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Structure of the perturbation series of the spin-1 Bose gas at low temperatures
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The properties of Green’s functions and various correlation functions of density and spin operators are
considered in a homogeneous spin-1 Bose gas in different phases. The dielectric formalism is worked out and
the partial coincidence of the one particle and collective spectra is pointed out below the temperature of
Bose-Einstein condensation. As an application, the formalism is used to give two approximations for the
propagators and the correlation functions and the spectra of excitations including shifts and widths due to the
thermal cloud.
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I. INTRODUCTION

The recent realization of Bose-Einstein condensat
~BEC! in an optical trap has opened a new area of resea
@1–5#. The theoretical investigation of spinor systems
growing rapidly these days, concerning the ground-s
structure and symmetry breaking@6–9#, the various phase
in traps@10,11#, the different vortex states@12,13#, the explo-
ration of collective excitations@14–17#, and a number of
other problems@18–27#. Compared to the BEC realized i
magnetic traps@28,29#, where the spin degree of freedom
the particle field is frozen, such systems, since the sp
nature of the particles is preserved, have a wider variety
excitations including spin-density waves, transverse-s
waves, or quadrupolar-spin waves.

It is a well-established property of scalar Bose-Einst
condensed systems that the one particle and the den
correlation-function spectra coincide. To treat this probl
consistently, the dielectric formalism has proved to be p
ticularly useful, which has been worked out first for hom
geneous systems@30–35# and recently generalized and a
plied to trap systems@36–39#. In this paper, this formalism is
extended to gases with a spinor Bose-Einstein condensat
make the presentation more transparent, only homogen
systems will be considered. The new feature is the app
ance of correlation functions including spin fluctuations b
sides the density autocorrelation function and a variety
new one-particle Green’s functions. Their perturbation se
are analyzed simultaneously. After suitable rearrangemen
the expansions, it has been found that certain one-par
Green’s functions and correlation functions have comm
denominators leading to the coincidence of their spec
though with different spectral weights. Examples are
Green’s functions corresponding to a spin-transfer zero
the density correlation function, furthermore those Gree
functions and correlation functions of the spin operato
which can be characterized by spin transfers11 or 21. Ex-
ceptions are found in the polar phase~occurring when the
interaction in the spin channel is repulsive!, namely, those
correlation functions of the spin operators that create zer
62 spin transfers do not possess condensate induced i
mixing with the one-particle Green’s functions. The gene
theory is illustrated in the Bogoliubov theory~valid at very
1050-2947/2002/65~4!/043602~25!/$20.00 65 0436
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low temperatures! and in the random-phase approximatio
~RPA!. Within the RPA, we do not include exchange pr
cesses that already in the case of the scalar Bose-Ein
condensed systems has led to involved calculations@39#.
Their extension to spinor Bose-Einstein gas will be presen
in a separate paper. As a matter of fact, the relative imp
tance of the exchange processes is less in the present
since the direct terms are enlarged by summations over
variables.

Though the RPA~as a mean-field theory! loses its validity
near the phase transition, it is enlightening to investigate i
the transition region. It turns out that, while the transition
the polar phase is continuous when decreasing the temp
ture, it becomes weakly first order for ferromagnetic order
due to the small~for this coupling attractive! spin-dependent
part of the interaction. It is worth recalling that in case of t
scalar Bose-Einstein condensation the transition is sec
order in this RPA-Hartree model, but including exchan
contributions makes it to a first order one and the effec
then not small, see Ref.@39# and references therein.

The dielectric formalism basically uses proper diagram
which cannot be split into two parts~joining with the exter-
nal vertices! by cutting a single interaction line. Due to th
strong repulsive core of the atom-atom interaction, the b
potential should be replaced by a two-body~or more gener-
ally, by the so called many body! T matrix ~@40# see for a
review Ref.@41#!. To handle such a situation consistently,
generalization of the dielectric formalism is necessary. T
present paper provides such a generalized framework,
sides the other type of generalization already mentioned~re-
quired by the spinor nature of the condensate!.

The paper is organized as follows. In the Sec. II, af
giving the specifications of the Hamiltonian and introduci
the canonical transformation to induce the Bose-Einst
condensation, the normal and anomalous one-part
Green’s functions~matrices in the spin variables! and the
different correlation functions of the particle number dens
and spin-density operators are defined. Section III is
backbone of the paper. It starts with a summary of symme
properties of the functions introduced in Sec. II. Then th
general structure is analyzed within the framework of pert
bation expansion. We proceed by classifying the proces
according to the spin transfers involved. Then, in the spirit
©2002 The American Physical Society02-1
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PÉTER SZÉPFALUSY AND GERGELY SZIRMAI PHYSICAL REVIEW A65 043602
the dielectric formalism, the proper irreducible graphs
separated. The main results are the description
condensate-induced intermixing of one particle and coll
tive modes and the specification of the conditions when
occurs. Sections IV A and IV B are devoted to approxim
calculations. In Sec. IV B, corrections consisting of damp
terms and frequency shifts as well are given in RPA to
Bogoliubov approximation discussed in Sec. IV A. W
present in Sec. IV B also results for static properties in RP
Section V contains the summary and further discussion.

II. BASIC EQUATIONS AND DEFINITIONS

A. The effective Hamiltonian of the spin-1 Bose gas

In a gas containing spin-1 particles the wave function i
three-component spinor. To be more specific, we use the
sis set ofF̂z eigenvectors in the spin space, which leads
the wave function

c~r !5S c1~r !

c0~r !

c2~r !
D . ~1!

In this representation, the spin operators are

Fx5
1

& F 0 1 0

1 0 1

0 1 0
G , Fy5

1

& F 0 2 i 0

i 0 2 i

0 i 0
G ,

Fz5F 1 0 0

0 0 0

0 0 21
G . ~2!

and the corresponding raising and lowering operators,

F15&F 0 1 0

0 0 1

0 0 0
G , F25&F 0 0 0

1 0 0

0 1 0
G . ~3!

We consider a system of spin-1 particles in a box w
periodic boundary conditions and without an external pot
tial. In the second quantized formalism, we introduce an
hilation and creation operatorsar(k) andar

†(k) that destroy
and create one-particle states of plane waves with mom
tum k and spin projectionr. These operators are bosonic
our case, so they satisfy the commutation relations:

@ar~k!,as
†~k8!#5d r ,s~k2k8!, ~4a!

@ar~k!,as~k8!#5@ar
†~k!,as

†~k8!#50. ~4b!

We introduce a rotationally invariant pseudopotential as
04360
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V~r12r2!5@cn1csF1•F2#d~r12r2!
]

]~r12r2!
~r12r2!3,

~5!

and write the grand-canonical Hamiltonian of the system
follows:

H5(
k

~ek2m!ar
†~k!ar~k!

1
1

2 (
k11k25k31k4

ar 8
†

~k1!ar
†~k2!Vrs

r 8s8as~k3!as8~k4!

1DH, ~6!

whereek5\2k2/2M stands for the kinetic energy of a pa
ticle andm is the chemical potential of the system. Furthe
more,

Vrs
r 8s85cnd rsd r 8s81cs~F!rs~F!r 8s8 , ~7!

corresponding to Eq.~5!, if the pseudopotential is operatin
on a wave function that is not singular atr12r250. When
ultraviolet divergences arise due to the use of the poten
~7!, one has to take into account the general form~5!, which
makes the necessary regularization@42#. In this paper, such
problem does not show up at places where the pseudopo
tial is explicitly used. Here and in the following, the conve
tion of summing over repeated indices is applied exc
when stated otherwise.DH contains the difference betwee
the exact interaction Hamiltonian and the one given by
pseudopotential We will comment on the optimal choice
the parameters of the pseudopotential at the end of Sec. I

There are two types of systems depending on the s
dependent part of the interaction. If it is attractive then t
spins prefer parallel alignment that leads to a macrosco
magnetization in the presence of a Bose-Einstein conden
If it is repulsive then the energetically favorable state is wh
^F&50. The former case is calledferromagnetic caseand
later is calledpolar case@14#.

B. Description of the symmetry breaking

In the Bose-Einstein condensed phases some field op
tors have anomalous averages reflecting a broken ga
symmetry: ^ar(0)&5AN0z r and ^ar

†(0)&5AN0z r
† , where

N0 is the number of particles in the condensate andz r is the
normalized spinor of the condensate@14#. For thepolar case,
one can takez r as (0,1,0)T and for theferromagnetic casez r
can be taken as (1,0,0)T, where the superscriptT denotes the
operation of transposition. The averaging is made ove
symmetry breaking ensemble. To consider this symme
breaking, one can introduce a new set of bosonic annihila
and creation operators with a canonical transformation,

br~k!5ar~k!2dk,0AN0z r , ~8a!

br
†~k!5ar

†~k!2dk,0AN0z r
† . ~8b!
2-2
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The relation between the chemical potential and conden
density can be derived from the requirement that^br(k)&
5^br

†(k)&50 Here and from now on, the averages will b
made over the grand-canonical ensemble with a density
th
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le

be
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trix r5Z21ebH, where Z5TrebH is the grand-canonica
partition function. Substituting the canonical transformati
into Eq.~6!, one obtains the Hamiltonian in terms of the ne
operators,
H5(
k

~ek2m0!br
†~k!br~k!2mAN0@z r

†br~0!1br
†~0!z r #2mN01

1

2 ( br 8
†

~k1!br
†~k2!Vrs

r 8s8bs~k3!bs8~k4!

1
AN0

2 ( br 8
†

~k1!br
†~k2!Vrs

r 8s8bs~k3!zs8dk4,01
AN0

2 ( br 8
†

~k1!br
†~k2!Vrs

r 8s8zsdk3,0bs8~k4!

1
AN0

2 ( br 8
†

~k1!z r
†dk2,0Vrs

r 8s8bs~k3!bs8~k4!1
AN0

2 ( z r 8
† dk1,0br

†~k2!Vrs
r 8s8bs~k3!bs8~k4!

1
N0

2 ( br 8
†

~k1!br
†~k2!Vrs

r 8s8zsdk3,0zs8dk4,01
N0

2 ( br 8
†

~k1!z r
†dk2,0Vrs

r 8s8bs~k3!zs8dk4,0

1
N0

2 ( z r 8
† dk1,0bs

†~k2!Vrs
r 8s8bs~k3!zs8dk4,01

N0

2 ( br 8
†

~k1!z r
†dk2,0Vrs

r 8s8zsdk3,0bs8~k4!

1
N0

2 ( z r 8
† dk1,0br

†~k2!Vrs
r 8s8zsdk3,0bs8~k4!1

N0

2 ( z r 8
† dk1,0z r

†dk2,0Vrs
r 8s8bs~k3!bs8~k4!

1
N0

3/2

2
z r 8

† z r
†Vrs

r 8s8zsbs8~0!1
N0

3/2

2
z r 8

† z r
†Vrs

r 8s8bs~0!zs81
N0

3/2

2
z r 8

† br
†~0!Vrs

r 8s8zszs81
N0

3/2

2
br 8

†
~0!z r

†Vrs
r 8s8zszs8

1
N0

2

2
z r 8

† z r
†Vrs

r 8s8zszs81(
k

~m02m!br
†~k!br~k!1DH. ~9!
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Here we added and subtracted the term(km0br
†(k)br(k)

(m0<0) to avoid the difficulty of beingm positive in the
condensed phases, which would lead to a singularity in
unperturbed propagator. The last part of the Hamiltoni
DH, will not show up explicitly in our treatment.

It should be stressed that with the canonical transform
tion ~8!, one defines bare quasiparticle statesP ibr i

† (k i)u0&.
The time evolution of these quasiparticle states are de
mined by the Hamiltonian~9! that contains terms with dif-
ferent number of creation and destruction operators lead
to the nonconservation of the total number of quasipartic

C. Green’s functions and correlation functions

First, we define the Green’s functions as

Ggd
rs ~k,t!52^Tr@br

g~k,t!bs
d†

~k,0!#&, ~10!

with

br
g~k!5H br~k!, g51,

br
†~2k!, g521.

