PHYSICAL REVIEW A, VOLUME 65, 043409
Stimulated Raman adiabatic passage with partially coherent laser fields
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In this paper we discuss the effect of phase noise upon the efficiency of population transfer produced by
stimulated Raman adiabatic pass&§&IRAP). To allow an adjustable cross-correlation of the two fields we
consider the pump and Stokes pulses to be derived from a single phase-diffusing exponentially correlated laser,
but we allow some time delay between the noise signals. We present examples of Monte Carlo simulations,
showing unexpected regularities in the dependence of efficiency upon pulse area for partially cross-correlated
fields: efficiency does not monotonically increase with increasing pulse area, as would be expected. We explain
these, and other properties, by using a simple model of pulse shapes to derive analytic expressions for
efficiency. Although derived for a specific analytic form, the formulas also provide a useful description of
transfer efficiency by other pulse shapes. We also obtain an estimate of the fundamental limit on the transfer
efficiency with STIRAP, based on the Schawlow-Townes limit to laser bandwidths.
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[. INTRODUCTION bandwidth-limited pulse. Deviations may occur for many
reasons, some of which require extra care to ensure that all of
Stimulated Raman adiabatic passd§&IRAP) has been the laser components remain isolated from vibrations and
intensively investigated for more than 15 yeése[1] and  other environmental irregularities. Ultimately one is led to
references therejras a technique for transferring population consider the intrinsic bandwidth of the laser, usually re-
between selected quantum states. In the most elementary agarded as originating in random variations in the laser phase
plications of this technique a three-state atom is exposed t8f, because the time derivative of the phase is the instanta-
two Sequentia' par“a”y Over|apping laser pu'ses_ |n|t|a”y theneous frequency, N Uncontrollable variations in the Ia.ser fl‘e-
population resides in state 1, and the intended target of th@uency, usually expressed as the detuning from resonance.
population, state 3, is entirely unpopulated. An excited state, The key to successful population transfer with STIRAP is
state 2, has energy above both of these states and servesth@ association of the state vectdi(t) with one of three
an intermediary for the popu|ati0n transfer, though it haéndependent time-dependent adiabatic states, the so-called
negligible population at all timegDepicted on an energy Population trapping state or dark stabg(t), and the main-
scale, the linkage pattern of the radiative interaction of sucfienance of that identification during the pulse sequeite
a Raman process has the appearance of a lajnbde.first ~ Which the Stokes pulse precedes but overlaps the pump
pulse has a carrier frequency close to the Bohr transitioffulse. It is essential for this purpose that a two-photon reso-
frequency between states 3 and 2, whereas the carrier fr@ance condition be maintained. To the extent that there is
quency of the later pulse is close to the Bohr frequency of th@onadiabatic evolution, or there is nonzero two-photon de-
transition between states 1 and 2. Although neither of thesiIning, then the state vectdf(t) will deviate from the dark
pulses needs to fulfil a single-photon resonance condition, itated®4(t) and population transfer will be incomplete.
is necessary that the two pulses fulfill a two-photon reso-
nance condition: the difference between the two carrier fre-
guencies must equal the difference between the two Bohr
frequencies. If the pulse envelopes are smooth and the pulse There has been much work, both theoretical and experi-
fluences are sufficiently largenore precisely, the time inte- mental, elucidating the conditions needed for complete popu-
gral of the Rabi frequencies—the pulse areas—must be sufation transfer within the STIRAP procedure and for main-
ficiently large for each pulgethen the population transfer taining the statevector as the dark state. We here note some
can be very nearly complete. of these to make clear the differences with what we present
To ensure maximum population transfer it is important tohere.
understand, and then control, the various factors that prevent
ideal operation of the STIRAP process in practice. One of the
most important factors is the deviation of actual laser pulses
from the mathematical ideal of a smooth envelope over an The dependence of population-transfer efficiency upon
otherwise monochromatic carrier wave—the so-calledwo-photon detuningsometimes referred to as an evaluation
of the two-photon linewidth in the absence of noise has
been examined by Romanenko and Yatsefo This two-
*Electronic address: vr@iop.kiev.ua photon linewidth is connected with the mixing of the excited

II. HISTORICAL CONTEXT

A. Static detuning
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state into the adiabatic state when the two-photon resonandkictuations of the two independent lasér®., finite laser

is not maintained[2], formula (19)]. bandwidth$ caused the population trapping to fail, but that
Such efficiency is closely tied to the requirement that thewhen the two lasers were well cross correlated, then the

time evolution be adiabatic, as expressed by the requiremenbise canceled, so that two-photon coherences were unaf-

that the rate of change in a mixing anglét) be small(see fected and population trapping was preserved.

below). Prior studies of STIRAP dealt primarily with smooth ~ Although qualitative and quantitative analyses of the ef-

noiseless pulse amplitudes, such as Gaussian pulses, whigtt of phase-diffusion noiséwhite nois¢ on the lambda

estimating two-photon linewidths. Here we supplement thoséand ladder system have been publishdd.g., [17]), the

earlier studies by introducing explicitly noisy pulses. presence of counterintuitive pulse sequences, such as the one
that occurs with STIRAP, present additional aspects of popu-
B. Noise lation trapping that have not been addressed.

Itis i tant t lize that. althouah it i ient t Successful population transfer with STIRAP requires
h |s;mporter1]n 0 realize "’:.' a fou? ! L:) convgm;an © maintenance of the adiabatic trapped state, and in this respect
characteriz€ the noise properties ot a faser by a Singlé NuMq ¢ g commonality with studies of fluorescence. But with

ber, the laser t_)a_ndwidth, this simplification may be ina.‘d'STIRAP there can be other causes of failed population trans-
equate for predicting effects produced by the laser: a variety,

. e er in addition to phase fluctuations.
of phase and amplitude variations can produce the same

bandwidth, yet have very diff_erent effects upon excitation, 2 The OU Process
fluorescence and other laser-induced procelssds We of- ]
fer further comments below. Already in the early papers on STIRAP there was concern

Some years ago, when the interesting properties of popu';),bout the effect of laser bandwidth upon _the success qf the
lation trapping in the steady-excitation lambda system wer@opulation transfer, and Kuhet al.[17] carried out numeri-
first studied[5—9] a number of investigations examined the ¢l simulation of a noisy laser. They used a stochastic model
effect of finite laser bandwidth upon the maintenance of théf zero-mean exponentially correlated noigs Ornstein-
trapped state. In these early works there was no concern witHhlenbeckor OU procesp but they assumed null cross cor-
pulse sequences, only with steady illumination by noisy'€lation
lasers. D,Gexpl —Gi[t—t']), j=k

Much of that work was based upon modeling the laser 2.2

noise with the phase-diffusion model suggested by Glaubggerep is the spectral density of the noise a@ds its band-
[10]. In this model the fluctuating part of the derivative of \yiqh (G~ L is the correlation time of the fluctuationsThe
the laser phaséan instantaneous frequency offsé$ re- oy model was used for treatment of laser excitation by a

garded as a stochastic variabf¢t). Specifically £(t) i pymber of author§18-20.
taken to be a zero-mean Gaussian Markov process. In this gq, large  values of G>D, &t) is a

Wiener-Levy(WL) procesq11] the two stochastic variables s ¢,nction-correlated process
are fully defined by the properties

1. The WL process

((D&(t"))=2Do(t—t"). (2.3

In this caseD is the phase-diffusion coefficient and the spec-
trum of the intensity has a Lorenzian profile; as noted above,
D is the intensity half-width at half maximufHWHM).

