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Multiply quantized vortices in trapped Bose-Einstein condensates
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Vortex configurations in rotating Bose-Einstein condensed gases trapped in power-law and anharmonic
potentials are studied. When the confining potential is steeper than harmonic in the plane perpendicular to the
axis of rotation, vortices with quantum numbers larger than one are energetically favorable if the interaction is
weak enough. Features of the wave function for small and intermediate rotation frequencies are investigated

numerically.
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I. INTRODUCTION played by the shape of the potential.

The system under study is a gas of bosons of maissan
Trapped Bose-Einstein condensed gases provide a novekternal potential/(r), dilute enough and at sufficiently low
kind of condensed matter system that can sustain quantizé@mperature that it is well described by the Gross-Pitaevskii
vortices, as has been realized in the recent yidard]. Fea-  equation[12—-14
tures that differ from those in macroscopic superfluid sys- 2
tems are expected here. The fact that these systems are finite, ; IP(r.Y) _ h_ 2
. O it Vah(r,t) V() g(r,t)
and that the parameter regime where the vortex core size is at 2m
comparable to the system size is attainable, in principle, ) N
opens up for the possibility for vortices in these systems to +Uol (r O “(r, 1) = QLy(r,1). (1.0)

have a circulation quantum numbgarger than unity. The so-called condensate wave functig(r,t) is normal-

Itis well knpwn that mu.ItipIy.quantized vortice_s are not ized to the number of particlds in three dimensions, and to
thermodynamically s.table in spinless, macroscopic, and hot'he number of particles per unit length in two dimensions.
mogeneous superfluids, becau§e the_ energy of a vortex d‘In"he coefficientJ, in front of the nonlinear term is the inter-
pends on the square of the circulation, and therefore twq

. . . . S . : action strength, defined ds,=4m%%a/m, wherea is the
singly quantized vortices with a finite spatial separation have

i : L Swave scattering length. It turns out that the effective mea-
lower energy than one doubly quantized, while giving the ; . . . : i
. sure of interaction strength in two dimensions is the product
system the same angular momentiBh However, multiply

: . . . 47rva, which we shall denote bg. In three dimensions, the
guantized vortices may well be energetically favorable in : . . _
corresponding quantity depends on the trapping potential.

systems that do not fulfill _the criteria of bei_ng homogeneous_, A centrifugal term is present in the Gross-Pitaevskii equa-
spinless, and macroscopic, The assumption of homogenm%n, corresponding to a rotation of the trap with the fre-

is not met in superconductors with pinning forces, where uency( about thez axis. At certain critical value) of

: . . N q
indeed doubly quantized vo_rt|ces are obseridin H_e A, the rotation frequency, we expect there to be a discrete tran-
where the order parameter is not a scalar due to spin degre

es. : . X
of freedom, a lattice of doubly quantized vortices with filled sﬁlon between states of different circulation numbers, so that

cores has recently been obsery@H The argument also fails ¥vrr]1$?13rrc1qb+el>i?ti3C?c’)ui(jsﬁtz;\?[%m}rgztilrigggﬂzlOuner?giig-
in spatially confined systems where the vortex cores are not’ e Y . : q
e functions of the coupling strength, [15].

much smaller than the system, such as mesoscopic SUperCO{jH_When the Gross-Pitaevskii equation is valid, the total en-

g;\(;téngeg;slgsréé\i@%;]vortlces with large quantum numbersergy of the system is given by the mean-field energy func-

In condensed Bose gases confined in harmonic—oscillatot}Onal

potentials, it has been found both analyticdl8], numeri- 52 R

cally [10,11], and variationally{11] that multiply quantized E=f dr[w*(r)( - ﬁVzﬂLV(f)—QLz P(r)

vortices are not energetically favorable, and no quantum

numbers larger than unity have been observed experimen- 1

tally [3,4]. However, none of these studies has considered + EUo|l//(r)|4}- (1.2

whether altering the power law of the confining potential can

open up for the existence of multiply quantized vortices. In  We shall in the following be concerned with the lowest-

this paper, we shall give rigorous criteria for the thermody-energy solutions of the Gross-Pitaevskii equatibri) for a

namic stability of multiply quantized vortices in trapped range of values of the driving frequend®, interaction

Bose-Einstein condensates, and show the decisive rokstrengthU,, and for different external potentialé The pa-
per is organized as follows. In Sec. I, we present an analytic
study of systems contained in three- and two-dimensional

