multiply quantized vortices can
stable only in trapping potentials that are steeper than
monic in thex-y plane, and only for weak enough intera
tions. A close inspection of the above argument reveals
physical mechanism behind the transition. The kinetic ene
gives rise to a repulsion between the vortices because o
overlapping velocity fields, while the trapping potenti
strives to keep the vortices together in order to reduce
spatial extent of the cloud. The interaction energy fav
states with several separated vortices because such s
have lower density on the average. The thermodynamic
bility of multiply quantized vortices is thus a consequence
the competition between these three energies, and the p
2 is the limiting value.

III. NUMERICAL RESULTS FOR TWO-DIMENSIONAL
SYSTEMS

In the preceding section, it was shown that multiply qua
tized vortices can be the mininum-energy configuratio
when the trapping potential is steeper than harmonic in
plane perpendicular to the axis of rotation, and the inter
tions are weak. We now perform a numerical study to qu
tify these predictions. We shall treat the two-dimensio
case only. We insert the power-law potential,@Eq. ~2.1!# into
the Gross-Pitaevskii equation~1.1! and scale out the dimen
sions by defining r 5dtr̃ , t5v21 t̃ , c5Andt

21c̃, Lz

5\L̃z , V5vṼ, g54pna, and for the total mean-field en
ergy E5\vẼ. There results a dimensionless Gros
Pitaevskii equation

i
]c̃

] t̃
52

1

2
¹ r̃

2
c̃1

1

2
r̃ nc̃1guc̃u2c̃2Ṽ L̂̃zc̃, ~3.1!

which depends on three parameters, namely, the coupling,

the rotation frequencyṼ, and the trapping powern. We solve
it in two dimensions using the split Fourier method@11#. By
propagating Eq.~3.1! in complex time, the system relaxes
a local energy minimum that depends on the initial state
order to find theglobal minimum-energy configuration fo

each choice of parametersg, Ṽ, n, we perform the relaxation
a few times using different, irregular initial states, compu
their energy with the aid of Eq.~1.2!, and out of the different
final states we choose that which has the lowest energy.
grid size is 64364 points and the lattice constant is equal
0.2 times the trap lengthdt . We have confirmed that dou
bling the grid size and halving the lattice constant does
alter the results.

Figure 1 is a phase diagram for the quartic potentialn

54), which shows how theṼ-g plane is divided into regions
of different vortex configurations with the total circulationq
ranging from 1 up to 4. The different vortex configuratio
are labeled by the total number of quanta followed by
number of singularities present in the system: the configu
tion 3-3 thus denotes threeq51 vortices, whereas 3-1 is
state with one triply quantized vortex present. The reg
marked by 0 is the nonrotating state. Since the numer
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computation is done with limited precision, we need an o
erational criterion for the existence of a multiply quantiz
vortex. A q-fold quantized vortex is defined as a configur
tion in which the calculated circulation around a circle e
closing the origin is equal toq and only one density mini-
mum can be seen on optical inspection of the plotted w
function, i.e., the intervortex distance is less than the lat
constant of the numerical grid. The transition frequenc
found using this criterion coincides with the point where t
angular momentum saturates at an integer value.

As expected from the analysis of Sec. II, we find multip
quantized vortices for small values ofg, which split into
arrays of singly quantized vortices for largerg. The transition
from a multiply quantized vortex to an array is continuou
as illustrated in Fig. 2, where two vortices are seen to me
as the critical line is crossed.

It is convenient to define a new quantity to describe
regime of stability of multiply quantized vortices. Theqth
critical couplinggcq is defined so that wheng.gcq , there
can exist noq-fold quantized vortices for any value ofV, but
wheng,gcq , a q-fold quantized vortex is the energy min
mum within certain limits ofV. The critical coupling is a
function of the trap powern. Figure 1 suggests that the crit
cal coupling increases withq. The physical reason for this is
that if the system is to accommodate many singly quanti
vortices, the cores must be small andg large. Our analysis in
the preceding section showed thatgcq50 for the harmonic
trap (n52), andgcq.0 when n.2. This is confirmed in
Fig. 3, which shows howgc2 depends onn. The data points
suggest that the curvegc2(n) goes to zero linearly, whenn
→2 from above.

We have pursued the analogous anharmonic case,@Eq.
~2.4!# using the same numerical procedure. The qualitat
features of the phase diagram are not different from the p
power-law case. The critical couplinggcq is now a function
of the anharmonicityl. The result forgc2 is shown in Fig. 4.

FIG. 1. Phase diagram for a quartically confined tw
dimensional Bose gas subject to a force rotating with an ang
frequencyV. The state marked by 0 is the nonrotating state, and
is a state with one centralq51 vortex. The regions 2-2, 3-3, an
4-4 denote vortex lattices containing two, three, and four sin
quantized vortices, respectively, while the states 2-1, 3-1, and
are states with several quanta of circulation but only one ph
singularity.
4-3
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EMIL LUNDH PHYSICAL REVIEW A 65 043604
The limit l→` is the quartic potential, whose critical cou
pling gc2530.5 can be read off from Fig. 1. Whenl→0, on
the other hand, the potential approaches a harmonic one
gc2 approaches zero. In the experimentally realized tw
dimensional condensates of Ref.@18#, g varies between 100
and 104, the former for a number of particlesN5104. Di-
minishing the number of particles by a factor of 10 and

FIG. 2. Numerically computed condensate wave functions,
lustrating how the distance between two vortices continuously
creases as the external rotation frequencyV increases. The brigh
shades indicate high density and vice versa. The confineme
quartic, the coupling constantg528.0, andV/v51.59 for the top
left panel, 1.72~top right!, 1.83 ~bottom left!, and 1.86~bottom
right!.

