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Stimulated Raman adiabatic passage with partially coherent laser fields
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In this paper we discuss the effect of phase noise upon the efficiency of population transfer produced by
stimulated Raman adiabatic passage~STIRAP!. To allow an adjustable cross-correlation of the two fields we
consider the pump and Stokes pulses to be derived from a single phase-diffusing exponentially correlated laser,
but we allow some time delayT between the noise signals. We present examples of Monte Carlo simulations,
showing unexpected regularities in the dependence of efficiency upon pulse area for partially cross-correlated
fields: efficiency does not monotonically increase with increasing pulse area, as would be expected. We explain
these, and other properties, by using a simple model of pulse shapes to derive analytic expressions for
efficiency. Although derived for a specific analytic form, the formulas also provide a useful description of
transfer efficiency by other pulse shapes. We also obtain an estimate of the fundamental limit on the transfer
efficiency with STIRAP, based on the Schawlow-Townes limit to laser bandwidths.
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I. INTRODUCTION

Stimulated Raman adiabatic passage~STIRAP! has been
intensively investigated for more than 15 years~see@1# and
references therein! as a technique for transferring populatio
between selected quantum states. In the most elementar
plications of this technique a three-state atom is expose
two sequential partially overlapping laser pulses. Initially t
population resides in state 1, and the intended target of
population, state 3, is entirely unpopulated. An excited st
state 2, has energy above both of these states and serv
an intermediary for the population transfer, though it h
negligible population at all times.~Depicted on an energy
scale, the linkage pattern of the radiative interaction of s
a Raman process has the appearance of a lambda.! The first
pulse has a carrier frequency close to the Bohr transi
frequency between states 3 and 2, whereas the carrier
quency of the later pulse is close to the Bohr frequency of
transition between states 1 and 2. Although neither of th
pulses needs to fulfil a single-photon resonance conditio
is necessary that the two pulses fulfill a two-photon re
nance condition: the difference between the two carrier
quencies must equal the difference between the two B
frequencies. If the pulse envelopes are smooth and the p
fluences are sufficiently large~more precisely, the time inte
gral of the Rabi frequencies—the pulse areas—must be
ficiently large for each pulse!, then the population transfe
can be very nearly complete.

To ensure maximum population transfer it is important
understand, and then control, the various factors that pre
ideal operation of the STIRAP process in practice. One of
most important factors is the deviation of actual laser pul
from the mathematical ideal of a smooth envelope over
otherwise monochromatic carrier wave—the so-cal
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bandwidth-limited pulse. Deviations may occur for ma
reasons, some of which require extra care to ensure that a
the laser components remain isolated from vibrations
other environmental irregularities. Ultimately one is led
consider the intrinsic bandwidth of the laser, usually
garded as originating in random variations in the laser ph
or, because the time derivative of the phase is the insta
neous frequency, in uncontrollable variations in the laser
quency, usually expressed as the detuning from resonan

The key to successful population transfer with STIRAP
the association of the state vectorC(t) with one of three
independent time-dependent adiabatic states, the so-c
population trapping state or dark stateFd(t), and the main-
tenance of that identification during the pulse sequence~in
which the Stokes pulse precedes but overlaps the pu
pulse!. It is essential for this purpose that a two-photon re
nance condition be maintained. To the extent that there
nonadiabatic evolution, or there is nonzero two-photon
tuning, then the state vectorC(t) will deviate from the dark
stateFd(t) and population transfer will be incomplete.

II. HISTORICAL CONTEXT

There has been much work, both theoretical and exp
mental, elucidating the conditions needed for complete po
lation transfer within the STIRAP procedure and for ma
taining the statevector as the dark state. We here note s
of these to make clear the differences with what we pres
here.

A. Static detuning

The dependence of population-transfer efficiency up
two-photon detuning~sometimes referred to as an evaluati
of the two-photon linewidth! in the absence of noise ha
been examined by Romanenko and Yatsenko@2#. This two-
photon linewidth is connected with the mixing of the excit
©2002 The American Physical Society09-1
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YATSENKO, ROMANENKO, SHORE, AND BERGMANN PHYSICAL REVIEW A65 043409
state into the adiabatic state when the two-photon reson
is not maintained@@2#, formula ~19!#.

Such efficiency is closely tied to the requirement that
time evolution be adiabatic, as expressed by the requirem
that the rate of change in a mixing angleu(t) be small~see
below!. Prior studies of STIRAP dealt primarily with smoot
noiseless pulse amplitudes, such as Gaussian pulses,
estimating two-photon linewidths. Here we supplement th
earlier studies by introducing explicitly noisy pulses.

B. Noise

It is important to realize that, although it is convenient
characterize the noise properties of a laser by a single n
ber, the laser bandwidth, this simplification may be ina
equate for predicting effects produced by the laser: a var
of phase and amplitude variations can produce the s
bandwidth, yet have very different effects upon excitatio
fluorescence and other laser-induced processes@3,4#. We of-
fer further comments below.

Some years ago, when the interesting properties of po
lation trapping in the steady-excitation lambda system w
first studied@5–9# a number of investigations examined th
effect of finite laser bandwidth upon the maintenance of
trapped state. In these early works there was no concern
pulse sequences, only with steady illumination by no
lasers.

1. The WL process

Much of that work was based upon modeling the la
noise with the phase-diffusion model suggested by Glau
@10#. In this model the fluctuating part of the derivative
the laser phase~an instantaneous frequency offset! is re-
garded as a stochastic variablej(t). Specifically j(t) is
taken to be a zero-mean Gaussian Markov process. In
Wiener-Levy~WL! process@11# the two stochastic variable
are fully defined by the properties

^j j~ t !&50, ^j j~ t !jk~ t8!&52D jkd~ t2t8!, ~2.1!

whered(x) is the Dirac delta and the brackets^•••& denote
an ensemble average. Suchd-function-correlated white noise
is associated with a Lorentzian profile of the intensity dis
bution (D j j is the bandwith of laserj and DPS is the cross
correlation of the two lasers!. The Lorentzian profile is not a
good description of the wings of any laser spectrum, but i
acceptable for describing small detunings. It character
the noise by a single parameter, the laser bandwidth. T
phase-diffusion model of laser noise was used in the desc
tion of single-laser excitation of atoms or molecules@12–16#.

The great theoretical utility of the WL stochastic model
that, as Agarwal showed@14#, when it is used with Liouville
~density matrix! equations of time evolution, then the st
chastic variables in these equations can be replaced by
stant relaxation coefficientsDmn that parametrize the lase
bandwidth and cross correlation.

The first attempt to apply this model to the treatment
population trapping were by Dalton and Knight@8,9#. They
showed that when there was no cross correlation, then p
04340
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fluctuations of the two independent lasers~i.e., finite laser
bandwidths! caused the population trapping to fail, but th
when the two lasers were well cross correlated, then
noise canceled, so that two-photon coherences were u
fected and population trapping was preserved.

Although qualitative and quantitative analyses of the
fect of phase-diffusion noise~white noise! on the lambda
~and ladder! system have been published~e.g., @17#!, the
presence of counterintuitive pulse sequences, such as the
that occurs with STIRAP, present additional aspects of po
lation trapping that have not been addressed.

Successful population transfer with STIRAP requir
maintenance of the adiabatic trapped state, and in this res
there is commonality with studies of fluorescence. But w
STIRAP there can be other causes of failed population tra
fer in addition to phase fluctuations.

2. The OU Process

Already in the early papers on STIRAP there was conc
about the effect of laser bandwidth upon the success of
population transfer, and Kuhnet al. @17# carried out numeri-
cal simulation of a noisy laser. They used a stochastic mo
of zero-mean exponentially correlated noise~an Ornstein-
Uhlenbeckor OU process!, but they assumed null cross co
relation

^j j~ t !&50, ^j j~ t !jk~ t8!&5H D jGjexp~2Gj ut2t8u!, j 5k

0, j 5” k.
~2.2!

