PHYSICAL REVIEW A, VOLUME 65, 043602
Structure of the perturbation series of the spin-1 Bose gas at low temperatures
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The properties of Green’s functions and various correlation functions of density and spin operators are
considered in a homogeneous spin-1 Bose gas in different phases. The dielectric formalism is worked out and
the partial coincidence of the one particle and collective spectra is pointed out below the temperature of
Bose-Einstein condensation. As an application, the formalism is used to give two approximations for the
propagators and the correlation functions and the spectra of excitations including shifts and widths due to the
thermal cloud.
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[. INTRODUCTION low temperaturesand in the random-phase approximation
(RPA). Within the RPA, we do not include exchange pro-

The recent realization of Bose-Einstein condensatiorcesses that already in the case of the scalar Bose-Einstein
(BEC) in an optical trap has opened a new area of researcbondensed systems has led to involved calculati@$s.
[1-5]. The theoretical investigation of spinor systems isTheir extension to spinor Bose-Einstein gas will be presented
growing rapidly these days, concerning the ground-statén a separate paper. As a matter of fact, the relative impor-
structure and symmetry breakif§—9], the various phases tance of the exchange processes is less in the present case
in traps[10,11], the different vortex statdd2,13, the explo-  since the direct terms are enlarged by summations over spin
ration of collective excitation$14—17, and a number of variables.
other problemg18-27. Compared to the BEC realized in Though the RPAas a mean-field theoryoses its validity
magnetic trap$28,29, where the spin degree of freedom of near the phase transition, it is enlightening to investigate it in
the particle field is frozen, such systems, since the spincthe transition region. It turns out that, while the transition to
nature of the particles is preserved, have a wider variety ofhe polar phase is continuous when decreasing the tempera-
excitations including spin-density waves, transverse-spirture, it becomes weakly first order for ferromagnetic ordering
waves, or quadrupolar-spin waves. due to the smal{for this coupling attractivespin-dependent

It is a well-established property of scalar Bose-Einsteinpart of the interaction. It is worth recalling that in case of the
condensed systems that the one particle and the densitgealar Bose-Einstein condensation the transition is second
correlation-function spectra coincide. To treat this problemorder in this RPA-Hartree model, but including exchange
consistently, the dielectric formalism has proved to be parcontributions makes it to a first order one and the effect is
ticularly useful, which has been worked out first for homo-then not small, see Ref39] and references therein.
geneous system$80—-35 and recently generalized and ap-  The dielectric formalism basically uses proper diagrams,
plied to trap systemig6—39. In this paper, this formalism is which cannot be split into two partgining with the exter-
extended to gases with a spinor Bose-Einstein condensate. fial vertice$ by cutting a single interaction line. Due to the
make the presentation more transparent, only homogeneosgong repulsive core of the atom-atom interaction, the bare
systems will be considered. The new feature is the appeapotential should be replaced by a two-body more gener-
ance of correlation functions including spin fluctuations be-ally, by the so called many bogyT matrix ([40] see for a
sides the density autocorrelation function and a variety ofeview Ref.[41]). To handle such a situation consistently, a
new one-particle Green’s functions. Their perturbation seriegeneralization of the dielectric formalism is necessary. The
are analyzed simultaneously. After suitable rearrangement gfresent paper provides such a generalized framework, be-
the expansions, it has been found that certain one-particlsides the other type of generalization already mentidned
Green’s functions and correlation functions have commorguired by the spinor nature of the condengate
denominators leading to the coincidence of their spectra, The paper is organized as follows. In the Sec. I, after
though with different spectral weights. Examples are thegiving the specifications of the Hamiltonian and introducing
Green'’s functions corresponding to a spin-transfer zero anthe canonical transformation to induce the Bose-Einstein
the density correlation function, furthermore those Green'sondensation, the normal and anomalous one-particle
functions and correlation functions of the spin operatorsGreen’s functiongmatrices in the spin variablpgand the
which can be characterized by spin transfeérs or —1. Ex-  different correlation functions of the particle number density
ceptions are found in the polar phagecurring when the and spin-density operators are defined. Section Il is the
interaction in the spin channel is repulsiv@amely, those backbone of the paper. It starts with a summary of symmetry
correlation functions of the spin operators that create zero goroperties of the functions introduced in Sec. Il. Then their
+2 spin transfers do not possess condensate induced integeneral structure is analyzed within the framework of pertur-
mixing with the one-particle Green’s functions. The generalbation expansion. We proceed by classifying the processes
theory is illustrated in the Bogoliubov theofyalid at very  according to the spin transfers involved. Then, in the spirit of
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the dielectric formalism, the proper irreducible graphs are

separated. The main results are the description ofV(ri—rz)=[c,+ CsFl'FZ]a(rl_rZ)m(rl_rZ)X,
condensate-induced intermixing of one particle and collec- L2 (5)

tive modes and the specification of the conditions when it

occurs. Sections IVA and IV B are devoted to approximaté,nq yyrite the grand-canonical Hamiltonian of the system as
calculations. In Sec. IV B, corrections consisting of damplngm"owS

terms and frequency shifts as well are given in RPA to the

Bogoliubov approximation discussed in Sec. IVA. We

present in Sec. IV B also results for static properties in RPA. = Z —wal(k)a (k)

Section V contains the summary and further discussion.

1
- t t r's’
Il. BASIC EQUATIONS AND DEFINITIONS 3 k1+k22k3+k4 3y (ky)ar (kp)Vis™ as(ka)ag (ky)
A. The effective Hamiltonian of the spin-1 Bose gas +AH (6)

In a gas containing spin-1 particles the wave function is a
three-component spinor. To be more specific, we use the bavheree,=#%2k?/2M stands for the kinetic energy of a par-

sis set OﬂEZ eigenvectors in the Spin Space, which leads t0t|C|e and/,L iS the Chemical pOtentia| Of the System. Further'

the wave function more,
er(r) Vlr';S,:Cn‘Srsﬁr’s""Cs( F)rs( F)r’s’ ' (7)
p(r)=| olr) |. 1)
(1) corresponding to EqJ5), if the pseudopotential is operating
on a wave function that is not singular igt—r,=0. When
In this representation, the spin operators are ultraviolet divergences arise due to the use of the potential

(7), one has to take into account the general fé&n which
makes the necessary regularizat[dg]. In this paper, such

1 010 1 problem does not show up at places where the pseudopoten-
Fie=—|1 0 1|, Fy=—|1 0 ~—i}, tial is explicitly used. Here and in the following, the conven-
V2 01 0 V2 0 i 0 tion of summing over repeated indices is applied except
when stated otherwisé\’H contains the difference between
the exact interaction Hamiltonian and the one given by the
1 0 O pseudopotential We will comment on the optimal choice of
F=l0 0o o] ®) the parameters of the pseudopotential at the end of Sec. Ill B.
z 0 o 1 There are two types of systems depending on the spin-

dependent part of the interaction. If it is attractive then the
spins prefer parallel alignment that leads to a macroscopic
and the corresponding raising and lowering operators, magnetization in the presence of a Bose-Einstein condensate.
If it is repulsive then the energetically favorable state is when
01 0 00 0 (FY=0. The former case is calleférromagnetic casend
later is calledpolar case[14].
F.,=v2|0 0 1|, F_=v2|1 0 0. 3
0 0 O 0 1 0 B. Description of the symmetry breaking

In the Bose-Einstein condensed phases some field opera-

We consider a system of spin-1 particles in a box withtors have anomalous averages reflecting a broken gauge
periodic boundary conditions and without an external potensymmetry: (a,(0))=VNo¢, and (a/(0))=NoZ!, where
tial. In the second quantized formalism, we introduce anni{\ is the number of particles in the condensate &ni the
hilation and creation operatoes(k) and aT(k) that destroy  normalized spinor of the condenséie]. For thepolar case
and create one-particle states of plane waves with momermne can takg, as (0,1,0) and for theferromagnetic casé,
tum k and spin projection. These operators are bosonic in can be taken as (1,0,0)where the superscrifitdenotes the

our case, so they satisfy the commutation relations: operation of transposition. The averaging is made over a
symmetry breaking ensemble. To consider this symmetry
[ar(k),al(k’)] — 6, (k—K'), (43) breaking, one can mtrodupe anew sgt of bosonic anljlhllatlon
and creation operators with a canonical transformation,
[a:(K),aq(k")]=[a(k),al(k')]=0. (4b) by (k) =2, (k) — 8i0VNoZ (8a)
i i invari i by (k) =a/(k) — 8 0VNo¢/ (8b)
We introduce a rotationally invariant pseudopotential as r r k.oViNosr -
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The relation between the chemical potential and condensatgx p=2" lef  where Z=Tref™ is the grand-canonical
density can be derived from the requirement thiat(k))  partition function. Substituting the canonical transformation
=(b!(k))=0 Here and from now on, the averages will be into Eq.(6), one obtains the Hamiltonian in terms of the new
made over the grand-canonical ensemble with a density mayperators,

1 !
H=20 (&= 1o)b{ (K)by(K) = VN[ £/bi(0) +b](0) 1= iNo+ 5 2 b/,(Ke)bf (Ko) Vis™ ba(Ka) b (Ka)

Ng i VNo s
5 2 bl (k)b (ko) Vi by(ks) o iy 0t 5 2 b (k)b (ko) Vie £5i obisr(Ka)
VNo VNo

! N !
23 bl (kD) ¢ 8, 0Via bl ks)ber(Ka) + 5 2 £, 8, bl (ko) Vie® be(ks)b (ka)

+ —
2

N() 1ot No 1ol

+ 5 2 bl (Kb (K)Vie {58, obs 0t = 2 by (k)¢ i, 0Vie be(Ka) L S0
No t t r's’ No t t r's’

+ 5 2 48, DLk Vi bi(Ka) Lo S ot 5 20 By (K1) T 8, 0Vis® £k bst (Ka)

NO It NO ]
5 2 B D (K)Vie {68 o (Ka) T = 2 £/ 65 06 Sy oVis” Do(Ka)bs (Ke)

8/2 Ng/z Ng/z N(S)/Z
5 LAV Ly (0)+ = L IVISTD(0) Ly + - LB (VIS £l + bl (0 (VT Ll

NG ”
5 VI L+ 2 (o= m)b (K)by(K)+ AT, ©

Here we added and subtracted the teBguqb(k)b, (k) matic summation over repeated Greek indices is understood
(mo=0) to avoid the difficulty of beingu positive in the as for the Roman ones. Here and from now ens the
condensed phases, which would lead to a singularity in thénaginary time and , is the r ordering operatof43]. In this
unperturbed propagator. The last part of the Hamiltoniansymmetry-breaking system, because of the fact that the
AH, will not show up explicitly in our treatment. Hamiltonian Eqg.(9) contains terms with two creation or two

It should be stressed that with the canonical transformaannihilation operators, anomalous Green’s functions arise
tion (8), one defines bare quasiparticle state®/ (k;)[0).  (With yo=—1). The expressioii10) is the generalization of

The time evolution of these quasiparticle states are detefl® we:(I known Inormallang agomalour? Green's functions in
mined by the Hamiltoniar{9) that contains terms with dif- ©2S€ Of & compiex scalar ield3,30. The propagator£l0)

ferent number of creation and destruction operators Ieadingr?_ pe(rjlod|c in7 with period 3 so their Fourier series can be
to the nonconservation of the total number of quasiparticles: elined as

, - - : 1 (B
C. Green'’s functions and correlation functions 9;55(k,iwn)= 5_ﬁJ dTeIwn’rgrysé(k'T), (12)
First, we define the Green’s functions as 0
g’ysﬁ(k,T)z—<Tr[br7(k,7)b§(k,o)]>, (10 where w,=2nmx/p% is the Bose disc_rete Matsubara fre_-
quency. The spectrum of the one-particle elementary excita-
with tions can be determined as poles of the analytic continuations
of the Green’s functions.
b, (k), y=1, The collective excitations in the system can be described
b)(k)= bT(— K, y=-1 (11 with the correlation functions of the following operators:
r ’ - 4
The Greek indices introduced here are for distinguishing be- nkr=> af(k)a. (k+ 13
tween the normal and anomalous Green’s functions. Auto- (k) % r(kak+a), (133
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e . T s
=G{0)—1,1 (ki) : ————.