~11!

The Greek indices introduced here are for distinguishing
tween the normal and anomalous Green’s functions. Au
e
,

-

r-

g
s.

-
-

matic summation over repeated Greek indices is unders
as for the Roman ones. Here and from now on,t is the
imaginary time andTt is thet ordering operator@43#. In this
symmetry-breaking system, because of the fact that
Hamiltonian Eq.~9! contains terms with two creation or tw
annihilation operators, anomalous Green’s functions a
~with gd521!. The expression~10! is the generalization of
the well known normal and anomalous Green’s functions
case of a complex scalar field@43,30#. The propagators~10!
are periodic int with periodb\ so their Fourier series can b
defined as

Ggd
rs ~k,ivn!5

1

b\ E
0

b\

dteivntGgd
rs ~k,t!, ~12!

where vn52np/b\ is the Bose discrete Matsubara fr
quency. The spectrum of the one-particle elementary exc
tions can be determined as poles of the analytic continuat
of the Green’s functions.

The collective excitations in the system can be descri
with the correlation functions of the following operators:

n~k!5(
q

ar
†~k!ar~k1q!, ~13a!
2-3
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Fz~k!5(
q

ar
†~k!~Fz!rsas~k1q!, ~13b!

F6~k!5(
q

ar
†~k!~F6!rsas~k1q!, ~13c!

F6
Q~k!5(

q
ar

†~k!~F6
2 !rsas~k1q!, ~13d!

s rs~k!5(
q

ar
†~k!as~K1q!. ~13e!

Heren(k) is the particle density operator,Fz(k) is the spinz
component density operator,F6(k) is the density operator o
the 61 spin raising or lowering operator,FQ

6(k) is the den-
sity of the62 spin raising or lowering operators, and at la
s rs(k) is the general density operator from which the oth
ones can be easily calculated as, e.g.,n(k)5s11(k)
1s00(k)1s22(k) or Fz(k)5s11(k)2s22(k). The dif-
ferent collective excitations can be found as poles of
analytical continuations of the corresponding correlat
functions~defined forkÞ0!, given by

Dnn~k,t!52^Tt@n~k,t!n†~k,0!#&, ~14a!

Dzz~k,t!52^Tt@Fz~k,t!Fz
†~k,0!#&, ~14b!

Dnz~k,t!52^Tt@n~k,t!Fz
†~k,0!#&, ~14c!

D66~k,t!52^Tt@F6~k,t!F6
† ~k,0!#&, ~14d!

D66
Q ~k,t!52^Tt@F6

Q~k,t!F6
Q†~k,0!#&. ~14e!

Note that n†(k)5n(2k), Fz
†(k)5Fz(2k), F6

† (k)
5F7(2k), and F6

Q†(k)5F7
Q(2k). A general correlation

function can also be defined as

Dr 8s8
sr

~k,t!52^Tt@s rs~k,t!ss8r 8~2k,0!#&, ~14f!

from what the above ones can be calculated as

Dnn~k,t!5(
r ,s

Dss
rr ~k,t!, ~15a!

Dzz~k,t!5(
r ,s

rsDss
rr ~k,t!, ~15b!

Dnz~k,t!5(
r ,s

sDss
rr ~k,t!, ~15c!

D11~k,t!52@D10
01~k,t!1D02

01~k,t!1D10
20~k,t!

1D02
20~k,t!#, ~15d!

FIG. 1. The graphical repre
sentation of the free propagators.
04360
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e
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D22~k,t!52@D20
02~k,t!1D01

02~k,t!1D20
10~k,t!

1D01
10~k,t!#, ~15e!

D11
Q ~k,t!54D12

21~k,t!, ~15f!

D22
Q ~k,t!54D21

12~k,t!. ~15g!

All of these correlation functions are also periodic int with
periodb\, so their Fourier transforms can be defined ana
gously to Eq.~12! and the appearing Matsubara frequenc
are also the same as for the Green’s functions.

We will also apply anomalous correlation functions

Aaa
sr ~k,t!52^Tt@s rs~k,t!!ba

a†
~k,0!#&, ~16a!

Ar 8s8
aa

~k,t!52^Tt@ba
a~k,t!ss8r 8~2k,0!#&, ~16b!

which have zero value in the symmetric phase~i.e., for a
noncondensed system!.

Though the one-particle Green’s functions are the au
correlation functions of the order-parameter field opera
we preserve in the following, the term correlation functio
for the other correlation functions introduced above.

III. GENERAL FORMALISM

In this section, the general formalism is worked out. Fir
symmetry properties of the functions defined in the previo
section will be discussed. Next, perturbation theory will
presented and then we will turn our attention to relatio
valid in all orders of perturbation theory.

A. Symmetry properties

Due to the rotational symmetry in the coordinate spa
the Green’s functions~10! and all the correlation functions
@~14! and ~16!# depend only on the modulus of the mome
tum.

For the Green’s functions, the following symmetry pro
erties can be derived. Since~in absence of a magnetic field!
the Green’s functions~10! are real and the cyclic property o
trace

Ggd
rs ~k,t!52^Tt@br

g~k,t!bs
d†

~k,0!!#&

52^Tt@br
g~k,t!ds

d†
~k,0!#†&

52^Tr@bs
d~k,t!br

g†
~k,0!#&

5Gdg
sr ~k,t!, ~17!

holds. Furthermore, the time-displacement symmetry

Hamiltonian systems, thebr
g(k)5br

2g†
(2k) relation and

that afterTt the order of the bosonic operators are irreleva
lead to
2-4
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FIG. 2. The graphical repre
sentation of the full propagators.
l

Ggd
rs ~k,t!52^Tt@br

g~k,t!bs
d†

~k,0!#&

52^Tt@bs
d†

~k,0!br
g~k,t!#&

52^Tt@bs
d†

~k,2t!br
g~k,0!#&

52^Tt@bs
2d~2k,2t!br

2g†
~2k,0!#&

5G2d,2g
sr ~2k,2t!. ~18!

On the basis of the above equalities, one finds

Ggd
rs ~k,t!5Ggd

rs ~k,t!5Gdg
sr ~k,t!5G2d,2g

sr ~k,2t!

5G2g,2d
rs ~k,2t!. ~19!

For the generalized density-correlation functions of Eq
~14f!, the following symmetry relations can be derived:

2Dr 8s8
sr

~k,t!5^Tt@s rs~k,t!ss8r 8~2k,0!#†&

5^Tt@ss8r 8
†

~2k,0!s rs
† ~k,2t!#&

5^Tt@s r 8s8~k,t!ssr~2k,0!#&

52Drs
s8r 8~k,t!, ~20!

and

2Dr 8s8
sr

~k,t!5^Tt@s rs~k,t!ss8r 8~2k,0!#&

5^Tt@ss8r 8~2k,0!s rs~k,t!#&

5^Tt@ss8r 8~2k,2t!s rs~k,0!#&

52Dsr
r 8s8~2k,2t!, ~21!

where we further used thats rs
† (k)5ssr(2k). Combining

Eqs.~20! and ~21! together, one arrives at

Dr 8s8
sr

~k,t!5Dr 8s8
sr

~k,t!5Drs
s8r 8~k,t!5Dsr

r 8s8~k,2t!

5Ds8r 8
rs

~k,2t!. ~22!

For the anomalous correlation functions, the two symme
try properties can be derived in the same way. The first on
comes from the fact that the expectation values here are a
real
04360
.

-
e
so

Aaa
sr ~k,t!52^Tt@s rs~k,t!ba

a†
~k,0!#†&

52^Tt@ba
a~k,t!ssr~2k,0!#&

5Ars
aa~k,t!. ~23!

The second one can be derived using the invariance of the
trace under cyclic permutations and that the order is irrel-
evant behind an ordering operator:

Aaa
sr ~2k,2t!52^Tt@s rs~2k,2t!ba

a†
~2k,0!#&

52^Tt@ba
a†

~2k,t!s rs~2k,0!#&

5Asr
a,2a~k,t!. ~24!

Combining Eq.~23! and Eq.~24! together results in~also
using that the momentum dependence comes fromk5uku!

Aaa
sr ~k,t!5Aaa

sr ~k,t!5Ars
aa~k,t!

5Asr
a,2a~k,2t!

5Aa,2a
rs ~k,2t!. ~25!

B. Perturbation theory

To calculate the averages of the grand-canonical ensemble
with the Hamiltonian~9!, one can use the methods of the
finite-temperature many-body physics@43#.

The Hamiltonian of the noninteracting system is the first
term in Eq.~9!,

H05(
k

~ek2m0!br
†~k!br~k!, ~26!

which defines free Green’s functions

G~0!gd
rs ~k,ivn!5

d rsdgd

g ivn2\21~ek2m0!
. ~27!

This will be symbolized as a line or a line with an arrow if
the Greek indices are specified as seen in Fig. 1. The full
Green’s functions will be symbolized with double lines as
shown in Fig. 2. The terms in the Hamiltonian Eq.~9! with-
out any filed operator can be disregarded for our purposes.
Among the interaction terms there is one containing four
field operators and corresponding to a scattering of two qua-
ondensate
FIG. 3. The Feynman graphs of a few interaction processes due to the pseudopotential involving zero, one, two, and three c
atoms.
2-5
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siparticles that are noncondensed before and after the c
sion as well. There are four interaction terms contain
three field operators and six terms containing two field
erators, corresponding to scattering processes involving
condensate and noncondensate atoms. There are intera
terms containing one field operator describing scattering p
cesses involving three condensate and one nonconde
atoms. These interaction terms will be graphically rep
sented as shown in Fig. 3. There is one remaining term w
one field operator and the last term with two operators c
responding to vertices with one and two legs, as seen
Fig. 4.

The Green’s functions can be expanded to perturba
series in the usual way. Rearranging these series, one ar
at the generalized Dyson-Beliaev equations@43,30,44#,

Ggd
rs ~k,ivn!5G~0!gd

rs ~k,ivn!

1G~0!gr
rr 8 ~k,ivn!Srs

r 8s8~k,ivn!Gsd
s8s~k,ivn!,

~28!

whereSgd
rs is the self-energy, the contribution of those grap

that are one-particle irreducible~cannot be split into two by
cutting a single one-particle line! and connect to two externa
lines with indices (r ,g) and (s,d). This equation is graphi-
cally represented in Fig. 5. The symmetry properties of
Green’s functions of Eq.~19! stand for the self-energies a
well.

Similar rearrangements can be carried out for the per
bation series of the generalized density-correlation functi
~14f!. One can introduce their proper parts~the polarization
parts!, the contribution of those graphs~the polarization
graphs! that cannot be split into two by cutting a single i
teraction line representing the pseudopotential~7! according
to Fig. 3. Then the equations determining these correla
functions read as

Dr 8s8
sr

~k,ivn!5\P r 8s8
sr

~k,ivn!

1Pab
sr ~k,ivn!Vcd

baDr 8s8
dc

~k,ivn!. ~29!

FIG. 4. The Feynman graphs of the noninteraction processes
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The Feynman graph corresponding to this equation is sh
in Fig. 6, where the generalized density-correlation functio
are represented as boxes and their proper parts as gray
gons. The proper parts satisfy the same symmetry prope
as the generalized correlation functions@see Eq.~22!#. One
has to emphasize that the proper nature of the diagram
defined with respect to the interaction explicitly written o
in Eq. ~7!. It means that the proper parts can contain
contributions ofDH in any combination. Such definition o
the proper parts would be left unchanged, if the pseudo
tential were momentum dependent. We will not treat suc
case, since in the applications thek dependence can be omi
ted.

Above the critical temperature~or for a noncondensed
system!, where^ar(k)&50 for all k, the anomalous correla
tion functions~16! are zero. In this case, the self-energie
which are irreducible by definition are proper as well and
polarization parts, which are proper by definition are irredu
ible as well. In the Bose condensed phase, the appearan
the anomalous averages^ar(0)&Þ0 leads to the nonzero
value of the anomalous correlation functions and to a sit
tion where the self-energies are no longer proper and
polarization parts are no longer irreducible. However, th
can be separated such as

Sgd
rs 5S̃gd

rs 1Mgd
rs , ~30a!