HereD is the spectral density of the noise andG is its band-
width (G21 is the correlation time of the fluctuations!. The
OU model was used for treatment of laser excitation by
number of authors@18–20#.

For large values of G@D, j(t) is a
d-function-correlated process

^j~ t !j~ t8!&52Dd~ t2t8!. ~2.3!

In this case,D is the phase-diffusion coefficient and the spe
trum of the intensity has a Lorenzian profile; as noted abo
D is the intensity half-width at half maximum~HWHM!.

The opposite case,G!D, is close to the extreme case o
an ensemble of fields with constant frequencies that o
Gaussian statistics with varianceDG. The intensity profile is
then a Gaussian; the HWHM isA2 ln 2ADG.

Because the OU process incorporates two parameteD
and G, the laser bandwidth alone is not sufficient to defi
the process fully. Predictions based on the OU process ca
more realistic, but they require more complete character
tion of the laser noise than bandwidth.

3. Other processes

A variety of other forms of noise have been used in tre
ments of steady single-laser excitation. These include var
forms of random-telegraph noise and pre-Gaussian noise
well as random fluctuations in amplitude~see @3,4,21#!.
These models have not as yet been used with multifreque
pulsed excitation.
9-2
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STIMULATED RAMAN ADIABATIC PASSAGE WITH . . . PHYSICAL REVIEW A 65 043409
C. Numerical implementation

Two approaches to the treatment of noise have gene
been followed. In one approach, set forth by Agarwal a
followed by others, the definitions of the stochastic proces
are used to derive equations of motion for the density mat
In these equations all effects of noise appear as relaxa
rates, much as do the parametersT1 and T2 in the Bloch
equations for a two-state atom. This approach permits
inclusion of cross correlation between two laser beams;
degree of independence is an adjustable parameter. Th
the approach used by Dalton and Knight@8,9#.

In the other approach, one carries out Monte Carlo sim
lation, averaging over many realizations of time histories
the noise. In the work of Kuhnet al. @17# and also the
present work, the procedure of Foxet al. @22# is used to
create a sequence of values for the stochastic variablesj j (t)
at a sequence of discrete times@22,23#. We implement a
variant of this technique, as noted below.

In the Kuhn work, the Stokes and pump fields were tak
as independent processes. These extensive simulations@17#
gave quantitative indications of the detrimental effects
phase fluctuations when the pulses were shorter than
intermediate-state radiative lifetime. From that work cam
simple phenomonological formula, consistent with expe
mental evidence, for use in estimating how a fluctuat
bandwidth can quantitatively affect the completeness
population transfer. The contrasting regime, of pulse du
tions longer than the radiative lifetime, remained still to
investigated.

D. Present work

It is most important, for the success of the STIRAP p
cedure, that the two-photon resonance condition be fulfil
For some time it has been recognized@8,9# that when the two
laser pulses are derived from a single laser source, then
eficial cancellations of phase fluctuations may occur, so
population transfer is more successful than it would be if
two lasers were entirely independent.

In this paper we examine this situation in more detail. W
allow variable cross correlation by assuming that the t
fields are both derived from a common source~i.e., they have
the same fluctuations! but they are offset in time by a dela
T. The parameterT provides a measure of cross correlatio
The behavior of such a model system is expected to giv
good description of the ultimate intrinsic limits on maximu
population transfer possible with the STIRAP technique.

Using this simple model for the laser phase fluctuatio
we show that the population transfer efficiency~i.e., the frac-
tion of the total population that is found in the target sta
after the pulse sequence concludes! shows some remarkabl
and unexpected regularities. These regularities, quite vis
in Monte Carlo simulations, have a simple explanation,
we demonstrate by means of analytic approximations.

To achieve our analytic results we assume a very spe
form for the two pulses, but we demonstrate with numeri
simulation that the regularities occur with other pulse shap
for which analytic results are not available.
04340
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The frequency fluctuations of common single-frequen
cw lasers are caused by low-frequency fluctuations in
environment~e.g., mechanical vibrations of the laser moun
ings!. For these the OU model withG!D can be a good
approximation. We therefore adopt the OU process,
~2.2!, as a model of phase noise.

III. BASIC EQUATIONS

We consider a three-state atom with excitation linkages
the usual lambda form: two long-lived low-energy statesc1
andc3, each linked via electric-dipole interaction to an e
cited statec2. Figure 1 shows the energy level structure a
defines the various carrier frequencies (vS ,vP) and detun-
ings (d,D) used subsequently. We assume that the spont
ous radiative decay of the excited state, which occurs at
g, goes entirely to states other thanc1 andc3, and that there
are no interactions linkingc1 and c3 directly. The atom
interacts, via dipole transition momentsd, with the electric
field E(t) of two pulses, termed Stokes~S! and pump~P!,

E~ t !5EP~ t !cos~vPt1wP!1ES~ t !cos~vSt1wS!.
~3.1!

These have carrier frequenciesvP and vS that are close to
the 1↔2 and 2↔3 Bohr transition frequencies, respective
The phases of the fields,wP andwS , we take to be stochasti
functions of time~noise sources!; their time derivatives are
the stochastic functionsj j (t)

ẇ j~ t !5j j~ t !, j 5$S,P%. ~3.2!

The pulse amplitudesuEP(t)u and uES(t)u are smooth, non-
fluctuating functions of time, with the Stokes pulse arrivin
first.

As a first~standard! step, we express the statevectorC(t)
in terms of the basic physical~‘‘bare’’ ! statesc̃ j through the
expansion

C~ t !5(
j

Cj~ t !exp@2 i z j~ t !#c̃ j[(
j

Cj~ t !c j~ t !,

FIG. 1. Schematic diagram of energy levels 1, 2, 3, carrier f
quenciesvS andvP, and detuningsd andD.
9-3
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YATSENKO, ROMANENKO, SHORE, AND BERGMANN PHYSICAL REVIEW A65 043409
j 5$1,2,3%, ~3.3!

where the phasesz j (t), to be specified below, define a ‘‘ro
tating’’ reference frame of basis statesc j (t)5exp

@2izj(t)#c̃j for the probability amplitudesCj (t). We take the
atom to be initially in the statec1.

From the time-dependent Schro¨dinger equation we obtain
the coupled equations

d

dt
C~ t !52 iW~ t !C~ t ! , ~3.4!

where C(t) is a three-component column vector, with el
ments$C1(t),C2(t),C3(t)%, and W(t) is a 333 matrix, a
representation of the Hamiltonian in the time-varying bas
As is customary~cf. @24#!, we treat the radiative interactio
within the rotating-wave approximation~RWA!, meaning
that we choose the phases to eliminate rapidly varying ex
nentials, equivalent to the conditions

ż15 ż22vP2jP , ż35 ż22vS2jS , ~3.5!

and neglect counterrotating terms. The resulting RW
Hamiltonian matrix reads

W(RWA)~ t !5
1

2 F 2d12jP VP~ t ! 0

VP~ t ! 22D2 ig VS~ t !

0 VS~ t ! 1d12jS

G .

~3.6!

Here the off-diagonal elements

VP~ t !52^1ud"EP~ t !u2&, VS~ t !52^3ud"ES~ t !u2&

~3.7!

are slowly varying real-valued functions of time, and t
diagonal elements are expressed in terms of the ave
single-photon detuningD and the two-photon detuningd
~see Fig. 1!,

\d[\~vS2vP!2E11E3 , ~3.8!
to
d
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~vP1vS!1

1

2
~E11E3!2E2 . ~3.9!