FIG. 1. The graphical representation of the free propagators.

fz<k>=§ al(k)(Fy)rsas(k+0), (13b)
fi<k>=§ aj(k)(F.)rsag(k+a), (139
f2<k>=§ al(k)(F%)sas(k+a), (130

ars<k>=§ aj(k)ay(K+q). (139

Heren(k) is the particle density operatdf,(k) is the spinz

component density operatdf,. (k) is the density operator of

the =1 spin raising or lowering operatoj‘—,‘é(k) is the den-

sity of the =2 spin raising or lowering operators, and at last

D__(k,7)=2[D%(k,7)+ D3, (k,7)+D*5(k,7)

+Dg (k,7)], (150
D?, (k,7)=4D7 " (k,7), (15f)
DR (k,7)=4D";(k,7). (159

All of these correlation functions are also periodiczimvith
period Bfi, so their Fourier transforms can be defined analo-
gously to Eq.(12) and the appearing Matsubara frequencies
are also the same as for the Green’s functions.

We will also apply anomalous correlation functions

(163
(16b

A (K, 7) = —(T [ows(k, ))b2 (K,01),

AY (K, 7)=—(T [b2(k, ) og (—k,01),

os(K) is the general density operator from which the otheryhich have zero value in the symmetric phdse., for a

ones can be easily calculated as, e.(k)=o, . (k)
+ogo(K) +o__(k) or F(kK)=0,,(k)—o__(k). The dif-

noncondensed system
Though the one-particle Green’s functions are the auto-

ferent collective excitations can be found as poles of theorrelation functions of the order-parameter field operator,
analytical continuations of the corresponding correlationye preserve in the following, the term correlation function

functions(defined fork #0), given by

Dnn(k,7)=—(T.In(k,7)n"(k,0)]), (143
DAk, 7)= —~(T[F(k 7 FAKOD, (14
DAk, 7)=—(TIn(k, 7 F(k,0)]), (149
D..(k,7)=—(TIF(k,FL(k,0]), (149
DS, (k,7)=—(TIF2(k, 7" (k0)]). (148
Note that nf(k)=n(—k), Fi(k)=F,(=k), F.(k)

=F-(—k), and F'(k)=F2(—k). A general correlation
function can also be defined as

Drs’rs'(k’T): _<T7[0'r5(k,7')0'5rrr(_k,O)]>, (141
from what the above ones can be calculated as
Dnn<k,r>=25 DIk, 7), (158
D,Ak,m)=2> rsDik,7), (15b)
r,s
Dny(k,7)= 2, sDi(k,7), (150

r,s
D, . (k,7)=2[D%(k,7)+D3*(k,7)+D;5(k,7)

+Do %k, 7)], (15d)

for the other correlation functions introduced above.
IIl. GENERAL FORMALISM

In this section, the general formalism is worked out. First,
symmetry properties of the functions defined in the previous
section will be discussed. Next, perturbation theory will be
presented and then we will turn our attention to relations
valid in all orders of perturbation theory.

A. Symmetry properties

Due to the rotational symmetry in the coordinate space,
the Green’s function$10) and all the correlation functions
[(14) and (16)] depend only on the modulus of the momen-
tum.

For the Green’s functions, the following symmetry prop-
erties can be derived. Sin¢m absence of a magnetic field
the Green'’s function§l0) are real and the cyclic property of
trace

g5k, 7) = — (T.[b7(k, M)b' (k,0)])
= —(T.b}(k, 762" (k,0)])
= —(T,[b2(k, 1)b? (k,0)])
=G (k,7), (17

holds. Furthermore, the time-displacement symmetry of

S ot i
Hamiltonian systems, th®(k)=b, ” (—k) relation and
that afterT . the order of the bosonic operators are irrelevant
lead to
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r 8 r 8 r 8
—Grik,iwy,) : —m—m——=, =075k iw,): =——g=, -0G1° ,(k, iw,): - )
bl ) vy 5 fa ) f-a ) FIG. 2. The graphical repre-
s sentation of the full propagators.

7 8 r
—gisl’l(k, wp) 1 ==, —Q’Tl’_l(k, Twy) + =—l—

+ T
Gos(k,7)= —(T.[bJ(k,7)bZ (k,0)1) ASL(k,7)=—(T [os(k,7)bg (k,0)]")
— —(T[b%'(k,0)bY(k,7)]) = —(TIb5(k, ) os(—k,0)])
= —(T16'(k,~ bY(k.0)]) =As (k7). @
__ -5 1 _ -yt The second one can be derived using the invariance of the
(Tbs (—k,— )b, " (—k,0)]) trace under cyclic permutations and that the order is irrel-
=G (k= 7). (18 evant behind an ordering operator:
On the basis of the above equalities, one finds A (—k,—7)=—(Tlos(—k,— T)bgT(—k,O)D
aT
Gk, m) =Gk, ) =G5 (K, 1) =G5 (K, —7) =~ (Tdbg (=K, D)ors(=k,0)1)
=G, _s(k,—17). (19 =AG (k7). (29
For the generalized density-correlation functions of Eq.Combining Eq.(23) and Eq.(24) together results iralso
(14f), the following symmetry relations can be derived: ~ Using that the momentum dependence comes kerk|)
—D%, (K, 1) =(T Lors(K, T g (—K,0) T Aza(k, 1) =A% (K, 1) = A(K,7)
_ AN, _
=(T o}, (—kO)oly(k,— 1) —As ke
_ ATS _
~(T L5 (kD) os(~k O] ~Aaeko ). @9
=D& (k,7), (20 B. Perturbation theory
and To calculate the averages of the grand-canonical ensemble
with the Hamiltonian(9), one can use the methods of the
ST _ _ finite-temperature many-body physig3].
Drrg (k) =(Tdors(k ogr (=k0)]) The Hamiltonian of the noninteracting system is the first
=(T Lo (—kOas(k,n]) term in Eq.(9),
:<TT[US'r’(_k1_ T)O-I’S(klo)]> H():; (ek_,bbo)b:-(k)br(k), (26)
=-DLS(—k,— 1), (21)

which defines free Green'’s functions
where we further used thatfs(k)=osr(—k). Combining

Egs.(20) and(21) together, one arrives at s ) OrsOys
G0)ys(Kiiwn)= 7 e — )
Yiw, (ex— o)

(27
D% (k,7)=D%, (k,7)=D%" (k,7)=DL* (k,— 7)

e This will be symbolized as a line or a line with an arrow if
=Dg, (k,— 7). (22 the Greek indices are specified as seen in Fig. 1. The full
Green's functions will be symbolized with double lines as
For the anomalous correlation functions, the two symmeshown in Fig. 2. The terms in the Hamiltonian E) with-
try properties can be derived in the same way. The first oneut any filed operator can be disregarded for our purposes.

comes from the fact that the expectation values here are alimong the interaction terms there is one containing four

real field operators and corresponding to a scattering of two qua-
—— —0
s’ g’ g ers’
1 1 1 1
1 ris Tis ris
—al1S e, —_—l— —l——;

3 .
(=EOVLE, (~E)VNVR ¢, (B )NoCh VL Gy (NG GV G

FIG. 3. The Feynman graphs of a few interaction processes due to the pseudopotential involving zero, one, two, and three condensate
atoms.

043602-5



PETER SZEPFALUSY AND GERGELY SZIRMAI PHYSICAL REVIEW AG65 043602

r ol s 7 r A s ) The_ Feynman graph corresponding to this equa_tion is shown
in Fig. 6, where the generalized density-correlation functions
(B VN (—1)brs,  (—F71) (0 — 1)0rs. are represented as boxes and their proper parts as gray poly-

gons. The proper parts satisfy the same symmetry properties
as the generalized correlation functidsee Eq.(22)]. One
N has to emphasize that the proper nature of the diagrams is
siparticles that are noncondensed before and after the Collafineq with respect to the interaction explicitly written out

sion as well. There are four interaction terms containingin Eq. (7). It means that the proper parts can contain the
three field operators and six terms containing two field op; ontributions ofAH in any combination. Such definition of

erators, corresponding to scattering processes involving bo_ e proper parts would be left unchanged, if the pseudopo-

. e ol o doseribi ter @htial were momentum dependent. We will not treat such a
erms containing one leid operator describing sCattéring Progase since in the applications thelependence can be omit-
cesses involving three condensate and one noncondens

atoms. These interaction terms will be graphically repre- Above the critical temperaturéor for a noncondensed

sented as shown in Fig. 3. There is one remaining term Wiﬂ%ysten), where(a, (k))=0 for all k, the anomalous correla-

one field operator and the last term with two operators Cory, functions(16) are zero. In this case, the self-energies,

'Which are irreducible by definition are proper as well and the
) . ._polarization parts, which are proper by definition are irreduc-
The. Green's functions can be' expanded to perturbatl_oi le as well. In the Bose condensed phase, the appearance of

series in the u_sual way. Rearr_anglng thgse series, one arrivgs, .- olous averages, (0))+0 leads to the nonzero

at the generalized Dyson-Beliaev equati48,30,44, value of the anomalous correlation functions and to a situa-
tion where the self-energies are no longer proper and the
polarization parts are no longer irreducible. However, they
can be separated such as

FIG. 4. The Feynman graphs of the noninteraction processes.

ki) =005, s(K,iwy)

+ 06y (Kii o) S0 (K, @) G5 5(K T ),

(28 ;35: 'ysa+ M E/Sg, (303
whereX % is the s_elf-energy, .the contribution _of.those graphs ne, = HEQSS,V_F Hﬁf)sﬁf, (30b)
that are one-particle irreducibleannot be split into two by
cutting a single one-particle lin@nd connect to two external
lines with indices (,y) and (s,68). This equation is graphi-
cally represented in Fig. 5. The symmetry properties of th
Green’s functions of Eq(19) stand for the self-energies as ization graphs that are irreducible as well afid® is the