The opposite cas& <D, is close to the extreme case of

(£i())=0, (§(VE&(t))=2Das(t—t"), (2.

where §(x) is the Dirac delta and the brackets -) denote
an ensemble average. Sugtiunction-correlated white noise

is associated with a Lorentzian profile of the intensity distri- X : i
bution D;; is the bandwith of lasef and Dpg is the cross  &" ensemble of fields with constant frequencies that obey
i

correlation of the two laseysThe Lorentzian profile is not a Gaussian stat-istics with varian.aﬁ. The intensity profile is
good description of the wings of any laser spectrum, but it i§heén & Gaussian; the HWHM _|é2 In2,DG.
acceptable for describing small detunings. It characterizes Because the OU process incorporates two paramélers
the noise by a single parameter, the laser bandwidth. Thi@nd G, the laser bandywdth alone is not sufficient to define
phase-diffusion model of laser noise was used in the descrigh® Process fully. Predictions based on the OU process can be
tion of single-laser excitation of atoms or molecul&2—16. more realistic, but t_hey require more complete characteriza-
The great theoretical utility of the WL stochastic model is tion of the laser noise than bandwidth.
that, as Agarwal showdd 4], when it is used with Liouville
(density matrix equations of time evolution, then the sto-
chastic variables in these equations can be replaced by con- A variety of other forms of noise have been used in treat-
stant relaxation coefficient®,, that parametrize the laser ments of steady single-laser excitation. These include various
bandwidth and cross correlation. forms of random-telegraph noise and pre-Gaussian noise, as
The first attempt to apply this model to the treatment ofwell as random fluctuations in amplitudeee [3,4,21).
population trapping were by Dalton and Knidl®,9]. They = These models have not as yet been used with multifrequency
showed that when there was no cross correlation, then phageilsed excitation.

3. Other processes
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C. Numerical implementation 2

Two approaches to the treatment of noise have generally A
been followed. In one approach, set forth by Agarwal and
followed by others, the definitions of the stochastic processes A

are used to derive equations of motion for the density matrix. T!

In these equations all effects of noise appear as relaxation
rates, much as do the paramet@rsand T, in the Bloch
equations for a two-state atom. This approach permits the
inclusion of cross correlation between two laser beams; the Op g
degree of independence is an adjustable parameter. This is 3

the approach used by Dalton and Knig8t9].

In the other approach, one carries out Monte Carlo simu-
lation, averaging over many realizations of time histories of 1 L
the noise. In the work of Kuhret al. [17] and also the
present work, the procedure of Fet al. [22] is used to
create a sequence of values for the stochastic varigh(es

at a sequence of discrete timga2,23. We implement a . .
d 622,29 P The frequency fluctuations of common single-frequency

variant of this technique, as noted below. cw lasers are caused by low-frequency fluctuations in the
In the Kuhn work, the Stokes and pump fields were taken y q Y

as independent processes. These extensive simul4fighs gnvironment(e.g., mechanical vibrgtions of the laser mount-
LA . tmgs). For these the OU model witli<D can be a good

gave quanntat;ve indications of the detrimental effects ofy proximation. We therefore adopt the OU process, Eq.

phase fIL_Jctuat|ons wher_l th(_e pulses were shorter than t 2, as a model of phase noise.

intermediate-state radiative lifetime. From that work came a

simple phgnomonological fprmulg, C(_)nsistent with expgri- lll. BASIC EQUATIONS

mental evidence, for use in estimating how a fluctuation

bandwidth can quantitatively affect the completeness of We consider a three-state atom with excitation linkages in

population transfer. The contrasting regime, of pulse durathe usual lambda form: two long-lived low-energy stafgs

tions longer than the radiative lifetime, remained still to beand 3, each linked via electric-dipole interaction to an ex-
investigated. cited stateys,. Figure 1 shows the energy level structure and

defines the various carrier frequenciess(wp) and detun-
ings (6,A) used subsequently. We assume that the spontane-
) . ous radiative decay of the excited state, which occurs at rate
cedure, that the two-photon resonance condition be fulfilledare no interactions linkings; and ¢ directly. The atom
For some time it has been recogniZ&®)] that when the two interacts, via dipole transition momerds with the electric

laser pulses are derived from a single laser source, then befie|d E(t) of two pulses, termed StokéS) and pump(P),
eficial cancellations of phase fluctuations may occur, so that

population transfer is more successful than it would be if the E(t)=Ep(t)cog wpt+ ¢p) + Eg(t)cog wgt + ¢s).
two lasers were entirely independent.

In this paper we examine this situation in more detail. We
allow variable cross correlation by assuming that the twdThese have carrier frequencies and wg that are close to
fields are both derived from a common souice., they have  the 12 and 2—3 Bohr transition frequencies, respectively.
the same fluctuationsut they are offset in time by a delay The phases of the fieldg,, andeg, we take to be stochastic
T. The parameteT provides a measure of cross correlation.functions of time(noise sourcés their time derivatives are
The behavior of such a model system is expected to give ghe stochastic functions; (t)
good description of the ultimate intrinsic limits on maximum
population transfer possible with the STIRAP technique. CN_ P

Using this simple model for the laser phase fluctuations U=V, J={SP} 3.2
we show that the population transfer efficiericg., the frac- The pulse amplitudetEq(t)| and |E(t)| are smooth, non-

tion of the total population that is found in the target Statequctuating functions of time, with the Stokes pulse arriving
after the pulse sequence concludsisows some remarkable

and unexpected regularities. These regularities, quite visible ~, '
) . . ; ' . As a first(standargl step, we express the statevecioft
in Monte Carlo simulations, have a simple explanation, as ( tistep P )

we demonstrate by means of analytic approximations. in terms of the basic physicglbare”) statesy; through the
To achieve our analytic results we assume a very specigXPansion
form for the two pulses, but we demonstrate with numerical

simulation that the regularities occur with other pulse shapes, V()= Ci(t)exd—isi(t)]di=> C(1)gi(t)
for which analytic results are not available. T J g e

/L
Va4

FIG. 1. Schematic diagram of energy levels 1, 2, 3, carrier fre-
guencieswg and wp, and detuning® andA.

D. Present work
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i={1,2,3, (3.3 h 1

where the phase(t), to be specified below, define a “ro-

tating” reference frame of basis stateg;(t)=exp As in earlier work (see Ref.[25]), it is convenient for
[—ig;(t)]y; for the probability amplitude€;(t). We take the  further analysis to express the RWA Hamiltonian matrix in
atom to be initially in the state/;. an alternative basis, using the time-dependent “bright” state
From the time-dependent Schiinger equation we obtain @, (t) and “dark” state® 4(t) ,
the coupled equations
Dy(t) sing(t) 0 cosH(t) Py (1)

%C(t)z—iW(t)C(t), (3.4 Dy(1) | = 0 1 0 Pa(t) |

Dy(t) cosA(t) 0 —sind(t) [ gs(t)
where C(t) is a three-component column vector, with ele-
ments{C,(t),Cy(t),C3(t)}, and W(t) is a 3X3 matrix, a L ) ) -
representation of the Hamiltonian in the time-varying basis.| "€S€ definitions involve the time-dependent mixing angle

As is customary(cf. [24]), we treat the radiative interaction 6(t)
within the rotating-wave approximatiofRWA), meaning

that we choose the phases to eliminate rapidly varying expo-
nentials, equivalent to the conditions

tand(t) = Qp(t)/Q4(t). (3.12)