As in earlier work ~see Ref.@25#!, it is convenient for
further analysis to express the RWA Hamiltonian matrix
an alternative basis, using the time-dependent ‘‘bright’’ st
Fb(t) and ‘‘dark’’ stateFd(t) ,

FFb~ t !

F2~ t !

Fd~ t !
G5F sinu~ t ! 0 cosu~ t !

0 1 0

cosu~ t ! 0 2sinu~ t !
GF c1~ t !

c2~ t !

c3~ t !
G .

~3.10!

These definitions involve the time-dependent mixing an
u(t)

tanu~ t !5VP~ t !/VS~ t !. ~3.11!

The expansion of the statevector in this basis reads

C~ t !5Cb~ t !Fb~ t !1C2~ t !F2~ t !1Cd~ t !Fd~ t !.
~3.12!

From the time-dependent Schro¨dinger equation we obtain th
coupled equations of the form~3.4! with the amplitudes
$Cb(t),C2(t),Cd(t)% forming the elements of the colum
vectorC(t).

With our assumed pulse sequence, of Stokes before pu
the dark stateFd(t) coincides initially with the initially
populated bare statec1, and it aligns after the pulse sequen
with the target statec3. Thus by maintaining the statevecto
C(t) in this dark state at all times, we accomplish the pop
lation transferc1→c3 of a traditional STIRAP process.

For the population transfer to be complete, the mixi
angle u(t) must slowly change from 0 top/2 and, in the
absence of phase fluctuations,jP50 and jS50, the two-
photon resonance condition (d50) must be maintained. Un
der these conditions neither of the statesFb(t) or F2(t)
become populated.

In this bright-dark basis, with the component orderi
$b,2,d%, the RWA Hamiltonian matrix reads~with suppres-
sion of explicit notation of time dependence! as
W(BD)5
1

2F 2jS cos2u12jP sin2u1d cos 2u V rms 12i u̇2~jS2jP1d!sin 2u

V rms 22D2 ig 0

22i u̇2~jS2jP1d!sin 2u 0 2jS sin2u12jP cos2u2d cos 2u
G . ~3.13!
s the
er
to
-

Here the rms Rabi frequencyV rms(t) is

V rms~ t !5AVP~ t !21VS~ t !2. ~3.14!

The transformed Hamiltonian matrix includes, in addition
the usual nonadiabatic coupling introduced as the time
 e-

rivative of the mixing angleu̇, some time derivatives of the
Stokes and pump phases. To maintain the statevector a
dark state, the matrix elements in the upper right and low
left corners must be negligible. This requires, in addition
the usual need for smallu̇, a small value for the instanta
9-4
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STIMULATED RAMAN ADIABATIC PASSAGE WITH . . . PHYSICAL REVIEW A 65 043409
neous frequency differencejS2jP . We immediately recog-
nize the importance of possible correlation of the two-ph
fluctuations: if the time derivatives of the phases are
same then their fluctuations cancel and the dynamics is
of conventional STIRAP.

A. Pulse shapes

In the present work we took the Stokes and pump am
tudes to be of equal magnitude and shape, but offset in t
by td ,

VS~ t !5V0f ~ t !, VP~ t !5V0f ~ t2td!. ~3.15!

For the pulse-shape functionf (t) we used several analyti
expressions: a cos pulse

f ~ t !5H cosFp2 t

tG , 2t,t,t,

0 otherwise,

~3.16!

useful for analytical evaluation of various integrals; a co2

pulse

f ~ t !5H cos2Fp2 t

tG , 2t,t,t,

0 otherwise,

~3.17!

useful as a second example of a finite-duration pulse
simulations; and a Gaussian pulse

f ~ t !5exp@2~ t/t!2# . ~3.18!

In our numerical simulation the latter are used only within
finite time window. Figure 2 shows the three shapes. For
pulses~3.16! we consider only the delaytd5t. For the other
pulses the time delay is adjustable, and was chosen to
duce the most effective population transfer:td50.6t for cos2

and td50.9t for Gaussian.

FIG. 2. Pulse shapef (t) for the three forms used in this work
thick line is cos, Eq.~3.16!; the thin line is cos2, Eq. ~3.17!; and the
dashed line is Gaussian, Eq.~3.18!.
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B. Noise model

Numerical simulation of phase fluctuations can be carr
out by averaging a succession of time histories, for each
which the frequencyj(t) is a realization of exponentially
correlated colored noise~an example of Monte Carlo simu
lation!. Such functions can be generated using the algorit
described by Fox and others@22,23#, as was done in Ref
@17#. In brief, we obtain a sequence of valuesj(t j ) at dis-
crete timest j5t j 211Dt separated by the stepDt. The value
of j(t j 11) emerges fromj(t j ) according to the algorithm

j~ t j 11!5j~ t j !exp~2GDt !1h~ t j ! , ~3.19!

where the sequence of valuesh(t j ) obey Gaussian statistic
with a zero first moment and the second moment given b

^h2~ t j !&5DG~12e22GDt!. ~3.20!

We formed the sequence ofj(t j ) with the varianceDG using
the standard Matlab functionrandn.

To model the effect of variable cross correlation we a
sume that the pump and Stokes fields follow the same st
tics, but that they may be offset in time byT. Specifically, we
assume

jS~ t !5jP~ t1T!. ~3.21!

The delayT provides an additional parameter, beyondD and
G, with which to characterize the radiation. ForT50 the two
fields are perfectly correlated, and the two-photon detun
is zero at all times. For very largeT ~compared with the
duration of the atom-field interaction and the correlation tim
of the noise! the fluctuations become independent, as w
assumed in an earlier work@17#.

Both positive and negative values of the time delayT are
possible. In the STIRAP process with two pulses genera
by the single laser one can expectT5td , where td is the
time delay between pulses. If the STIRAP process is car
out in an atomic or molecular beam crossing two spatia
displaced laser beams then any value and sign ofT can be
realized by adjusting the optical paths of pump and Sto
beams.

IV. SIMULATION RESULTS

This section presents numerical results, obtained
Monte Carlo simulation of the Schro¨dinger equation, for
pulses of the form~3.16!, ~3.17!, and ~3.18!. We compare
these simulations with the theory developed in Sec. V.
summary, our model of excitation involves the following p
rameters, in addition to one-photon detuningD and two-
photon detuningd: V0 is the peak Rabi frequency,g is the
spontaneous emission rate of state 2;G is the inverse auto-
correlation time for the noise (G@D implies white noise!; D
is the phase diffusion coefficient~the amplitude of white-
noise fluctuations!; T is the delay between the two nois
sources that generate the random phases of the fieldT
→` implies no cross-correlation!.

We use these frequenciesX in the dimensionless produc
form Xt where appropriate.
9-5
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A. Uncorrelated fields „large zTz…

Figure 3 presents examples of population transfer e
ciency versus pulse area~parameterized by the product o
peak Rabi frequencyV0 and pulse durationt), when the
phase fluctuations of the two pulses are independent.~The
computations usedT52t. We have found that this is suffi
cient to give results that are unchanged for largerT.!

The dashed line shows the dependence of transfer
ciency on pulse area in the absence of any noise. This da
curve shows a well-known behavior: as pulse areas incre
the time evolution becomes more adiabatic and the pop
tion transfer becomes more complete. For the exam
shown here, a pulse area exceeding 102 is needed for good
efficiency when there is no noise.

The circles mark the results obtained by Monte Ca
simulation. Each point is the average of 100 realizations
the stochastic process. To indicate the width of the statist
distribution of transfer efficiency the bars show the ro
mean square of the deviation of population transfer e
ciency from the average. The bars are not indicators in
uncertainty in the estimation of the mean values of the sim
lations; they indicate the range of values expected when
stochastic process of phase variation has been used to d
mine the population transfer.