We”'. . . contribution of the reducible polarization graphs. The sepa-
Similar rearrangements can be carried out for the pertur-_. ; ) X
; . X . . . rations(30a and (30b) are the starting steps toward the di-
bation series of the generalized density-correlation functions ; .
. ) o €lectric formalism. See for the scalar gas, RE?4.,30.
(14f). One can introduce their proper paftee polarization : . .
L L It can be directly seen from the perturbation series of the
party, the contribution of those graph&he polarization . .
L . ; . anomalous correlation functior(@¢6a that they can be de-
graphs that cannot be split into two by cutting a single in- :
T ; ' composed in such a way that
teraction line representing the pseudopoternifialaccording
to Fig. 3. Then the equations determining these correlation A (Kiwn) =A% (K,iw,)G2(K,iw,), (31)
functions read as a« v e "

where3. is the contribution of those self-energy graphs that
are proper, while the graphs contributing ¥ will be im-
eproper, and similarlylI(" is the contribution of those polar-

whereGs:, is the one-particle Green’s function ang}, is the
o (Kiwp) anomalous vertex, which is the sum of the irreducible con-
oo bamdc ) tributions of those graphs with one incoming interaction and
+HIap(Ki@n)VedD, g (Kiwn). (29 gne incoming particle line. These anomalous vertex func-

—

DS (K,iwp) = AITS"

-G = G+ (G0 (I (=62
u::r_‘_s+r_<£%:‘=i+r_<£%:=s,‘ FIG. 5. The graphical symbolization of the
Dyson-Beliaev equations; the hatched squares
-GTi = _g(rg)u + (_gz‘g)’ll)(_zﬁs')(_gf;s) + (_g&;‘)’u)(_zq's'l)(_gs'f1) represent the one-particle irreducible graphs.

r s roor g s roorp g s
M:—»%:‘:‘+—>—%—=~

’ ot

=G = (=011, )(=I78) (=088 + (=G 1, ) (=ZT8 _)(=G"%1)

043602-6



STRUCTURE OF THE PERTURBATION SERIES OF HH ..

"
T ! T g b
= + ic
8’ sl ]

d

-D¥, = W%, + (-WOIG)(-AVE)(-DE,
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s r a,@s,
(L) = s b= + L e

4 a O—a—

]
~

(BL0)) = S (v Nolh (~Gffy0) + SN2 CACE Vil G (=Gl ) +

FIG. 8. The beginning of the perturbation series of the consis-
tency condition.

FIG. 6. The graphical representation of E29). The gray poly-

gon represents the proper graphs.

tions can be expressed with the use their proper parts and the
irreducible and proper parts of the density correlation func-

tions as seen in Fig. 7,

A (K, iwg)=

After all the regularizationgpartial summationsneeded
by the strong repulsive part of the bare interactioften

ST (Kyiwn) + TS (K, i 0n) VIEATE (K i wp).
(32)

D. Rotational symmetry and spin-transfer decomposition

Since rotational symmetry along tleaxis is not broken,
the z component of the total angular momentum is con-
served, which results f0|gr and 2 in yr—~8s=(y
—0) gr(FZ),SgTS or symbollcally(F|g 1()

As a consequence of these symmetry relations, (Z8).
can be separated to three equations according to the number
n=[y(c—r)+8(c—s)]/2, with c=¢/(F,),s{s specifying
the spin carried by the propagator relative to the spin of the
atom in the condensate. For this reason, let us define the

idealized as a hard corand by the fact that the pseudopo- following matrices for the polar case:
tential is chosen ak independent, the parametarsandcg

are to be determined in such a way that the contribution of [ QOO g??,l o 2‘1’?1 22?,1
A'H to the proper parts be as small as possible. gyz‘?: g g% ' y6— 300 500 '
11 Y-1-1l 5 11 “-1-1l 5
C. The determination of the chemical potential and the (353
treatment of the noninteraction self-energy vertex [ ng gijl [ EI,{ Eijl 1
As pointed out earlier, with the introduction of the new set +gw‘>‘ g gt ' +275: += ++ '
of creation and destruction operators with E@=) and(8b), b ) e 2)
one can derive the relation between the condensate density (35
and the chemical potential from the requirement that (gt gr- D P
+ : ) _ 11 1,-1 _ 11 1-1
(by(k))=(b(k))=0. Using perturbation theory for the ~G ,=| " o P o ,
evaluation of these expressions, one can arrive at equations [G-11 G141 v 201 gl v
that can be symbolized as seen in Fig. 8. One can notice that (350

a similar rearrangement is possible as was made with th

Green’s functions that leads to
(b}(0,0)=3550,0G3,(0,0),

S
whereX3 s

the consistency condition is equivalent to

5,(0,0=0.

(33

is the sum of those irreducible graphs that have
only one incoming(outgoing line. Using the symmetry
properties of the Green’s functions, one can easily derive that

\here the indices in the upper left corner correspond to the
numbern. For the ferromagnetic one, let us define the fol-
lowing quantities:

. [g++ G,
y6—

++ ++

0 E1,1 EZI.,—l

275: ++ ++ J
—1-1l5

(39

The noninteraction self-energy vertex corresponding to
the last term in the Hamiltonian of E€P) is to be calculated

in each order of perturbation theory. Since this vertex is
proper and diagonal in spin and anomalous indices, it is part

of the proper self-energy as illustrated in Fig. 9.

AR, = Ko+ (-EOQT) (-KTWVE) AL

G- 1,1 gtf—l vo -1,1
(363
“g=ag, =319, (36D
“G=¢" ., 3=3% ., (360
0G=Gr;, =3, (360
a T .8 TICIDSI
o = —at—h——-— s +
—————

_E;‘fl = (_ﬁ_l)(ﬂo - ﬂ)‘srs + (—ﬁ_l)N(]CI, Vy‘"g,SI Cs’ +

FIG. 7. The graphical symbolization of the building up of the

anomalous vertex from proper parts.

FIG. 9. The self-energy with the noninteraction vertex.
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QG=¢-;_,, ==3",,. (369  case (+,—,Q,—Q) differ from all the other modes since for
’ ' these cases spin conservation forbids the existence of anoma-
o ) lous Green’s functions and self-energies. With these defini-
The indices in the upper left corner correspond to the numbetions, one can explicitly construct the Green'’s functions. The
n except for the quadrupolar spin transfer 2 and similarly  propagators corresponding to different spin transfers will be
—Q is for n=—2. (Note, that there is no quadrupolar called different modes in the following. For all three modes
Green's function for the polar case because the value of of the polar casen(=0,+,—) and for the first mode of the
cannot bex2 here) The later modes of the ferromagnetic ferromagnetic casen=0) the Green'’s functions are

5a’7(aiwn-l-ﬁ_lek)-l-a’yz_%_a nNa,y (37

n = =
Gay (log—h te—S1)(log+h teg+3 1)+ 13 "A

where e,=€,— uq is introduced. This equation defines the holds for the proper parts as well. And as a consequence Eq.
quantities"N,,, and "A for the first four modes. For the last (29) also decouples into three ordinary matrix equations ac-

four modes of the ferromagnetic case, one can get cording to the specific spin transfer. For this reason, it is
useful to define the following matrices:
. 1 For 0 spin transfer:
I e h T3 (389 ’
3 DIt D¢ DY
00 00 00
= 11 =03, (38b) (°D)av=Di5=| D+ Doo D= | , (402
Tiw,—h e -- —- -
Wn €k LD, Dy D__ ab
Sometimes it will be practical to cast the formulas into a _
. . . . . H ++ H+ + H+ +
most concise form. This can be achieved by introducing the o+ 00 --
following formal definitions: (Ol ypi=T122= n%, ny o | . (4op
ggol 2201 L HII HO_O_ H:: ab

+
b2

' 0 *s ' 0 39
O 0 ’ 6 0 0 y ( @
¥8 ys ChtCs Cp Cn—Cs
0 0 0 0 } (Og)abzzzvgﬁz Ch Ch Cn , (400
5

g7§:|:0 gool,l}w;, 275:{0 2901’71 Ch—Cs Cy Cn‘l‘CS ab

Y

(390 where no automatic summation is understood now. From Eq.
with the help of which Eq(38a takes the form of Eq37),  (29), one obtains
i.e., the validity of Eq(37) is extended fon=0,+,— for the
ferromagnetic phase as well.

The conservation of thecomponent of the spin for these

092h0g+0r=[ Og 0[:)_ (41)

For +1 spin transfer:

D; . correlation functions means that-s=r’—s’, which
DO"(') D8+
+ _
("D)ap=D5p=| 5o D—o} , (429
Gt : Grs, : *o T0 a
P : ) pY—11 * )
H0+ HO+
a+1_ | +0 0-
- (+g)ab==Hgfl,b—{Ho n-o (420
+0 0-1lap
1911 ; AT ;
+ aar1_|Cs Cs
("Clab=Vpiip= e ol (429
S Slab
FIG. 10. The spin-conservation property of the Green’s func- @
tions. Here ,G denotes the Green'’s functions of the polar case.and the resulting matrix equation is:
while (G denotes the Green'’s functions of the ferromagnetic case. A
black box refers to a nonzero element and we used0,1,0)" for "D=A"I+"I "C *D. (43
the polar case ang=(1,0,0) for the ferromagnetic case specify-
ing the condensate. For —1 spin transfer:
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-D+0 DtO —-,—1
o ‘A—1=( ‘if-l). (490

—D ::Da+1,a:
("D)ab=Dppi71 DY DY

: (443 g/_\_1=(Ao-’
ab '

For the ferromagnetic cagevherec=¢(F,)s(s=1] it is

[ 0 0
("I TR Iy, iy (44b) easy to verify that spin conservation forbids any spin index
=/ab™ b,b+17 e m%| for "TA_, and for “A;. These later vectors can be taken as
) ap zero:
B CS CS A++ A+a
("Clab=Vibii= } : (440 ps o
) Cs Cslap A= A% |, Ae=| Ak'|., (508
o AT, ATE
and similarly
Lo (MG o (ASS) L
D=A"1I+"1I "C "D. (45 fAl:(A0:1)' f/_\lz(Ag‘)' fA_1=0,
For the +2 spin transfer case, from the fact thdt | +4 1
N/t _ H H . f [_\ :Q! (50b)
=V, =0, the following results can be obtained:
. . AFO
D, -=AIL, -, 46 FA1=0, {A'=0, F/_\_1=<A8’-1),
0,—-1
Dii=all"]. (47 AO-1
. . f41=<A8f1) (500
As a consequence of E?2), °D,~D (and their proper -0

party are symmetric matrices, furthermor@D (k,iw,) . .
~OD(k,—iw,) and *D(k,iw,)="D(K, —iw,). This means for the ferromagnetic case. .The symmetry relations of 'Eq.
that the generalized density-correlation functions for zero!29 hold lfortt:le proper and irreducible parts as well, which
spin transfer are completely symmetric under time reversal!> €auivaient to
Equation(32) also decouples according to the amount of OAY(K,iwy)=CA%(K,iwn)=CA (Kiwy)=A_,(k—iwp,)

spin transferred.