P r 8s8
sr

5P r 8s8
~r !sr

1P r 8s8
~s!sr , ~30b!

whereS̃ is the contribution of those self-energy graphs th
are proper, while the graphs contributing toM will be im-
proper, and similarlyP (r ) is the contribution of those polar
ization graphs that are irreducible as well andP (s) is the
contribution of the reducible polarization graphs. The se
rations~30a! and ~30b! are the starting steps toward the d
electric formalism. See for the scalar gas, Refs.@31,30#.

It can be directly seen from the perturbation series of
anomalous correlation functions~16a! that they can be de
composed in such a way that

Aaa
sr ~k,ivn!5Lcg

sr ~k,ivn!Gga
ca ~k,ivn!, ~31!

whereGga
ca is the one-particle Green’s function andLcg

sr is the
anomalous vertex, which is the sum of the irreducible co
tributions of those graphs with one incoming interaction a
one incoming particle line. These anomalous vertex fu
e
res
FIG. 5. The graphical symbolization of th
Dyson-Beliaev equations; the hatched squa
represent the one-particle irreducible graphs.
2-6
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tions can be expressed with the use their proper parts an
irreducible and proper parts of the density correlation fu
tions as seen in Fig. 7,

Laa
sr ~k,ivn!5L̃aa

sr ~k,ivn!1Pcd
~r !sr~k,ivn!Ve f

dcLaa
f e ~k,ivn!.

~32!

After all the regularizations~partial summations! needed
by the strong repulsive part of the bare interaction~often
idealized as a hard core! and by the fact that the pseudop
tential is chosen ask independent, the parameterscn andcs
are to be determined in such a way that the contribution
DH to the proper parts be as small as possible.

C. The determination of the chemical potential and the
treatment of the noninteraction self-energy vertex

As pointed out earlier, with the introduction of the new s
of creation and destruction operators with Eqs.~8a! and~8b!,
one can derive the relation between the condensate de
and the chemical potential from the requirement t
^br(k)&5^br

†(k)&50. Using perturbation theory for th
evaluation of these expressions, one can arrive at equa
that can be symbolized as seen in Fig. 8. One can notice
a similar rearrangement is possible as was made with
Green’s functions that leads to

^br
g~0,0!&5S0d

s ~0,0!Gdg
sr ~0,0!, ~33!

whereS0d
s is the sum of those irreducible graphs that ha

only one incoming~outgoing! line. Using the symmetry
properties of the Green’s functions, one can easily derive
the consistency condition is equivalent to

S0g
s ~0,0!50. ~34!

The noninteraction self-energy vertex corresponding
the last term in the Hamiltonian of Eq.~9! is to be calculated
in each order of perturbation theory. Since this vertex
proper and diagonal in spin and anomalous indices, it is
of the proper self-energy as illustrated in Fig. 9.

FIG. 6. The graphical representation of Eq.~29!. The gray poly-
gon represents the proper graphs.

FIG. 7. The graphical symbolization of the building up of th
anomalous vertex from proper parts.
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D. Rotational symmetry and spin-transfer decomposition

Since rotational symmetry along thez axis is not broken,
the z component of the total angular momentum is co
served, which results forGgd

rs and Sgd
rs in gr 2ds5(g

2d)z r
†(Fz) rszs or symbolically~Fig. 10!.

As a consequence of these symmetry relations, Eq.~28!
can be separated to three equations according to the nu
n5@g(c2r )1d(c2s)#/2, with c5z r

†(Fz) rszs specifying
the spin carried by the propagator relative to the spin of
atom in the condensate. For this reason, let us define
following matrices for the polar case:

0Ggd5F G1,1
00 G1,21

00

G21,1
00 G21,21

00 G
gd

, 0Sgd5F S1,1
00 S1,21

00

S21,1
00 S21,21

00 G
gd

,

~35a!

1Ggd5F G1,1
22 G1,21

11

G21,1
12 G21,21

11 G
gd

, 1Sgd5F S1,1
22 S1,21

21

S21,1
12 S21,21

11 G
gd

,

~35b!

2Ggd5F G1,1
11 G1,21

12

G21,1
21 G21,21

22 G
gd

, 2Sgd5F S1,1
11 S1,21

12

S21,1
21 S21,21

22 G
gd

,

~35c!

where the indices in the upper left corner correspond to
numbern. For the ferromagnetic one, let us define the f
lowing quantities:

0Ggd5F G1,1
11 G1,21

11

G21,1
11 G21,21

11 G
gd

, 0Sgd5F S1,1
11 S1,21

11

S21,1
11 S21,21

11 G
gd

,

~36a!

1G5G1,1
00 , 1S5S1,1

00 , ~36b!

2G5G21,21
00 , 2S5S21,21

00 , ~36c!

QG5G1,1
22 , QS5S1,1

22 , ~36d!

FIG. 8. The beginning of the perturbation series of the con
tency condition.

FIG. 9. The self-energy with the noninteraction vertex.
2-7
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2QG5G21,21
22 , 2QS5S21,21

22 . ~36e!

The indices in the upper left corner correspond to the num
n except for the quadrupolar spin transfern52 and similarly
2Q is for n522. ~Note, that there is no quadrupola
Green’s function for the polar case because the valuen
cannot be62 here.! The later modes of the ferromagnet
e
t

a
th

e

nc
se
e.

-
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case (1,2,Q,2Q) differ from all the other modes since fo
these cases spin conservation forbids the existence of an
lous Green’s functions and self-energies. With these defi
tions, one can explicitly construct the Green’s functions. T
propagators corresponding to different spin transfers will
called different modes in the following. For all three mod
of the polar case (n50,1,2) and for the first mode of the
ferromagnetic case (n50) the Green’s functions are
nGag5
da,g~a ivn1\21ek!1agS2g,2a

~ ivn2\21ek2S1,1!~ ivn1\21ek1S21,21!1S21,1S1,21
[

nNa,g
nD

, ~37!
Eq.
ac-
is

Eq.
where ek5ek2m0 is introduced. This equation defines th
quantitiesnNag and nD for the first four modes. For the las
four modes of the ferromagnetic case, one can get

6G5
1

6 ivn2\21ek26S
, ~38a!

6QG5
1

6 ivn2\21ek26QS
. ~38b!

Sometimes it will be practical to cast the formulas into
most concise form. This can be achieved by introducing
following formal definitions:

1Ggd5FG1,1
00 0

0 0
G

gd

, 1Sgd5FS1,1
00 0

0 0
G

gd

, ~39a!

2Ggd5F0 0

0 G21,21
00 G

gd

, 2Sgd5F0 0

0 S21,21
00 G

gd

,

~39b!

with the help of which Eq.~38a! takes the form of Eq.~37!,
i.e., the validity of Eq.~37! is extended forn50,1,2 for the
ferromagnetic phase as well.

The conservation of thez component of the spin for thes
Dr 8s8

sr correlation functions means thatr 2s5r 82s8, which

FIG. 10. The spin-conservation property of the Green’s fu
tions. Here pG denotes the Green’s functions of the polar ca
while fG denotes the Green’s functions of the ferromagnetic cas
black box refers to a nonzero element and we usedz5(0,1,0)T for
the polar case andz5(1,0,0)T for the ferromagnetic case specify
ing the condensate.
e

holds for the proper parts as well. And as a consequence
~29! also decouples into three ordinary matrix equations
cording to the specific spin transfer. For this reason, it
useful to define the following matrices:

For 0 spin transfer:

~ 0D= !abªDbb
aa5F D11

11 D00
11 D22

11

D11
00 D00

00 D22
00

D11
22 D00

22 D22
22

G
ab

, ~40a!

~ 0P= !abªPbb
aa5F P11

11 P00
11 P22

11

P11
00 P00

00 P22
00

P11
22 P00

22 P22
22

G
ab

, ~40b!

~ 0C= !abª5Vbb
aa5F cn1cs cn cn2cs

cn cn cn

cn2cs cn cn1cs

G
ab

, ~40c!

where no automatic summation is understood now. From
~29!, one obtains

0D= 5\0P= 10P= 0C= 0D= . ~41!

For 11 spin transfer:

~1D= !abªDb11,b
a,a115FD10

01 D02
01

D10
20 D02

20G
ab

, ~42a!

~1P= !abªPb11,b
a,a115FP10

01 P02
01

P10
20 P02

20G
ab

, ~42b!

~1C= !abªVb11,b
a,a115Fcs cs

cs cs
G

ab

, ~42c!

and the resulting matrix equation is:

1D= 5\1P= 11P= 1C= 1D= . ~43!

For 21 spin transfer:

-
,
A

2-8
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~2D= !abªDb,b11
a11,a 5FD01

10 D20
10

D01
02 D20

02G
ab

, ~44a!

~2P= !abªPb,b11
a11,a 5FP01

10 P20
10

P01
02 P20

02G
ab

, ~44b!

~2C= !abªVb,b11
a11,a 5Fcs cs

cs cs
G

ab

, ~44c!

and similarly

2D= 5\2P= 12P= 2C= 2D= . ~45!

For the 62 spin transfer case, from the fact thatV21
12

5V12
2150, the following results can be obtained:

D12
215\P12

21 , ~46!

D21
125\P21

12 . ~47!

As a consequence of Eq.~22!, 0D= ,6D= ~and their proper
parts! are symmetric matrices, furthermore0D= (k,ivn)
50D= (k,2 ivn) and 1D= (k,ivn)52D= (k,2 ivn). This means
that the generalized density-correlation functions for ze
spin transfer are completely symmetric under time revers

Equation~32! also decouples according to the amount
spin transferred.

0LI a50LĨ a10P= ~r ! 0C= 0LI a , ~48a!

6LI a56LĨ a16P= ~r ! 6C= 6LI a , ~48b!

where the introducedLI a vectors are different for the pola
and for the ferromagnetic cases since the allowed spin
jection of the incoming~outgoing! one particle is determined
by the rule of spin conservation and the spin projection of
condensate. It results that for a given spin transfer the s
projection of the incoming~outgoing! particle can take only
one value~others are forbidden by spin conservation!. So for
the polar case~wherec5z r

†(Fz) rszs50! the anomalous ver
tex vectors are

p
0LI a5S L0a

11

L0a
00

L0a
22

D , p
0LI a5S L11

0a

L00
0a

L22
0a

D , ~49a!

p
1LI 15S L2,1

01

L2,1
20 D , p

1LI 15S L10
2,1

L02
2,1D ,

p
1LI 215S L1,21

01

L1,21
20 D , p

1LI 215S L10
1,21

L02
1,21D , ~49b!

p
2LI 15S L1,1

10

L1,1
02 D , p

2LI 15S L01
1,1

L20
1,1D ,
04360
-
l.
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p
2LI 215S L2,21

10

L2,21
02 D , p

2LI 215S L01
2,21

L20
2,21D . ~49c!

For the ferromagnetic case@where c5z r
†(Fz) rszs51# it is

easy to verify that spin conservation forbids any spin ind
for 1LI 21 and for 2LI 1 . These later vectors can be taken
zero:

f
0LI a5S L1a

11

L1a
00

L1a
22

D , f
0LI a5S L11

1a

L00
1a

L22
1a

D , ~50a!

f
1LI 15S L0,1

01

L0,1
20D , f

1LI 15S L10
0,1

L02
0,1 D , f

1LI 2150I ,

f
1LI 2150I , ~50b!

f
2LI 150I , f

2LI 150I , f
2LI 215S L0,21

10

L0,21
02 D ,

f
2LI 215S L01

0,21

L20
0,21D ~50c!

for the ferromagnetic case. The symmetry relations of
~25! hold for the proper and irreducible parts as well, whi
is equivalent to

0LI a~k,ivn!50LI a~k,ivn!50LI a~k,ivn!50LI 2a~k,2 ivn!