As one would expect, the presence of noise requires
pulse areas~parametrized byV0t) be increased to accom
plish efficient population transfer. The need for larger pu
area can be anticipated from the fact that any two-pho
detuning is detrimental to population transfer and that
two independent noise sources each contribute to this de
ing.

Frames~a! and~b! of Fig. 3 differ in the magnitude of the
noise fluctuations. In frame~b!, with Dt510, the noise is
sufficiently great that it prevents population transfer even

FIG. 3. Population transfer efficiency versus pulse areaV0t,
with d50, D50, for cos pulses, shape~3.16!, when fields are
independent,T52t. Circles depict Monte Carlo simulation, soli
lines show theory, and dashed lines depict the transfer efficie
without noise. Bars show the root mean square of the deviatio
population transfer efficiency from the average transfer efficien
Parameters aregt510, Gt550. Frame~a! Dt52 ; frame ~b!
Dt510.
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very large values of the pulse area. In frame~a!, with Dt
52, the noise effect, though appreciable, is much l
severe.

Solid lines here, and in following figures, show the the
retical results of Sec. V, specifically Eqs.~5.3!, ~5.7!, and
~5.9!. For the pulses of Eq.~3.16! the integral formulas sim-
plify to Eqs. ~5.8! and ~5.10!. The numerical and analytica
results are obviously in excellent agreement for frame~a!.
The analytical result significantly underestimates the tran
efficiency in frame~b!. This failure is to be expected from
perturbation theory that assumes high efficiency.

We have found good agreement between the analyt
results and simulation for a wide range of noise parame
values such that the transfer efficiency is 0.5 or better. T
agreement validates the use of the formulas to predict tra
fer efficiency for arbitrary combinations ofg and the noise
parametersD andG.

For the limiting case ofT→` considered here, we ca
predict the transfer efficiency for any pulses of finite du
tion. The prediction requires numerical evaluation of an
tegral, Eq.~5.9!. Figure 4 shows the results of simulatio
with Gaussian pulses and of the theory based on nume
integration of Eq.~5.9!.

B. Fully correlated fields „TÄ0…

Figure 5 presents further examples of simulation
pulses shape~3.16!, this time for fully correlated fields (T
50). Again the Monte Carlo simulation~small circles! aver-
aged 100 realizations of the stochastic process. Solid l
show the analytical results evaluated with expressions~5.3!,
~5.8!, and~5.14!. The agreement between simulation resu
and analytical results is excellent.

The noise-defining parameters are the same for Fig
and 5. A comparison of frames~a! of the two figures shows
that moderate fluctuations, which substantially affect
transfer efficiency for uncorrelated fields, have almost

cy
of
y.

FIG. 4. ~a! Population transfer efficiency versus pulse areaV0t,
with d50, D50, for Gaussian pulses, shape~3.18!, when fields
are independent, T520t. Parameters are gt510, Gt
550, Dt51, td50.9t. Points and lines are as in Fig. 3.~b!
The thick line is the root mean square of the two pulsesV rms versus
time. Arrows show bounds of the time-integration window. T
dashed line isu versus time.
9-6
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effect on the transfer efficiency when fluctuations becom
fully correlated. Conversely, if the noise noticeably hinde
population transfer for correlated fields, then there will
very little transfer with uncorrelated fields.

When discussing Fig. 3~a! we noted that the detrimenta
effects of noise could be understood as variations in the t
photon detuning. In the present case, withT50, the noise
characteristic of the fields are identical, and so their con
bution to the two-photon detuning cancels identically at
time. The consequences of noise are recognizable despit
fact that the two-photon detuning is zero at all times. This
because the one-photon detuning is affected by the nois
rapidly varying phase hinders the adiabatic evolution an
thus detrimental to the population transfer. However the
fect on the transfer efficiency is small.

We have also made simulations with the pulse shape
Eq. ~3.17!. The results are very similar to those shown he
the small differences do not warrant a separate figure.
though we have no analytic expression from theory, ther
an excellent fit between simulation and theoretical val
obtained by numerical integration of Eq.~5.9!.

C. Partially correlated fields

Figures 3 and 5, showing extreme cases ofT50 andT
5`, displayed results whose qualitative properties could
anticipated: the presence of noise requires that pulse are
increased to achieve the same high transfer efficiency
can be obtained without noise. As we demonstrate with F
6, when the cross correlation of the two pulse phases d
not have either of these extremes, unexpected results are
dent. Figure 6 shows examples of simulations for partia
correlated fields, plotting as before: the transfer efficien
versus pulse area~parametrized by the product of peak Ra
frequencyV0 and pulse durationt). The set of frames dis
plays results for different values ofT. Frame~a!, for which
T52t, can be regarded as a case of independently fluct
ing fields. In the remaining framesT takes successively
smaller values, and the fluctuations approach those of f

FIG. 5. Population transfer efficiency versus pulse areaV0t,
with d50, D50, for pulses of shape~3.16!. Fields have identical
noise,T50. Points and lines are as in Fig. 3. Parameters aregt
510, Gt550. Frame~a! Dt51; frame~b! Dt510.
04340
s
s

o-

i-
ll
the
s
. A
is
f-

of
;
l-
is
s

e
be

at
.

es
vi-

y
y
i

t-

ly

correlated fields (T5 1
4 t, T5 1

8 t, T5 1
32 t), althoughT re-

mains much longer than the correlation time 1/G.
The simulation points, and the associated theoret

curves, exhibit striking and unexpected oscillations with
creasing pulse area. These oscillations do not occur for
limiting cases of largeT or for T50, and they are not seen i
frame ~a!, with T52t. As T becomes smaller the frequenc
of these oscillations decreases, and their amplitude increa
This behavior is in excellent agreement with the theoreti
results, Eqs.~5.3!, ~5.18!, ~5.19! depicted as solid lines. In
the formulas the oscillations originate with a sine and cos
term whose argument is (T/2)AV0

22g2/4. Thus wheng is
small, variation of the areaV0t will produce oscillations
with period 4pt/T. The oscillations are predicted only fo
T,t. The theory predicts that forgt@1 the oscillation am-
plitude is proportional to exp(2gT/4). This function is small
whenT is comparable to or exceedst.

The theoretical work offers criteria for treating the flu
tuations as independent. ObviouslyT must be large enough
to permit damping all correlation between fields. The tim
delay must be also much longer than spontaneous emis
time, T@1/g, meaning that a fluctuation of one field will b
forgotten by the atom by the time the fluctuation repeats

FIG. 6. Population transfer efficiency versus pulse areaV0t,
with d50, D50, for pulses of shape~3.16! and various time
delaysT, with d50, D50, Gt5100, gt510, andDt51. The
display is as in Fig. 3. Parameters are~a! T52t, ~b! T5

1
4 t, ~c!

T5
1
8 t, and~d! T5

1
32t.
9-7
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YATSENKO, ROMANENKO, SHORE, AND BERGMANN PHYSICAL REVIEW A65 043409
the other field. Finally, we requireT@1/G. This condition
guarantees that the phases of the two fields are indepen
at any time. Both these last criteria must hold; if onlyT
@1/G but T!1/g then oscillations will occur. Both of thes
conditions are valid for the results shown in Fig. 3.

Although the analytic results apply rigorously only
pulses of the form~3.16!, they can be used as a guide f
predicting the effect of noise in other pulses. This is seen
Fig. 7~a!, for the pulses of Eq.~3.17!, and in Fig. 7~b! for
Gaussian pulses. With both of these pulse shapes one
the same qualitative behavior, of transfer efficiency that
cillates as a function of the pulse area; these features are
unique to the pulses~3.16! nor to pulses of finite duration.