*Present address: Helsinki Institute of Physics, P.O. Box 64power-law and anharmonic traps. In Sec. lll, we illustrate
00014 University of Helsinki, Finland. these findings numerically for the two-dimensional case and
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study some features of the different states with small andreases with increasing, and there is no ground state.
intermediate circulation quantum numbers. Section IV pro-Hence, in the noninteracting case all the critical frequencies

vides a conclusion. Q. are equal to the trap frequenay.
The interaction energy term now lifts the degeneracy at
Il. VORTEX CONFIGURATIONS IN POWER-LAW Q= w and the critical frequencieQ ., split apart and assume
AND ANHARMONIC TRAPS values less tham. In Ref.[9] it was shown that if the ex-

) ) o pectation value of the total angular momentum is fixed at
We shall now analytically determine the criteria for the | —Ng# andg=2, the lowest energy is attained not for the
thermodynamic stability of multiply quantized vortices by multiply quantized vortex configurationsy,, but for wave

the means of perturbation theory. In RES], it was shown g nctions that are written as a sum of noninteracting particle
that multiply quantized vortices are never the minimum-giates of different angular momenta

energy state in a system that is harmonically confined in the
x-y plane, and we will here extend the same analysis to the
case when the confinement is steeper than harmonic. w(r)zz CqrPoq! (1), 2.3
The interaction can be treated perturbatively in this analy- q
sis, because if a multiply quantized vortex can ever bewherecq,g&o for someq’ #q, andzq,|cqr|2q’:q _These
present, it will be so whel), is small. To see why, note that |owest-energy states are vortex arrays and are thus the ener-
the vortex cores are large for weak interactions and vicgyetically favorable states for any finite interaction strength,
versa[14,16. Therefore, in the limit of larg&J 5, the vortices  when the radial confinement is harmonic.
are much smaller than the system size and the radius of cur- When the trapping powerin Eq.(2.1) is larger than two,
vature of the density profile. The result of a homogeneoushe conclusions of Ref9] no longer hold. In this case, the
bulk system thus applies, namely, that a vortex array is theingle-particle energy varies faster than linear with the angu-
energetically favorable configuration. Therefore, we expectar momentum. This implies that in the noninteracting case,
multiply quantized vortices to show up only in the realm of pure multiply quantized vortex states,, have lower energy
small (and possibly intermediateJ,, if at all. than any superposition of the form of H&.3) with the same
Consider a Bose gas trapped in a cylindrically symmetricaverage angular momentum. Hence, it takes a fitaiteeit
power-law potential of powem, which in cylindrical coordi-  possibly very smallinteraction strengthJ, to overcome this

nates is written as difference. We thus arrive at the important conclusion, that
N for a finite but weak enough interaction, the multiply quan-
r . - . _ . B
V(r,¢,2)=ho _) +V|(2). 2.1) t|;eq vortgx states_ are the minimum-energy ponflguratlons
d; within their respective ranges of external rotation frequency

Q. When the interaction is strong enough, however, the

The trap frequency, which determines the strength of the |arger interaction energy of the multiply quantized vortex
potential, defines a trap length=\%/mw. Since we will  states will overcome the difference in kinetic plus trap en-
treat the interaction to first order in perturbation theory, theergy, and the ground state will again be a vortex array. This
dependence of the external potential on theoordinate is makes sense, since as we noted above, in the limit of strong
totally arbitrary as long as the problem remains separable ifhteraction the results of the infinite and homogeneous case
the noninteracting limit, as is the case here. To higher ordergpply. We stress that in order to arrive at this result, we did
in the interaction, there will appear effects such as vortexot need to know any details of the eigenstates of a general
bending. We shall hereafter neglect to mention the, for oupower-law potential: the fact that the energy depends stron-
purposes irrelevang-dependent term and its associated de-ger than linearly on the angular momentum is enough.
grees of freedom. For potentials weaker than harmonics 2, no rotation is