50LI 2a~k,2 ivn!, ~51a!

1LI a~k,ivn!51LI a~k,ivn!51LI a~k,ivn!

52LI 2a~k,2 ivn!52LI 2a~k,2 ivn!.

~51b!

E. Dielectric functions

With the definition of the

«cd
sr ~k,ivn!5dd

sdc
r 2Pab

sr ~k,ivn!Vcd
ba , ~52a!

0«= ~k,ivn!501=20P= ~k,ivn!•0C= , ~52b!

6«= ~k,ivn!561=26P= ~k,ivn!•6C= , ~52c!

dielectric functions Eqs.~29!, ~41!, ~43!, and ~45! can be
rewritten as

«cd
sr ~k,ivn!Dr 8s8

dc
~k,ivn!5\P r 8s8

sr
~k,ivn!, ~53a!

0«= ~k,ivn!•0D= ~k,ivn!5\0P= ~k,ivn!, ~53b!

6«= ~k,ivn!•6D= ~k,ivn!5\6P= ~k,ivn!. ~53c!

F. Interaction propagator

With the use of the proper parts of the density-correlat
functions one can define an interaction propagator,
2-9
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W r 8s8
rs

5Vr 8s8
rs

1W ab
rs Pcd

baVr 8s8
dc . ~54!

which can be symbolized as depicted in Fig. 11. Using
dielectric functions, one can get

W ab
rs « r 8s8

ba
5Vr 8s8

rs . ~55a!

This equation also splits to parts according to the spin tra
fer,

0W= 0«=50C= , ~55b!

6W= 6«=56C= , ~55c!

W21
125W12

2150. ~55d!

G. Proper Green’s function and irreducible polarization part

With a simple substitution, one can verify that both E
~28! and Eq.~55a! have the following partition property. I
one decomposes the self-energy and the proper part of
~14f! into two,

Sgd
rs 5Sgd

~1!rs1Sgd
~2!rs , ~56!

P r 8s8
sr

5P r 8s8
~1!sr

1P r 8s8
~2!sr , ~57!

then one can define propagators corresponding, e.g., to
first part of these quantities

Ggd
~1!rs5G~0!gd

rs 1G~0!gs
rr 8 Ssr

~1!r 8s8Grd
~1!s8s , ~58!

W r 8s8
~1!rs

5Vr 8s8
rs

1W ab
~1!rsPcd

~1!baVr 8s8
dc , ~59!

in such a way that

Ggd
rs 5Ggd

~1!rs1Ggs
~1!rr 8Ssr

~2!r 8s8Grd
s8s , ~60!

W r 8s8
rs

5W r 8s8
~1!rs

1W ab
rs Pcd

~2!baW r 8s8
~1!dc ~61!

is fulfilled at the same time. Specially, if one decomposes
self-energies by Eq.~30a! and the proper graphs by Eq
~30b!, it defines the proper Green’s functions

G̃gd
rs 5G~0!gd

rs 1G~0!gs
rr 8 S̃sr

r 8s8G̃rd
s8s , ~62!

and an effective potential

Wr 8s8
rs

5Vr 8s8
rs

1Wab
rs Pcd

~r !baVr 8s8
dc , ~63!

FIG. 11. The Feynman graph of the interaction propagator.
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in such a way that

Ggd
rs 5G̃gd

rs 1G̃gs
rr 8Msr

r 8s8Grd
s8s , ~64a!

W r 8s8
rs

5Wr 8s8
rs

1W ab
rs Pcd

~s!baWr 8s8
dc ~64b!

is fulfilled. The earlier discussed symmetry properties h
for these decomposed parts as well~since these are define
by a class of graphs! and as consequence, Eqs.~62!, ~64a!
and Eqs.~63!, ~64b! split to matrix equations in the sam
way as Eq.~28! and Eq.~29! did. It is convenient to define
the regular part of the dielectric functions with the

«cd
~r !sr5dd

sdc
r 2Pab

~r !srVcd
ba , ~65a!

0«= ~r !501=20P= ~r !
•

0C= , ~65b!

6«= ~r !561=26P= ~r !
•

6C= ~65c!

equations, which can be used to express the effective po
tial as

0W= 0«= ~r !50C= , ~66a!

6W= 6«= ~r !56C= , ~66b!

W21
125W12

2150. ~66c!

H. Improper self-energy and singular polarization

With the use of the irreducible and proper anomalous v
tex functions and the effective potential one can construct
improper self energies~as seen in Fig. 12.!,

\Mab
ab ~k,ivn!5L̃cd

aa~k,ivn!We f
dc~k,ivn!L̃bb

f e ~k,ivn!,
~67a!

\0Mab50LĨ a 0W= 0LĨ b50LĨ a 0C= 0«= ~r !21 0LĨ b , ~67b!

\6Mab56LĨ a 6W= 6LĨ b56LĨ a 6C= 6«= ~r !21 6LĨ b .
~67c!

It is easy to verify thatW12
2150, which means that for the

ferromagnetic case the improper self-energy in the62 ~qua-
drupolar! spin-transfer mode

6QM50. ~67d!

The singular polarization can be expressed as well w
the use of the proper Green’s functions and the pro
anomalous vertices as seen in Fig. 13 and is of the form

\P r 8s8
~s!sr

~k,ivn!5L̃aa
sr ~k,ivn!G̃ab

ab ~k,ivn!L̃ r 8s8
bb

~k,ivn!,
~68a!

FIG. 12. The structure of the perturbation series of the impro
self-energy.
2-10
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\0P= ~s!50G̃ab
0LĨ a+0LĨ b, ~68b!

\6P= ~s!56G̃ab
6LĨ a+6LĨ b, ~68c!

where the circle denotes the diadic product operation. For
polar case, the singular polarization in the62 spin-transfer
mode is equal to zero since there is no corresponding pr
Green’s function. For the ferromagnetic case, e.g., for the12
spin transfer mode, the singular polarization is

\ fP12
~s!215 fL̃2,1

21
f G̃11

22
fL̃12

2,1 . ~69!

As for the scalar case@31,30#, one can see intermediat
states corresponding to collective excitations in the pertu
tion series of the one-particle propagators and at the s
time one can identify one-particle intermediate states in
perturbation series of the correlation functions of the coll
tive modes. However, there is a great difference between
scalar and the spinor models. The rotational invariance of
interaction potential results in thatV12

215V21
1250, which

leads to the proper nature of the quadrupolar spin-den
correlation functions. This combined with the fact that in t
polar case there is no anomalous vertex with62 spin transfer
results in the prohibition of the coupling to any of the on
particle correlation functions in this phase.

I. Couplings among the correlation functions

With the help of the quantities discussed in the previo
subsection, the properties of the density-correlation functi
can be further investigated. For this reason, let us introd
the following vectors:jI 15(1,1,1)†/), jI 25(1,0,21)†/&,

jI 35(1,22,1)†/A6 for the zero-spin-transfer mode andxI 1

5(1,1)†/& and xI 25(1,21)†/& for the 61 spin-transfer

mode. It is easy to verify that$jI 1 ,jI 2 ,jI 3% and $xI 1 ,xI 2% are

orthogonal and normalized basis sets in the linear ve
spaces with dimension three and two, respectively. T
density-correlation functions~14a!, ~14b!, ~14c!, and ~14d!
can be expressed as follows:

Dnn53~jI 1
†0D= jI 1!, Dzz52~jI 2

†0D= jI 2!, Dnz5A6~jI 1
†0D= jI 2!,

~70a!

D1154~xI 1
†1D= xI 1!, D2254~xI 1

†2D= xI 1!. ~70b!

Since 0D= is a symmetric matrixDnz5Dzn holds.
Multiplying Eq. ~43! with 2xI 1 from both sides and using

that 1C= 52csxI 1+1xI , one obtains

D115\P111
cs

2
P11D11 , ~71!

FIG. 13. The diagrammatic structure of the singular polari
tion.
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whereP1154xI 1
†1P

=
xI 1 . A similar equation can be derive

to D22 . There are both regular and singular contributions
these propagators.

One can get a closed system of equations for the z
spin-transfer correlation functions of Eq.~14a!, Eq. ~14b!,
and Eq.~14c!. To this end, first we multiply Eq.~41! with
)jI 1 from both sides. We further use that0C= 53cnjI 1+jI 1

12csjI 2+jI 2 . The resulting equations sound as

Dnn5\Pnn1cnPnnDnn1csPnzDnz , ~72a!

where Pnn53jI 1
0P= jI 1 and Pnz5A6jI 1

0P= jI 2 . Multiplying
Eq. ~41! with &jI 2 from both sides, one gets

Dzz5\Pzz5cnPnzDnz1csPzzDzz, ~72b!

with Pzz52jI 2
0P= jI 2 . The third equation can be obtained b

multiplying Eq. ~41! with )jI 1 from the left-hand side and
with &jI 2 from the right-hand side, which leads to

Dnz5\Pnz1cnPnnDnz1csPnzDnz . ~72c!

These coupled equations can be solved for the correla
functions. The polarization partPnz written out in detail
reads as

Pnz5P11
112P22

221P11
00 2P22

00 . ~73!

It is obviously zero if the system is invariant under sp
reflection, i.e., when those matrix elements coincide that
be obtained from each other by reverting a1 to a2 and vice
versa. This condition is fulfilled for both cases in the sym
metric phase, moreover, for the polar case it even ho
throughout the condensed phase. WithPnz50, Eqs. ~72a!
and ~72b! are independent, giving the solutions

Dnn5
\Pnn

12cnPnn
, ~74a!

Dnz50, ~74b!

Dzz5
\Pzz

12csPzz
, ~74c!

and leading to two separate excitation spectra. The sing
part of Pzz can be cast with Eq.~68b! to the form

\Pzz
~s!52~jI 2

0LĨ a!~0LĨ bjI 2!0G̃ab , ~75!

which is zero if spin-reflection symmetry is present, since
anomalous vertex vectorp

0LĨ a is orthogonal tojI 2 in this case.
In the ferromagnetic phase, the spectra of collective ex

tations corresponding to spin-density waves and den
waves withn50 are coupled. Above the critical temper
ture, this coupling vanishes and the two modes will be in
pendent. In the polar phase, spin-density fluctuations

-

2-11
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always be independent of the particle-density fluctuatio
furthermore,Pzz

(s)50, which means that the spin-density co
relation function~74c! has only regular contribution.

In the polar phase, further analysis leads to results imp
tant for the following. First note that, when the system e
hibits the spin-reflection symmetry,0D= and 0P= have only
four independent elements~instead of six characteristic to
symmetric matrix!. These independent elements areP11

11

5P22
22 , P11

225P22
11 , P11

00 5P00
115P22

00 5P00
22 and

P00
00. Second, these can be cast into a more practical f

with the help of the orthogonal matrix

~76!

Its rows are built from the vectors$jI 1 ,jI 2 ,jI 3%. Performing
the transformation leads to

0C= 8ª0O= •0C= •0O= T5F 3cn 0 0

0 2cs 0

0 0 0
G , ~77a!

~77b!

with P13
(x)53&jI 1

0P= (x)jI 3 and P33
(x)56jI 3

0P= (x)jI 3 , where x
can ber or s corresponding to the regular or the singu
parts, respectively. Furthermore, according to Eq.~75! Pzz

(s)

50.
The total polarization matrix, therefore, becomes

~78!

Using Eqs.~77a! and~78!, the dielectric function~52b!, after
the transformation, can be cast into the form
04360
s,

r-
-

m

~79!

We arrive at the important result, that the determinant of
dielectric function, which is invariant under such transform
tions, reads as

det0«=5det0«= 85@12cn~Pnn
~r !1Pnn

~s!!#~12csPzz
~r !!.

~80a!

This determinant factorizes into two, in agreement with t
separation of the density and spin-density fluctuations. F
thermore, it shares one factor with its regular counterp
since

det0«= ~r !5~12cnPnn
~r !!~12csPzz

~r !!, ~80b!

which can be obtained by taking the determinant of Eq.~79!
after setting allP (s)50.