The two pulse shapes give qualitatively similar resu
although there are differences in quantitative details. In b
frames the solid line repeats the theoretical curve for
pulse shape~3.16! depicted in Fig. 6, frame~c!. We should
expect that this theory would not give quantitative agreem
with these simulations, but it does reproduce the qualita
features of the two examples.

We have found that the formula~5.18!, though derived for
the cos pulse shape~3.16!, can be used to fit simulations fo
Gaussian pulses by introducing an ‘‘effective’’ constant va
of V rms instead of the time-dependent value that descri
the Gaussian pulses, and by introducing an ‘‘effective’’ pu
duration. We have obtained these parameters by fitting
simulation results forT→` to the analytic form required fo
cos pulses, Eq.~3.16!. When we used these in Eq.~5.18! for
finite T, the agreement between the simulation and the the
was as good as can be obtained for the cos pulses.

V. ANALYTICAL RESULTS

It is well established that the crucial time interval f
population transfer is while the Stokes pulse is decreas
and the pump pulse in increasing. For our analytic work
assume that at timet5tbegin the Stokes pulse is at its max
mum ~with no pump field present! and all population reside
in statec1. We follow the time evolution only until the pump

FIG. 7. Transfer efficiency versusV0t for T5(1/8)t. Display
and parameters are as in Fig. 6~c!. ~a! For pulse shapes~3.17! with
td50.6t; ~b! for Gaussian pulses~3.18! with td5t.
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pulse reaches its maximum~and there is no longer an
Stokes field!. That is, we ignore the initial buildup of the
Stokes pulse and the final dropping of the pump pulse, r
ognizing that in the absence of dual pulses the only effec
a single pulse is an unimportant phase increment of the
tial and final states.

The presence of decay in Eq.~3.13! allows one to find
solutions to the Schro¨dinger equation using perturbatio
theory. This was done for nonfluctuating fields in Ref.@25#
for the two-photon resonant cased50 and in Ref.@2# for
d5” 0. Phase noise can obviously be treated as dynam
two-photon and one-photon detunings, and the method
veloped in@2# for analyzing the two-photon line shape ca
be generalized to include the phase fluctuations. In this s
tion we use perturbation theory to derive an approxim
solution to the Schro¨dinger equation in the presence
~phase diffusion! noise for different cases of correlation b
tween phase fluctuations. We compare this analytic solu
with Monte Carlo simulation.

The analysis carried out here gives correct results
pulses such that, within a finite time interval, there occur
large pulse area

V rms~ t !t@1, tP@ tbegin,tend#, ~5.1!

where tbegin and tend are the initial and final moments o
simultaneous interaction of the atom with both pulses. T
condition ensures that, in the absence of phase fluctuati
the excitation will evolve adiabaticaly. We obtain a simp
formula for the population transfer efficiency in the speci
case of the pulse shape~3.16!. Because a truly Gaussia
pulse extends indefinitely in time, the criterion~5.1! is not
strictly valid. However, for numerical simulation the tim
interval is finite and so the formula can be applied to the
pulses as well.

Our perturbation treatment postulates that the amplitu
of Eq. ~3.12! can be written as

Cd~ t !5exp@ad~ t !1bd~ t !#,

Cb~ t !5Cd~ t !@ab~ t !1bb~ t !#,

C2~ t !5Cd~ t !@a2~ t !1b2~ t !#, ~5.2!

where bj (t) are noise-dependent functions andaj (t) are
functions independent of the noise. Then we write the
pression for the transfer efficiency~the population of level 3
as t→`) as the product of two factors

P5P(0)
•P(j), ~5.3!

where P(0) describes the population transfer in the field
smooth pulses

P(0)5exp@2 Read~`!# ~5.4!

and P(j), and ensemble average describes the no
dependent part of the transfer efficiency

P(j)5^exp@2 Rebd~`!#&. ~5.5!
9-8
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STIMULATED RAMAN ADIABATIC PASSAGE WITH . . . PHYSICAL REVIEW A 65 043409
In an earlier work@2#, perturbation theory was used t
solve the Schro¨dinger equation for the casejP5jS50 and
d5” 0. The small parameter in that work was 1/(Vmaxt),
where Vmax is the maximum value of the rms Rabi fre
quencyV rms(t). It was also assumed thatVmax@g. It was
shown that the population transfer substantially decrea
whend;Vmax/Agt. This result implies that the noise wi
have an appreciable effect on the transfer efficiency only
two-photon detuning in the range of two-photon detningd
,Vmax/Agt.

In the present paper we develop the pertubation theor
apply beyond the range of@2#, thereby allowing values o
g;Vmax. Such an extension is important for describi
population transfer in atomic or molecular beams when
time of flight through the laser beams is significantly long
than the excited-state spontaneous emission lifetime.

We are concerned here primarily with situations in whi
the transfer efficiency is high. We will therefore approxima
the average of an exponential^exp(x)& by the exponential of
an average exp(^x&). Such an approximation is reliable a
long as ^x2&'^x&2. By doing so we express the nois
dependent part of the transfer efficiency as

P(j)5exp@2 Re^bd~`!&#. ~5.6!

The Appendix describes our approach to evaluatingbd(t),
from which the exponential argument is obtained by aver
ing over noise realizations.

A. The noise-free contribution P„0…

Straightforward but cumbersome algebra~see the Appen-
dix! gives the following result for the noise-free contributio
to the transfer efficiency@see Eq.~5.3!#

P(0)5expF2E
2`

1`S 4g
u̇2

V rms
2

1gd2
12cos 4u

2V rms
2

1d2V̇ rms

12cos 4u

V rms
5 ~2g22V rms

2 !

12d2u̇
sin 4u

V rms
4 ~2g21V rms

2 !D dtG . ~5.7!

Here we have omitted the terms of order higher thand2 in
the exponent. This expression can be evaluated numeric
for any pulse shape that has finite time duration~pulses of
infinite extent, such as Gaussians, may lead to diverging
tegrals!. Note that the rms Rabi frequencyV rms appearing
here will generally have some time dependence, though
is not shown explicitly.

For the pulse shape~3.16! the rms Rabi frequency is
constant V rms5V0 during the time interval when both
pulses act. The integral~5.7! can then be evaluated analyt
cally. The result is

P(0)5expS 2
gp2

V0
2t

2
d2gt

2V0
2 D . ~5.8!
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The first term describes nonadiabatic effects during the tra
fer @25# and the second term gives the two-photon line sh
@2#.

B. Uncorrelated fields „large zTz…

When the two laser fields fluctuate independently~as oc-
curs whenuTu→`) the noise-dependent part of the trans
probability is expressible as@see the Appendix, Eq.~A15!#

P(j)5expS 2DG~2G1g!E
2`

1` 12cos 4u~ t !

V rms~ t !214G212gG
dtD .

~5.9!

This is the most general result of our theoretical work;
applies to arbitrary pulse shapes. As with the integral~5.7!,
this integral may diverge for pulses that extend over an i
nite time. For pulses of finite duration, the integral can
evaluated numerically.

In obtaining expression~5.9! we made no assumptio
about pulse shape or sequence of interactions; the form
simply gives the noise-dependent part of the probability t
the atom will remain in the dark state after the interacti
with two laser pulses. It can be used together with Eqs.~5.3!
and ~5.7! to estimate the population of the dark state in t
observation of dark resonances.

1. Special case: cos pulses

For the pulse shape~3.16! the integral in Eq.~5.9! can be
evaluated analytically. The result is

P(j)5expS 2
DGt~2G1g!

4G212Gg1V0
2D . ~5.10!

Two limiting cases of this formula are of particular intere
WhenG→0 but the productDG5N2 is fixed, we have an
ensemble of pulses with constant carrier frequencies dis
ute around the average value. The second moment isN2. In
this limit the latter expression becomes

P(j)5expS 2
N2gt

V0
2 D ~G→0!. ~5.11!