~ =A%k, —iwy), (519
°A =R+ OC 0, (483
TANK Twp) =T AYKiwp) =T A (K T wp)
A=A EC A, (48b ="A_(k—iw)="A"%K —iw,).
where the introduced , vectors are different for the polar (51b

and for the ferromagnetic cases since the allowed spin pro-
jection of the incomingoutgoing one particle is determined

by the rule of spin conservation and the spin projection of the
condensate. It results that for a given spin transfer the spin

E. Dielectric functions
With the definition of the

projection of the incomingoutgoing particle can take only e3h(K,iwn) = 856L—TIS(K,i w,) VD3, (529
one valugothers are forbidden by spin conservajidBo for
the polar caséwherec= {/(F,),sZs=0) the anomalous ver- % (k,iw,)=1-CI(k,iw,)-°C, (52b)
tex vectors are B -7 )
A++ AOD[ t‘g(k'iwn):t;_ig(kviwn)'ig, (52C)
Oa ++
gAa: Agg , g/_\a: Ag(‘} , (499 diele_ctric functions Eqgs(29), (41), (43), and (45) can be
AD- A 0@ rewritten as
Oa -=
A0+ A sﬁg(k,iwn)fos,(k,iwn)=ﬁHffs,(k,iwn), (533
+Al:( ,1), +Al:( +01),
PR AL P A O (K,iwp)-"D(K,iwy) =f’ll(K,iwy), (53D
Lo (ALY (ALY “g(K,iwy) - "D(K,iw)=A(Kiw,). (530
p—/_\—l_ A;O—l y p/_\ - Aar_,*l ’ (49b)
F. Interaction propagator
+0 +,1
A= ( Ag_vl) “Al= ( A9r+1) With the use of the proper parts of the density-correlation
P Avalt P VAL functions one can define an interaction propagator,
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Tys T8 LA aba c e b a c 9k e b
[ I = %—-——@ + &-@-@ + .
| I aﬂ @ d f g« dhrl f B
| |
— : + 12 FIG. 12. The structure of the perturbation series of the improper
I b d self-energy.
[
: in such a way that
7', 3I 7.I Sl rl sl
rs _7rs | Brraar’s’ os's
=G,5TG,.M, ) 643
FIG. 11. The Feynman graph of the interaction propagator. yo Fys TyoTap Fpo (
W =W+ WIS TS Pawe (64b)
Wi = Vg FWRTTRVLS, . (54) e e Traed T

. ] . o ] is fulfilled. The earlier discussed symmetry properties hold
which can be symbolized as depicted in Fig. 11. Using thgor these decomposed parts as welhce these are defined
dielectric functions, one can get by a class of graphsand as consequence, E462), (643

rs _ba rs and Egs.(63), (64b) split to matrix equations in the same
Waberg=Virg - (553 way as Eq.(28) and Eq.(29) did. It is convenient to define

. . . . . the regular part of the dielectric functions with the
This equation also splits to parts according to the spin trans-

fr, o)1= 550, TG VES, (654
Oy % =0C, (55b) 0,(r) =07 _Oy(r).0¢ 65b)
W oe="C, (550 :g(r)::;_:g(r).:g (650
+— At
W2 =W,-=0. (550 equations, which can be used to express the effective poten-
tial as
G. Proper Green'’s function and irreducible polarization part
: - - - ow % M="°¢, (662
With a simple substitution, one can verify that both Eqg. = = =
(28) and Eq.(559 have the following partition property. If W Ee(D==C (66b)
one decomposes the self-energy and the proper part of Eq. = = =
14f) into two, _ .
(149 wrl=w;"=0. (660
2;55:2(),15)[5"'2(},25”5, (56)
o (Dsr (2)sr H. Improper self-energy and singular polarization
HrISI:Hr/SI +Hrlsl ) (57)

With the use of the irreducible and proper anomalous ver-
ﬁgx functions and the effective potential one can construct the

then one can define propagators corresponding, e.g., to t|mproper self energiet@as seen in Fig. 12,

first part of these quantities
AMA%(K,i wn) = A2G(K,i 0q) WIF(K, i) AL5(K i wn),

(1)rs_ Hrs rr’ (Lr's" ~(1)s’s
Gys =Y90)y6T G0yyezop  Gps (58) 673
1 d
Wars=vS +wbrsmhpads (59)

~ ~ ~ —1 A~
hoMa/}:OAa OW OAB:OAa Og Og(r) O/—\B’ (67b)
in such a way that
= B
gryS(S: g(y:%)rs_*_ gg]grr ’Egzp)r's/gf)/ésl (60) (670)
It is easy to verify thaW_ © =0, which means that for the

ferromagnetic case the improper self-energy in #t#2(qua-
grupolab spin-transfer mode

Wiy = Wiyt WRTIIE W (61)
is fulfilled at the same time. Specially, if one decomposes th
self-energies by Eq(30a and the proper graphs by Eq. QM =0. (670
(30b), it defines the proper Green’s functions
_ Ve The singular polarization can be expressed as well with
G5=910)y5T G0)yo>0p Tno » (62  the use of the proper Green's functions and the proper
anomalous vertices as seen in Fig. 13 and is of the form:
and an effective potential

ATTES (K i wn) = A8 (K, i 0) G2%(K,i 00) AL (K,iwp),
WS, =V + WiSTT(bayde 63 e v MR (68

r's’— Vyrgt
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WhereH++=4XI*Hxl. A similar equation can be derived
to D__ . There are both regular and singular contributions to
these propagators.

One can get a closed system of equations for the zero-
spin-transfer correlation functions of E¢l4a, Eq. (14b),
and Eq.(14¢. To this end, first we multiply Eq(41) with
hol_](s)zoﬁaﬁozxaoolﬁ, (68D V3¢, from both sides._ We further use th8§=3cn§10§1

= +2csé0€,. The resulting equations sound as

A ="G, 5 N o AP, (689

FIG. 13. The diagrammatic structure of the singular polariza-
tion.

Dnn:ﬁHnn+CannDnn+Cananzv (723
where the circle denotes the diadic product operation. For the

polar case, the singular polarization in the spin-transfer Where Il,,=3&,°1¢; and I1,,=6¢,°11£,. Multiplying
mode is equal to zero since there is no corresponding propétg. (41) with v2£, from both sides, one gets

Green’s function. For the ferromagnetic case, e.g., foritBe B

spin transfer mode, the singular polarization is D,~#Il,,=c,I1,,D,,+cJl,,D,,, (72b)

AP = AT (G (ATE. (69 with I1,,= 2£,°11&,. The third equation can be obtained by
As for the scalar casg31,30, one can see intermediate multiplying Eq. (41) with f3§1 from the left-hand side and

states corresponding to collective excitations in the perturbaith v2&, from the right-hand side, which leads to

tion series of the one-particle propagators and at the same

time one can identify one-particle intermediate states in the Dn=All,+ CpllnDny+ Cslly Dy (729
perturbation series of the correlation functions of the collec-

tive modes. However, there is a great difference between théhese coupled equations can be solved for the correlation
scalar and the spinor models. The rotational invariance of th&nctions. The polarization pad,, written out in detail
interaction potential results in that; *=V', =0, which reads as

leads to the proper nature of the quadrupolar spin-densit

correlation fur?ctigns. This combinedqwith thpe fact trr)1at in they Mo, =10 =T+, — 1% (73
polar case there is no anomalous vertex with spin transfer

results in the prohibition of the coupling to any of the one-It is obviously zero if the system is invariant under spin
partic|e correlation functions in this phase_ reflection, i.e., when those matrix elements coincide that can

be obtained from each other by reverting-do a— and vice
versa. This condition is fulfilled for both cases in the sym-
metric phase, moreover, for the polar case it even holds

With the help of the quantities discussed in the previoushroughout the condensed phase. Wilh,=0, Egs.(72a
subsection, the properties of the density-correlation functiongnd (72b) are independent, giving the solutions

can be further investigated. For this reason, let us introduce
the following vectors:&; = (1,1,1)'/v3, &=(1,0-1)"/v2, ATI,,,

§3=(1,—2,1)T/\/§ for the zero-spin-transfer mode aqq D”"Zl—cnl'[nn’ (743
=(1,1)"/v2 and x,=(1,—1)"/v2 for the =1 spin-transfer

I. Couplings among the correlation functions

mode. It is easy_to verify that¢1,&,,&3) and{x1,x,} are D=0, (740
orthogonal and normalized basis sets in the linear vector AT

spaces with dimension three and two, respectively. The D..= 2z (749
density-correlation functionél4a, (14b), (149, and (14d) 2 1-cdl,,’

can be expressed as follows:
and leading to two separate excitation spectra. The singular

Dnn=3(£1Dé1), D,,=2(£1°D&,), Dn,=6(£1°D&y),  part of 1T, can be cast with Eq68H) to the form
(70a

. . AT =2(£,"8 ) ("8 PE2) G, (75
D, =4(x1'Dy1), D =4(xi Dxy). (70b ) )

which is zero if spin-reflection symmetry is present, since the
anomalous vertex vect(SrZ\a is orthogonal tcg, in this case.

In the ferromagnetic phase, the spectra_of collective exci-
tations corresponding to spin-density waves and density
waves withn=0 are coupled. Above the critical tempera-

ture, this coupling vanishes and the two modes will be inde-
pendent. In the polar phase, spin-density fluctuations will

Since OIQ is a symmetric matriD,,,=D,, holds.
Multiplying Eq. (43) with 2y, from both sides and using
that *C=2cex;°1x, One obtains

C
D++:hH+++§SH++D++a (7D
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always be independent of the particle-density fluctuations, 1-c, (I +118)) 0 0
furthermore I1{Y =0, which means that the spin-density cor- e
relation function(74¢) has only regular contribution. 0.1 0 1=c " 0
. . g'= (79
In the polar phase, further analysis leads to results impor- = c,
tant for the following. First note that, when the system ex- — (MR +11¢) 0 1
V2

hibits the spin-reflection symmetryD and °II have only

four independent elementistead of six characteristic to @ \yg arrive at the important result, that the determinant of the

symmetric matrix. These independent elements dig |
=N--, O ;=n*", n%®=mn,"=0"=1m, and

dielectric function, which is invariant under such transforma-
tions, reads as

I153. Second, these can be cast into a more practical form

with the help of the orthogonal matrix

det’s =det® ' =[1—c,(IIY)+ 11 ] (1—c 1),

Vi V3 W3 (803
3 3 3 This determinant factorizes into two, in agreement with the
V2 V2 separation of the density and spin-density fluctuations. Fur-
°Q= 5 0 5 (76) thermore, it shares one factor with its regular counterpart
since
V6 6 6
s 3 6 det’s "= (1-c ) (1-cl1L)), (80b)

Its rows are built from the vector&,{5,§3}. Performing
the transformation leads to

which can be obtained by taking the determinant of &§)
after setting alllI®®=0.