We first study the case of a harmonic potentis 2, and  possible. The potential in a frame rotating with angular fre-
briefly recapitulate the results of R¢B]. WhenUy=0, the  quencyQ is V(r)—2Qr?, which is not confining ifQ>0
Gross-Pitaevskii equation is identical to the one-particleandV(r) is weaker than harmonic. Therefore, a rotating state
Schralinger equation, with well-known eigenstategrq, in such a trap can be at most metastghilg].
which are labeled by a radial and an axial quantum number If a pure power-law potential that is steeper than harmonic
n, andq (as well as a quantum number associated withzthe may seem an artificial construction that is hard to fabricate in
direction, irrelevant for our considerationdhe eigenener- practice, we note that the analysis can be repeated for an
gies for the harmonic case including the centrifugal term aré@nharmonic potential,

r2
1+N—
d

E';fgm:Nh(w—Q)q+ NZiw(1+n,). (2.2

V(r,¢,z)= %mwzrz +V|(2). (2.9

We concentrate on the states with no radial nodgs, be-

cause these have the lowest energy for a given angular mdse important point is that for any positive anharmonieity
mentumNg7. These are in fact vortices with quantum num- the single-particle energy varies faster than linear with the
ber g. When the driving frequency) is less than the trap angular momentum. This again leads to the conclusion that
frequencyw, the q=0 state is the ground state; whéh  multiply quantized vortices can exist in anharmonic traps as
=w, all the statespy, are degenerate. Whed>w, E de-  long ash>0 and the coupling is small.
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We have shown that multiply quantized vortices can be 24

stable only in trapping potentials that are steeper than har- ool e 44 ]
monic in thex-y plane, and only for weak enough interac- a1

tions. A close inspection of the above argument reveals the 2\5"‘3\
physical mechanism behind the transition. The kinetic energy 18l 21 .

gives rise to a repulsion between the vortices because of the

overlapping velocity fields, while the trapping potential 31-6-\\

strives to keep the vortices together in order to reduce the 147 1-1

spatial extent of the cloud. The interaction energy favors 12F ]
states with several separated vortices because such states \
1_

have lower density on the average. The thermodynamic sta-

bility of multiply quantized vortices is thus a consequence of 08l 0
the competition between these three energies, and the power . . . . .
2 is the limiting value. o 15 20 25 30 35
9
. NUMERICAL RESULTS FOR TWO-DIMENSIONAL FIG. 1. Phase diagram for a quartically confined two-
SYSTEMS dimensional Bose gas subject to a force rotating with an angular

In th di fi it h that ltiol frequency(). The state marked by 0 is the nonrotating state, and 1-1
n he preceding section, it was shown that muttiply quan—s o giate with one centrgl=1 vortex. The regions 2-2, 3-3, and

tized vortices ?an be th_e mlnlnum—energy Conflgl_Jra_t'OnS4-4 denote vortex lattices containing two, three, and four singly
when the trapping potential is steeper than harmonic in thg,antized vortices, respectively, while the states 2-1, 3-1, and 4-1

plane perpendicular to the axis of rotation, and the interaczre states with several quanta of circulation but only one phase
tions are weak. We now perform a numerical study to quansjngularity.

tify these predictions. We shall treat the two-dimensional
case only. We insert the power-law potentf&q. (2.1)] into ~ computation is done with limited precision, we need an op-
the Gross-Pitaevskii equatidfi.1) and scale out the dimen- eratlona'tal\ cr;tei(rjlon for.thed existence éJff? mdU“lP'y que}ntlzed
. s a1y _ —1~ vortex. A g-fold quantized vortex is defined as a configura-
sions by de~f|n|ng r=di, t=e ' y=\vd T L tion in wr?ich thg calculated circulation around a circlg en-
=fhl,, =0}, g=4mva, and for the total mean-field en- closing the origin is equal tg and only one density mini-
ergy E=hwE. There results a dimensionless Gross-mum can be seen on optical inspection of the plotted wave
Pitaevskii equation function, i.e., the intervortex distance is less than the lattice
constant of the numerical grid. The transition frequencies
e 1 1 . found using this criterion coincides vyith the point where the
j— = — —V~2§Z+—r "+ g|7p| 2y—QL,, (3.2 angular momentum saturates at an integer value.
at 22 As expected from the analysis of Sec. II, we find multiply
quantized vortices for small values of which split into

which depends on three parameters, namely, the cougling arrays of singly quantized vortices for largeThe transition
. ~ . from a multiply quantized vortex to an array is continuous,
the rotation frequenc{), and the trapping power. We solve , oA ;
o ) ) . i . as illustrated in Fig. 2, where two vortices are seen to merge
it in two dimensions using the split Fourier methidd]. By he critical line i d
ropagating Eq(3.1) in complex time, the system relaxes to as the critical line Is crossed. . .
P S ’ L It is convenient to define a new quantity to describe the
a local energy minimum that depends on the initial state. Inre ime of stability of multiply quantized vortices. Thgh
order to find theglobal minimum-energy configuration for g aoility O Hply d '
. ~ ) critical couplingg, is defined so that wheg>g,, there