This coincides with what we obtain from Eq.~5.8! if we
average the argument of the exponential over different tw
photon detunings, taking into account^d2&52N2. In this
case complete population transfer occurs when the ba
width of each laser pulse is much less than the two pho
linewidth Dv5A2V0 /Agt. A moderate increase ofG to
valuesG>g, while maintaining the conditionD,G, has the
same effect as narrowing the two-photon linewidth by
creasing the decay rate of the excited stateg→g12G.

Figure 8 illustrates the dependence of transfer efficie
upon noise characteristics by plotting contour lines show
the parameter combinations for which the transfer efficien
is 90%. The figure shows, in the same frame, both unco
lated (T→`) and fully correlated (T→0) noise. The axes
9-9



-

pe

th

i

d

,
-

-

e
th
iv

ls
t

e

a
n

ory,

e as
tal

e
idth
ns

ncy
lses,

rce,

is

be

h

al-
on-

5!

evo-

y

e

te

YATSENKO, ROMANENKO, SHORE, AND BERGMANN PHYSICAL REVIEW A65 043409
here differ deliberately from the earlier work of Kuhnet al.
@17#, who usedD andG; our choice is based on the follow
ing observation.

For D!G the noise spectrum has a Lorentzian sha
characterized by the widthD. For D@G the spectrum be-
comes Gaussian, with widthA2 ln 2ADG. We have chosen
these two widths as the scales for our axes,y5Dt and x
5tADG. The dashed line in each figure, markingD5G
separates the plot into two regions: far above this line
spectrum is Gaussian and thex axis gives the width; far
below this line the spectrum is Lorentzian and they axis
gives the width. The asymptotes of the contours can be
terpreted using the analytical formulas.

It should be noted that the usual Fourier limited ban
width of a pulse refers to the spectrum ofA(t)exp(if), where
A(t) is the pulse amplitude andf is the pulse phase. Here
whenG@D, the parameterD is the half-width of the spec
trum of exp(if) alone. We see that hereDt'0.2. Therefore,
the half-widthD is just one-fifth of the Fourier limited band
width 1/t.

For uncorrelated noise (T→`) the lower~horizontal! as-
ymptotes (G@D) move closer together as the pulse ar
increases. This limit is simply the noise-dependent part of
transfer efficiency because the noise-independent part g
unity. The vertical asymptotes@fixed DG, (G→0)] differ
much more with pulse area; according to formula~5.11! they
are proportional to the pulse area~if we neglect the noise-
independent part of the transfer efficiency!.

When the noise is fully correlated (T50), the lower
~horizontal! asymptotes depend substantially on the pu
area.~The apparent occurrence of a second asymptote in
regionD@G is a consequence of the logarithmic axes.! For
fixed y5D we haveG→` when x→`. In this region the
noise is white noise. The other asymptote gives the casG
→0, D→` with DG finite. In this region the effect of noise
can be interpreted as the interaction of the atom with
ensemble of pulses with different two-photon detunings a
constant phases.

FIG. 8. Contours of 90% transfer efficiency. Solid lines,T5`;
dashed lines,T50. Curves are labeled with pulse area parame
V0t. The dotted line showsG5D. Parameters aregt510, d50.
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2. A fundamental limit

An important limit of Eq. ~5.10! occurs whenG→`
~white noise!. In this case Eq.~5.10! reads

P(j)5exp~2 1
2 Dt! ~G→`!. ~5.12!

Population transfer is small unlessDt!1. HereD represents
the bandwidth of the laser. As shown in texts on laser the
the basic~Schawlow-Townes! limit to the bandwidth of a
laser is determined by spontaneous emission. It can b
small as a few Hz. This bandwidth imposes a fundamen
limit on the transfer efficiency: when all ‘‘technical’’ nois
has been eliminated, there remains a nonreducible bandw
attributable to white noise. These uncontrollable fluctuatio
cannot be overcome by increasingV0. By contrast, in the
general case of a finite correlation time the transfer efficie
can be substantially increased by using more intense pu
i.e., by increasingV0 @see Eq.~5.10!#. As an example,
for a linewidth of 1 Hz (D52p s21) andt51025 s, the
departure from complete population transfer is 12P(j)

'331025.

C. Fully correlated fields „TÄ0…

When the two laser fields are generated by one sou
and therefore have identical fluctuations~as occurs whenT
50), the noise-dependent part of the transfer efficiency
given by the integral~see the Appendix!

P(j)5expS 2E
2`

1` 32DG2u̇~ t !2

V rms~ t !2t@4G212Gg1V rms~ t !2#
dtD .

~5.13!

In general, for a given pulse shape, the integral must
evaluated numerically. However, for the pulse shape~3.16!
the integral in Eq.~5.13! can be evaluated analytically, wit
the result

P(j)5expS 2
8DG2p2

V0
2t~4G212Gg1V0

2!
D . ~5.14!

For fixed productDG5N2 and G→0 we obtainP(j)51.
This is what one would expect from the fact that every re
ization of the noise maintains the two-photon resonance c
dition.

The case of finite but smallG!V0 of Eq. ~5.14!,

P(j)5expS 2
8N2Gp2

V0
4t

D , G!V0 ~5.1

gives a result differing from unity even thoughd50. This
can be interpreted as the effect departure from adiabatic
lution resulting from time-varying one-photon detuning .

A rough approximation to this situation is obtained b
considering a frequency chirp,jP5jS5zt/t, for the case
D50 andd50. This model gives a transfer efficiency of th
form P5P0Pchirp , where

r
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STIMULATED RAMAN ADIABATIC PASSAGE WITH . . . PHYSICAL REVIEW A 65 043409
Pchirp5expS 24
p2z2

V0
4t2D . ~5.16!

The analog of the variablez2/t, on whichPchirp depends,
is N2G in the case of fluctuating phases; both quantities
estimates of the rate of change of the square of the freque
~the time derivative of the phase!. Taking into account this
correspondence one can easily see that, within a nume
factor, the exponent of Eq.~5.15! looks like the exponent o
Eq. ~5.16!. The numerical factor in Eq.~5.16! depends on the
detailed time dependence of the phase derivativesjP5jS .
They are different for a chirp and stochastic fluctuations. T
qualitative agreement between Eqs.~5.15! and ~5.16! con-
firms the interpretation of the effect of identical fluctuatio
on the efficiency of population transfer resulting from d
namical one-photon detuning.

The white noise limit (G→`) of Eq. ~5.14! gives the
expression

P(j)5expS 2
2Dp2

V0
2t

D , G→`. ~5.17!

In contrast to Eq.~5.12! there is no fundamental limit to th
efficiency of the population transfer, which approaches un
arbitrarily closely for sufficiently largeV0. Comparison of
Eqs. ~5.17! and ~5.8! reveals that white noise can substa
tially affect the efficiency of the population transfer if 2D
@g. In the opposite case the efficiency of the populat
transfer is primarily determined by the noise-independ
part of Eq.~5.3!, as can be seen in Fig. 5~a!.

D. Partially correlated fields „finite zTz…

In Sec. V C we analyzed the consequences on the tran
efficiency of identical fluctuations of the pump and Stok
fields (T50). As is apparent from the simulations shown
Sec. IV C, partly cross-correlated fields have some un
pected consequences when used in a STIRAP process
oscillatory variation of the transfer efficiency with increasi
pulse areaV0t is a remarkable feature of our simulations

As shown in the Appendix, we have derived analytic e
pressions for the transfer efficiency of partially cros
correlated fields in the special case when pulses have
shape~3.16!. The degree of cross correlation is adjust
through the parameterT, which sets the delay between th
noise fluctuations in the two fields. The result of the analy
is the formula@see the Appendix, Eq.~A15!#

P(j)5expF2
DGt

4G212Gg1V0
2 S 2G1g

2
gV0

2e2GuTu

4G222Gg1V0
2D G

3H 1, uTu.t

exp@g~T!#, uTu,t,
~5.18!

where
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g~T!5

2DG2 expS 2
1

4
gUTU D

2pV~4G212Gg1V0
2!~4G222Gg1V0

2!

