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Topology of adiabatic passage

L. P. Yatsenkd; S. Guein, and H. R. Jauslin
Laboratoire de Physique de I'Universitie Bourgogne, CNRS, BelPostale 47870, 21078 Dijon, France
(Received 15 December 2000; published 2 April 2002

We examine the topology of eigenenergy surfaces characterizing the population transfer processes based on
adiabatic passage. We show that this topology is the essential feature for the analysis of the population transfers
and the prediction of its final result. We reinterpret diverse known processes, such as stimulated Raman
adiabatic passag&STIRAP), frequency-chirped adiabatic passage and Stark-chirped rapid adiabatic passage.
Moreover, using this picture, we display new related possibilities of transfer. In particular, we show that we can
selectively control the level that will be populated in STIRAP procesA ior V systems by the choice of the
peak amplitudes or the pulse sequence.
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[. INTRODUCTION adiabatic dynamics of the process is determined by the to-
pology of these energy surfaces and can be completely pre-
Adiabatic passage is now a well-established tool todicted. The dynamics governed by the time-dependent
achieve complete population transfer between discrete quaSchralinger equation is, thus, reduced to the topology of the
tum states of atoms and molecules. The main advantage &plutions of the time-independent ScHirger equation.
the processes based on adiabatic passage is their relative ro-
bustness with respect to variation of field parameters. The Il. TOPOLOGY OF CHIRPING
adiabatic passage is achieved with adapted adiabatic varia- ) ] ) o
tions of at least twoeffectiveparameters of the total laser . 1ne essence of the adiabatic passage induced by chirping
field. They can be, e.g., the amplitude and the detunind® cqptured with the _effe(_:tlve two-state Hamiltonian in the
(chirping or, e.g., the amplitudes of two delayed pulses’otating wave approximatiof,15]
[stimulated Raman adiabatic passé8€IRAP), seg[1] for a
review]. A chirp can be induced either by direct sweeping of H(t) = é 0 Q)
the frequency of one laser pulg2—8|, or as proposed very 21Q(t) 2A(b)
recently by a Stark shift of the transition due to an additional
laser field[process named Stark-chirped rapid adiabatic paswhich describes the radiative interaction between a two-level
sage(SCRAP][9,10]. The use of adiabatic passage for mul- system(states| 1) and|2)) and the quasiresonant laser field
tiple photon absorption and emission processes accompantfzrough the effective Rabi frequenc€y(t) and the effective
ing momentum exchanges between the atom and the lasdetuningA (t). We have assumed that spontaneous emissions
fields have also been recently investigafiti—13. are negligibly small on the time scale of the pulse duration.
In this paper, we show that all of these adiabatic passag€he population resides initially in the statk).
processes can be understood by an analysis of the topology In these processe§)(t) stands for a one-photon or mul-
of the surfaces of eigenenergies as functions of the field paiphoton Rabi frequencydepending on the process studied,
rameters. More precisely, we show that, in multilevel sys-see, e.g., Ref.8] for an effective two-photon chirpingand
tems, the processes based on adiabatic passage are a combi-
nation of a global adiabatic passage and local diabatic A(t)=Aq(t)+S(t) (2
evolutions in the neighborhood of the conical intersections of
the surfaces of eigenenergies. This tool allows us to derivés the sum of the detuning from the one-photon or multipho-
different ways of controlling population transfer, related toton resonance and of the effective dynamical Stark shift. This
STIRAP. effective dynamical Stark shifs(t) results from the differ-
The tools of analysis follow Refl13]. From an effective ence of the dynamical Stark shifts associated to the two en-
Hamiltonian, which can be constructed by quasiresonant agergy levels and produced by the laser fields nonresonant with
proximations combined with adiabatic eliminations from thethe other levels of the system. For td@ect chirping the
complete Hamiltonian of the considered process, we detedetuning from the resonandg(t) is time dependent due to
mine and analyze the topology of the energy surfaces, whichn active sweeping of the laser frequency. The dynamical
display conical intersections and avoided crossings due t8tark shiftsS(t) are, in general, detrimental since they shift
resonances. In the general cases, these resonances aretle levels away from the resonance. For 8tark chirping
duced by the fieldgdynamical resonance413,14. The the quasiresonant laser frequency is not chirfibd detun-
ing Ag is time independept the time dependence of the
effective detuning\ (t) = Ao+ S(t) is only due to Stark shifts
*Mailing address: Institute of Physics, National Academy of Sci-that are induced by the laser pulg€s10].
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&, each other as shown in the diagnabefore the Stark pulse
&Q&:&& S(t) >0, which is switched off after the pump pulse.
‘,W In summary, the three paths), (b), and (c) represent
§~‘5§§.§§.’ fully adiabatic passage from stdte) to state|2); (a) passes
K2 YN, : around the conical intersectiofl)) and (c) pass both once
i \‘\\\'sz L around the conical intersection and once through it.
2 \ ; g
2
) 111. DIABATIC AND ADIABATIC DYNAMICS AROUND
% CONICAL INTERSECTIONS
w 5\\\\3:‘3\%\*{\1\ In the preceding section, we have classified qualitatively
\\\\\\\\\\\\\\\\\\\f&\ Lt g . . .
S5 all the possibilities giving an adiabatic connection between
the stated1) and|2). We have, thus, assumed exact adia-
0 batic passage through crossings. The analysis of robustness
-1 of the process suggests to study the dynamics if the crossing
in in is slightly missed. In this case, the small couplifiggives