Another important consequence of the spin-reflection
symmetry is that the interaction propagai®5b) and its
regular part(66a has the same structure as the interaction
matrix (779:

3¢, 0 O]
0c1:=00.0C.00T=| 0 2c, 0|, (773 3¢, 0 0 3¢y’ o0 0
0 0 O o'=| 0 2Cs O, ow=| 0 2cY of,
~ 0 0 O 0 0 0
oy, oy (81a)
3 3v2 with
07T (x)"._0py. OTT(x) . 0T gy
o« =20.1«.0%0< 0 — 0 |, C c
] O-11 C > (77b Cp=— Cgr):—”(r)' (81b)
o 1-c,Il,, 1-c,II,,
[15%S 0 gy
L 3v2 6 __ G n___Cs
Ci=———, Cl=—r > 81c
S 1_Cstz s 1_CSH(zrz) ( )

with T1{9=3v2£,°I™&; and I =6£,"TIM¢;, wherex

Those correlation functions that have singular polarization

can ber or s corresponding to the regular or the singular parts correspond to fluctuations belonging both to the con-

parts, respectively. Furthermore, according to &%) ngsz)
=0.
The total polarization matrix, therefore, becomes

densate and to the noncondensate, while those that have no
singular proper part only belong to the noncondengiuey
cannot couple to any of the one-particle mogdeo in the
polar phase the spin-density fluctuations described Dy,

BIGG oo 7 (which are independent from the particle-density fluctuations
nn nn BB described byD,,) belong only to the noncondensate. The
3 3v2 singular-polarization parts of the quadrupolar modes are also
e zero (since there is no corresponding Green'’s function and
011’ = 0 = 0 the anomalous vertices of the2 spin transfer are also zero
B 2 (78) meaning that these type of fluctuations also belong only to
H(lg)JrH(ls; Hgg)JrH%) the nonpondensate. '_rhe_proper pem;%, H_H, andH,,
T — have singular contributions too with intermediate one-

Using Eqgs(77a and(78), the dielectric functior{52b), after
the transformation, can be cast into the form

particle stateSG, 4, *G,z, and ~G,z, respectively. These
modes are coupled to the condensate. Infdreomagnetic
phaseD,, andD,, are coupledtheir cross correlatiol ,,
do not vanish eithey their denominators are common. All of
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their proper parts have singular contributions resulting ininserting it to Eq.(84) and using Eqs(67b) and (67¢ and

their coupling to the one-particle excitations wilB. These  that det"'G=—"A"! and comparing the result with the de-
fluctuations thus belong both to the condensate and noncomominator of the Green’s function82g, one can arrive at
densate. The correlation functions of the spin waglesth  the basic connection

the +1 and =2 spin-transfer mode¢sD . ,, D__, D‘L, _

and D?_ have singular proper parts connecting them with "A det"g ="A detn§(r)- (86)
the propagators‘*Q_, g, %G, and Qg,.respectwely. Note, Changing to retarded correlation functions, which is done
that there are no improper self-energies for the quadrupol%

. ) , the usual way(by analytically continuing in frequengy
sfpln-transfer modes, consequently their proper Green's fun 43], the elementary excitations of the system are determined
tions are the same as the full propagators of these two mod

y the poles of the corresponding correlation functions. The
spectra of the one-particle excitatioiguasiparticles are

J. Coupling between the Green’s functions and the correlation given by the poles of the Green’s functions, or equivalently
functions and the spectra of excitations by the equation

(A) Let us first consider the modes with=0, +, —. With
the decomposition(30g9 of the self-energies and with a

straightforward calculation starting from E¢37), one ar-
rives at the expression

"A=0. (87)

The spectra of collective excitations are determined by the
poles of the density-correlation functions, or equivalently by
. - N the equation

Noy N, tay"™M_, _,

"Gay= = ., (823 _
T BN, M, det™ det" =0. (89

both for the polar and ferromagnetic phases. Here we intro- Equation(86) shows that the Green's functions with spin
pofar 9 P ' transfern=0, +, — can be arranged to have the same de-
duced the quantities

nominator as the density-correlation functions with the same
spin transfer. This means that if dethas a zerdthe corre-
sponding density-correlation functioiD, has a polgthan
"A must have a zer¢"G must have a polethere as well in

”Nay: Sufaiwg+h le) +ay ni,yy,a, (82b

”Z=(iwn—h‘1sk—”in)(i wn+ﬁ_1ek+n§_1,_1) general. The zero-spin-transfer mode in the polar case is an
~ ~ exception, where both the dielectric function and its regular
+"2 1" (820 part factorize and share some of their zerfz=e Eqs(803

and(80b)]. In this case, the zero of the left-hand side coming
with "G,,="N,,/"A and detM="My; "M _; ;—"M;_;  from det’ satisfies the equation with the zero coming from
"M _, ;. With the help of Eqs(53b) and (530), the density-  det%" of the right-hand side, instead . Hence, this
correlation functions witm=0, +, — can be brought to the zero does not appear amongst the pole$@f This further
form means that density-correlation functions with 0 andl spin
transfer have common denominators with the Green’s func-
"E "l 83 tions corresponding to the same spin transfer for both the
' (833 polar and the ferromagnetic cases, except Ehg spin-
density correlation function in the polar case, which do not
by writing couple to any of the Green’s functions.
. N1 (B) Concerning the quadrupolar spin wavés= =2
E=dei"g) "z " (83D modes, let us consider first the ferromagnetic phase. Both
) . . . _ the full Green’s function and the correlation function are
An important relationship can be shown in the following proper[see Eq(67d), (46), and(47)] for such spin transfers.

way. First, applying the decompositiofig ="g("+"g(®), Consequently, one can substitute in E8) the full Green’s
with "g(®=—"IIO"C, to det "¢ leads to function leading to
detn§=de(”§(r))de(l—nIJ(S) "W). (84 DY :4(H(r):it+ﬁflf7xii LGty f;‘\f,::l)

With the help of Eqs(68h) and(68¢ and a straightforward

but rather lengthy algebraic manipulation one can find that The one-particle excitations then appear also as collective

- ones.
de(1-"I®"W)=def1—%"' "G,z "A,o"AP "W] In the polar case, there is no Green’s function with

=+2, see Sec. lll D, therefore, these type of collective ex-

citations, do not show up as one-particle elementary excita-
tions.

Thus, in the polar case the collective and one-particle ex-

(85 citation spectra do not match fully. There are excitation

=1—-%4" naaﬁ nZ\anW n'/"_\ﬁ

+4 "t de("G)det"A, "W "A#).
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" QO §' r a r.a
r 8 T ) 1
0" — ‘ + 1 , = --—;oa— =+ -——;Oa_
a ¥ a ¥ r 1 s
@ v FIG. 15. The proper anomalous vertex of the Bogoliubov ap-
OO proximation.
r r M
m«— = sk + : o
s O—a—

~ _ T rer
b1=h N[ (= )¢+ Noll £V ¢01, (92b)
FIG. 14. The Feynman graphs of the proper self-energies and

the tadpole diagrams in the Bogoliubov approximation. The corresponding Feynman graphs can be seen in Fig. 14.
The regular polarization is zero in the Bogoliubov ap-
proximation and the proper anomalous vertex reads as
modes in this phase, which do not belong to the condensate. _
In the ferromagnetic case, all of the collective excitation A= \/N—o[éraﬁm_lg“;r 6535%15:], (93
modes are connected to corresponding Green’s functions,

meaning that all types of density fluctuations are governed'hich can be graphically represented as seen in Fig. 15.
by condensate dynamics. After calculating the proper Green’s functions, the im-

proper self-energy and the singular polarization can be con-

structed from Eqs(67a and (68a. With their explicit form

known, the correlation functions can be expressed. These
As applications of the general theory, we present two apealculations have to be made separately for the polar and for

proximations, namely, the Bogoliubov one and the RPA.the ferromagnetic cases.

While the former one applies at and near zero temperature,

the RPA is valid at finite temperatures except in the vicinity 1. Polar case

of the phase transition. Both of them assume that the system |n the polar casec>0; the condensate spinor in this

is a low density one, i.e.8(ro)<1, wherea is theswave  phase can be chosen gp= 6, o. The chemical potential can

scattering length antd, is the average interparticle distance. pe calculated using Eq:34), which results inu=NqC, .

Correspondingly, the parameters of the pseudopotefiial = since the proper self-energy is zefxcept the diagonak,

IV. APPLICATIONS

are chosen as terms, the proper Green’s functions will be
47Tﬁ2 a0+ 2a2 0.0
Cp=—— ———, 90 TS (Kiw )= — %y
Iy 3 (90) G2 (K,iwp) do—h Te (94)
47mh? a,—ay This is similar to the free propagator of EQ7) but the uq
Cs= M 3 (91) parameter has been canceled out. The anomalous vertex vec-
tors are
whereay anda, are thes-wave scattering length in the total 0
hyperfine spin channels zero and two, respectively, a choice, o~ 0 . N,
that the usual one in case of the atomic Bose[dab4]. To pAa= WNo |, pA1= NG pA-1=| o7/
lowest order in the scattering length, the two particle and the 0
many-bodyT matrices are equf#t1] and the contribution of (99

AM can be neglected in the calculations below. By using them, the singular polarization matrices and the

improper self-energies can be expressed using ©&&s.and
(67). The singular polarization matrices are

In this subsection, we discuss the simplest approximation
in the framework of the dielectric formalism, namely, the 0 0 0
Bogoliubov approximation. This is a very low temperature of®=| 0 IIg Of, 31‘[5:{
calculation, it neglects all terms coming from the nonconden- B B
sate density. This approximation was already studied by
other authors{14,15 with other techniques. The Green's wnherell.=N,/(*ifw,—e.) andIls=1II,+II_ were in-
function method of the present work gives the form of theygquced. The improper self-energy matrices are
correlation functions as well, not only the frequency of the

A. Bogoliubov approximation

0O 0 O -

modes. o . Noc, Noc, . . NoCs NoCs
The proper self-energies in the Bogoliubov approximation M=% , M=h .
NoCn NgCp, NgCs NgCs
are
ifﬁﬁ_l[(,uo—m&séaﬁ NOZI,VL;S'{,“S, Syl Putting all together to Eqi82a), the Green’s functions will

(929  be
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Ouy(aiwn+ h e )+ ayh INgC,

n'&:
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(ion—% te)(io,+% te), where the denominators