3Fp~t2uTu!cosS pT

t D1t sinS puTu
t D G

3Fg sinS 1

2
VUTU D ~3V0

214G22g2!

12V cosS 1

2
VTD ~V0

214G22g2!G , ~5.19!

andV5AV0
22g2/4. Alhough this formula is rather compli

cated, it is much easier to use than are simulations.
A careful consideration reveals that long-time correlati

plays a crucial role in the dependence of the transfer e
ciency upon the peak Rabi frequency. The Appendix prese
details of the derivation of Eq.~5.18!. There it is shown, in
the first two equations of Eq.~A11!, that for a class of pulse
shapes the noise variables obey equations of an harm
oscillator subject to a fluctuating driving force

F~ t !5
V rms

4
@jS~ t !2jP~ t !#sin 2u. ~5.20!

The response of this oscillator to the force is greatest w
the force has large Fourier components near the reso
frequency of the oscillator,12 V. The response is weak t
force frequencies that are far from resonance. If we assu
that the resonant component ofjP(t) is Aexp(i/2Vt) then
according to Eq. ~3.21! the component of jS(t) is
Aexp@(i/2)V(t1T)#, and the difference of the componen
oscillates as exp(i/2VT). If gT!1 then the near-resonan
fluctuations destructively interfere—and the effects of no
are therefore least—whenVT54pn wheren is any integer.
When gT>1 the conditionVT54pn cannot hold for all
fluctuation Fourier components inside the bandwidth of
cillator response, and therefore they do not interfere co
pletely. For larger values ofuTu the interference becomes les
pronounced. This explains the term exp(21

4guTu) in expres-
sion ~5.19!. The most complete elimination of the noise i
fluence obviously takes place forT50.

Although we have treated the conventional lambda lin
age pattern~see Fig. 1! which forms the basis for the usua
STIRAP process, a similar analysis can be carried out for
ladder linkage pattern, in which the energy of level 3 li
above that of level 2. Whereas in the lambda pattern
two-photon detuning involves the difference between t
carrier frequencies@see Eq.~3.8!#, for a ladder pattern it is
the sum of two frequencies. In that case the noise Fou
components interfere destructively—and noise effects
least—for time delay such thatVT52p(2n11), wheren is
any integer. In this case the effect of noise is not small
T50, as it is for the lambda linkage.

We see from Eqs.~5.11! and ~5.12! that in different re-
gimes different combinations of parameters are significa
For long autocorrelation times of the fluctuations,G→0, the
9-11
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effect of the noise is determined byDG for uncorrelated
noise but byDG2 for fully correlated noise. In the limitG
→` the effect of noise on the transfer efficiency is govern
by the single parameterD.

VI. CONCLUSIONS

We have simulated the effect of phase noise on the po
lation transfer efficiency of STIRAP processes, using
Ornstein-Uhlenbeck model of fluctuations. Our simulatio
include, by means of a time offsetT, adjustable cross corre
lation of the pump and Stokes fields.

Using a perturbation theory, we have obtained analy
expressions for the transfer efficiency for a variety of pu
shapes in the limitsT5` andT50. These agree well with
the simulation results, for a wide range of noise paramet
except when the noise strongly inhibits population transf

In the limits T5` and T50 the transfer efficiency can
always be improved by increasing the pulse areas. Howe
when the two fields are partially correlated, an increase
pulse area may actually be detrimental; the transfer e
ciency exhibits remarkable and unexpected oscillatory
pendence on pulse area. These oscillations are not uniq
a particular choice of pulse shape, and appear to be a ge
property of partially correlated fields. For a particular cho
of pulse shape, Eq.~3.16!, we have obtained analytic expre
sions for the transfer efficiency for partially cross-correla
fields. These results explain the oscillations quantitativel

Our computer program is capable of simulating amplitu
fluctuations as well as phase fluctuations, and we have
amined a number of cases. As in the case of phase fluc
tions, fully correlated noise (T50) has much less effect o
population transfer. We do not include such simulation
sults here because we have as yet no theory with whic
compare them.
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APPENDIX: DERIVATION OF ANALYTICAL RESULTS

In this appendix we derive some useful expressions ap
cable to a wide variety of pulse shapes. The main requ
ment is that the pulses have finite temporal support—t
must vanish outside some finite pulse duration.~In fact, our
theoretical results are valid for infinitely long pulses ifu
→0 when t→2` and u→p/2 when t→1` sufficiently
quickly that the integral formula converges.!

The equations for the noise-independent functio
ab , a2 , ad , derived by substituting the constructions
Eq. ~5.2! into the RWA Schro¨dinger equation, are

ȧb1ȧdab52
i

2
dab cos 2u2

i

2
V rmsa21 u̇1

i

2
d sin 2u,
04340
d

u-
e
s

c
e

s,
.

er,
in
-
-
to
ric

d

e
x-
a-

-
to

-

li-
e-
y

s

ȧ21ȧda252
i

2
V rmsab1S iD2

g

2Da2 ,

ȧd52 u̇ab1
i

2
dab sin 2u1

i

2
d cos 2u. ~A1!

The corresponding equations for the noise-dependent fu
tions bb , b2, andbd are

ḃb1ḃd~bb1ab!52
i

2
V rmsb22ȧdbb2

i

2
dbb cos 2u

2
i

2
jP~12cos 2u!~ab1bb!

2
i

2
jS~11cos 2u!~ab1bb!

1
i

2
~jS2jP!sin 2u,

ḃ21ḃd~b21a2!52
i

2
V rmsbb2ȧdb21S iD2

g

2Db2,

ḃd52 u̇bb1
i

2
dbb sin 2u2

i

2
jP~ab1bb!

3sin 2u1
i

2
jS~ab1bb!sin 2u

2
i

2
jP~11cos 2u!2

i

2
jS~12cos 2u!. ~A2!

The following sections develop formulas for these quantit
based on perterbation theory.

1. Population transfer in the fields of smooth pulses

Instead of the usual approach of introducing dimensi
less quantities and small parameters based on them, we
formally treatV rmst andgt as the terms of order 1/e2. Then
the values ofdt, j1t, andj3t are of order 1/e. Here we will
not consider large one-photon detuning but will assumeDt
to be of the order of 1/e. Inserting into the equations fo
ab , a2 , ad , where appropriate, the factors 1/e or 1/e2 to
mark the order of magnitude of the corresponding values
get

e2~ ȧb1ȧdab!52
i

2
edab cos 2u2

i

2
V rmsa21 u̇e2

1
i

2
ed sin 2u,

e2~ ȧ21ȧda2!52
i

2
V rmsab1S i eD2

g

2Da2 ,

eȧd52eu̇ab1
i

2
dab sin 2u1

i

2
d cos 2u. ~A3!
9-12
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We stress here thate is simply a symbol and should b
changed to unity at the end of the evaluation. Taking i
account that the characteristic time of variation of da
bright, and excited states for smooth pulses ist, one can see
that the terms on the left-hand side of~A3! are small ifg and
V rms satisfy the conditions

V rmst@1, gt@1. ~A4!

We seek the solution of Eq.~A3! in the form

am5 (
n521

`

um
(n)en, m5b,2,d. ~A5!