The expansion of the statevector in this basis reads

L=l-wp—bp, G=Gmwsmés, (39 V(1) = Cy(t) Dp(t) + Co ) Do(1) + Co(H) Dy (D).
and neglect counterrotating terms. The resulting RWA (3.12
Hamiltonian matrix reads From the time-dependent Scklinger equation we obtain the
5128 Qn(t) 0 coupled equations of the fornB8.4) with the amplitudes
1 P Y {Cy(1),Cy(1),Cy(t)} forming the elements of the column
W(RWA)(t)ZE Qp(t) —2A-iy Qgt) |. vector C(t).
0 Q1) + 0+ 2 With our assumed pulse sequence, of Stokes before pump,

the dark stated4(t) coincides initially with the initially
(3.6) populated bare staig,, and it aligns after the pulse sequence
. with the target stat@/;. Thus by maintaining the statevector
Here the off-diagonal elements W (t) in this dark state at all times, we accomplish the popu-
B B lation transfery, — i3 of a traditional STIRAP process.
Qp(t)=—(1[dEp(1)[2), Qs(t)=—(3[d-Es(1)[2) For the population transfer to be complete, the mixing
(3.7

angle 4(t) must slowly change from 0 ter/2 and, in the

absence of phase fluctuationg;,=0 and és=0, the two-
are slowly varying real-valued functions of time, and thePhoton resonance conditio@{-0) must be maintained. Un-
diagonal elements are expressed in terms of the avera%t.er these conditions neither of the stateg(t) or ®(t)
single-photon detunings and the two-photon detuning ecome populated.

(see Fig. 1, In this bright-dark pasig, with the component ordering
{b,2d}, the RWA Hamiltonian matrix readevith suppres-
hé=h(ws— wp)—E;+Eg, (3.8 sion of explicit notation of time dependencas
|
2650080+ 2£psiP0+ 6800520 Qs +2i 60— (&5~ Ep+ )sin 260
W(BD):E Qrms —2A-iy 0 . (3.13
—2i0— (ég— £p+ 8)sin 26 0 2&5SiMPO+2&p coS6— 5cos 29
|
Here the rms Rabi frequendy,(t) is rivative of the mixing angled, some time derivatives of the
Stokes and pump phases. To maintain the statevector as the
Q)= V2RO FF 012, (319 e

dark state, the matrix elements in the upper right and lower

The transformed Hamiltonian matrix includes, in addition tol€ft corners must be negligible. This requires, in addition to
the usual nonadiabatic coupling introduced as the time dethe usual need for sma#l, a small value for the instanta-
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B. Noise model

1.0
Numerical simulation of phase fluctuations can be carried
0.81 out by averaging a succession of time histories, for each of
which the frequency(t) is a realization of exponentially
0.61 correlated colored nois@n example of Monte Carlo simu-
= lation). Such functions can be generated using the algorithm
= 04 described by Fox and othef22,23, as was done in Ref.
[17]. In brief, we obtain a sequence of valuégd;) at dis-
0.2 crete timed;=t; _,+ At separated by the steft. The value
of £(t;+,) emerges fron¥(t;) according to the algorithm
0.0

£t ) =E&t)exp—GAD+h(t),  (3.19

where the sequence of valueft;) obey Gaussian statistics
FIG. 2. Pulse shapé(t) for the three forms used in this work: With a zero first moment and the second moment given by
thick line is cos, Eq(3.16); the thin line is co$ Eq.(3.17; and the 5 _GA
dashed line is Gaussian, EG.18. (h*(tj))=DG(1-e h. (3.20

t/z

We formed the sequence éft;) with the variancéd G using
éhe standard Matlab functiorandn

To model the effect of variable cross correlation we as-
ume that the pump and Stokes fields follow the same statis-
ics, but that they may be offset in time By Specifically, we
assume

neous frequency differencg— &p . We immediately recog-
nize the importance of possible correlation of the two-phas
fluctuations: if the time derivatives of the phases are the
same then their fluctuations cancel and the dynamics is th
of conventional STIRAP.

A. Pulse shapes Eq(t)=¢p(t+T). (3.2)

In the present work we took the Stokes and pump ampli- : -
tudes to be of equal magnitude and shape, but offset in timThe delayT provides an additional parameter, beydand

by t 8, with which to characterize the radiation. Fior=0 the two
Yid, fields are perfectly correlated, and the two-photon detuning
Q) =0Q0f(1), Qp)=Qof(t—ty). (3.15 IS zero at all times. For very largé (compared with the
duration of the atom-field interaction and the correlation time
of the noisg¢ the fluctuations become independent, as was
assumed in an earlier wofi7].
Both positive and negative values of the time delagre
possible. In the STIRAP process with two pulses generated

For the pulse-shape functidi{t) we used several analytic
expressions: a cos pulse

COS{ZE —r<t<r by the single laser one can expéktty, wherety is the
f(t)= 2 7 ’ (3.16 time delay between pulses. If the STIRAP process is carried
0 otherwise, out in an atomic or molecular beam crossing two spatially

displaced laser beams then any value and sigh cén be
realized by adjusting the optical paths of pump and Stokes

useful for analytical evaluation of various integrals; a’cos beams

pulse

ot IV. SIMULATION RESULTS

——[, —r<t<
27}, T<t<r,

0 otherwise,

cog

(3.17) This section presents numerical results, obtained by
Monte Carlo simulation of the Schdinger equation, for
pulses of the form3.16), (3.17), and (3.18. We compare

. _ these simulations with the theory developed in Sec. V. In

useful as a second example of a finite-duration pulse fog,mmary, our model of excitation involves the following pa-

simulations; and a Gaussian pulse rameters, in addition to one-photon detuningand two-
photon detunings: (), is the peak Rabi frequency, is the

f(t)=exd - (t/7)%]. (3.189  spontaneous emission rate of stateG2is the inverse auto-
correlation time for the noise@>D implies white noisg D

In our numerical simulation the latter are used only within ais the phase diffusion coefficierithe amplitude of white-

finite time window. Figure 2 shows the three shapes. For cogoise fluctuations T is the delay between the two noise

pulses(3.16 we consider only the delay,= 7. For the other sources that generate the random phases of the fidlds (
pulses the time delay is adjustable, and was chosen to pre-c implies no cross-correlation

duce the most effective population transfigr= 0.67 for cos We use these frequencigsin the dimensionless product

andty=0.97 for Gaussian. form X7 where appropriate.

f(t)=

043409-5
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(b) (@) (b)
1.01 1.01  cemememommmommeooeee 1.0 ,oeemmmmemmmmmeecann 1.5
> 0.8 0.8} & 08
H c | =
& H 2 : = 1.0
'S 0.6 0.6} 2 0.6 .
= : ) G
> 0.4] 0.4)i 5 04 =
2 . ) % gO.S-
2] S 02 o]
m .
§ 0.2 0.2} £
= 0.0+ : : . 0.0
0.04 . . . 0.0 . . . 0 100 200 300
0 100 200 300 0 100 200 300 .
Q1 Qr 0

FIG. 4. (a) Population transfer efficiency versus pulse dkga,

FIG. 3. Population transfer efficiency versus pulse dkga, with §=0, A=0, for Gaussian pulses, shaf818, when fields
with =0, A=0, for cos pulses, shap®.16), when fields are are independent, T=20r. Parameters are yr=10, Gr
independentT=27. Circles depict Monte Carlo simulation, solid =50, Dr=1, ty=0.97. Points and lines are as in Fig. &)
lines show theory, and dashed lines depict the transfer efficiencYhe thick line is the root mean square of the two pulgs, versus
without noise. Bars show the root mean square of the deviation ofime. Arrows show bounds of the time-integration window. The
population transfer efficiency from the average transfer efficiencydashed line i® versus time.
Parameters arg7=10, G7=50. Frame(a) D=2 ; frame (b)

Dr=10. very large values of the pulse area. In fraag with D7
=2, the noise effect, though appreciable, is much less
A. Uncorrelated fields (large |T|) severe.