Another important consequence of the spin-reflect
symmetry is that the interaction propagator~55b! and its
regular part~66a! has the same structure as the interact
matrix ~77a!:

0W= 85F 3Cn 0 0

0 2Cs 0

0 0 0
G , 0W= 85F 3Cn

~r ! 0 0

0 2Cs
~r ! 0

0 0 0
G ,

~81a!

with

Cn5
cn

12cnPnn
, Cn

~r !5
cn

12cnPnn
~r ! , ~81b!

Cs5
cs

12csPzz
, Cs

~r !5
cs

12csPzz
~r ! . ~81c!

Those correlation functions that have singular polarizat
parts correspond to fluctuations belonging both to the c
densate and to the noncondensate, while those that hav
singular proper part only belong to the noncondensate~they
cannot couple to any of the one-particle modes!. So in the
polar phase, the spin-density fluctuations described byDzz
~which are independent from the particle-density fluctuatio
described byDnn! belong only to the noncondensate. Th
singular-polarization parts of the quadrupolar modes are
zero ~since there is no corresponding Green’s function a
the anomalous vertices of the62 spin transfer are also zero!,
meaning that these type of fluctuations also belong only
the noncondensate. The proper partsPnn , P11 , andP22

have singular contributions too with intermediate on
particle states0G̃a,b , 1G̃ab , and 2G̃ab , respectively. These
modes are coupled to the condensate. In theferromagnetic
phase,Dzz andDnn are coupled~their cross correlationDnz
do not vanish either!, their denominators are common. All o
2-12
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STRUCTURE OF THE PERTURBATION SERIES OF THE . . . PHYSICAL REVIEW A 65 043602
their proper parts have singular contributions resulting
their coupling to the one-particle excitations with0G̃. These
fluctuations thus belong both to the condensate and non
densate. The correlation functions of the spin waves~both
the 61 and 62 spin-transfer modes! D11 , D22 , D11

Q ,
and D22

Q have singular proper parts connecting them w

the propagators1G̃, 2G̃, QG̃, and 2QG̃, respectively. Note,
that there are no improper self-energies for the quadrup
spin-transfer modes, consequently their proper Green’s fu
tions are the same as the full propagators of these two mo

J. Coupling between the Green’s functions and the correlation
functions and the spectra of excitations

~A! Let us first consider the modes withn50, 1, 2. With
the decomposition~30a! of the self-energies and with
straightforward calculation starting from Eq.~37!, one ar-
rives at the expression

nGag[
nNag

nD
5

nÑag1ag nM 2g,2a

nD̃2nÑst
nM ts2det nM

, ~82a!

both for the polar and ferromagnetic phases. Here we in
duced the quantities

nÑag5dag~a ivn1\21«k!1ag nS̃2g,2a , ~82b!

nD̃5~ ivn2\21«k2nS̃11!~ ivn1\21«k1nS̃21,21!

1nS̃21,1
nS̃1,21 , ~82c!

with nG̃ag5nÑag /nD̃ and detnM5nM11
nM 21,212nM1,21

nM 21,1. With the help of Eqs.~53b! and~53c!, the density-
correlation functions withn50, 1, 2 can be brought to the
form

nD= 5\
nE= nP=

det n«=
, ~83a!

by writing

nE= 5det~n«= ! n«=21. ~83b!

An important relationship can be shown in the followin
way. First, applying the decompositionn«=5n«= (r )1n«= (s),
with n«= (s)52nP= (s)nC= , to det n«= leads to

det n«=5det~n«= ~r !!det~12nP= ~s! nW= !. ~84!

With the help of Eqs.~68b! and ~68c! and a straightforward
but rather lengthy algebraic manipulation one can find th

det~12nP= ~s!nW= !5det@1=2\21 nG̃ab
nLĨ a+nLĨ b nW= #

512\2 nG̃ab
nLĨ a

nW= nLĨ b

1\21 det~nG̃!det~nLĨ a
nW= nLĨ b!.

~85!
04360
n
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Inserting it to Eq.~84! and using Eqs.~67b! and ~67c! and
that detn G̃52nD̃21 and comparing the result with the de
nominator of the Green’s functions~82a!, one can arrive at
the basic connection

nD̃ det n«=5nD det n«= ~r !. ~86!

Changing to retarded correlation functions, which is do
in the usual way~by analytically continuing in frequency!
@43#, the elementary excitations of the system are determi
by the poles of the corresponding correlation functions. T
spectra of the one-particle excitations~quasiparticles! are
given by the poles of the Green’s functions, or equivalen
by the equation

nD50. ~87!

The spectra of collective excitations are determined by
poles of the density-correlation functions, or equivalently
the equation

det n«=50. ~88!

Equation~86! shows that the Green’s functions with sp
transfern50, 1, 2 can be arranged to have the same d
nominator as the density-correlation functions with the sa
spin transfer. This means that if detn«= has a zero~the corre-
sponding density-correlation function,nD= , has a pole! than
nD must have a zero~ nG must have a pole! there as well in
general. The zero-spin-transfer mode in the polar case i
exception, where both the dielectric function and its regu
part factorize and share some of their zeroes@see Eqs.~80a!
and~80b!#. In this case, the zero of the left-hand side comi
from det0«= satisfies the equation with the zero coming fro
det0«= (r) of the right-hand side, instead of0D. Hence, this
zero does not appear amongst the poles of0G. This further
means that density-correlation functions with 0 and61 spin
transfer have common denominators with the Green’s fu
tions corresponding to the same spin transfer for both
polar and the ferromagnetic cases, except theDzz spin-
density correlation function in the polar case, which do n
couple to any of the Green’s functions.

~B! Concerning the quadrupolar spin waves~n562
modes!, let us consider first the ferromagnetic phase. B
the full Green’s function and the correlation function a
proper@see Eq.~67d!, ~46!, and~47!# for such spin transfers
Consequently, one can substitute in Eq.~69! the full Green’s
function leading to

D66
Q 54~P67

~r !761\21
fL̃2,61

76
fG61,61

22
fL̃67

2,61!.
~89!

The one-particle excitations then appear also as collec
ones.

In the polar case, there is no Green’s function withn
562, see Sec. III D, therefore, these type of collective e
citations, do not show up as one-particle elementary exc
tions.

Thus, in the polar case the collective and one-particle
citation spectra do not match fully. There are excitati
2-13
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PÉTER SZÉPFALUSY AND GERGELY SZIRMAI PHYSICAL REVIEW A65 043602
modes in this phase, which do not belong to the condens
In the ferromagnetic case, all of the collective excitati
modes are connected to corresponding Green’s functi
meaning that all types of density fluctuations are gover
by condensate dynamics.

IV. APPLICATIONS

As applications of the general theory, we present two
proximations, namely, the Bogoliubov one and the RP
While the former one applies at and near zero temperat
the RPA is valid at finite temperatures except in the vicin
of the phase transition. Both of them assume that the sys
is a low density one, i.e., (a/r 0)!1, wherea is thes-wave
scattering length andr 0 is the average interparticle distanc
Correspondingly, the parameters of the pseudopotentia~7!
are chosen as

cn5
4p\2

M

a012a2

3
, ~90!

cs5
4p\2

M

a22a0

3
, ~91!

wherea0 anda2 are thes-wave scattering length in the tota
hyperfine spin channels zero and two, respectively, a cho
that the usual one in case of the atomic Bose gas@1,14#. To
lowest order in the scattering length, the two particle and
many-bodyT matrices are equal@41# and the contribution of
DH can be neglected in the calculations below.

A. Bogoliubov approximation

In this subsection, we discuss the simplest approxima
in the framework of the dielectric formalism, namely, th
Bogoliubov approximation. This is a very low temperatu
calculation, it neglects all terms coming from the noncond
sate density. This approximation was already studied
other authors@14,15# with other techniques. The Green
function method of the present work gives the form of t
correlation functions as well, not only the frequency of t
modes.

The proper self-energies in the Bogoliubov approximat
are

S̃ag
rs 5\21@~m02m!d rsdag1N0z r 8

† Vrs
r 8s8zs8dag#,

~92a!

FIG. 14. The Feynman graphs of the proper self-energies
the tadpole diagrams in the Bogoliubov approximation.
04360
te.
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n

S̃01
r 5\21AN0@~2m!z r1N0zs8

† zs
†Vsr

s8r 8z r 8#, ~92b!

The corresponding Feynman graphs can be seen in Fig.
The regular polarization is zero in the Bogoliubov a

proximation and the proper anomalous vertex reads as

L̃aa
sr 5AN0@d rada,21zs1dsada,1z r

†#, ~93!

which can be graphically represented as seen in Fig. 15
After calculating the proper Green’s functions, the im

proper self-energy and the singular polarization can be c
structed from Eqs.~67a! and ~68a!. With their explicit form
known, the correlation functions can be expressed. Th
calculations have to be made separately for the polar and
the ferromagnetic cases.

1. Polar case

In the polar casecs.0; the condensate spinor in th
phase can be chosen toz r5d r ,0 . The chemical potential can
be calculated using Eq.~34!, which results inm5N0cn .
Since the proper self-energy is zero~except the diagonalm0
terms!, the proper Green’s functions will be

G̃ag
rs ~k,ivn!5

d rsdag

a ivn2\21ek
. ~94!

This is similar to the free propagator of Eq.~27! but them0
parameter has been canceled out. The anomalous vertex
tors are

p
0LĨ a5S 0

AN0

0
D , p

1LĨ 15S 0
AN0

D , p
1LĨ 215SAN0

0 D .

~95!

By using them, the singular polarization matrices and
improper self-energies can be expressed using Eqs.~68! and
~67!. The singular polarization matrices are

0P= ~s!5F 0 0 0

0 PS 0

0 0 0
G , 6P= s5FP7 0

0 P6
G , ~96!

whereP65N0 /(6 i\vn2ek) andPS5P11P2 were in-
troduced. The improper self-energy matrices are

0M= 5\21FN0cn N0cn

N0cn N0cn
G , 6M= 5\21FN0cs N0cs

N0cs N0cs
G .
~97!

Putting all together to Eq.~82a!, the Green’s functions will
be

d

FIG. 15. The proper anomalous vertex of the Bogoliubov a
proximation.
2-14
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0Gag5
dag~a ivn1\21ek!1ag\21N0cn

~ ivn!22\22ek~ek12N0cn!
, ~98a!

6Gag5
dag~a ivn1\21ek!1ag\21N0cs

~ ivn!22\22ek~ek12N0cs!
. ~98b!

By the use of Eqs. ~83!, the correlation functions
~40a!, ~42a!, and~44a! can be cast to a form, after multiply
ing both the numerator and the denominator w
-
r

-
o
nt

n

ne

04360
nD̃5( ivn2\21ek)( ivn1\21ek), where the denominator
are common with the corresponding Green’s functions
agreement with Eq.~86!,

0D= 5
\212N0ek

~ ivn!22\22ek~ek12N0cn! F 0 0 0

0 1 0

0 0 0
G ,

~99a!
6D= 5
1

~ ivn!22\22ek~ek12N0cs!
F7N0@ ivn7\21~ek1N0cs!# 2cs\

21N0
2

2cs\
21N0

2 6N0@ ivn6\21~ek1N0cs!#
G . ~99b!
g

With the use of Eqs.~70!, the particle number and spin
density correlation functions can also be calculated. The
sult is thatDnn52\21N0ek /@( ivn)22\22ek(ek12N0cn)#
while Dzz5Dnz50. For spin waves D115D22

54\21N0ek /@( ivn)22\22ek(ek12N0cs)#. From Eq.~89!
and Eq.~68a!, D66

Q 50, as mentioned before.