Substituting Eqs.~A5! in ~A3! one can easily findab , a2,
and ȧd with any desired precision. Following are the fir
four termsun

(d) . These give the value ofȧd up to ordere2.

u̇d
(21)5

i

2
d cos 2u,

u̇d
(0)52

1

4

d2g~12cos 4u!

V rms
2

,

u̇d
(0)52 i

d3~cos 2u2cos 6u!

8V rms
2

1 i
d2D~12cos 4u!

2V rms
2

1 i
d3g2~cos 2u2cos 6u!

4V rms
4

,

u̇d
(2)52

2gu̇2

V rms
2

2
d2u̇ sin 4u

V rms
2

1
d2V̇ rms~12cos 4u!

2V rms
3

1
d4g~5 cos 8u24 cos 4u!

16V rms
4

1
d3Dg~cos 2u2cos 6u!

V rms
4

1
d2g2u̇ sin 4u

V rms
4

2
d4g

16V rms
4

2
d2g2V̇0~12cos 4u!

V rms
5

1
d4g3~114 cos 4u25 cos 8u!

16V rms
6

. ~A6!

The fact that the series ine for ȧd starts from 1/e does not
lead to any unphysical result. It simply gives the imagina
part ofad(`) and does not affect the probability of the pop
lation transfer. The zero-order partud

(0) gives the two-photon
line shape with good precision@2#.

The terms in Eq.~A6!, which do not contain time deriva
tives of V rms or u give the solution of Eq.~A3! in the adia-
batic approximation. The decrease in population transfer
to this terms is caused by two-photon detuning, which mi
the decaying statec2 into the adiabatic state of the Hami
tonian ~3.6! that connects statesc1 and c3 in the STIRAP
04340
o
,

y

e
s

process@2#. The other terms give the nonadiabatic correctio
Substituting Eq.~A6! in Eq. ~A5! and the result in Eq.~5.6!
we get Eq.~5.7!.

2. Population transfer in fluctuating fields

To derive the noise-dependent part of the transfer e
ciencyP(j), we have to take into account that the fields, a
therefore the amplitudes of dark, bright and excited sta
are not smooth functions of time in this case. We expect t
the correlation time of fluctuations can be much smaller th
the pulse duration. Imagine that all thea andb are small, and
there are no fluctuations. Then with the neglect of t
second-order terms the first two Eqs.~A2! become those of a
damped harmonic oscillator. The solution will be damp
oscillations with characteristic periodV rms . When there are
rapid fluctuations, the oscillator will respond with the sam
characteristic time~for slow fluctuations the evolution will
be adiabatic!. Therefore, the quantitiesbb andb2 should vary
with characteristic frequencyV rms , and we can expectḃb

;V rmsbb and ḃ2;V rmsb2. @GenerallyV rms is time depen-
dent, but for the cos pulses of Eq.~3.16! it is constant.#

As in the preceding subsection we formally treatgt and
V rmst as being of order 1/e2 and treatdt, Dt, j1t, andj3t
as being of order 1/e. Inserting the factors 1/e or 1/e2 into
the Eqs.~A2! where appropriate, we obtain the equations

ḃb1e2ḃd~bb1ab!52
i

2
V rmsb22e2ȧdbb2

i

2
ebbd cos 2u

2
i

2
e~ab1bb!jP~12cos 2u!

2
i

2
ejS~ab1bb!~11cos 2u!

1
i

2
e sin 2u~jS2jP!,

ḃ21e2ḃd~b21a2!52
i

2
V rmsbb2e2ȧdb21S i eD2

g

2Db2 ,

eḃd52eu̇bd1
i

2
edbb sin 2u

2
i

2
jP sin 2u~ab1bb!

1
i

2
jS sin 2u~ab1bb!

2
i

2
jP~11cos 2u!

2
i

2
jS~12cos 2u!. ~A7!
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We look for the solution of Eqs.~A7! as a perturbation
series in the form

bk5 (
n521

`

sk
(n)en, k5$b,2,d%. ~A8!

The following sections present expressions for the functi
appearing here.

a. Zero order. No contribution to probability

The Eqs.~A7! in zero order ine are

ṡb
(0)52

i

2
V rmss2

(0) ,

ṡ2
(0)52

i

2
V rmssb

(0)2
1

2
gs2

(0) ,

ṡ21
(d) 52

i

2
jP~11cos 2u!2

i

2
jS~12cos 2u!

1
i

2
~jS2jP1d!sb

(0)sin 2u. ~A9!

The solutions of these equations read

sb
(0)50, s2

(0)50,

ṡd
(21)52

i

2
jP~11cos 2u!2

i

2
jS~12cos 2u!.

~A10!

As in the case without fluctuations, the termṡd
(21) is purely

imaginary and therefore does not affect the probability
population transfer.

b. First order. A driven oscillator

From Eq.~A7! we derive the first-order equations

ṡb
(1)52

i

2
V rmss2

(1)1
i

2
sin 2u@jS2jP#,

ṡ2
(1)52

i

2
V rmssb

(1)2
1

2
gs2

(1) ,

ṡd
(0)52

gd

4V rms
2 ~jS2jP!~12cos 4u!

1
i

2
~jS2jP1d!sb

(1)sin 2u. ~A11!
04340
s

f

The first two Eqs. of Eq.~A11! describe a damped harmon
oscillator with unit mass and time-dependent eigenfreque
1
2 V rms driven by the stochastic force

F~ t !5
V rms

4
sin 2u@jS~ t !2jP~ t !#. ~A12!

This equation can be solved for arbitraryjP , jS . The re-
sult is

sb
(1)~ t !5E

2`

t

dt8
V rms~ t8!sin 2u~ t8!

2V~ t8!V rms~ t !
@~jP~ t8!2jS~ t8!#

3@l* ~ t !F~ t,t8!2l~ t !F* ~ t,t8!#, ~A13!

s2
(1)~ t !5E

2`

t

dt8
iV rms~ t8!sin 2u~ t8!

4V~ t8!
@jP~ t8!2jS~ t8!#

3@F~ t,t8!2F* ~ t,t8!#, ~A14!

where V(t)5AV rms(t)
22 1

4 g2, l(t)52 1
4 g1

i

2
V(t), and

F(t,t8)5exp(*t8
t l(t9)dt9). Substituting Eq.~A14! into the

third equation of Eq.~A11! we find ṡd
(0) . We integrate this to

obtainsd
(0) , which we average to obtain the noise-depend

part of the transfer efficiency@having made the approxima
tion leading from Eq.~5.5! to Eq. ~5.6!#

P(j)'expF2 ReE
2`

`

^ṡd
(0)~ t !&dtG5exp̂ 2 Res d

(0)~`!&.

~A15!

To evaluate the stochastic averabe^sd
(0)(t)& we use Eq.

~2.2! and neglect exp(2 1
4gt) compared with unity. For the

caseuTu.t andGuTu@1 ~independent fluctuations of differ
ent pulses! we obtain Eq.~5.9!. Correlation between fluctua
tions of different pulses leads to more complicated expr
sion for the transfer efficiency. For the pulse shape~3.16! we
obtain Eq.~5.18!.

c. Higher order

When Eq. ~5.19! is taken into account the expressio
~5.18! for P with T50 is identically equal to unity. Therefore
it does not describe the effect of any fluctuations. To obta
description of fluctuations whenT50 one must deal with
higher-order terms in Eq.~A8!. The procedure is the same a
in the earlier case. We assumejP5jS and solve a chain of
equations. Thebd term of orderd521 is a purely imaginary
number; it gives a fluctuating phase. The terms of order 0
and 2 all vanish identically. The term of order 3 is nonze
but it vanishes after averaging over an ensemble. The low
order nonzero real-valued contribution to the average^ḃd&
comes from the fourth-order termsd

(4) ; it gives Eq.~5.14!.
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