. . . Solid lines here, and in following figures, show the theo-
Figure 3 presents examples of population transfer eﬁ'?etical results of Sec. V, specifically Eqt.3), (5.7), and
ciency Versus pulse ardparameterized by the product of (5.9. For the pulses 6f éq3.1© the integrai f(;rmﬁla’s sim-
Bﬁgzelz\)f?ubétlzg?ounesng?fh:r;\(/jvoplé)ljles edsuzteloirrr Zi’e;v:r?gm:l:: plify to Egs. (5.8 and (5.10. The numerical and analytical
) O . results are obviously in excellent agreement for fraf@e
computations used=27. We have found that this is suffi- The analytical result significantly underestimates the transfer
clent to give reSl.JltS that are unchanged for larger efficiency in frame(b). This failure is to be expected from a
The dashed line shows the dependence of transfer effg rturbation theory that assumes high efficiency
ciency on pulse area in the absen_ce of any noise. Thi; dash gWe have found good agreement between tHe analytical
fr‘]”"t? showsla_wellt;known behawor.dgsbpu_lse a(;eﬁs 'ncre"’llsrgsults and simulation for a wide range of noise parameter
he time evolution becomes more adiabatic and the populary ¢ gych that the transfer efficiency is 0.5 or better. This
tion transfer becomes more Comp'?te- For the exampl‘?slgreement validates the use of the formulas to predict trans-
shpvyn here, a pulse area excgedm@ koneeded for good fer efficiency for arbitrary combinations of and the noise
efficiency when there is no noise. parameter® andG
. The_circles mark_ th_e results obtained by Mo_nte_CarIo For the limiting .case offl - considered here, we can
simulation. Each pointis the average Of. 100 rea||zat|o.ns. Obredict the transfer efficiency for any pulses of finite dura-
the stochastic process. To indicate the width of the statistic on. The prediction requires numerical evaluation of an in-
distribution of transfer efficiency the bars show the rOOttegr.aI Eq.(5.9). Figure 4 shows the results of simulation
mean square of the deviation of population transfer efﬁ'with G,aus.sia.n bulses and of the theory based on numerical
ciency from the average. The bars are not indicators in thﬁnegration of Eq(5.9)
uncertainty in the estimation of the mean values of the simu- A
lations; they indicate the range of values expected when the
stochastic process of phase variation has been used to deter-
mine the population transfer. Figure 5 presents further examples of simulation for
As one would expect, the presence of noise requires thaiulses shap¢3.16), this time for fully correlated fieldsT
pulse areagparametrized by)y7) be increased to accom- =0). Again the Monte Carlo simulatiogsmall circles aver-
plish efficient population transfer. The need for larger pulseaged 100 realizations of the stochastic process. Solid lines
area can be anticipated from the fact that any two-photoshow the analytical results evaluated with expressiéi,
detuning is detrimental to population transfer and that thg5.8), and(5.14). The agreement between simulation results
two independent noise sources each contribute to this detuand analytical results is excellent.
ing. The noise-defining parameters are the same for Figs. 3
Framed@a) and(b) of Fig. 3 differ in the magnitude of the and 5. A comparison of frames) of the two figures shows
noise fluctuations. In framéb), with D7=10, the noise is that moderate fluctuations, which substantially affect the
sufficiently great that it prevents population transfer even fottransfer efficiency for uncorrelated fields, have almost no

B. Fully correlated fields (T=0)
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(a) (b)
1.01 esee-0—o—0-0-0- . 1.0
)
& 0.8 : 0.8
s
20 i ‘
O 064} 0.6
° E 0.4
E’ 0.41 .
%) . ,
& 021 o 0.2
= 2 ]
0.0 —v——— 0.0d—————— 2 0.08———
0 100 200 300 0 100 200 300 D 0 100 200 300
QT QT )
c
FIG. 5. Population transfer efficiency versus pulse dka, © 1.0 1.0-

with =0, A=0, for pulses of shap.16). Fields have identical
noise, T=0. Points and lines are as in Fig. 3. Parametersyare 0.8-
=10, G7=50. Frame(a) Dr=1; frame(b) D7=10.

0.81
effect on the transfer efficiency when fluctuations becomes 06 0.6 g
fully correlated. Conversely, if the noise noticeably hinders
population transfer for correlated fields, then there will be
very little transfer with uncorrelated fields.

When discussing Fig.(8) we noted that the detrimental
effects of noise could be understood as variations in the two- |
photon detuning. In the present case, witk 0, the noise 0-00 100 200 300 0-00 100 200 300
characteristic of the fields are identical, and so their contri-
bution to the two-photon detuning cancels identically at all Qg Q1
time. The consequences of noise are recognizable despite the ) "
fact that the two-photon detuning is zero at all times. This is itr']: '?': g' Pz‘lu(l)a"?o': gﬁlns‘j:ro‘:ﬁ;'aesg 1";“::; F\’/‘g;gﬁ?ﬁe
because the one-photon detuning is affected by the noise. AelaysT, with 6=0, A=0, Gr=100, yr— 10, andDr—1. The

rapidly varying phase hinders the adiabatic evolution and I?jisplay is as in Fig. 3. Parameters 4 T—2r, (b) T=17, (0
T= %T, and(d) T= %T.

0.4+ 0.4

0.2% 0.2

thus detrimental to the population transfer. However the ef
fect on the transfer efficiency is small.

We have also made simulations with the pulse shapes Qforrelated fields T=%7, T=%r, T=27), althoughT re-
Eq. (3.17). The results are very similar to those shown here;mains much longer than the correlation tim&1/
the small differences do not warran.t a separate figure. A.l' The simulation points, and the associated theoretical
though we have no analytic expression from theory, there ig, a5 exhibit striking and unexpected oscillations with in-
an excellent fit between simulation and theoretical Value%reasing pulse area. These oscillations do not occur for the

obtained by numerical integration of E.9). limiting cases of largd or for T=0, and they are not seen in
) _ frame (a), with T=27. As T becomes smaller the frequency
C. Partially correlated fields of these oscillations decreases, and their amplitude increases.

Figures 3 and 5, showing extreme casesTef0 andT This behavior is in excellent agreement with the theoretical
=, displayed results whose qualitative properties could béesults, Eqs(5.3), (5.18), (5.19 depicted as solid lines. In
anticipated: the presence of noise requires that pulse areas # formulas the oscillations originate with a sine and cosine
increased to achieve the same high transfer efficiency thaerm whose argument isT(2)\/QOZ— y?l4. Thus wheny is
can be obtained without noise. As we demonstrate with Figsmall, variation of the are&,r will produce oscillations
6, when the cross correlation of the two pulse phases doesith period 47 7/T. The oscillations are predicted only for
not have either of these extremes, unexpected results are eVli< 7. The theory predicts that fopr>1 the oscillation am-
dent. Figure 6 shows examples of simulations for partiallyplitude is proportional to exp{yT/4). This function is small
correlated fields, plotting as before: the transfer efficiencywhenT is comparable to or exceeds
versus pulse are@arametrized by the product of peak Rabi  The theoretical work offers criteria for treating the fluc-
frequency(), and pulse duratiorr). The set of frames dis- tuations as independent. Obvioudlymust be large enough
plays results for different values @t Frame(a), for which  to permit damping all correlation between fields. The time
T=2r, can be regarded as a case of independently fluctuatielay must be also much longer than spontaneous emission
ing fields. In the remaining frame$ takes successively time, T>1/y, meaning that a fluctuation of one field will be
smaller values, and the fluctuations approach those of fulljorgotten by the atom by the time the fluctuation repeats in
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pulse reaches its maximurfand there is no longer any
Stokes fieldl That is, we ignore the initial buildup of the
Stokes pulse and the final dropping of the pump pulse, rec-
ognizing that in the absence of dual pulses the only effect of
a single pulse is an unimportant phase increment of the ini-
tial and final states.