_ o ) rise to a thin avoided crossing, which is expected to be
FIG. 1. Surfaces of eigenenergigs units of[Ajy[) as functions  hasseddiabatically for Q sufficiently small with respect to
of Q/|Aj| andA/|A,|. Three different paths, denotéd), (b) and e speed of the passage. In the following we study with
(c) are depicted(a) corresponds to a direct chirping afi) and(c)  qre detail the dynamics near conical intersections with a
10 SCRAP. Landau-Zener analysis and give an estimation of the effi-
ciency of the diabatic passage.
h The conditions for adiabatic passage and its associated
A (QA)=5 (A VOZ+A), () robustness are standard, sufficiently far from crossings. More
precisely for two-level systems, adiabatic evolution is satis-
. ) ) . ) fied when the rate of change®(t)| in the mixing angle
which represent the eigenenergies as functions of the instagy (1), defined as tan@(t)=Q(t)/A(t), —7<20(t)<0
taneous effective Rabi frequenflyand detuning\ (see Fig.  js much smaller than the separation of the eigenvalues

1). All the quantities are normalized with respect to a char-|)\ (1) =N _(O) |17 = VOO + AZ(H)
acteristic detuning denotedl;,. They display a conical in- i - ’

tersection forQ=0,A=0 induced by the crossing of the . 5 .

lines characterizing the statily and|2) for Q=0 and vari- [O()[< VO +A%(). (4)

ous A. In the planeQ2=0, the stategl) and |2) do not

interact. The crossing of these states in this pl@re0 can  When the dynamics approaches a conical intersection, the
be seen consequently asraite resonanceThus, adiabatic  adiabatic approximation is expected to fail and a careful
passage through the intersection leaves the system in thanalysis is required. We consider the neighborhood of the
same stateThe way of passing around or through this coni- conical intersection as a thin avoided crossing. \We approxi-
cal intersection is the key of the successful transfer. Thregate the local dynamics near this intersection by the Hamil-
generic curves representing all the possible passages withtanian (1) with the linear time-dependent detuning(t)
negative initial detuning—|A,| are shown. Note that the =A(t)t=A.t and the coupling considered as constant
three other equivalent curves with a positive initial detuning) (t)=Q(t.)=(., with t. the time when the avoided cross-
have not been drawn. The pat#) corresponds to a direct ing is passed. This Hamiltonian, whose eigenvalues form an
chirping of the laser frequency from the initial detuning avoided crossing, is appropriate for the Landau-Zener treat-
—|Ajn| to the final one+ |A;y|. The pathgb) and(c) corre-  ment [16,17. It gives the probability to jump from one
spond to SCRAP withh o= —|A;,|. For the path(b), while  pranch to the other one

the quasiresonant pump pulse is off, another laser fthse

Stark pulse, which is far from any resonance in the system 02
switched on and induces positive Stark shif¢)>0 (the Py=exp — e , (5)
Stark pulse frequency is chosen with this aiffihus, Stark 2A,

pulse makes the eigenstates get closer, and induces a reso-

nance with the pump frequency. This resonance is mute sinGghich defines the efficiency of theiabatic passageAdia-
the pump pulse is still off, which results in the true crossingpatic (diabatio evolution through the avoided crossing is,

in the diagram. The pump pulse is switched ('Jn after ththS, defined af,~0 (Pd%].) Note that this formuld5)
crossing. Later the Stark pulse decreases while the pumg \5iid for any regime adiabatic, diabatic, or intermediate.