2. Ferromagnetic case

In the ferromagnetic casecs,0. One can choose the con
densate spinor asz r5d r ,1 . The calculation is analogous t
that made in the previous subsection. The chemical pote

@from Eq. ~34!# is m5N0(cn1cs)[N0g. The S̃11
rs proper

self-energy has three different components in its diago
~other self-energy components are zero! which results in the
following proper Green’s functions:

G̃ag
11~k,ivn!5

dag

a ivn2\21ek
, ~100a!

G̃ag
00 ~k,ivn!5

dag

a ivn2\21~ek2N0cs!
, ~100b!

G̃ag
22~k,ivn!5

dag

a ivn2\21~ek22N0cs!
. ~100c!

There are two things to note. The first one is that them0
parameter has cancelled out here as well, the second o
that the remaining self-energies~in the last two proper
Green’s functions! are positive sincecs,0 in the ferromag-
netic case. The anomalous vertex vectors are

f
0LĨ a5S AN0

0
0

D , f
1LĨ 15SAN0

0 D , f
1LĨ 2150I . ~101!

The singular polarization matrices are
e-

ial

al

is

0P= ~s!5FP11
~s!11 0 0

0 0 0

0 0 0
G ,

1P= ~s!5FP10
~s!01 0

0 0
G , 2P= ~s!5FP01

~s!10 0

0 0
G ,

~102a!

with

P11
~s!115\21N0~ G̃11

111G̃21,21
11 !, ~102b!

P10
~s!015\21N0G̃1,1

00 , ~102c!

P01
~s!105\21N0G̃21,21

00 . ~102d!

The singular polarization for the62 spin transfer reads as

P67
~s!765\21N0G̃61,61

22 . ~102e!

The improper self-energies are

0M= 5\21FN0g N0g

N0g N0gG , 1M5M11
005\21N0cs ,

QM5M11
2250, ~103!

whereg5cn1cs . For the ferromagnetic case the resultin
Green’s functions are@for the later ones see Eqs.~38!#

0Gag5Gag
115

dag~a ivn1\21ek!1ag\21N0g

~ ivn!22\22ek~ek12N0g!
,

~104a!

1G115G11
005

1

ivn2\21ek
, ~104b!

QG115G11
225

1

ivn2\21~ek22N0cs!
. ~104c!
2-15
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For spin transfersn50,1,2 the correlation functions~40a!,
~42a!, and ~44a! can be evaluated from Eqs.~83! and with
the use of the polarization matrices~102!. Both the numera-
tors and denominators are multiplied with the correspond
nD̃, leading to

0D= 5
2\21N0ek

~ ivn!22\22ek~ek12N0g! F 1 0 0

0 0 0

0 0 0
G ,

~105a!

1D= 5
N0

ivn2\21ek
F1 0

0 0G , ~105b!

2D= 5
N0

2 ivn2\21ek
F1 0

0 0G . ~105c!

~105d!

The correlation functions withn562 obtained directly from
Eqs.~46! and~47! with polarization functions~102e! read as

D67
765

N0

6 ivn2\21~ek22N0cs!
. ~105e!

The particle number and spin-density correlation functio
from Eqs.~70! are

Dnn5Dzz5Dnz5
2\21N0ek

~ ivn!22\22ek~ek12N0g!
,

~106a!

D115
2N0

ivn2\21ek
, ~106b!

D225
2N0

2 ivn2\21ek
, ~106c!

D66
Q 5

4N0

6 ivn2\21~ek22N0cs!
. ~106d!

3. Collective excitations in the Bogoliubov approximation

The spectra of collective excitations can be expressed
ing Eq. ~88! ~for the 0 and61 spin-transfer modes! or
equivalently by the zeroes of the denominators of the app
priate retarded correlation functions. For the polar case,
results in

0v5\21Aek~ek12N0cn! ——→
~k→0!

AN0cn

M
k,

~107a!

6v5\21Aek~ek12N0cs! ——→
~k→0!

AN0cs

M
k.

~107b!

There are no other excitation modes for the polar case in
approximation. These modes have linear spectrum and
04360
g

s

s-

o-
is

is
re

Goldstone modes. The0v mode belongs to the0Gag Green’s
functions and theDnn (0D= ) correlation functions, while the
6v mode belongs to the6Gag Green’s functions and the
D66 (6D= ) correlation functions.

For the ferromagnetic case, the excitational energies a

0v5\21Aek~ek12N0g! ——→
~k→0!

AN0g

M
k, ~108a!

6v56\21ek , ~108b!

Q
6v56\21~ek22N0cs!. ~108c!

The first (0v) mode, which is responsible for density~and
spin density! fluctuations, belongs to the0Gag Green’s func-
tions and the connectedDnn , Dzz, andDnz (0D= ) correlation
functions. This is a linear Goldstone mode. The next (6v)
modes are responsible for ordinary spin waves and belon
the 6G115G66

00 Green’s functions and theD66 (6D= ) corre-
lation functions. These are also Goldstone modes but wi
quadratic dispersion. The last (Q

6v) modes describe quadru
polar spin waves. They belong to theQ

6G115G66
22 Green’s

functions and theD66
Q (D67

76) correlation functions. These
are non-Goldstone modes and they start with a gap.
frequencies found in the Bogoliubov approximation agr
with those of Refs.@14,15# obtained in a different manner.

B. Random-phase approximation

The simplest way to take into account the appearance
the noncondensed atoms, leading to a damping mechan
is to add a Hartree term to the Bogoliubov proper se
energies~compare Fig. 14 with Fig. 16! and to choose the
regular polarization graphs as bubbles. Some results of
approximation were published earlier in Ref.@44#.

Therefore, the proper self-energies of the random-ph
approximation can be graphically represented as seen in
16 and their contributions are

S̃ag
rs 5\21@~m02m!d rsdag1N0z r 8

† Vrs
r 8s8zs81Hs8r 8Vrs

r 8s8#,
~109a!

S̃01
s 5\21AN0@~2m!z r

†d rs1N0z r 8z r
†Vrs

r 8s81Hs8r 8Vrs
r 8s8#.
~109b!

Here theHsr notation is introduced for the contribution o
the Hartree term

FIG. 16. The graphical representation of the proper self-ener
and the tadpole graphs in the RPA.
2-16
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Hrs5 lim
h50

E d3q

~2p!3

1

b\ (
inn

@2G̃11
rs~q,inn!#einnh.

~110!

The proper self-energies are independent of the w
numbers and frequencies and are diagonal, both in the
man and Greek indices. The proper Green’s functions
diagonal in the Roman and Greek indices as well. The
proximation is done in a self-consistent way, namely,
internal propagators used are proper Green’s functions in
Hartree approximation.

The regular polarization will be a bubble~with proper
Green’s functions! as seen in Fig. 17. Its contribution is

2\P r 8s8
~r !sr

~k,ivn!5E d3q

~2p!3

1

b\ (
inn

G̃11
r ,r 8~q,inn!

3G̃11
s8s~k1q,ivn1 inn!. ~111!

Since our approximate proper Green’s functions are diago
in their spin indices~r 5r 8 ands5s8! the regular polariza-
tion matrices will be diagonal as well, with

0P= ~r !5F P11
~r !11 0 0

0 P00
~r !00 0

0 0 P22
~r !22

G ,

1P= ~r !5FP10
~r !01 0

0 P02
~r !20G . ~112!

The anomalous vertex remains the same as it was in
Bogoliubov approximation, see Fig. 15 and Eq.~93!. With
the building blocks determined we can now turn our att
tion to the construction of the correlation functions.

1. Polar case

Using the interaction~7! with cs.0 andz r5d r ,0 the self-
energies~109! in the polar case

S̃11
115\21@m01~H112H22!cs#, ~113a!

S̃11
005\21m0 , ~113b!

S̃11
225\21@m02~H112H22!cs#. ~113c!

Since in the polar case the system has zero magnetiza
the Hartree terms should satisfyH115H22 and as a con-
sequence the proper Green’s functions are the same as
were in the Bogoliubov approximation Eq.~94!. The situa-

FIG. 17. The Feynamn graph of the regular polarization fu
tion in the random-phase~Hartree! approximation.
04360
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tion is similar to that in the scalar case, the chemical pot
tial cancels the Hartree terms@31#.

The anomalous vertex vectors are given by Eq.~95!, and
so the singular polarization matrices will also be the same
for the Bogoliubov approximation Eq.~96!. The regular po-
larization matrices are as follows:

0P= ~r !5FP0 0 0

0 P0 0

0 0 P0

G , 1P= ~r !5FP0 0

0 P0
G ,

~114!

in accordance with the spin-reflection symmetry discusse
Sec. III I. Here the notationP0[P11

(r )115P00
(r )005P22

(r )22

is introduced. The interaction propagators are then obtai
from Eqs.~66a! and ~66b!,

0W= 5F Cn
~r !1Cs

~r ! Cn
~r ! Cn

~r !2Cs
~r !

Cn
~r ! Cn

~r ! Cn
~r !

Cn
~r !2Cs

~r ! Cn
~r ! Cn

~r !2Cs
~r !
G , 1W= 5FCs

~r ! Cs
~r !

Cs
~r ! Cs

~r !G ,

~115a!

with

Cn
~r !~k,ivn!5

cn

123cnP0~k,ivn!
,

Cs
~r !~k,ivn!5

cs

122csP0~k,ivn!
. ~115b!

With Eq. ~67! the improper self-energies become

0M= 5\21FN0Cn
~r ! N0Cn

~r !

N0Cn
~r ! N0Cn

~r !G , 6M= 5\21FN0Cs
~r ! N0Cs

~r !

N0Cs
~r ! N0Cs

~r !G .

~116!

These can be used in Eqs.~82! to arrive at the Green’s func
tions in RPA. After multiplying both the numerator and d
nominator with detn«= (r) we obtain

0Gag5
dag~a ivn1\21ek!~123cnP0!1ag\21N0cn

@~ ivn!22\22ek
2#~123cnP0!22\22ekN0cn

,

~117a!

6Gag5
dag~a ivn1\21ek!~122csP0!1ag\21N0cs

@~ ivn!22\22ek
2#~122csP0!22\22ekN0cs

.

~117b!

Calculating the regular dielectric functions from Eqs.~65!
and using Eqs.~83! the correlation function matrices coul
be explicitly given. But in the polar case one can use E
~74! to calculate directly the relevant correlation functions
the zero spin transfer, withPnn53cnP01cnPS and Pzz
52csP0 leading to

Dnn5\
3P0@~ ivn!22\22ek

2#12\22N0ek

@~ ivn!22\22ek
2#~123cnP0!22\22ekN0cn

,

~118a!

-

2-17
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Dzz5\
2P0

122csP0
, ~118b!

Dnz50. ~118c!

With Eq. ~71! and with P6654P012PS the correlation
function of the spin waves will become

D665\
4P0@~ ivn!22\22ek

2#12\22N0ek

@~ ivn!22\22ek
2#~122csP0!22\22ekN0cs

.

~118d!

The correlation functions of the quadrupolar spin wav
come from Eq.~89! with a result of

D66
Q 5\4P0 . ~118e!

One can easily verify that the denominators of the appro
ate correlation functions match as was shown at the gen
formalism.

2. Ferromagnetic case

In this phasecs,0 andz r5d r ,1 and with the interaction
~7! the self-energies~109! become

S̃11
115\21m0 , ~119a!

S̃11
005\21~m02Mcs!, ~119b!

S̃11
225\21~m022Mcs!, ~119c!

where the newly introduced quantity

M5N01H112H22 ~119d!

is the total magnetization of the system. It describes the n
ber of particles responsible for the magnetic mean field. N
that since the Hartree terms are momentum independent
proper self-energies will also be. Therefore, the pro
Green’s functions for the ferromagnetic case read as

G̃ag
11~k,ivn!5

dag

a ivn2\21ek
, ~120a!

G̃ag
00 ~k,ivn!5

dag

a ivn2\21~ek2Mcs!
, ~120b!

G̃ag
22~k,ivn!5

dag

a ivn2\21~ek22Mcs!
. ~120c!