The presence of decay in E(B.13 allows one to find
solutions to the Schdinger equation using perturbation
theory. This was done for nonfluctuating fields in Re&5]
for the two-photon resonant cage=0 and in Ref.[2] for
6#0. Phase noise can obviously be treated as dynamical
two-photon and one-photon detunings, and the method de-

; ; - 0¢ . - : veloped in[2] for analyzing the two-photon line shape can
0 100 200 300 0 100 200 300 be generalized to include the phase fluctuations. In this sec-
Q. Qr tion we use perturbation theory to derive an approximate

solution to the Schmlinger equation in the presence of

FIG. 7. Transfer efficiency versud,r for T=(1/8)r. Display  (phase diffusiojnoise for different cases of correlation be-
and parameters are as in Fig(d®. (a) For pulse shape@.17) with tween phase fluctuations. We compare this analytic solution
ty=0.6r; (b) for Gaussian pulse .18 with ty=r. with Monte Carlo simulation.

The analysis carried out here gives correct results for

the other field. Finally, we requir>1/G. This condition pulses such that, within a finite time interval, there occurs a
guarantees that the phases of the two fields are independéﬁ{ge pulse area

transfer efficiency

0.0

at any time. Both these last criteria must hold; if ofly Q. (Dr>1 telte. .t 5.1
>1/G but T<1/y then oscillations will occur. Both of these s )71, L& toegin tend 1
conditions are valid for the results shown in Fig. 3. where tyegin and teng are the initial and final moments of

Although the analytic results apply rigorously only 0 gimyitaneous interaction of the atom with both pulses. This
pulses of the forn(3.16, they can be used as a guide for ¢ongition ensures that, in the absence of phase fluctuations,
predicting the effect of noise in other pulses. This is seen ifne excitation will evolve adiabaticaly. We obtain a simple
Fig. 7(@), for the pulses of Eq(3.17), and in Fig. Tb) for  tormula for the population transfer efficiency in the specific
Gaussian pulses. With both of these pulse shapes one segsse of the pulse shaf8.16). Because a truly Gaussian
the same qualitative behavior, of transfer efficiency that OSpulse extends indefinitely in time, the criteri¢d.1) is not
cillates as a function of the pulse area; these features are Nfrictly valid. However, for numerical simulation the time
unique to the pulse€3.16 nor to pulses of finite duration.  interyal is finite and so the formula can be applied to these

The two pulse shapes give qualitatively similar results,yses as well.
although there are differences in quantitative details. In both @, perturbation treatment postulates that the amplitudes
frames the solid line repeats the theoretical curve for they Eq. (3.12 can be written as
pulse shap&3.16 depicted in Fig. 6, framéc). We should

expect that this theory would not give quantitative agreement Cq(t)=exdag(t) +bg(t)],
with these simulations, but it does reproduce the qualitative
features of the two examples. Cp(t)=Cq(t)[ay(t) +by(H)],
We have found that the formul&.18), though derived for
the cos pulse shap8.16), can be used to fit simulations for C,(t)=Cy(t)[ay(t) +by(1)], (5.2)

Gaussian pulses by introducing an “effective” constant value
of Qrms instead of the time-dependent value that deSCfibEWhere bj(t) are noise_dependent functions aaﬂt) are
the Gaussian pulses, and by introducing an “effective” pulsefunctions independent of the noise. Then we write the ex-
duration. We have obtained these parameters by fitting thgression for the transfer efficien¢the population of level 3
simulation results folf — ¢ to the analytic form required for ast— o) as the product of two factors
cos pulses, Eq.3.16. When we used these in E¢.18 for
finite T, the agreement between the simulation and the theory pP=pP©).p©), (5.3
was as good as can be obtained for the cos pulses.

where P(®) describes the population transfer in the field of

V. ANALYTICAL RESULTS smooth pulses

It is well established that the crucial time interval for PO =exf 2 Reay(»)] (5.4
population transfer is while the Stokes pulse is decreasing
and the pump pulse in increasing. For our analytic work weand P(¥), and ensemble average describes the noise-
assume that at time=t,.q4i, the Stokes pulse is at its maxi- dependent part of the transfer efficiency
mum (with no pump field preseptnd all population resides
in statey;. We follow the time evolution only until the pump P =(exd 2 Reby(*)]). (5.5
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In an earlier work[2], perturbation theory was used to The first term describes nonadiabatic effects during the trans-
solve the Schrdinger equation for the casg=¢&s=0 and  fer[25] and the second term gives the two-photon line shape
8+0. The small parameter in that work was Qf{.,.7), [2].
where Q) .« IS the maximum value of the rms Rabi fre-
quencyQ),s(t). It was also assumed th&k,,,,> . It was B. Uncorrelated fields (large |T|)

shown that the population transfer substantially decreases When the two laser fields fluctuate independefily oc-

when 6~ Qpay/ 'y 7. This result implies that the noise will curs when|T|—«) the noise-dependent part of the transfer

have an appreciable effect on the transfer efficiency only for Lo ; .
two-photon detuning in the range of two-photon detnihg probability is expressible gsee the Appendix, EGALS)]

<Qma/ Vv +2  1-cos4A(t)
In the present paper we develop the pertubation theory t¢(9)=exp —DG(2G+ y)f
—% Qyms(1)2+4G?+29G

apply beyond the range ¢2], thereby allowing values of
v~Qmax- Such an extension is important for describing

population transfer in atomic or molecular beams when the (5.9
time of flight through the laser beams is significantly longer_ . . ) .
than the excited-state spontaneous emission lifetime. This is the most general result of our theoretical work; it

We are concerned here primarily with situations in which@PPlies to arbitrary pulse shapes. As with the inte¢sal),
the transfer efficiency is high. We will therefore approximate!his integral may diverge for pulses that extend over an infi-
the average of an exponenti@xp)) by the exponential of nite time. For pulses of finite duration, the integral can be

an average exp). Such an approximation is reliable as evaluated numerically. ,
long as (x2)~(x)2. By doing so we express the noise- In obtaining expressiort5.9) we made no assumption
dependent part of the transfer efficiency as about pulse shape or sequence of interactions; the formula

simply gives the noise-dependent part of the probability that
P =exd 2 Re(by())]. (5.69  the atom will remain in the dark state after the interaction
with two laser pulses. It can be used together with E5S)
The Appendix describes our approach to evaluatigftf), and(5.7) to estimate the population of the dark state in the
from which the exponential argument is obtained by averagebservation of dark resonances.
ing over noise realizations.
1. Special case: cos pulses