0g —
Gary (iwy)°—h e (et 2Ngcy) (983 are common with the corresponding Green’s functions in
agreement with Eq(86),
. 5ay(aiwn+ﬁ_1ek)+ayﬁ_1NOCS
7ga,y: - 2 _2-2 (98b)
(fwy)*—h ™ “e(ect2NgCy) H-1oN 0 0
0€k
By the use of Egs.(83), the correlation functions D= (o) 2—% e (e, + 2NoCy) 0 1 0],
(409, (423, and(444a can be cast to a form, after multiply- 0O 0 O
ing both the numerator and the denominator with (993
|
1 FNolioaFA e+ Noco)] —cghiIN3
“D=— = . 99h
= (ion)?—h 2e(ec+2NyCy) —cgh TIN2 +Noliwn*A e+ NoCo) ] (99h)
|
With the use of Eqs(70), the particle number and spin- e+ o0 o
density correlation functions can also be calculated. The re- o1 (s)
sult is thatD,,= 2% Nge /[ (iwn) 2~ ~2e(ec+2NgCp) ] o= 0 0 0f,
while D,,=D,,=0. For spin waves D,,=D__ 0 0 O
=44 INge /[ (iwn)?— 1~ %e(e+ 2Ngcs) ]. From Eq.(89) o o
Q _ . s)0+ s)+0
and Eq.(683, D?. =0, as mentioned before. *H<S>={H+0 0} H(S):{Hm 0
= 0 0]’ = 0 0]’
2. Ferromagnetic case (102a
In the ferromagnetic case,<0. One can choose the con- with
densate spinor a& = &, . . The calculation is analogous to
that made in the previous subsection. The chemical potential - ~ ~
P c P e =7 INo(Gi + G ), (102b
[from Eq. (34)] is u=Ng(c,+Ccs)=Nyg. The 33 proper
self-energy has three different components in its_diagonal H(+5230+=7L71No~101: (1029
(other self-energy components are 2endich results in the '
following proper Green’s functions: 1N
g prop TS 0= NgGY ;. (1029
T (ki) Oay (1008 The singular polarization for the:2 spin transfer reads as
iw,)=————"1—
ay 2T giw,—f e _ ~
aiwy, k MEE =7 NGy 2y - (102¢
~ Sy The improper self-energies are
G K )= ——— 1 . (100 PP °
ay ailw,—h *(e,—NgCy)
0 _1|Nog  Nog + 00_ 7 1
M=n Nog Nog! M=M7;=7%" *NgCs,
~ S
(Ko =— — . (100 -
gay( (Dn) alwn_h l(ek_ZNOCs) ( Q QM:Mll :0, (103)

There are two things to note. The first one is that the
parameter has cancelled out here as well, the second oneis
that the remaining self-energieén the last two proper
Green’s functionsare positive since <0 in the ferromag-
netic case. The anomalous vertex vectors are

B N
Rz 0 |, iHu=["0e) F =0 aon
0

The singular polarization matrices are

043602-15

whereg=c,+cs. For the ferromagnetic case the resulting
Green’s functions arffor the later ones see EqgR8)]

Oayl i wat+h e )+ ayh Ny

%G, =G =
Ty (o)’ =1 %e(e+2Nog)
(1043
TGn= Qgg:m, (104b
or 1
gnzgll :i (1040

wn—h Y (eg—2NoCs)
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For spin transferea=0,+,— the correlation function§40a), .y 0.
(423, and (448 can be evaluated from Eq&3) and with rmg B T Tl T
the use of the polarization matric€s02). Both the numera- h * r!s * 'r!s ’
tors and denominators are multiplied with the corresponding '®)
"A, leading to 7 s r s’ s

’ = r Ok * is + is

r —a——» 7 —-—
277 INge L oo
0Op=_ - B 0%k 0 0 O FIG. 16. The graphical representation of the proper self-energies
= (log)"—f “ex(ex+2Ngg) 00 0 ’ and the tadpole graphs in the RPA.

105
(1054 Goldstone modes. Théw mode belongs to thég,,, Green's

. No 1 0 functions and thé (OIQ) correlation functions, while the
D=1 o ol (105 *» mode belongs to the'G,, Green’s functions and the
" k D.. (D) correlation functions.
N 1 0 For the ferromagnetic case, the excitational energies are at
o 0
P=C io,—h e |0 0} (1059 Nog
(1050 %w=1"1\ee+2Nyg) —— Vk’ (1083
(k—0)
The correlation functions with= =2 obtained directly from
Egs.(46) and(47) with polarization function§1026 read as Two=*+h"le, (108b
F+ NO + -1
Diz= (1058 o= E7" (€= 2NCs). (1080

B iiwn—ffl(ek—ZNoCS) '

The particle number and spin-density correlation functionsThe first (w) mode, which is responsible for densitand

from Egs.(70) are spin density fluctuations, belongs to th%a7 Green’s func-
tions and the connectdd,,,, D,,, andD,, (OQ) correlation

27 INge, functions. This is a linear Goldstone mode. The nexi)
Dnn=D2z= Dnz:(i wn)2—1 2ep(er+2Ngg) modes are responsible for ordinary spin waves and belong to
(1069  the “Gy;=G%. Green’s functions and the .. (*D) corre-
lation functions. These are also Goldstone modes but with a
_ 2Ng quadratic dispersion. The Ia%@) modes describe quadru-
D++_iwn—ﬁflek' (106b polar spin waves. They belong to t@glf G, Green's
functions and thé®? . (DIZ) correlation functions. These
2Ng are non-Goldstone modes and they start with a gap. The
D——:mv (1069 frequencies found in the Bogoliubov approximation agree
with those of Refs[14,15 obtained in a different manner.
D9, = Mo (1060

=75 w0y h—l(ek_ 2NyCs) B. Random-phase approximation

The simplest way to take into account the appearance of
3. Collective excitations in the Bogoliubov approximation the noncondensed atoms, leading to a damping mechanism,
The spectra of collective excitations can be expressed uds 10 add a Hartree term to the Bogoliubov proper self-
ing Eq. (88) (for the 0 and+1 spin-transfer modgsor ~ €nergies(compare Fig. 14 with Fig. J6and to choose the
equivalently by the zeroes of the denominators of the appro‘egular polarization graphs as bubbles. Some results of this
priate retarded correlation functions. For the polar case, thigPProximation were published earlier in Rp#4].

results in Therefore, the proper self-energies of the random-phase
approximation can be graphically represented as seen in Fig.
NoCp, 16 and their contributions are
Sw=r"e(ex+2Nyc,) —— K
. = _ t ’at ret rat
(k=0 (1073 Erasy:ﬁ l[(MO_:U/) 5I’55a7+ N()grfv::ss gs’+Hs ' V;ss )
(1093
tw=h71 E(e +2NC)—> NLCSk jort t tor's! )
Kk o%s (k—0) M ' Sl:hil\/N_O[(_M)gr 5rs+ Nofr'frV:ss +HS ' V:SS ]
(107b (109b

There are no other excitation modes for the polar case in thislere theH>" notation is introduced for the contribution of
approximation. These modes have linear spectrum and atbe Hartree term
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T ! tion is similar to that in the scalar case, the chemical poten-
= - tial cancels the Hartree ternp81].
8 8 The anomalous vertex vectors are given by &%), and

FIG. 17. The Feynamn graph of the regular polarization func-S° the singular polarization matrices will also be the same as

tion in the random-phas@artred approximation. for the Bogoliubov approximation E¢96). The regular po-
larization matrices are as follows:

_ d’q 1 s, i I, 0 O
Hrs:"T 1(27)3,872 [—3G(a,ivy)]en. . 0 M, O
7=0 n H(r): 0 I, 0|, +H(r): 0 LI’
(110 0 0 II, 0
The proper self-energies are independent of the wave (114

numbers and freque.nmes and are dlagonal,,both n the R& accordance with the spin-reflection symmetry discussed in
man and Greek indices. The proper Green’s functions Ar&ac 111, Here the notatiorﬂ0=H(r)*+—H“)OO—H(”"
. . =H+s =Moo TH--

d|agpnal_|n the Rom"’!” and Greek _|nd|ces as well. The P introduced. The interaction propagators are then obtained
proximation is done in a self-consistent way, namely, thefrom Egs.(663 and (66b)
e ' '

internal propagators used are proper Green’s functions in th

Hartree approximation. cyen o on_en
The regular polarization will be a bubblgvith proper " (r)s ?r) " (r)s ¢ ¢
Green’s functionsas seen in Fig. 17. Its contribution is ‘w=| Gy G G . W= oo el
; ey-c o ap-cy C
d’qg 1 ~
(r) ; _ . ; 115
—ﬁH,r,ss,r(k,lwn)—f(ZT)SB—hiEI}n 1 (Q,ivy) | (1153
with
X G (k+diw,+ivy). (111
. . . . COK,iw,) = & ,
Since our approximate proper Green’s functions are diagonal . 1-3c ok, iwy,)
in their spin indiceqr=r’ ands=s’) the regular polariza-
ti tri ill be di I Il, with . c
ion matrices will be diagonal as well, wi (K, wp) = s _ (115h
n++ 0 0 1-2c]ly(K,iw,)
++
opp(n — 0 ng3°° 0 With Eq. (67) the improper self-energies become
0 0o m"-- oM =1 NoCh' NoCy’ M op-1 NoC" NoCy”
moot o ] NoCy' NoGy'|" ~ NoCs” NoCy” |
=] ° -ol- (112 (119
) 0 Io- These can be used in Ed82) to arrive at the Green'’s func-

, , . tions in RPA. After multiplying both the numerator and de-
The anomalous vertex remains the same as it was in th

ffominator with defs® btai
Bogoliubov approximation, see Fig. 15 and E§3). With ominatorwith detg™ we obtain

:he li[)uiltﬂing bIo;:ks t_de’[er][ntirr]led we Icz?_n n?w tgrn our atten- oG _ 5ay(aiwn+ﬁ_1ek)(1—3CnHo)+a?’ﬁ_lNoCn
ion to the construction of the correlation functions. " Tiwn2—h 2e2)(1—3c,Tlg)— 25 2eNgCy '
1. Polar case (1173
Using the interactiori7) with cs>0 and{, = &, o the self- . 8o aiwy+hte ) (1—2¢lg) +ayh *Nocs
energieg109 in the polar case Gay= [(iwn)z—hfzeﬁ](l—ZcSHo)—ZﬁfzekNocS .
S +H+ 1 (117b
S = e+ (H T —H™ 7)cg], (113a
1 ° ° Calculating the regular dielectric functions from ER5)
~ and using Eqgs(83) the correlation function matrices could
390=huo, (1131 g caey

be explicitly given. But in the polar case one can use Egs.
(74) to calculate directly the relevant correlation functions in
iff =f Yuo—(H T—H )cgl. (1139  the zero spin transfer, withl,,=3c,Ily+c,Ils and IT,,
=2c(lI, leading to
Since in the polar case the system has zero magnetization,

H 2_3—2,2 -2
the Hartree terms should satisf/* *=H~~ and as a con- _ B[ (i)™~ % "€ ]+ 2A “Noey
sequence the proper Green’s functions are the same as they " [(iwn)z—i’fzeﬁ](l—SCnHO)—Zh*ZekNOcn’
were in the Bogoliubov approximation E¢R4). The situa- (1189
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211, The anomalous vertex vectors are given by E39J).
Dot 5o (118D  One can express the singular polarization matrices from Egs.
s0 (68) for n=0,+,—, and they are of the same form as their
D, ,=0. (1189 Bogoliubov counterparts(102g9 with elements (102D,

(1029, and (1020 where the proper Green'’s functiofis20)
With Eq. (71) and with I1. . =411+ 2115 the correlation are to be used. The singular polarization for th& spin
function of the spin waves will become transfer can also be brought to the forft02e with Eq.
(1209 as the proper Green'’s function,
ATTo[ (i wy)?— %~ 2€f]+ 25 2Nge,
[((wn)2—#262](1— 2c llg)— 2h2e,NoCs’ M =" "NgG 11 (122)
(1189