each choice of parametegs(), n, we perform the relaxation can exist nay-fold quantized vortices for any value 6, but
a few times using different, irregular initial states, CompUtewheng<ng, ag-fold quantized vortex is the energy mini-
their energy with the aid of Eq1.2), and out of the different  mym within certain limits ofQ2. The critical coupling is a
final states we choose that which has the lowest energy. Thgnction of the trap powen. Figure 1 suggests that the criti-
grid size is 64 64 points and the lattice constant is equal tocg| coupling increases with The physical reason for this is,
0.2 times the trap lengtt; . We have confirmed that dou-  that if the system is to accommodate many singly quantized
alter the results. _ _ . the preceding section showed tiga=0 for the harmonic

Figure 1 is a phase diagram for the quartic potential ( trap (n=2), andg,,>0 whenn>2. This is confirmed in
=4), which shows how th€)-g plane is divided into regions Fig. 3, which shows hovg., depends om. The data points
of different vortex configurations with the total circulatign  suggest that the curvg.,(n) goes to zero linearly, when
ranging from 1 up to 4. The different vortex configurations —2 from above.
are labeled by the total number of quanta followed by the We have pursued the analogous anharmonic ddsg,
number of singularities present in the system: the configuraf2.4)] using the same numerical procedure. The qualitative
tion 3-3 thus denotes threse=1 vortices, whereas 3-1 is a features of the phase diagram are not different from the pure
state with one triply quantized vortex present. The regiorpower-law case. The critical couplirgy, is now a function
marked by O is the nonrotating state. Since the numericabf the anharmonicity.. The result forg., is shown in Fig. 4.
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FIG. 4. Critical couplingg., for a condensate trapped in an
anharmonic potential as a function of the coefficierdf the quartic
term. When\ approaches zero, the trap approaches the harmonic
case, and the critical coupling drops to zero.
troducing an anharmonicity larger than 0.1 would take these
systems belovg,.

FIG. 2. Numerically computed condensate wave functions, il-  The phase diagram img-{) space becomes richer for
lustrating how the distance between two vortices continuously dehigher quantum numberg. For q=<7, there are only two
creases as the external rotation frequeficyncreases. The bright phases, a vortex-array phase and a multiply quantized vortex
shades indicate high density and vice versa. The confinement igshase. For higher quantum numbers, however, a new kind of
quartic, the coupling constagt=28.0, and(}/w=1.59 for the top  pattern appears, where one multiply quantized vortex is sur-
left panel, 1.72(top righy, 1.83 (bottom lefy, and 1.86(bottom  rounded by singly quantized vortices. Figure 5 shows the
right). different vortex phases for8q<11. The power of the po-

tential is chosen t;m=2.2. We find a number of distinct
The limit A\ — is the quartic potential, whose critical cou-
pling g.,=30.5 can be read off from Fig. 1. Whan-0, on
the other hand, the potential approaches a harmonic one, an 1.7
O approaches zero. In the experimentally realized two-
dimensional condensates of REI8], g varies between 100
and 1d, the former for a number of particle$=10*. Di-
minishing the number of particles by a factor of 10 and in-

5 T G
457 1 114
»*
4 -
35r x ] 1.13
3 - 4
51 ] 112
*
2 - B
15f j
o * | FIG. 5. Phase diagram for a rotated condensate in a power-law
* trap of powern=2.2. Full lines indicate the critical frequencies
0.5r N ] separating states of different total circulation. Dashed lines mark
0 . discrete transitions between states of different symmetry but equal
2 2, 22

total circulation. Dotted lines mark continuous transitions between
states of equal total circulation but a different number of singulari-

FIG. 3. Critical coupling for the stability of doubly quantized ties. Only the critical lines for circulatiog between 8 and 11 are
vorticesg.,, as a function of the powen for a condensate in a shown. The different phases are labeled by their total circulation,
power-law trap. The analysis of Sec. Il predicts that the curve goefollowed by the number of singularities in the system; phases such
to zero when the trapping power approaches a value 2, in accoms 8-7 thus contain both singly and multiply quantized vortices in
dance with these numerical results. regular patterns.