A. The noise-free contribution P For the pulse shap@.16 the integral in Eq(5.9) can be

Straightforward but cumbersome algelgsae the Appen- evaluated analytically. The result is
dix) gives the following result for the noise-free contribution

to the transfer efficiencjsee Eq.(5.3)] PO —oxd — DGT(2G+vy) (5.10
- 4G%+2Gy+0}) '
p(0)_ J+°° 4 0 N 521—cos40
- — 792 I 202 Two limiting cases of this formula are of particular interest.
rms rms

WhenG—0 but the producDG=N? is fixed, we have an
. 1—cos4 ensemble of pulses with constant carrier frequencies distrib-
+ 0 ms———— (292 Q%) ute around the average value. The second momext.ign
rms this limit the latter expression becomes

2
dt]. (5.7) P<f>:exp(  NZy7
Q

. sin 46
+28%0——(— ¥+ O,

rms

~| (G-0). (5.11

0

Here we have omitted the terms of order higher ti#arin . _ ) ) )
the exponent. This expression can be evaluated numericalljiS coincides with what we obtain from E¢5.8) if we
for any pulse shape that has finite time duratipnlses of ~average the argument of the exponentlgl overzdlfferen_t two-
infinite extent, such as Gaussians, may lead to diverging inPhoton detunings, taking into accou(#)=2N*. In this
tegrals. Note that the rms Rabi frequendy,. appearing CaS€ complete populatlon_ transfer occurs when the band-
here will generally have some time dependence, though thi%idth of each laser pulse is much less than the two photon
is not shown explicitly. linewidth Aw=2Q,/\/yr. A moderate increase ob to

For the pulse shapés.16 the rms Rabi frequency is a valuesG= vy, while maintaining the conditio® <G, has the
constant Q<= during the time interval when both Same effect as narrowing the two-photon linewidth by in-

pulses act. The integrdb.7) can then be evaluated analyti- creasing the decay rate of the excited state y+2G.
cally. The result is Figure 8 illustrates the dependence of transfer efficiency

upon noise characteristics by plotting contour lines showing
ya?  Syr the parameter combinations for which the transfer efficiency
PO=exp — —-—
Q3r 202

. (5.8 is 90%. The figure shows, in the same frame, both uncorre-
lated (T—) and fully correlated T—0) noise. The axes
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10004 2. A fundamental limit

An important limit of Eg. (5.10 occurs whenG—

(white noisg. In this case Eq(5.10 reads
100+

p(g):exq—%DT) (G—). (5.12

Population transfer is small unleBsr<1. HereD represents
the bandwidth of the laser. As shown in texts on laser theory,
the basic(Schawlow-Towneslimit to the bandwidth of a
laser is determined by spontaneous emission. It can be as
small as a few Hz. This bandwidth imposes a fundamental
limit on the transfer efficiency: when all “technical” noise
has been eliminated, there remains a nonreducible bandwidth
0.1 1 10 100 1000 attributable to white noise. These uncontrollable fluctuations
(DG)1/2’t cannot be overcome by mcregsuﬁg). By contrast, in lthe
general case of a finite correlation time the transfer efficiency
FIG. 8. Contours of 90% transfer efficiency. Solid lingssc:  Can be substantially increased by using more intense pulses,
dashed linesT=0. Curves are labeled with pulse area parametef-€., Dy increasingQ, [see Eq.(5.10]. As an example,
Q7. The dotted line show&=D. Parameters argr=10, §=0.  for a linewidth of 1 Hz =27 s™1) and7=10"° s, the
departure from complete population transfer is- B9
~3%x10°°.

10+

D1

here differ deliberately from the earlier work of Kulet al.
[17], who usedD andG; our choice is based on the follow-
ing observation.

For D<G the noise spectrum has a Lorentzian shape, When the two laser fields are generated by one source,
characterized by the widtB. For D>G the spectrum be- and therefore have identical fluctuatio@s occurs wheil
comes Gaussian, with width2 In2,/DG. We have chosen =0), the noise-dependent part of the transfer efficiency is
these two widths as the scales for our axes,Dr andx  gdiven by the integra(see the Appendix
=7JDG. The dashed line in each figure, markiby=G p( f

C. Fully correlated fields (T=0)

+o 32DG24(t)?
- Qrms(t)zT[4G2+ 2Gy+ Qrms(t)z]

separates the plot into two regions: far above this line theP(f)=ex
spectrum is Gaussian and thlxeaxis gives the width; far
below this line the spectrum is Lorentzian and thewxis
gives the width. The asymptotes of the contours can be in- (5.13
terpreted using the analytical formulas.

It should be noted that the usual Fourier limited band-In general, for a given pulse shape, the integral must be
width of a pulse refers to the spectrumAft)exp(¢), where  evaluated numerically. However, for the pulse sh&pa6
A(t) is the pulse amplitude ang is the pulse phase. Here, the integral in Eq(5.13 can be evaluated analytically, with
whenG>D, the parameteD is the half-width of the spec- the result
trum of exp(¢) alone. We see that heizr~0.2. Therefore,
the half-widthD is just one-fifth of the Fourier limited band- o(® p( 8D G272

=exp —

W|dth 1/T 2 2 2
For uncorrelated noiseT(—) the lower(horizonta) as- Q57(4G7+2G y+€0)

ymptotes G>D) move closer together as the pulse aréac . fived productDG=N2 and G—0 we obtainP®=1.

increases. This limitis simply the ngise.-dependent part of Fhel'his is what one would expect from the fact that every real-
transfer efficiency because the noise-independent part gives

unity. The vertical asymptoteEfixed DG, (G—0)] differ ization of the noise maintains the two-photon resonance con-

; . - dition.
much more_W|th pulse area; acco_rdmg to form(8all) th_ey The case of finite but sma<Q, of Eq. (5.14,
are proportional to the pulse aréi&a we neglect the noise-

. (5.19

independent part of the transfer efficiency SN2G 2
When the noise is fully correlatedT&0), the lower P =ex _on T , G<Q, (5.15
(horizonta) asymptotes depend substantially on the pulse Q47

area.(The apparent occurrence of a second asymptote in the

regionD>G is a consequence of the logarithmic axdsr  gives a result differing from unity even though=0. This
fixed y=D we haveG—o whenx—oe. In this region the can be interpreted as the effect departure from adiabatic evo-
noise is white noise. The other asymptote gives the &se lution resulting from time-varying one-photon detuning .

—0, D— with DG finite. In this region the effect of noise A rough approximation to this situation is obtained by
can be interpreted as the interaction of the atom with arconsidering a frequency chirgp= &s=(t/ 7, for the case
ensemble of pulses with different two-photon detunings and\=0 andé=0. This model gives a transfer efficiency of the
constant phases. form P=PyPcpirp, Where
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22
m{
PchirpzeX[{ _404 e T‘)

o7 —
20 (AG%+2Gy+02)(4G?—2Gy+Q2)

(5.16 2DGZeX[{—j-—1)/
a(T)

The analog of the variabl&/ r, on which Pchirp depends,
is N2G in the case of fluctuating phases; both quantities are
estimates of the rate of change of the square of the frequency
(the time derivative of the phagseTaking into account this
correspondence one can easily see that, within a numerical
factor, the exponent of Eq5.15 looks like the exponent of
Eq.(5.16. The numerical factor in Eq5.16) depends on the
detailed time dependence of the phase derivaties és.
They are different for a chirp and stochastic fluctuations. The
qualitative agreement between E¢S.15 and (5.16 con-
firms the interpretation of the effect of identical fluctuations and ) = ‘/QOZ— y2/4, Alhough this formula is rather compli-
on the efficiency of population transfer resulting from dy- cated, it is much easier to use than are simulations.

| T|

X + rsin( —)
-

7T(T—|T|)CO< il

T

X

1
ysin(EQ‘T‘)(BQ§+4GZ— ¥?)