pulse is still on. Finally, the pump pulse is switched off. AS 1,5 congition to achieve the diabatic passage can, thus, be
shown in the diagram, the adiabatic following of the pdth  ¢5rmulated as

induces the complete population transfer from stateto
state|2). The path(c) leads exactly to the same effect: The . 5
pump pulse is switched on firgtnaking the eigenstates repel A>mQe/2. (6)
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[20]). Here we revisit the STIRAP process through the topol-
ogy of the associated surfaces of eigenenergies as functions
of the two field amplitudes.

Our results are also valid for ladder and V systems. We
also show the following results which are new to our knowl-
edge: (i) we can transfer the population to sta@ with
intuitive (as with counterintuitive specific quasiresonant
pulses without invoking the approximation of adiabatic
elimination (i) with specific quasiresonant pulses, we can
selectivelytransfer the population to staf) for anintuitive
sequence or to stat8) for a counterintuitivesequence, and

FIG. 2. Diagram of linkage patterns between three atomic state§ii) With an intuitive or counterintuitive sequence, we can

showing pumgP) and StokegS) transitions and the various detun- selef:tivelytransfer th_e population to staf2) or to Stat(_3|3>
ings for (@) A and(b) V systems. playing on thedetuningsand on thepeak pulse amplitudes

ratio. We remark that the selectivitii) has been demon-

Thus, the Landau-Zener analysis provides the matching bétrated in the case of exact two-photon resonant plizHs
tween the adiabatic evolution far from the conical intersec-This last result is, however, not robust since it depends on
tion and the local diabatic behavior near the intersection. Using precisely determined total pulse areas.

The peak amplitudes, the delay between the two fields and We also analyze the counterpart of the previous processes
the pulse shapes are chosen such that the condi@rmd in V systems[see Fig. 20)]: the initial population being in
(6) are met in the concerned regions. Detailed conditions t&tate|2), we show that with specific nonresonant pulg@s,
achieve diabatic and adiabatic passage can be found Mie canselectivelytransfer the population to staf#) for an
[10,18 for the example of delayed Gaussian pulses. intuitive sequence or to stat8) for a counterintuitive se-

We remark that if conditior{6) is not satisfied, which is quence{ii) we canselectivelytransfer the population to state
the case if one misses the conical intersection in an intermdl) or to state|3) playing on the ratio of the peak pulse

diate regime Q2~A.), the Landau-Zener formula shows @mplitudes. o _
that the dynamics splits the population into the two surfaces '€ Most general Hamiltonian in the rotating wave ap-
near the intersection. This gives rise afterwards to two statgroximation for these processes reads
that will have their own adiabatic evolution.

In the following section, we describe the topology of " 0 Qp(1) 0
STIRAP-like processes, a§sum|(1g a perfect diabatic evo- H(t)==| Qp(t) 2Ap Qgt) , )
lution locally near the conical intersectioksr equivalently 2 0 Q (A A
an adiabatic evolution through the exact conical intersec- st) 2(Ap=Ag)

tions) and(ii) a global adiabatic evolution. In multilevel sys- . ) ]
tems, near a conical intersection, where one considers a lociith ;(t), j=P,S the one-photon Rabi frequencies asso-

ideal diabatic evolution, it is essential that the evolution beiated, respectively, to the pump pulss carrier frequency
indeed at the same time adiabatic with respect to the othepp) @nd the Stokes puldef carrier frequencyos). We have
states. Additionally, to new possibilities of transfer, we show@Ssumed that the stately and|3) have no dipole coupling
that the STIRAP process can be understood by ghibal ~ @nd that spontaneous emission from the upper $2jtds
adiabatic passage combined with local diabatic evolutions?€dligibly small on the time scale of the pulse duration. The

near conical intersectionsWe show numerical simulations 'otating wave transformation is valid p(t)<|E,—E,|
that support this analysis. and Qg(t)<|E;—E,|, whereE;, j=1,2,3 are the energies

associated to the bare stat¢s.
The detunings\p and A g are one-photon detunings with
respect to the pump and Stokes frequencies, respectively, and