n
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IV. CONCLUSIONS

We have determined the criteria for existence of vortices
with circulation quantum numbers larger than unity in ro-
tated trapped Bose-Einstein condensates. We have proven
that in both two- and three-dimensional systems, multiply

guantized vortices are the energy minimum if the trapping
FIG. 6. Density plots for a two-dimensional condensate in apotential in the plane perpendicular to the axis of rotation is
- steeper than harmonic, and the interaction is sufficiently

power-law trap of power 2.2, at coupling=19.5. The leftmost
panel is the minimum-energy configuration for rotation frequencyWeaK SO that the vortex cores are not much smaller than the

Q=1.130Qw, the middle panel show& =1.140Q, and the right cloud, and the external rotation frequency is within appropri-
panel has=1.146Q. All three states have a total circulation ~ ate limits. For stronger interactions, the multiply quantized
=9. The pictures show that the transition between the phases 9*gortices break up into arrays of several vortices. The physics
(left and middle panejsand 9-8(right pane) is continuous. of the transition is the interplay between the intervortex re-
pulsion and the trapping potential. In the case of two-
phases, which we label by their total circulation followed by dimensional systems, we have numerically determined the
the number of singularities just as in Fig. 1. There are thregegimes of thermodynamic stability of different vortex con-
phases containing eight quanta of circulation: a cendral figurations. For clouds rotated at large angular velocities,
=8 vortex for smallg (denoted 8-1 an array of eight vor-  there are regimes where arrays containing both singly and
tices for largeg (8-8); and for intermediatey, a centralq  multiply quantized vortices are stable.
=2 vortex surrounded by sig=1 vortices(8-7). The tran- Most trapping potentials used in experiments are har-
sition from 8-1 to 8-7 is Contlr:lUOUS: the SQ(:J. VOI’“CeS“ monic, but using Laguerre_Gaussian beams one can con-
separate from the central one in a smooth way as the criticalyct optical traps of arbitrary even power laws, where our
line is crossed. The two phases 8-7 and 8-8, on the othgfregictions can be testdd9]. A two-dimensional sodium
hand, have different symmetries and the transition betweegondensate can host doubly quantized vortices, if the number
these two is discontinuous. For the case of nine quanta, thegg particles is of the order 1000 or smaller, and a trap anhar-
exist the corresponding phases 9-1 and 9-9, and one intermgyoncity of about 10% is introduced. Alternatively, the ap-
diate phase 9-8 with a centrgl=2 vortex and seven=1  propriate weak-coupling regime can be attained by using
vortices. A 9-7 configuration with =3 vortex surrounded Feshpach resonances to diminish the scattering Iei2gh
by six g=1 vortices seems to be stable in a very narrow|y g three-dimensional system, a quantitative determination
region of widthAg~0.2, between 9-1 and 9-8, but with the of the conditions has been prohibited by numerical limita-
present numerical precision we have not been able to acCyipns. The technique of vortex imaging by interferefi2g],
rately determine the boundaries of this phase and it is left ouhich directly images the phase of the condensate, promises
of Fig. 5. For the casg =10, on the other hand, one can to be a convenient way to detect multiply quantized vortices.
clearly distinguish four different configurations, and ”keWiseAIternativer, one can look for multiply quantized vortices
for g=11. by measuring the angular momentum of the sysf2#j, or

Analogously to theg=8 case, the transition between 9-1 simply by looking for anomalously large vortex cores.
and 9-7 is continuous, and so is the transition between 10-1

and 10-8 and between 11-1 and 11-8. On the other hand, the

configura}tions 9-7, 10-8, and 11-8 have entirely different ACKNOWLEDGMENTS

symmetries from 9-8, 10-9, and 11-9, respectively, and those

transitions are discontinuous. Finally, the three last- |am grateful to Jargen Rammer for supervising this work
mentioned states transform smoothly into arrays of singlyand to Ping Ao for supervision at the early stages. | would
guantized vortice$9-9, 10-10, and 11-)1wheng increases also like to thank Georgios Kavoulakis, C. J. Pethick, Tho-
by splitting of the central vortex into singly quantized ones.mas Busch, and Lars Melwyn Jensen for valuable discus-
Figure 6 illustrates this. sions and Jani Martikainen for help with the numerics.
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