1 2
+20 co EQT (Q5+4G2—9?) |, (5.19

namical one-photon detuning. _ A careful consideration reveals that long-time correlation
The white noise limit G—) of Eq. (5.14 gives the plays a crucial role in the dependence of the transfer effi-
expression ciency upon the peak Rabi frequency. The Appendix presents

details of the derivation of Eq5.18. There it is shown, in

the first two equations of EqA11), that for a class of pulse
shapes the noise variables obey equations of an harmonic
oscillator subject to a fluctuating driving force

In contrast to Eq(5.12) there is no fundamental limit to the

efficiency of the population transfer, which approaches unity Qrms .

arbitrarily closely for sufficiently large&)y. Comparison of F()= 4 [€s(t) = &p(1)]sin 26. (520

Egs. (5.17) and (5.9 reveals that white noise can substan-

tially affect the efficiency of the population transfer iD2  The response of this oscillator to the force is greatest when
>v. In the opposite case the efficiency of the populationthe force has large Fourier components near the resonant
transfer is primarily determined by the noise-independentrequency of the oscillator;(). The response is weak to

2D 72
P®=exp — , G—oo, (5.17

2
Q57

part of Eq.(5.3), as can be seen in Fig(. force frequencies that are far from resonance. If we assume
that the resonant component &5(t) is Aexp(/2Qt) then
D. Partially correlated fields (finite |T|) according to Eq.(3.21) the component ofé&g(t) is

In Sec. V C we analyzed the consequences on the transf&€XA (/2)Q(t+T)], and the difference of the components
efficiency of identical fluctuations of the pump and StokesOScillates as expRT). If yT<1 then the near-resonant
fields (T=0). As is apparent from the simulations shown in fluctuations destructively interfere—and thg eﬁec.ts of noise
Sec. IVC, partly cross-correlated fields have some unexa'e therefore least—whedT=4mn wheren is any integer.
pected consequences when used in a STIRAP process. THEhen yT=1 the conditionQT=4mn cannot hold for all
oscillatory variation of the transfer efficiency with increasing fluctuation Fourier components inside the bandwidth of os-
pulse ared),7 is a remarkable feature of our simulations. cillator response, and therefore .they do not interfere com-

As shown in the Appendix, we have derived analytic ex-Pletely. For larger values 0| the interference becomes less
pressions for the transfer efficiency of partially cross-Pronounced. This explains the term ex6/T|) in expres-
correlated fields in the special case when pulses have tHdon (5.19. The most complete elimination of the noise in-
shape(3.16. The degree of cross correlation is adjustedfluénce obviously takes place for=0. _
through the parametéF, which sets the delay between the Although we have treated the conventional lambda link-

noise fluctuations in the two fields. The result of the analysi®de patterrsee Fig. 1 which forms the basis for the usual
is the formula[see the Appendix, EqA15)] STIRAP process, a similar analysis can be carried out for the

ladder linkage pattern, in which the energy of level 3 lies

DGr above that of level 2. Whereas in the lambda pattern the

P =ex ——5 < |26ty two-photon detuning involves the difference between two
4G°+2Gy+Q; carrier frequenciegsee Eq.(3.9)], for a ladder pattern it is

0260l the sum of two frequencies. In that case the noise Fourier

viko® components interfere destructively—and noise effects are

least—for time delay such th&T=2m(2n+ 1), wheren is
any integer. In this case the effect of noise is not small for

4G%-2Gy+Q}

» 1, I T|>7 (5.18 T=0, as it is for the lambda linkage.
exdg(M1, [T|<7, ' We see from Egs(5.11) and (5.1 that in different re-
gimes different combinations of parameters are significant.
where For long autocorrelation times of the fluctuatio®s;~ 0, the
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effect of the noise is determined HYG for uncorrelated

. i
noise but byDG? for fully correlated noise. In the limiG Ayt 2@ =~ 5 QB+ iA—%/ az,
— oo the effect of noise on the transfer efficiency is governed
by the single parametdd. _ _ i i
ad=—0ab+§5ab sin 26+ Eﬁcos 2. (A1)

VI. CONCLUSIONS . _ .
The corresponding equations for the noise-dependent func-
We have simulated the effect of phase noise on the popuionsb,, b,, andb, are

lation transfer efficiency of STIRAP processes, using the
Ornstein-Uhlenbeck model of fluctuations. Our simulations
include, by means of a time offs&t adjustable cross corre-
lation of the pump and Stokes fields.

Using a perturbation theory, we have obtained analytic
expressions for the transfer efficiency for a variety of pulse
shapes in the limit§ =« and T=0. These agree well with
the simulation results, for a wide range of noise parameters,
except when the noise strongly inhibits population transfer.

In the limits T=c and T=0 the transfer efficiency can ,
always be improved by increasing the pulse areas. However, 4 I—(g — £p)sin 26

X R . . S P )
when the two fields are partially correlated, an increase in 2
pulse area may actually be detrimental; the transfer effi-
ciency exhibits remarkable and unexpected oscillatory de-
pendence on pulse area. These oscillations are not unique to
a particular choice of pulse shape, and appear to be a generic
property of partially correlated fields. For a particular choice . . i [
of pulse shape, Eq3.16), we have obtained analytic expres- by=—0by+ 5 6by SiN 20— 5 £p(a+bp)
sions for the transfer efficiency for partially cross-correlated
fields. These results explain the oscillations quantitatively. ) i )

Our computer program is capable of simulating amplitude Xsin 26+ 55s(ab+ by)sin 26
fluctuations as well as phase fluctuations, and we have ex-
amined a number of cases. As in the case of phase fluctua-
tions, fully correlated noiseT(=0) has much less effect on
population transfer. We do not include such simulation re-
sults here because we have as yet no theory with which tdhe following sections develop formulas for these quantities
compare them. based on perterbation theory.

. [ . i
bb+ bd(bb+ ab): - EQrmez_ adbb_iébb cos 26
i
—5&p(1—cos 20)(a,+by)

- Izgs(lJr cos 20)(a,+ by)

. [ - . Y
b2+ bd(b2+ az): - EQrmeb_adbz"f‘ ( |A_ E) bz,

— Izgp(lJrcos 20) — IEgs(l—cos 20). (A2)
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Instead of the usual approach of introducing dimension-
less quantities and small parameters based on them, we will
formally treat(), s~ and yr as the terms of order 4. Then
the values ofs, &, 7, andé;7 are of order 1¢. Here we will
not consider large one-photon detuning but will assuxre
to be of the order of ¥. Inserting into the equations for

APPENDIX: DERIVATION OF ANALYTICAL RESULTS a,, a,, ag,where appropriate, the factorsr 1/e® to

) ) ) . ‘mark the order of magnitude of the corresponding values we
In this appendix we derive some useful expressions apphget

cable to a wide variety of pulse shapes. The main require-
ment is that the pulses have finite temporal support—they 0t i i o
must vanish outside some finite pulse duratign.fact, our €“(ap+agap) =~ 5 €da, C0S 20— EQrms‘E‘Z“L e
theoretical results are valid for infinitely long pulses éf
—0 whent— —o and 6— #/2 whent— +0oo sufficiently i .
quickly that the integral formula converggs. +5edsin2g,