M
— 12 lAs

2) v
wp wg | IAP

1) [)—"—

IV. TOPOLOGY OF STIMULATED RAMAN ADIABATIC
PASSAGE

The adiabatic passage induced by two delayed laser S=Ap—Ag (8)
pulses, the well-known process of STIRAP, produces popu-
lation transfer inA systemdsee Fig. 2a)]. (The pump field s the two-photon detuning.
couples the transition from 1 to 2 and the Stokes field For A, ladder and V systenisee respectively, Figs(@,

couples the transition from 2 to)3It is known that, the  2(p), and Zc)], the one-photon detuningsp, Ag are re-
initial population being in statfl), the complete population spectively defined as

transfer is achieved with delayed pulses, eitfigrwith a

so-called counterintuitive temporal sequeriSéokes before AAo=E.—E.—% AAe=E-—E\—% 9
pump for various detunings as identified in Ref$8,19, or Prm2m L ReR s=EBy~fws, (93
(i) with a two-photon resonartibr quasiresonanpulses but

far from the one-photon resonance with the intermediate hAp=E,—Ey—fhwp, hAs=E,~Eztfiws, (9b)
state|2), for any pulse sequendelemonstrated in the ap-
proximation of adiabatic elimination of the intermediate state hAp=E,—Ei+hwp, HAs=E,—Ez+hiwg. (90
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FIG. 4. Surfaces of eigenenergi@s units of §) as functions of
Qpl6 and Og/ 8 for the case 132. The pathg) and (b) (with
ulses of the same length and peak amplijusterespond, respec-
ively, to the intuitive and counterintuitive pulse sequencea ior
adder systems.

FIG. 3. Surfaces of eigenenergi@s units of §) as functions of
QOpl8 and Qg/ S for the case 213. The pathg) and (b) (con-
structed with delayed pulses of the same length and peak amplitud
correspond, respectively, to the intuitive and counterintuitive pulsq
sequences irh or ladder systemg&or which the initial population

resides in statél)). The surfaces haave been shifted-by/2. shown on the respective Figs. 3 and 4 are generic for the

) condition
In what follows we study the topology of the eigenenergy

surfaces for various generic sets of the parameters. The to- ApAg>0, (12)
pology depends on the detunings that determine the relative

position of the energies at the origin. We study variqua-  with, respectively,

siresonantpulses in the sense that the detunings are small

with respect to the associated peak Rabi frequencies, i.e., |Ap|<|Ag and [Ap|>[A4. (12
In the following, we describe in detail the 213 casee
Ap= mta>(Qp), As= mta>(QS), (109 Fig. 3. For the process in\ or ladder systems, where the
initial population resides in statd), two different adiabatic
paths lead to the complete population transfer, depending on
o= mta>(Qp), o= mtax(Qs). (10D the pulse sequence. The path denotedaasorresponds to

an intuitive sequence for the increasing pulses. The pump
) ) ) ~ pulse is switched on first, making the levels connected to the
Allowing large enough amplitudes imply three generic siates|1) and |2) repel each othe(dynamical Stark shift
cases for6>0, which are referred to 213, 132, and 123 ntj| the level connected td) crosses the level connected to
(these number sets are associated to the eigenenergies fg§ The Stokes pulse is switched on after the crossing. Next
zero-field amplitudes from the smallest to the biggeBiree  he two pulses can decrease in any sequence. The(paith
other symmetric and, thus, equivalent cage$erred as 312 4550ciated to a counterintuitive sequence for the decreasing
symmetric with 213, 231 with 132, and 321 with J2®pear  pyises. The two pulses can be switched on for any sequence.
for 6<0. The pump pulse has to decrease through the crossing when
the Stokes pulse is already off. These two results are valid
A. The cases 213 and 132 even without application of adiabatic elimination. The con-
ditions of global adiabaticity are very similar to the ones of
the chirping casé4). As studied in Sec. lll, an analysis for
the diabatic evolution near the conical intersections can be
made locally with the Landau-Zener approximation and
gives the same conditiof®).
The V systems are uninteresting in these cases since the
final population comes back to the sta® for any pulse
r%equence.