FIG. 3. Critical coupling for the stability of doubly quantize
vortices gc2, as a function of the powern for a condensate in a
power-law trap. The analysis of Sec. II predicts that the curve g
to zero when the trapping power approaches a value 2, in ac
dance with these numerical results.
04360
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-

troducing an anharmonicity larger than 0.1 would take th
systems belowgc2.

The phase diagram ing-V space becomes richer fo
higher quantum numbersq. For q<7, there are only two
phases, a vortex-array phase and a multiply quantized vo
phase. For higher quantum numbers, however, a new kin
pattern appears, where one multiply quantized vortex is
rounded by singly quantized vortices. Figure 5 shows
different vortex phases for 8<q<11. The power of the po-
tential is chosen ton52.2. We find a number of distinc
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e-
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s
r-

FIG. 4. Critical couplinggc2 for a condensate trapped in a
anharmonic potential as a function of the coefficientl of the quartic
term. Whenl approaches zero, the trap approaches the harm
case, and the critical coupling drops to zero.

FIG. 5. Phase diagram for a rotated condensate in a power
trap of powern52.2. Full lines indicate the critical frequencie
separating states of different total circulation. Dashed lines m
discrete transitions between states of different symmetry but e
total circulation. Dotted lines mark continuous transitions betwe
states of equal total circulation but a different number of singula
ties. Only the critical lines for circulationq between 8 and 11 are
shown. The different phases are labeled by their total circulat
followed by the number of singularities in the system; phases s
as 8-7 thus contain both singly and multiply quantized vortices
regular patterns.
4-4
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phases, which we label by their total circulation followed
the number of singularities just as in Fig. 1. There are th
phases containing eight quanta of circulation: a centraq
58 vortex for smallg ~denoted 8-1!; an array of eight vor-
tices for largeg ~8-8!; and for intermediateg, a centralq
52 vortex surrounded by sixq51 vortices~8-7!. The tran-
sition from 8-1 to 8-7 is continuous: the sixq51 vortices
separate from the central one in a smooth way as the cri
line is crossed. The two phases 8-7 and 8-8, on the o
hand, have different symmetries and the transition betw
these two is discontinuous. For the case of nine quanta, t
exist the corresponding phases 9-1 and 9-9, and one inte
diate phase 9-8 with a centralq52 vortex and sevenq51
vortices. A 9-7 configuration with aq53 vortex surrounded
by six q51 vortices seems to be stable in a very narr
region of widthDg;0.2, between 9-1 and 9-8, but with th
present numerical precision we have not been able to a
rately determine the boundaries of this phase and it is left
of Fig. 5. For the caseq510, on the other hand, one ca
clearly distinguish four different configurations, and likewi
for q511.

Analogously to theq58 case, the transition between 9
and 9-7 is continuous, and so is the transition between 1
and 10-8 and between 11-1 and 11-8. On the other hand
configurations 9-7, 10-8, and 11-8 have entirely differe
symmetries from 9-8, 10-9, and 11-9, respectively, and th
transitions are discontinuous. Finally, the three la
mentioned states transform smoothly into arrays of sin
quantized vortices~9-9, 10-10, and 11-11!, wheng increases
by splitting of the central vortex into singly quantized one
Figure 6 illustrates this.

FIG. 6. Density plots for a two-dimensional condensate in
power-law trap of power 2.2, at couplingg519.5. The leftmost
panel is the minimum-energy configuration for rotation frequen
V51.1300v, the middle panel showsV51.1400v, and the right
panel hasV51.1460v. All three states have a total circulationq
59. The pictures show that the transition between the phases
~left and middle panels! and 9-8~right panel! is continuous.
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IV. CONCLUSIONS

We have determined the criteria for existence of vortic
with circulation quantum numbers larger than unity in r
tated trapped Bose-Einstein condensates. We have pr
that in both two- and three-dimensional systems, multi
quantized vortices are the energy minimum if the trapp
potential in the plane perpendicular to the axis of rotation
steeper than harmonic, and the interaction is sufficien
weak so that the vortex cores are not much smaller than
cloud, and the external rotation frequency is within approp
ate limits. For stronger interactions, the multiply quantiz
vortices break up into arrays of several vortices. The phys
of the transition is the interplay between the intervortex
pulsion and the trapping potential. In the case of tw
dimensional systems, we have numerically determined
regimes of thermodynamic stability of different vortex co
figurations. For clouds rotated at large angular velociti
there are regimes where arrays containing both singly
multiply quantized vortices are stable.

Most trapping potentials used in experiments are h
monic, but using Laguerre-Gaussian beams one can
struct optical traps of arbitrary even power laws, where o
predictions can be tested@19#. A two-dimensional sodium
condensate can host doubly quantized vortices, if the num
of particles is of the order 1000 or smaller, and a trap anh
monicity of about 10% is introduced. Alternatively, the a
propriate weak-coupling regime can be attained by us
Feshbach resonances to diminish the scattering length@20#.
In a three-dimensional system, a quantitative determina
of the conditions has been prohibited by numerical limi
tions. The technique of vortex imaging by interference@21#,
which directly images the phase of the condensate, prom
to be a convenient way to detect multiply quantized vortic
Alternatively, one can look for multiply quantized vortice
by measuring the angular momentum of the system@22#, or
simply by looking for anomalously large vortex cores.
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