These proper Green’s functions are similar to their Bogo
bov counterparts, only the momentum-independent m
field has changed with the appearance of the nonconde
particles with spin projection1 and2. The chemical poten-
tial here do not fully cancels the proper self-energies leav
behind the energy shift due to the magnetic mean field.
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The anomalous vertex vectors are given by Eqs.~101!.
One can express the singular polarization matrices from E
~68! for n50,1,2, and they are of the same form as the
Bogoliubov counterparts~102a! with elements ~102b!,
~102c!, and~102d! where the proper Green’s functions~120!
are to be used. The singular polarization for the62 spin
transfer can also be brought to the form~102e! with Eq.
~120c! as the proper Green’s function,

P67
~s!765\21N0G̃61,61

22 . ~121!

Using Eqs.~65! and Eq.~112!, the effective potentialW
can be constructed. Inserting it to Eqs.~67!, the improper
self-energies will read as

0M= 5
\21N0r

det 0«= ~r ! F1 1

1 1G , 1M= 5
\21N0cs

det 1«= ~r ! F1 0

0 0G ,
QM5M11

2250, ~122a!

where the following notations are introduced to simplify t
equations:

r5cn1cs2cncs~4P22
~r !221P00

~r !00!, ~122b!

det 0«= ~r !5~12cnPnn
~r !!~12csPzz

~r !!2cncsPnz
~r !2

,
~122c!

det 1«= ~r !512
cs

2
P11

~r ! , ~122d!

with

Pnn
~r !5P11

~r !111P00
~r !001P22

~r !22 , ~122e!

Pzz
~r !5P11

~r !111P22
~r !22 , ~122f!

Pnz
~r !5P11

~r !112P22
~r !22 , ~122g!

P11
~r ! 52~P10

~r !011P02
~r !20!. ~122h!

From Eqs.~82! and from Eq.~38b! the Green’s functions are

0Gag5Gag
115

dag~a ivn1\21ek!det 0«= ~r !1ag\21N0r

@~ ivn!22\22ek
2#det 0«= ~r !22\22ekN0r

,

~123a!

1G115G11
005

det 1«= ~r !

@ ivn2\21~ek2Mcs!#det 1«= ~r !2\21N0cs
,

~123b!

QG115G11
225

1

ivn2\21~ek22Mcs!
. ~123c!

Equations~83a! and ~89! give the correlation-function
matrices, which combined with Eqs.~70! result in
2-18
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Dnn5\
~P11

~r !111P11
~s!11!@12cs~P00

~r !0014P22
~r !22!#1P00

~r !001P22
~r !22~12csP00

~r !00!

det 0«=
, ~124a!

Dzz5\
~P11

~r !111P11
~s!11!@12cn~P00

~r !0014P22
~r !22!#1P22

~r !22~12cnP00
~r !00!

det 0«=
, ~124b!
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Dnz5\
P11

~r !111P11
~s!112P22

~r !22

det 0«=
, ~124c!

D1152\
P10

~r !011P10
~s!011P02

~r !20

det 1«=
, ~124d!

D11
Q 54\~P12

~r !211P12
~s!21!. ~124e!

Here

det 0«=5~12cnPnn!~12csPzz!2cncsPnz
2 , ~124f!

det 1«=512
cs

2
P11 , ~124g!

where Pnn5Pnn
(r )1P11

(s)11 , Pzz5Pzz
(r )1P11

(s)11 , Pnz

5Pnz
(r )1P11

(s)11 , and P115P11
(r ) 12P10

(s)01 . Equations
~124a!, ~124b!, ~124c!, and ~124d! can be cast to a form
having common denominators with the correspond
Green’s functions by multiplying both their numerators a
denominators with the apropriatenD̃. Only writing down the
resulting denominators:

0D̃ det 0«=5@~ ivn!22\22ek
2#det 0«= ~r !22\21ekN0r,

~125a!

1D̃ det 1«=5@~ ivn!2\21~ek2Mcs!#det 1«= ~r !2\21N0cs .
~125b!

For the rest of the paper we, will deal with the retard
correlation functions that can be obtained in the usual w
by analytically continuing in frequencies~see, e.g., Ref.
@43#!. First, however, we will discuss shortly the static pro
erties.

3. Static properties of the spin-1 Bose gas in the random-phas
approximation

We will study the equation of state and connect it to t
density autocorrelation function through the compressibi
sum rule. The equation of state is investigated by choos
m, N as conjugated variables. The number of particlesN is
given by

N5N01Hss, ~126!

where Hsr is defined by Eq.~110!. In the ferromagnetic
phase, Eqs.~34!, ~119d!, and~126! provide a second relation
ship

m5cnN1csM. ~127!
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It is convenient to introduce the following quantities: th
thermal wavelengthl5\(b/2M )1/2, the critical particle
density of the ideal gasNc53G(3/2)z(3/2)/@(2p)2l3#, di-
mensionless interaction strengthsen,s5Ncbucn,su, relative
total magnetizationm5M/Nc , relative particle numberx
5N/Nc and dimensionless chemical potentialu5bm. Here
G(s) is the Gamma function andz(s) is the Riemann-zeta
function.

Both for the polar and ferromagnetic cases in the symm
ric phase~where no condensate is present and the total m
netization is zero!, the equation of state reads as

x5
1

zS 3

2D FS 3

2
,xen2uD , ~128!

where

F~s,g!5
1

G~s!
E

0

` ts21

et1g21
dt ~129!

is the Bose-Einstein integral.
In the condensed phase, for the polar case, the chem

potential is determined by Eq.~34!, which leads to

u5enx. ~130!

Equations~128! and~130! can be used to give the isotherm
u(x) of the polar case. Equation~128! is valid whenx,1
and Eq.~130! is to be used ifx.1. These isotherms show th
character of a continuous phase transition.

In the condensed phase, for the ferromagnetic case,
chemical potential can be calculated from Eq.~127!,

u5enx2esm~x!5es@kx2m~x!#, ~131a!

wherek5en /es andm(x) is the relative total magnetizatio
as a function of the relative total density given by the eq
tion

m5x2
1

3zS 3

2D FFS 3

2
,mesD12FS 3

2
,2mesD G .

~131b!

The isotherms are given by Eqs.~128!, ~131a!, and ~131b!.
The solution of Eq.~131b! is unique ifx.1, but atx,1, a
second solution emerges also with nonzero magnetiza
and both solutions can be continued down toxv,1, where
they coincide and vanish. This means that the chemical
2-19
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tential has three solutions betweenx5xv andx51. ~One of
them with zero magnetization at a given density.! In the ap-
plications es!1, so the Bose-Einstein integral can be w
approximated byF(3/2,a)'z(3/2)22Apa leading to

xv512
~112& !2pes

9zS 3

2D 2 . ~132!

At x51 the two solutions are at

m1,2~x51!5H 4~112& !2pes

9zS 3

2D 2 ,

0.

~133!

These isotherms show the character of a very weak fi
order phase transition. A similar equation of state with
first-order transition was derived in Ref.@39# for scalar con-
densates but in a different model approximation. In t
work, the first-order character of the phase transition w
caused by the exchange interaction~Fock term! which is
known to lead to such behavior@41#. The situation is inter-
esting, since for scalar particles, the RPA~Hartree approxi-
mation! gave a continuous phase transition as here for
polar case@31,30#.

Since the above behavior of the equation of state is
common, a further consistency check is required. The c
pressibility sum rule is a candidate, since it relates the st
correlation functions to the derivatives of the equation
state@45,39#, namely,

S ]N

]m D
T

5\21Dnn~k→0,v50!. ~134!

The inverse of the left-hand side of Eq.~134! can be easily
calculated, since

S ]m

]ND
T

5
1

bNc
u8~x!5

1

bNc
@kes2m8~x!es#. ~135!

The derivativem8(x) can be expressed from Eq.~131b! with
the identity]aF(s,a)52F(s21,a), leading to

S ]m

]ND
T

5
cn1cs2cncs@P00

~r !00~0,0!14P22
~r !22~0,0!#

12cs@P00
~r !00~0,0!14P22

~r !22~0,0!#
,

~136!

where we used that P00
(r )00(0,0)52bNcF(1/2,mes)/

@3z(3/2)# and P22
(r )22(0,0)52bNcF(1/2,2mes)/@3z(3/

2)#. It is straightforward to verify that the static limit o
\/Dnn is just the right-hand side of Eq.~136! in agreement
with Eq. ~134!. The pointxv , where the two solutionsm1
andm2 coincide is the point where the graph ofu(x) has a
vertical tangent. The point where the graph ofu(x) has a
horizontal tangent is at where the density autocorrela
function has its pole atq50 andv50. This happens at
04360
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xh512
k222k

~k21!2

~112& !2pes

9zS 3

2D 2 . ~137!

For x.xh ~in the condensed phase!, the static correlation
functions have no real positive pole in theq variable.

4. Collective excitations in the random-phase approximation

The excitation spectra can be obtained in the usual wa
the poles of the retarded Green’s functions and correla
functions. The real parts of the poles correspond to the e
gies while the imaginary parts correspond to the damp
~the inverse of their lifetimes! of the excitations.

Our further calculations can be done more appropriat
in a dimensionless form. For this reason, let us further int
duce the following characteristic lengths: jn,s

B

5\(4MN0ucn,su)21/2 the mean-field correlation lengths a
sociated with the interaction strengthcn and cs , and j8
5M /(4p\2N0b) the length scale of the critical fluctuation
The calculation will be limited to the intermediate temper
ture region. This region is defined by thejn,s

B @j8, l condi-
tions. In this temperature range, thekl!1 condition can be
fulfilled for the physically interesting wave numbers and t
contribution of the bubble diagrams can be taken as per
bation for the frequencies considered.

A dimensionless frequency can be introduced with

V5
\v

ek
. ~138!

The singular polarization functions in the polar case ta
the following form:

cn,sPS~k,v!5S l

jn,s
B D 2 1

~kl!2

1

V221
. ~139a!

While in the ferromagnetic case they read as

ucn,suP11
~s!11~k,v!5S l

jn,s
B D 2 1

~kl!2

1

V221
, ~139b!

ucsuP10
~s!01~k,v!5

g0

~kl!2~V21!2g̃
, ~139c!

ucsuP12
~s!21~k,v!5

g0

~kl!2~V21!22g̃
, ~139d!

with

g05bN0ucsu, ~139e!

g̃5bMucsu. ~139f!

For kl!1 and uVklu!1 the regular polarization func
tion ~the bubble! in the polar case can be approximated a

cn,sP0~k,v!'
~lj8!

~jn,s
B !2

1

kl

i

2
ln

V21

V11
, ~140a!
2-20



an
la
n
e
ty
ec
he

nt

ns-

are
er-

Eq.

STRUCTURE OF THE PERTURBATION SERIES OF THE . . . PHYSICAL REVIEW A 65 043602
while in the ferromagnetic case they read as

cn,sP11
~r !11~k,v!'

~lj8!

~jn,s
B !2

1

kl

i

2
ln

V21

V11
, ~140b!

cn,sP00
~r !00~k,v!'

~lj8!

~jn,s
B !2

1

kl

i

2
ln

V2112i
Ag̃

kl

V1112i
Ag̃

kl

,

~140c!

cn,sP22
~r !22~k,v!'

~lj8!

~jn,s
B !2

1

kl

i

2
ln

V2112i
A2g̃

kl

V1112i
A2g̃

kl

.

~140d!

These results can be obtained with the Mittag-Leffler exp
sion of their spectral functions, similarly as for the sca
case@31#. The approximation of the spin-wave polarizatio
functions can be obtained in a similar way, but due to th
different symmetry properties compared with densi
polarization functions another limit is to be taken in the sp
tral function. The calculation is outlined in the appendix. T
results are

ucsu~P10
~r !011P02

~r !20!5
C22C1

g̃
1F2C01C11C2

g̃2

1
V

g̃2 ~C22C1!1
D22D1

g̃3 G~kl!2

1O„~kl!4
…, ~141a!

with

C05
lj8

~js
B!2

GS 3

2DFS 3

2Ug̃ D
p

, ~141b!