The case 213 correspondsA@<Ap<0 and its symmet-
ric 312 to O<KAp<Ag. One example for the case 213 is
diagrammed in Fig. 3 foAp= —6/2 andAg= —36/2.

The case 132 corresponds te<A <A, (and its sym-
metric 231 toAp<Ag<0) as diagrammed in Fig. 4 faXp
=342 andAg= 6/2. Figure 4 shows that the topology of the
132 case is similar to the topology of the 213 case. In bot
cases, the surface continuously connected to the Ratis
isolated from the two other surfaces that present a conical
intersection forQs=0 (Qp=0) in the 213 configuration
(132 configuration This crossing corresponds to a mute The case 123 correspondsA@<0<Ap and its symmet-
resonance as described above for chirping. The topologiesc 321 to Ap<<O<Ag. One example for the case 123 is

B. The case 123
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Eigenenergies
Eigenenergies

QS/8 0 Q /5 FIG. 6. Surfaces of eigenenergi@s units of ) with the same
P parameters as Fig. 5 showing the selective transfer with pulses of
FIG. 5. Surfaces of eigenenergiés units of 5) as functions of different _peak amplitudes and length. For counter.intuitive se-
Qp/5 and Qg/6 for the case 123. The pathg) and (b) (with quences |r1/\_ or ladder systems, the path) [corresponding to_ the
pulses of the same length and peak amplijutterespond, respec- path (b) of Fig. 5] shows the transfer tf8), and the patiia) (with

tively, to the intuitive(transfer to/2)) and counterintuitivétransfer pulses of different length and peak amplithdtharacterizes the
to|3)) pulse sequences i or ladder systems leading to the se- transfer to|2). The paths(@ and (c) correspond to the selective

lective transfer. The path@) and (c) correspond to the selective transfer in V systems.

transfer in V systemgfor which the initial population resides in

|2)), respectively, td1) and|3). are designed differently in their sequence and their peak am-
plitude. The pathb) corresponds to the previous path of

diagrammed in Fig. 5 foAp=8/2 andAg= — 8/2. The to-  Fig. 5 and allows to populate at the end the stae The

pology shown on this figure is generic for the condition ~ Path(a) is characterized by a pump pulsstill switched on
after the Stokes pul$donger and of smaller peak amplitude

ApAg<O. (13)  and allows to populate at the end the s{@e Note that we
can obtain a similar patla) with a counterintuitive pulse

In this configuration, two conical intersections involve the sequence and equal peak amplitudes if the detuAipgs
intermediate surface, one with the lower surface and anothdgken smaller so that the crossing f85=0 is pushed to
with the upper surface. This topology gives here more poshigher pump pulse amplitud@p .
sibilities for transferithe combined choice of the pulse se- For V systems, Fig. 6 shows that this selectiyiyaths(a)
quence and the ratio of the peak amplitudes allows the seand(c)] also occurgfor any sequence of the pulse
lective transfer into the two other states

Figure 5 shows that, for the process/An(or laddej sys-
tems, two different adiabatic paths lead to different, complete
population transfers, depending on the pulse sequence. The In this paper we have applied simple geometrical tools to
path (a) characterizes an intuitive pulse sequerifte de-  two- and three-level systems in the rotating wave approxi-
creasing pulsgsand allows to populate at the end the statemation to classify all the possibilities of complete population
|2). The Stokes and pump pulses are switched on in anytansfer by adiabatic passage, when the two-level system is
sequence and the pump pulse is switched off before thdriven by a chirped laser pulse and the three-level system by
Stokes. The patltb) characterizes a counterintuitive pulse two delayed pulses. We have shown that the complete trans-
sequencéfor increasing pulsésand allows to populate at the fer by adiabatic passage is intrinsically related to the topol-
end the stat¢3). The Stokes pulse is switched on before theogy of the eigenenergy surfaces. We have found the follow-
pump and the pulses are switched off in any sequence. Weag new results in the three-level systems such as\ iar
can, thus, selectively populate the stg@sor |3) provided ladder systemsj) robust population transfer to the st48
the peak amplitudes are sufficiently strong to induce theby an intuitive sequence of quasiresonant pul§esyobust