D..=h

Using Egs.(65) and Eq.(112), the effective potentialV
The correlation functions of the quadrupolar spin wavescan be constructed. Inserting it to Ed$7), the improper

come from Eq.(89) with a result of self-energies will read as
AN (1 1 i INgc[1 O
Q - OM — —O + M — $
D=.=A4ll,. (1189 = det%V|1 1}’ = det"g”|0 O
One can easily verify that the denominators of the appropri- o
ate correlation functions match as was shown at the general °M=M;; =0, (1223

formalism.
where the following notations are introduced to simplify the
2. Ferromagnetic case equations:

In this phase,<0 and{,= §, . and with the interaction B (- (1o
(7) the self-energie$109 become p=Cn+Cs CnCg(4I1Z1 " + 15 ), (122h

detog(r):(l_ Cann))(l_ CsH(zrz)) - CnCsH(r)2

nz »

Sh =", (1193 (1220
S00= 7L yo— 11 ) Cs )
1= (o= Mcy), (1199 det’g=1- =TI, , (1229
31, =k N pe—2Mcy), (1199 ith
here the newly introduced quantit ——
W Wy Introcuced quantity =0+ T+ 0~ (1229
M=Nog+H* " —H™ "~ (1199 L o
my) =m0+, (122

is the total magnetization of the system. It describes the num-
ber of particles responsible for the magnetic mean field. Note mi=m -, (1229
that since the Hartree terms are momentum independent, the
proper self-energies will also be. Therefore, the proper

(n — (r)0o+ (r—o
Green’s functions for the ferromagnetic case read as T =2(I6 " 1120, (122h

~ 5 From Eqgs.(82) and from Eq.(38b) the Green’s functions are
Gy (Kjiwp) =~ (1203

A 71 y
aiwn—h e Soaiwn+ 1 te ) det% "+ ayhi T INgp

G, =Gy =— = = :
B 5 @ Ty [(iw,)2— % 2e]det% " — 24 2e,Nop
Guykilwn)= =t — ey s (1200 (1233
s 00 det+§(”
Gy (Kiwp)= = (1209 g“_g“_[iwn—ﬁ‘l(ek—Mcs)]det+§“)—h‘1Nocs’

aiw,—h He—2Mcg) (123
These proper Green’s functions are similar to their Bogoliu-

bov counterparts, only the momentum-independent mean QG,, =G = 1 (1239
field has changed with the appearance of the noncondensed W21 e, —h Yeg—2Mcy)

particles with spin projectior- and —. The chemical poten-

tial here do not fully cancels the proper self-energies leaving Equations(83a and (89) give the correlation-function
behind the energy shift due to the magnetic mean field.  matrices, which combined with Eg&Z0) result in
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. (I + T [ 1— (T %%+ 4T 7))+ T 0+ 11~ (1 — ¢ I15y°

Doy det’ , (1243
5 _h(H@f*+Hf)j*)[1—cn(HgQ°°+4H(I):’)]+H(I>:’(1—an80)°°) (1241
zz— det0§ '
|
1 KRR § (SR (i It is convenient to introduce the following quantities: the
Dp,=% 9ot%% : (1249  thermal wavelengthx=%(B/2M)Y? the critical particle
< density of the ideal gabl,=3T"(3/2)¢(3/2)/[(2)2\%], di-
N0+ L T1(910+ L p(N-0 mensionless interaction strengtlag s=N.B|c, ¢, relative
D, =2k —2 0 o (1249  total magnetizatiorm=M/N,, relative particle numbex
det’¢g =N/N; and dimensionless chemical potentiat Bu. Here
N N I'(s) is the Gamma function and(s) is the Riemann-zeta
DR, =4n(I{ " +1 ). (1248 function.

Both for the polar and ferromagnetic cases in the symmet-
ric phase(where no condensate is present and the total mag-
detog=(1—Cann)(1—Cstz)—CnCsHﬁz, (124f) netization is zerp the equation of state reads as

Here

1 (3
C = — —
det™g=1- I, (1249 x= (3) F(Z,Xen u), (128
2

where Hnn:ngrz"_H(f)jJra HZZ:H§rZ)+H(+S)+++’ Iy,
=00+ " and I, , =1, +211¢°" . Equations Where

(124_13), (124b, (1240, ano_l (1240 can be cast to a form 1 . sl

having common denominators with the corresponding F(s,y)= _f ————dt (129
Green's functions by multiplying both their numerators and I(s)Joe ™ 7—1

denominators with the apropriafd. Only writing down the

resulting denominators: is the Bose-Einstein integral.

In the condensed phase, for the polar case, the chemical
OX det% = (i wn)2—# ~2e2]det% " — 27~ e, Ngp potential is determined by E@34), which leads to
(1253 u=e,X. (130
A —T(i -1 -1
“Adet g=[(iwy)—fi (e~ Mcg)]det g — A" Nocs. Equations(128) and(130) can be used to give the isotherms
(125b u(x) of the polar case. Equatiof128) is valid whenx<1
For the rest of the paper we, will deal with the retarded@"d Eq.(130) is to be used ik>1. These isotherms show the
correlation functions that can be obtained in the usual wayharacter of a continuous phase transition. _
by analytically continuing in frequencietsee, e.g., Ref. In _the condensed phase, for the ferromagnetic case, the
[43]). First, however, we will discuss shortly the static prop-chemical potential can be calculated from ER7),
erties. U=ex—emx)=ekx—m(x)], (1313
3. Static properties of the spin-1 Bose gas in the random-phase

approximation wherex= ¢,/ e, andm(x) is the relative total magnetization

as a function of the relative total density given by the equa-
We will study the equation of state and connect it to thetjon

density autocorrelation function through the compressibility

sum rule. The equation of state is investigated by choosing 1 3 3
w4, N as conjugated variables. The number of partitles m=x——7=7| F| 5.mes| +2F| 5.2mes | |.
given by 3¢ (5)
N=Ng+H?3S (126 (131b

where H' is defined by Eq.(110. In the ferromagnetic 'Ne isotherms are given by Eqd.28), (1313, and (131b.

ship second solution emerges also with nonzero magnetization

and both solutions can be continued downxfe<1, where
m=CcyN+c M. (127 they coincide and vanish. This means that the chemical po-
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tential has three solutions betwees x, andx=1. (One of k?—2k (1+2v2)%meg

them with zero magnetization at a given dengity. the ap- Xp=1— ("=1)? 37 (137
plications e;<1, so the Bose-Einstein integral can be well gg(—)

approximated byF (3/2,a)~ ¢(3/2)— 2\ma leading to 2

2 For x>Xx;, (in the condensed phasehe static correlation
(1+2v2)°mreg . o X X
X =] 5 (132  functions have no real positive pole in thevariable.

2
E) 4. Collective excitations in the random-phase approximation

The excitation spectra can be obtained in the usual way as
the poles of the retarded Green’s functions and correlation
functions. The real parts of the poles correspond to the ener-

At x=1 the two solutions are at

2
W, gies while the imaginary parts correspond to the damping
_1)— o¢ 3 133 (the inverse of their lifetimgsof the excitations.
myAx=1)= 2 (133 Our further calculations can be done more appropriately

0 in a dimensionless form. For this reason, let us further intro-
' duce the following characteristic lengths: §E,s

These isotherms show the character of a very weak first=%(4MNo|c, ¢[) " the mean-field correlation lengths as-
order phase transition. A similar equation of state with asociated with the interaction strength and ¢, and ¢’
first-order transition was derived in Ré89] for scalar con- = M/(477°Ny) the length scale of the critical fluctuations.
densates but in a different model approximation. In thatThe calculation will be limited to the intermediate tempera-
work, the first-order character of the phase transition wagdure region. This region is defined by tif >£’, \ condi-
caused by the exchange interacti(fock term which is  tions. In this temperature range, tke<1 condition can be
known to lead to such behavip41]. The situation is inter- fulfilled for the physically interesting wave numbers and the
esting, since for scalar particles, the RBAartree approxi- contribution of the bubble diagrams can be taken as pertur-
mation) gave a continuous phase transition as here for théation for the frequencies considered.

polar casd 31,30. A dimensionless frequency can be introduced with
Since the above behavior of the equation of state is not
common, a further consistency check is required. The com- 0= ﬁ_“’ (139
pressibility sum rule is a candidate, since it relates the static e
correlation functions to the derivatives of the equation of ) o ) )
state[45,39, namely, The singular polarization functions in the polar case take
the following form:
oN - )
o =% "D, (k—0,0=0). (134 ko) A 1 139
s T Cn,s S( vw)_ gE’S (k)\)Z 92_1' ( 3
The inverse pf the left-hand side of E{.34) can be easily While in the ferromagnetic case they read as
calculated, since
A\2 ol 1
e 1 1 , lc |H<s)++(k,w):(—) ——3 o7, (139h
(W)TZBNCU (0= Lres=m' (€. (139 me &ns) (KN Q-1
The derivativem’ (x) can be expressed from EG.31b with e I (K, )= OTA—T—S (?Z’o_ T—= (13%
the identityd,F(s,a) = — F(s— 1,a), leading to (kMH(Q-D-%
d Cy+Cs—crcd TI5%%(0,0) + 411"~ 7(0,0)] (5)—+ _ Yo
<_'u> = n s nws 00 ’ - ! |CS|H - (k,w)— (k)\)Z(Q_l)_2~v (139d
N/~ 1-cfMHY0,0+407- (0,0] 4
(136 with
where we used thatI1{J°%0,0)= — BN.F(1/2mey)/ vo=BNolcd, (1399
[37(3/2)] and T~ 7(0,0)= — BNF(1/2,2meg)/[3£(3/ ~
2)]. It is straightforward to verify that the static limit of ¥=BM]cy. (1391

flD,y is just the right-hand side of E¢136) in agreement
with Eq. (134). The pointx,, where the two solutiong,
andm, coincide is the point where the graph wfx) has a
vertical tangent. The point where the graphufix) has a
horizontal tangent is at where the density autocorrelation
function has its pole aj=0 andw=0. This happens at

For kA<1 and|Qk\|<1 the regular polarization func-
tion (the bubble in the polar case can be approximated as

Mg 101 Q-1
Cn,sllo(K, )~ w KN 2 nm, (1403
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while in the ferromagnetic case they read as

(&) 10 Q-1

(r)++ ~—
Cnsl ™ (k@) )22 a1

(1400

Q—l+2iﬁ

c H(f)oo(k ) (NE) 1 iln 0N
W)= e —— — —_—,
e (£n9)7 K\ 2 N7
QO+1+2i —
kA
(1400
V2
NE) L i Q—1+2i—k)\
c H(I),"(k,w)%———ln—.
(én9)° K\ 2 V23
QO+1+2i —
kN
(1400

These results can be obtained with the Mittag-Leffler expan-
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Bk
- )\g, 4r E F(EZ’}/

(&)? 37 ’

D_

(1416

and? is given by Eq.(139).

In the case of linear dispersiol>1 can be assumed
(while still satisfying the]Qk\|<1 condition. For the fer-
romagnetic state, we further restrict ourselves {&
<|Qk\|. We will see that this later condition is equivalent
with ¢,,/|cg|> 1, which is fulfilled in the applications. In this
case, the regular polarization functions with zero spin trans-
fer (140 can be further approximated by

(\g') 1

(r) ~
|Cn,S|H (kvw) (55,5)2 kxn O 1

(142

both for the polar and ferromagnetic states. Since we are
interested only in the low-momentum behavior of the disper-
sion curve() will be searched as a power series of tha )
variable.