C15
lj8

~js
B!2

GS 3

2DFS 3

2U0D
p

, ~141c!

C25
lj8

~js
B!2

GS 3

2DFS 3

2U2g̃ D
p

, ~141d!

D15
lj8

~js
B!2

4GS 5

2DFS 5

2U0D
3p

, ~141e!
04360
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D25
lj8

~js
B!2

4GS 5

2DFS 5

2U2g̃ D
3p

, ~141f!

and g̃ is given by Eq.~139f!.
In the case of linear dispersionV@1 can be assumed

~while still satisfying theuVklu!1 condition!. For the fer-
romagnetic state, we further restrict ourselves toAg̃
!uVklu. We will see that this later condition is equivale
with cn /ucsu@1, which is fulfilled in the applications. In this
case, the regular polarization functions with zero spin tra
fer ~140! can be further approximated by

ucn,suP~r !~k,v!'2
~lj8!

~jn,s
B !2

1

kl

i

V
, ~142!

both for the polar and ferromagnetic states. Since we
interested only in the low-momentum behavior of the disp
sion curveV will be searched as a power series of the (kl)
variable.

Polar case, density mode (n50). The spectrum of these
types of excitations can be determined by the poles of
~118a!. The corresponding equation is

123cnP02cnPS50. ~143!

Using Eqs. ~139a! and ~142! and substituting V
5a21(kl)211O„(kl)0

…, the resulting equation for thea21
coefficient reads as

a21
2 13i

lj8

~jn
B!2 a212S l

jn
BD 2

50. ~144!

Solving this quadratic equation~and assuming, that the
imaginary part is small!, one arrives at

V56
1

kjn
B2 i

3

2

j8

k~jn
B!2 . ~145!

Returning to the more familiar variables, one obtains

v56AN0cn

M
k2 i

3cnM

4p\3b
k, ~146!

for the beginning of the dispersion curve.
Polar case, spin-density mode (n50). The excitation

spectrum is obtained as the poles of Eq.~118b!. The corre-
sponding equation is

122csP050. ~147!

With the use of Eq.~142!, the resulting equation forV reads
as

112i
j8

~js
B!2

1

Vk
50. ~148!

The solution is at
2-21
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V52 i
2j8

k~js
B!2 , ~149!

or equivalently at

v52 i
csM

p\3b
k, ~150!

for the beginning of the dispersion curve. Note that suc
mode did not appear in the Bogoliubov approximation, b
cause thereDzz is identically zero.

Polar case, spin-wave mode (n561). The poles of the
autocorrelation function~118d! determine the spectrum o
these types of excitations. The corresponding equation i

122csP02csPS50. ~151!

Using Eqs. ~139a! and ~142! and substituting V
5a21(kl)211O„(kl)0

…, the resulting equation for thea21
coefficient in this case reads as

a21
2 12i

lj8

~js
B!2 a212S l

js
BD 2

50. ~152!

Whence

V56
1

kjs
B2 i

j8

k~js
B!2 , ~153!

or equivalently

v56AN0cs

M
k2 i

csM

2p\3b
k. ~154!

Ferromagnetic case, density, spin-density mode (n50).
The poles of the autocorrelation functions~124a!, ~124b!, or
~124c! determine the spectrum of these excitations, which
given by the equation

~12cnPnn!~12csPzz!2cncsPnz
2 50. ~155!

Substituting the approximations~139b! and ~142! and V
5a21(kl)211O„(kl)0

…, the resulting equation for thea21
coefficient reads as

anasa21
3 1 ia~3as22an!a21

2 2~as2an26a2!a211 i5a

50, ~156!

with a5j8/l, an,s5(jn,s
B /l)2. In the discussed temperatu

regionas@an@a2. The solution of the equation can be ca
culated perturbatively, with results

V56 Aas2an

anas

1

kl
2 i

a

2

3as
212an

2

anas~as2an!

1

kl
, ~157!

from which the frequency

v56 AN0~cn1cs!

M
k2 i

M

4p\3b

3cn
212cs

2

cn1cs
k.

~158!
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We can see now, that theAg̃!uVklu condition is equiva-
lent with the 1!2cn /ucsu condition, which is well satisfied.

Ferromagnetic case, spin-wave mode with n561. The
excitation spectrum of the ferromagnetic spin waves is
tained from the poles of the autocorrelation function~124d!.
The equation to be solved is

12cs@P10
~r !011P02

~r !201P10
~s!01#50. ~159!

Substituting the approximations Eq.~139c! and Eq.~141a!
and thatV5a01O„(kl)2

… leads to

12
g0

g̃
1

C22C1

g̃
1

~kl!2

g̃2 F ~12a0!g012C01C11C2

1
a0

g̃
~C22C1!1

D22D1

g̃ G1O„~kl!4
…50. ~160!

The equation forO„(kl)0
… is an identity, sinceg̃5g0

1bucsu(H112H22). The a0 constant can be determine
from O„(kl)2

… order terms

a05
g̃~2C01C11C21g0!2D11D2

g̃2 . ~161!

The frequency of the spin-wave excitation then is a quadr
one

v5
\k2

2M*
, ~162a!

with the effective mass

M* 5
M

a0
. ~162b!

The Bogoliubov solution~108b! can be regained in the
T→0 limit, sinceC0 , C1 , C2 , D1 , D2}T, g̃ andg0 tend
to N0(T50)ucsu/kBT.

Ferromagnetic case, quadrupolar-spin-wave mode:Since
the autocorrelation function~124e! is proper, so the spectrum
of the quadrupolar spin waves is determined by the pole
the polarization functionP12

21 . The singular polarization
~121! has its pole at

V511
2g̃

~kl!2 . ~163!

The regular polarization functionP12
(r )21 has a logarithmic

singularity in the same place. The corresponding excitatio
frequency is

v5
2Mucsu

\
1

\k2

2M
. ~164!

Some final remark is appropriate about the validity of t
calculation of these last two modes. The approximat
~141a! is valid if (kl)2/g̃!1. This is equivalent with thek
!A4MMucsu/\ condition, meaning that the approximatio
2-22
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for the bubble breaks down near the transition temperat
where the magnetization vanishes.

V. CONCLUSIONS

In the high-temperature phase, density and spin fluc
tions do not couple to each other and to the Green’s fu
tions. The latter appear only in the intermediate states in
perturbational expansion for the correlation functions
scribing density and spin fluctuations. Correspondingly, o
can experience independent excitation branches of one
ticle and collective type. As discussed in the present pape
detail, collective and one-particle excitations can hybrid
in the Bose-Einstein condensed phase due to the symm
breaking, which is different in the polar and in the ferroma
netic phase resulting in different couplings. In the po
phase, however, such hybridization does not occur for s
modes characterized by spin transfers zero and62. The gen-
eral results have been demonstrated in the RPA scheme
treating the regular polarization contributions as pertur
tions, we obtained damping for a number of modes de
mined first in the Bogoliubov approximation@14,15#. In the
ferromagnetic phase for the transverse-spin mode, whose
ergy has been shown to agree with the free particle kin
energy in the Bogoliubov approximation, it is found that t
eigenfrequency remains proportional tok2 in RPA, but with
an effective mass, which approaches the mass of the atom
the zero-temperature limit. Moreover, the gap in the quad
polar spin mode gets a temperature-dependent correc
namely, it is proportional to the magnetization that tends
the condensate density in the zero-temperature limit and
the gap coincides with that of the Bogoliubov approximatio
These transverse and quadrupolar spin modes are found
from damping.

There are thermal excitations for which the bubble gra
cannot be treated as perturbations as shown earlier in
scalar case@31,39#. In the case of a spinor condensate, o
expects even a multitude of such excitations, already in R
Their investigation will be the subject of a forthcoming p
per.

The calculations in this paper have been made for a
mogeneous system. In experiments with alkali atoms, the
sample is confined in an optical trap that can be modeled
a harmonic potential. The inhomogeneous nature of
trapped system results in that the algebraic equations
sented here are to be changed to coupled integral equa
but their main structure remains the same. We also note
experiments can be designed where the local speed of s
can be measured directly, making the results obtained f
homogeneous system also experimentally relevant@46,47#.
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APPENDIX: THE APPROXIMATIONS OF THE
CONTRIBUTIONS OF THE BUBBLE GRAPHS

In this appendix, we briefly outline the analytical prope
ties of the contribution of the bubble graphs encountered
outline the approximation~141a!. Some of these results ar
known from earlier works@31#.

In the random-phase approximation, the self-energies
the internal lines are wave number and frequency indep
dent, therefore, the contribution of the bubble graph~111!,
depicted in Fig. 17 can be cast to the form

P r 8s8
~r !sr

~k,ivn!52
1

\
E d3q

~2p!3

3
n0~ek1q1\S̃s8s!2n0~eq1\S̃ rr 8!

ivn2\21~ek1q2eq!2DS̃
,

~A1!

with

DS̃5S̃s8s2S̃ rr 8. ~A2!

The nondiagonal elements ofP r 8s8
(r )sr are zero, as stated below

Eq. ~111!, the same is true for the proper self-energies. In t
appendix, the automatic summation over repeated indice
not apply.

Changing to retarded polarization functions with analy
cally continuing in frequency, the imaginary part plays t
role of the spectral function

P rs
~r !sr~k,v!52

1

p E Im P rs
~r !sr~k,v8!

v2v8
dv8. ~A3!

The imaginary part can be brought to the form

Im P rs
~r !sr~k,v!5

M2

4p\4kb F Èy0
dz

2z

ez21gb21

2 Èy1
dz

2z

ez21g f21
G , ~A4!

with

y05
kl

2 S V212
Dg

~kl!2D , ~A5!

y15
kl

2 S V112
Dg

~kl!2D , ~A6!

g f5\bS̃ss, ~A7!

gb5\bS̃ rr , ~A8!

Dg5g f2gb5\bDS̃, ~A9!

andV defined in Eq.~138!. Introducing the function
2-23



th

n
th

e

qs.

a-
the
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Rg~z!5E
2`

` 2x

ex21g21

1

x2z
dx for Im z.0, ~A10!

which is to be continued to the whole complex plane,
function P rs

(r )sr(k,v) can be represented as

P rs
~r !sr~k,v!5

M2

4p2\4kb F Èy0
Rgb

~z!dz

2 Èy1
Rg f

~z!dzG for Im v.0.

~A11!

The analytic structure ofRg(z) is important for the ap-
proximations, it can be found in Ref.@31#. If the self-
energies of the forward and backward propagating o
particle lines are equal, i.e., in the polar case and for
n50 mode in the ferromagnetic case,Dg50 and the ex-
pression~A11! reduces that of Ref.@31#. If the conditions
above Eq.~140! are fulfilled, the leading contribution of th
Mittag-Leffler representation ofRg(z), reading as

Rg~z!52ApzS 1

2D2 ipz2
2p

Ag

z

z1 iAg

14p i (
n51

`
1

an
22bn

2 Fan
21g

z1an
2

bn
21g

z1bn

1~an2bn!S g

anbn
21D G , ~A12!
es
r-

tt

l.

04360
e

e-
e

with

an5 ir nei ~wn/2!, bn5 ir ne2 i ~wn/2!, ~A13!

r n5A4 g214n2p2, wn5arctan
2np

g
, ~A14!

can then be used to arrive at the approximating formulas E
~140!, see Ref.@31#.

If the self-energies of the forward and backward prop
gating one-particle lines of the bubble graph are different,
upper limits of the integral~A11! will diverge whenk goes to
zero, see Eqs.~A5! and ~A6!. If one is interested in the
long-wavelength dynamics, the asymptotic series ofRg(z)
can then be used, namely,

Rg~z!;2
2

z2 (
n

GS n1
3

2DFS n1
3

2Ug D
z2n , ~A15!

whereG(s) is the gamma function andF(sug) is the Bose-
Einstein integral~129! @31#. With the help of Eq.~A11! and
Eq. ~A15!, the approximation~141a! can be obtained.
ar,
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