V. DISCUSSION AND CONCLUSIONS

adiabatic path to cross the intersection involved. selective transfer to the statg®) and|3) depending on the
For the process in V systems, the patlisand(c) of Fig.  design of the pulseflengths, amplitudes, and delay

5 show the respective selective transfer into the s{dtesr The topology gives information on the dynamics for

|3). purely adiabatic passage. For real pulses of finite duration

Figure 6 corresponds to the same topology of Fig. 5 bubne has to complement these information with the analysis of
with a different path(a). Figure 6 shows that, foA (or the effects of nonadiabatic corrections. Figure 7 shows nu-
laddep systems with counterintuitive sequences, we can semerical calculations that illustrate some of the predictions of
lectively populate the state®) or |3) if the pulse sequence the analysis of Sec. lll. Its displays the populations of the
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Intuitive sequence Counterintuitive sequence

FIG. 7. Transfer efficiencieB, to |2) (upper
row) and P; to |3) (lower row) as functions of
the detuningd\p andAg (in units of Q,,,,) at the
end of the pulses for the intuitivéeft column
and counterintuitiveright column sequences of
delayed sine-squared pulses with the same peak
amplitude() ., and a large temporal aré,,,, =
=500 (7 is the pulse length and the delay7if).
The efficient population transfers are bounded by
Ap=0 and Ag=0 (thick full lines) and the
branches of hyperbolgglashed lines The areas
bounded by the full lines are labeled by the cases
213, 132, 123... . Thethree first ones corre-
spond, respectively, to Figs. 3, 4, and 5.

states|2) and|3) at the end of the pulses for intuitive and  For the concrete realization with finite pulses of moderate

counterintuitive sequences with a large pulse area. Thareas, we have to analyze the precise influence of nonadia-
boundaries of the areas of efficient trandfelack areasare  batic and nondiabatic effects. In the following we study these

predicted quite accurately by the topology analysis: They ar@onadiabatic effects referring to Fig. 3 supposing that the

determined by(i) the straight linegthick full lines) Ap=0  detunings are small enough with respect to the speed of the
and As=0 coming from the inequalitietl1) and (13) and  process to yield nonadiabatic transitions.

(i) the branches of the hyperbolédashed lines In the intuitive case, at the beginning of the process, the
states 1) and|2) are coupled by the pump pulse, and, thus,
Ace Ao (Qman)’ (14) nonadiabatic transitions can occur near the origin between
STEP T 4Ap the surfaces connected [tby and|2). In the counterintuitive

case, at the beginning of the process, sthes not coupled
(Q)? to the other levels and there are no nonadiabatic transitions
(15  near the origin. At the end of the process, the adiabatic path
ending in|3) is not coupled to the other levels, implying
again absence of nonadiabatic transitions near the origin. We,
which are determined from the positions of the conical inter—thus' recover the well-known fact that resonant STIRAP is

popy_lation tc;ansfer to_the_ ;tat{és) or |3) is identical _for the " |eads to Rabi oscillations in the intuitive case.

intuitive and counterintuitive sequences except in two re- . jnse :
S quences of the topology on the population

gions:(i) areas bounded h¥pA s<0 and the branches of the ttransfer with exact resonances@g=0, Qp=0 giving rise

hyperbolas, where the population is transferred in a robusm degeneracies will be discussed in a forthcoming work
way to statd 2) for the intuitive sequence or to std@) for '

the counterintuitive sequence afiid) an area(smaller for
longer pulse areasmear the origin whereonadiabatic ef-
fects are strong for the intuitive sequence and where the
population transfer depends precisely on the pulse areas of
this intuitive sequencésee the comments belpwNonadia- We acknowledge support by INTAS 99-00019. L.Y.
batic effects which are smaller for larger pulse areas, alsothanks I'Universitede Bourgogne for the invitation during
occur near the straight line boundary regioNmndiabatic ~ which this work was accomplished. We thank K. Bergmann
effectsarise as well near the hyperbola boundary regions. and R. G. Unanyan for useful discussions.
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