Polar case, density mode £0). The spectrum of these

sion of their spectral functions, similarly as for the scalaryPeS Of excitations can be determined by the poles of Eq.

case[31]. The approximation of the spin-wave polarization
functions can be obtained in a similar way, but due to their
different symmetry properties compared with density-
polarization functions another limit is to be taken in the specy
tral function. The calculation is outlined in the appendix. The

results are
C_—C, [2Cy+C.+C_
ool (TR TG0 = ==+ | =
s 20—+ 22 o
';5/2( — + ':)'/3 (
+O((kN)%), (1413
with
2JF(3
e M2 F(zy
CocEmy T (1410
Hate
RY: I 5|F|50
CTEe T (410
3)F(3)
- )\f' r E F 52’)/
@ (1419
SJF(30
N A3 )Fl 2
CT@E T 8m (ate

(118a. The corresponding equation is

1_3CHHO_CnHS: 0. (143)
sing Egs. (1399 and (142 and substituting Q
=a_;(k\) "1+ O((kn)0), the resulting equation for the._;
coefficient reads as

) . )\g/ A 2
aZ,+3i—pgza_1—|=g| =0. (144

(&) &
Solving this quadratic equatiofand assuming, that the
imaginary part is small one arrives at

1 3 ¢

ink—gg—lzwﬁ)z. (145

Returning to the more familiar variables, one obtains

B INgC, . 3c,M

for the beginning of the dispersion curve.

Polar case, spin-density mode ). The excitation
spectrum is obtained as the poles of E4L8h. The corre-
sponding equation is

(146)

1—2¢1,=0. (147

With the use of Eq(142), the resulting equation fdR reads
as

g!

1+ 2i —— —=0.
(£2)2 Ok

(148

The solution is at
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Q=i %, (149
k(&)
or equivalently at
. CsM
w=—I Wgﬁ K, (150)
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We can see now, that théy<|Qkx | condition is equiva-
lent with the 1<2c,/|c{ condition, which is well satisfied.

Ferromagnetic case, spin-wave mode witk 1. The
excitation spectrum of the ferromagnetic spin waves is ob-
tained from the poles of the autocorrelation functi@a24d.
The equation to be solved is

1—c TP +T15 0+ TIP* 1=0. (159

for the beginning of the dispersion curve. Note that such a o o
mode did not appear in the Bogoliubov approximation, be-Substituting the approximations E¢L399 and Eq.(141a

cause ther®,, is identically zero.

Polar case, spin-wave mode £nt1). The poles of the
autocorrelation function(118d determine the spectrum of
these types of excitations. The corresponding equation is

1_205H0_C5HS:0. (151)

Using Egs. (1399 and (142 and substituting ()
=a_;(kN) "1+ O((kn)9), the resulting equation for the_;
coefficient in this case reads as

2 +2i M ()\>2 0 (152
a‘ i—s=a_1—| | =0.
U@ g
Whence
Q:+——i§—, (153
TkéS k(£
or equivalently
INoCs . cM

Ferromagnetic case, density, spin-density mode @
The poles of the autocorrelation functiofi®43, (124b, or

and thatQ =ay+ O((k\)?) leads to

Yo C.—C. (Kn)?

1—a +2Cy,+C,.+C_
¥ ¥ ( 0) Yo 0 +

ao D_-D, 4
+7(C,—C+)+T +O((kN)F)=0. (160

The equation forO((k\)°) is an identity, sinceéy= 1y,
+Blc/(H""—H™ 7). The ag constant can be determined
from O((k\)?) order terms

Y¥2Cy+C, . +C_+vyy)—D,.+D_
o= 37

(161)

The frequency of the spin-wave excitation then is a quadratic
one

fik?
O TVER (1623
with the effective mass
M* = M (162b
g

(1249 determine the spectrum of these excitations, which is

given by the equation
(1_Cann)(l_Cstz)_CnCsHﬁz: 0. (159

Substituting the approximation€l39h and (142 and Q)
=a_,(k\) "1+ O((kn)9), the resulting equation for the_,
coefficient reads as

anasaell-i— ia(3ag— 2an)a2,1—(as— ap—6a?)a_;+i5a

=0, (156

with @=&'/\, an <= (&5 J/\)2. In the discussed temperature

The Bogoliubov solution(108h can be regained in the
T—0 limit, sinceCy, C,,C_,D,,D_o«T, yandy, tend
to No(T:o)|CS|/kBT

Ferromagnetic case, quadrupolar-spin-wave mofgice
the autocorrelation functiofl24e is proper, so the spectrum
of the quadrupolar spin waves is determined by the poles of
the polarization functionlI7 . The singular polarization
(121) has its pole at
2y

Q=1+ —

TN (163

regionas> a,> 2. The solution of the equation can be cal- The regular polarization functioll!’”* has a logarithmic

culated perturbatively, with results

O las—an, 1  « 3a§+2aﬁ 1
T anpag KA ! 2 anag(as— ay) K\’

(157
from which the frequency
INo(c,+c M 3c2+2c?
0= + 0( n S) k—l 3 n S k
M A7h>B c,t+Cq
(158

singularity in the same place. The corresponding excitational
frequency is

_2Mcy Ak 16
w= 7 +m. (164

Some final remark is appropriate about the validity of the
calculation of these last two modes. The approximation
(1419 is valid if (k\)?/<1. This is equivalent with th&
<4M M|c/% condition, meaning that the approximation
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for the bubble breaks down near the transition temperature, APPENDIX: THE APPROXIMATIONS OF THE
where the magnetization vanishes. CONTRIBUTIONS OF THE BUBBLE GRAPHS

In this appendix, we briefly outline the analytical proper-
ties of the contribution of the bubble graphs encountered and
V. CONCLUSIONS outline the approximatioil41g. Some of these results are

In the high-temperature phase, density and spin fluctualfn(l)"v';'hfrom ((ajarl|err\:vork$31]. imation. th i . f
fons do o coul to each othr and to he Grer funcy I} 1 T DIESE sePETALen e St ere e o
tions. The latter appear only in the intermediate states in th q y P

perturbational expansion for the correlation functions de- ent, therefore, the contribution of the bubble graph),

scribing density and spin fluctuations. Correspondingly, onegepICted In Fig. 17 can be cast to the form

can experience independent excitation branches of one par- d3q
ticle and collective type. As discussed in the present paper in 1075 (k,i w,)=— —f 5
detail, collective and one-particle excitations can hybridize hJ (2m)

in the Bose-Einstein condensed phase due to the symmetry -~ ~
breaking, which is different in the polar and in the ferromag- » N%(exsqtH3% %) —n(eg+A3™)
netic phase resulting in different couplings. In the polar i, Y€ g€ )—Ai
phase, however, such hybridization does not occur for spin n kta  “a

modes characterized by spin transfers zeroa@dThe gen- (A1)
eral results have been demonstrated in the RPA scheme. E\’/y'th
treating the regular polarization contributions as perturba- !
tions, we obtained damping for a nhumber of modes deter-

mined first in the Bogoliubov approximatidi4,15. In the
ferromagnetic phase for the transverse-spin mode, whose e ; r)sr
9 P P The nondiagonal elements Hlf,s, are zero, as stated below

ergy has been shown to agree with the free particle klnet'%q.(lll), the same is true for the proper self-energies. In this

energy in the Bogohu_bov appro>$|mat|on_, itis found thf”‘t theappendix, the automatic summation over repeated indices do
eigenfrequency remains proportionalk®in RPA, but with not apply.

an effective mass, which approaches the mass of the atoms in changing to retarded polarization functions with analyti-

the zero—_temperature limit. Moreover, the gap in the quadruca”y continuing in frequency, the imaginary part plays the
polar spin mode gets a temperature-dependent correctiofg|e of the spectral function

namely, it is proportional to the magnetization that tends to

’

AS =Ss's_Sr’, (A2)

the condensate density in the zero-temperature limit and then (st 1 ImITS (K,e") ,
the gap coincides with that of the Bogoliubov approximation. " (kw)=—— f Ty de’ (A3
These transverse and quadrupolar spin modes are found free
from damping. The imaginary part can be brought to the form
There are thermal excitations for which the bubble graphs 5
cannot be treated as perturbations as shown earlier in the Im 1S (K, o) = M fyodz 2z
scalar cas¢31,39. In the case of a spinor condensate, one rs ' Amh*kB| ) eZtm—1

expects even a multitude of such excitations, already in RPA.

Their investigation will be the subject of a forthcoming pa- B fhdz 2z } (A4)
per. o eZtr_1|

The calculations in this paper have been made for a ho-
mogeneous system. In experiments with alkali atoms, the gaaith
sample is confined in an optical trap that can be modeled by
a harmonic potential. The inhomogeneous nature of the y =k—)\(ﬂ—1— Ay ) (A5)
trapped system results in that the algebraic equations pre- ) (kn)?)?
sented here are to be changed to coupled integral equations
but their main structure remains the same. We also note that _kn Ay
experiments can be designed where the local speed of sound iz Q+1- (kn)2) (AB)
can be measured directly, making the results obtained for a
homogeneous system also experimentally relej®47]. yi=h B35 (A7)
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@ 2% 1 with
RY(Z):jmedx for Imz>0, (A10)
which is to be continued to the whole complex plane, the an=ir e, by=ir,e”'/?, (A13)
function II{V%"(k, ) can be represented as
I (k w>='zv'—i f“R (2)dz
rs ' 47h K w b 2n
mhkB ro=/»2+4n?x2, gonzarctanT, (A14)
y
_flRﬁQMZ for Im w>0.

can then be used to arrive at the approximating formulas Egs.
(140, see Ref[31].
If the self-energies of the forward and backward propa-
The analytic structure oR,(z) is important for the ap- gating one-particle lines of the bubble graph are different, the
proximations, it can be found in Ref31]. If the self-  upper limits of the integralA11) will diverge whenk goes to
energies of the forward and backward propagating onezero, see Eqs(A5) and (A6). If one is interested in the

particle lines are equal, i.e., in the polar case and for thgong-wavelength dynamics, the asymptotic serieRo(2)
n=0 mode in the ferromagnetic cask;y=0 and the ex- can then be used, namely,

pression(A1l) reduces that of Ref.31]. If the conditions

above Eq(140 are fulfilled, the leading contribution of the

(A1)

Mittag-Leffler representation dk,(z), reading as 3 3
5 I'in+ E)F n+-ly
1 27 2
R Zz :2 T <_ _i’ﬂ'z_—— R‘y(z)w__ZE 2n ’ (AlS)
(D=2\m| 5 NI 72 z

ajty bty
z+a, z+b,

51
+ 4 i
T ngl a:—b:

(A12)

+(aw—b@(a%r—1),

n

wherel'(s) is the gamma function anB(s|y) is the Bose-
Einstein integra(129 [31]. With the help of Eq(A11) and
Eqg. (A15), the approximatior{141g can be obtained.
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