The equations for the noise-independent functions

a,, 4a,, a4, derived by substituting the constructions of oo i _ Y

Eq. (5.2) into the RWA Schidinger equation, are € (8t agay) = — 5 QimsBp | 1€A— 5 | ay,
. i i o . . i i
ab+adab=—§5ab cos 26— Eﬂrmsaﬁ— 0+ E&sin 26, €ay= —eba,+ Eéab sin 26+ Eécos 20. (A3)
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We stress here tha¢ is simply a symbol and should be procesg2]. The other terms give the nonadiabatic correction.
changed to unity at the end of the evaluation. Taking intoSubstituting Eq(A6) in Eq. (A5) and the result in E(5.6)
account that the characteristic time of variation of dark,we get Eq.(5.7).

bright, and excited states for smooth pulses,isne can see

that the terms on the left-hand side(#f3) are small ify and

O, ms satisfy the conditions 2. Population transfer in fluctuating fields
To derive the noise-dependent part of the transfer effi-
Qupst>1, yr>1. (A4)  ciencyP®, we have to take into account that the fields, and
therefore the amplitudes of dark, bright and excited states,
We seek the solution of EGA3) in the form are not smooth functions of time in this case. We expect that
the correlation time of fluctuations can be much smaller than
B ” ") n B the pulse duration. Imagine that all ta@ndb are small, and
am—n;l Un'€", m=b,2d. (AS)  there are no fluctuations. Then with the neglect of the

second-order terms the first two E§82) become those of a
- . —_— damped harmonic oscillator. The solution will be damped
Sl.JbSt't_Utmg Eqs(AS) n (A3)_ 9”6 can eas_ﬂy find,, az,. oscillations with characteristic peridd,,s. When there are
and ay with any desired precision. Following are the first raniq fluctuations, the oscillator will respond with the same
four termsu{?) . These give the value afy up to ordere?. characteristic timefor slow fluctuations the evolution will

be adiabatit Therefore, the quantitids, andb, should vary
U(‘l)=|—5005219 with characteristic frequenc{,,s, and we can expedjﬁ,J
d 2 ' ~Qmbp andb,~ O, b,. [GenerallyQ, s is time depen-
dent, but for the cos pulses of E@.16) it is constant]
) 1 82y(1—cos 49) As in the preceding subsection we formally treat and
u®P=— R — Q,ms7 as being of order ¥ and treatsr, A7, &7, andézr
Qs as being of order H. Inserting the factors &/or 1/e? into
the Eqgs.(A2) where appropriate, we obtain the equations

8%(cos20—cos60)  5°A(1—cos49)
—i

ug= 802 - 202 by+ €2by(by+ay,) = — IEﬂrmsbz—ezétdbb—%ebbécosm
" 5%y?(cos 20— cos 66) i -
4Q?ms , 2e(ab+ by) ép(1—cos 29)
o 2y6? - 526'sin 46 . 820 mo(1—cOs 46) - %egs(aw bp)(1+cos 29)
L N T i
. 5*y(5 cos 8—4 cos 49) ) 53A y(cos 20— cos 69) Tz esin20(¢s~&p),
160ms Qfins
Fyosinag Sy 5y*0(1-cos) byt €2bg(bp 8)= — -y eZagy+ | €A~ Z) b,
Qfns 1607, Qs 2 2
. 5*v3(1+4 cos4—5 cos 89). (A6) _
160?ms eby=—ebby+ Iieb‘bb sin 26

The fact that the series infor a4 starts from 1¢ does not [ _
lead to any unphysical result. It simply gives the imaginary ~ 5épsin20(ap+Dby)
part ofay(e°) and does not affect the probability of the popu-
lation transfer. The zero-order par{®’ gives the two-photon
line shape with good precisidr].

The terms in Eq(A6), which do not contain time deriva- _
tives of s Or 6 give the solution of Eq(A3) in the adia- I
batic approximation. The decrease in population transfer due B Egp(1+ cos 2)
to this terms is caused by two-photon detuning, which mixes ]
the decaying staté, into the adiabatic state of the Hamil- ! B
tonian (3.6) that connects stateg; and 3 in the STIRAP 2 ¢s(1~cos 2). (A7)

i
+ 555 sin 20(3b+ bb)
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We look for the solution of Eqs(A7) as a perturbation

series in the form

[’

b= 3 s0en,

n=-1

k=1{b,2d}. (A8)

PHYSICAL REVIEW A65 043409

The first two Egs. of Eq(A1l) describe a damped harmonic
oscillator with unit mass and time-dependent eigenfrequency
3Q,ms driven by the stochastic force

Qrms

F()=

sin 200 £4(t) — &p(1)]. (A12)

The following sections present expressions for the functions

appearing here.

a. Zero order. No contribution to probability

The Eqgs.(A7) in zero order ine are

: i
<(0) — i (0) 1 (0)
S __EQrmsgb _5752 )

. i i
s =~ 5 ép(1+ 08 2) — 5 &5(1— cOS )

i
+ 5 (s £pt 9) s{Vsin 26. (A9)
The solutions of these equations read

s{¥=0, sP=o0,

s =— 'Egp(1+cos 20) — %gs(l—cos 20).
(A10)

As in the case without fluctuations, the teefi*) is purely

This equation can be solved for arbitragy,
sult is

&s. The re-

Qme(t')sin26(t")
2Q(t") Qpg(t)

t
st = Lodt [(&p(t)—&5(t)]

X[N*(OF () = NF*(t,t")], (A13)

iQ,(t')sin26(t")
40(t")

t
s§P(t) = f_wdt' [£p(t)) — £6(1)]

X[F(t,t")—F*(t,t")], (A14)

i
where Q(t) = VQmd(t)?= 592 Nt)=—3y+ > (1), and

F(t,t")=exp(/;, A\(")dt"). Substituting Eq.(A14) into the
third equation of Eq(A11) we finds{”) . We integrate this to
obtain s§,°>, which we average to obtain the noise-dependent

part of the transfer efficiencjhaving made the approxima-
tion leading from Eq(5.5) to Eq.(5.6)]

=exp(2 Res V().
(A15)

p(§)~ex;{2 Ref <égo)(t)>dt

To evaluate the stochastic averafsy”)(t)) we use Eq.

imaginary and therefore does not affect the probability of2-2) and neglect expfzyr) compared with unity. For the

population transfer.

b. First order. A driven oscillator

From Eq.(A7) we derive the first-order equations

| | i

S=— 5 Qs+ 5 sin 20[ £5— £,
: i 1
siH=— EQrmsSél)_E rss,

vo
4072

rms

s)=— (£s— &p)(1—cOs 46)

i
+5 (s épt 8)sVsin 26. (A11)

casg T|> 7 andG|T|>1 (independent fluctuations of differ-
ent pulseswe obtain Eq(5.9). Correlation between fluctua-
tions of different pulses leads to more complicated expres-
sion for the transfer efficiency. For the pulse shépé6 we
obtain Eq.(5.18.

c. Higher order

When Eq.(5.19 is taken into account the expression
(5.18 for P with T=0 is identically equal to unity. Therefore
it does not describe the effect of any fluctuations. To obtain a
description of fluctuations whem=0 one must deal with
higher-order terms in EA8). The procedure is the same as
in the earlier case. We assurip= £5 and solve a chain of
equations. Thé, term of orderd= —1 is a purely imaginary
number; it gives a fluctuating phase. The terms of order 0, 1,
and 2 all vanish identically. The term of order 3 is nonzero,
but it vanishes after averaging over an ensemble. The lowest-

order nonzero real-valued contribution to the averégg
comes from the fourth-order terg}"’; it gives Eq.(5.14).
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