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Topology of adiabatic passage
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We examine the topology of eigenenergy surfaces characterizing the population transfer processes based on
adiabatic passage. We show that this topology is the essential feature for the analysis of the population transfers
and the prediction of its final result. We reinterpret diverse known processes, such as stimulated Raman
adiabatic passage~STIRAP!, frequency-chirped adiabatic passage and Stark-chirped rapid adiabatic passage.
Moreover, using this picture, we display new related possibilities of transfer. In particular, we show that we can
selectively control the level that will be populated in STIRAP process inL or V systems by the choice of the
peak amplitudes or the pulse sequence.
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I. INTRODUCTION

Adiabatic passage is now a well-established tool
achieve complete population transfer between discrete q
tum states of atoms and molecules. The main advantag
the processes based on adiabatic passage is their relativ
bustness with respect to variation of field parameters.
adiabatic passage is achieved with adapted adiabatic v
tions of at least twoeffectiveparameters of the total lase
field. They can be, e.g., the amplitude and the detun
~chirping! or, e.g., the amplitudes of two delayed puls
@stimulated Raman adiabatic passage~STIRAP!, see@1# for a
review#. A chirp can be induced either by direct sweeping
the frequency of one laser pulse@2–8#, or as proposed very
recently by a Stark shift of the transition due to an additio
laser field@process named Stark-chirped rapid adiabatic p
sage~SCRAP!# @9,10#. The use of adiabatic passage for mu
tiple photon absorption and emission processes accomp
ing momentum exchanges between the atom and the
fields have also been recently investigated@11–13#.

In this paper, we show that all of these adiabatic pass
processes can be understood by an analysis of the topo
of the surfaces of eigenenergies as functions of the field
rameters. More precisely, we show that, in multilevel s
tems, the processes based on adiabatic passage are a c
nation of a global adiabatic passage and local diab
evolutions in the neighborhood of the conical intersections
the surfaces of eigenenergies. This tool allows us to de
different ways of controlling population transfer, related
STIRAP.

The tools of analysis follow Ref.@13#. From an effective
Hamiltonian, which can be constructed by quasiresonant
proximations combined with adiabatic eliminations from t
complete Hamiltonian of the considered process, we de
mine and analyze the topology of the energy surfaces, wh
display conical intersections and avoided crossings du
resonances. In the general cases, these resonances a
duced by the fields~dynamical resonances! @13,14#. The
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adiabatic dynamics of the process is determined by the
pology of these energy surfaces and can be completely
dicted. The dynamics governed by the time-depend
Schrödinger equation is, thus, reduced to the topology of
solutions of the time-independent Schro¨dinger equation.

II. TOPOLOGY OF CHIRPING

The essence of the adiabatic passage induced by chir
is captured with the effective two-state Hamiltonian in t
rotating wave approximation@4,15#

H~ t !5
\

2 F 0 V~ t !

V~ t ! 2D~ t !
G , ~1!

which describes the radiative interaction between a two-le
system~statesu1& and u2&) and the quasiresonant laser fie
through the effective Rabi frequencyV(t) and the effective
detuningD(t). We have assumed that spontaneous emiss
are negligibly small on the time scale of the pulse durati
The population resides initially in the stateu1&.

In these processes,V(t) stands for a one-photon or mu
tiphoton Rabi frequency~depending on the process studie
see, e.g., Ref.@8# for an effective two-photon chirping! and

D~ t !5D0~ t !1S~ t ! ~2!

is the sum of the detuning from the one-photon or multiph
ton resonance and of the effective dynamical Stark shift. T
effective dynamical Stark shiftS(t) results from the differ-
ence of the dynamical Stark shifts associated to the two
ergy levels and produced by the laser fields nonresonant
the other levels of the system. For thedirect chirping, the
detuning from the resonanceD0(t) is time dependent due to
an active sweeping of the laser frequency. The dynam
Stark shiftsS(t) are, in general, detrimental since they sh
the levels away from the resonance. For theStark chirping,
the quasiresonant laser frequency is not chirped~the detun-
ing D0 is time independent!, the time dependence of th
effective detuningD(t)5D01S(t) is only due to Stark shifts
that are induced by the laser pulses@9,10#.

The process can be completely described by the diag
of the two surfaces

-
.
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l6~V,D!5
\

2
~D6AV21D2!, ~3!

which represent the eigenenergies as functions of the ins
taneous effective Rabi frequencyV and detuningD ~see Fig.
1!. All the quantities are normalized with respect to a ch
acteristic detuning denotedD in . They display a conical in-
tersection forV50,D50 induced by the crossing of th
lines characterizing the statesu1& andu2& for V50 and vari-
ous D. In the planeV50, the statesu1& and u2& do not
interact. The crossing of these states in this planeV50 can
be seen consequently as amute resonance. Thus,adiabatic
passage through the intersection leaves the system in
same state.The way of passing around or through this co
cal intersection is the key of the successful transfer. Th
generic curves representing all the possible passages w
negative initial detuning2uD inu are shown. Note that the
three other equivalent curves with a positive initial detun
have not been drawn. The path~a! corresponds to a direc
chirping of the laser frequency from the initial detuning
2uD inu to the final one1uD inu. The paths~b! and ~c! corre-
spond to SCRAP withD052uD inu. For the path~b!, while
the quasiresonant pump pulse is off, another laser pulse~the
Stark pulse, which is far from any resonance in the system! is
switched on and induces positive Stark shiftsS(t).0 ~the
Stark pulse frequency is chosen with this aim!. Thus, Stark
pulse makes the eigenstates get closer, and induces a
nance with the pump frequency. This resonance is mute s
the pump pulse is still off, which results in the true crossi
in the diagram. The pump pulse is switched on after
crossing. Later the Stark pulse decreases while the p
pulse is still on. Finally, the pump pulse is switched off. A
shown in the diagram, the adiabatic following of the path~b!
induces the complete population transfer from stateu1& to
stateu2&. The path~c! leads exactly to the same effect: Th
pump pulse is switched on first~making the eigenstates rep

FIG. 1. Surfaces of eigenenergies~in units of uD inu) as functions
of V/uD inu andD/uD inu. Three different paths, denoted~a!, ~b! and
~c! are depicted,~a! corresponds to a direct chirping and~b! and~c!
to SCRAP.
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each other as shown in the diagram! before the Stark pulse
S(t).0, which is switched off after the pump pulse.

In summary, the three paths~a!, ~b!, and ~c! represent
fully adiabatic passage from stateu1& to stateu2&; ~a! passes
around the conical intersection,~b! and ~c! pass both once
around the conical intersection and once through it.

III. DIABATIC AND ADIABATIC DYNAMICS AROUND
CONICAL INTERSECTIONS

In the preceding section, we have classified qualitativ
all the possibilities giving an adiabatic connection betwe
the statesu1& and u2&. We have, thus, assumed exact ad
batic passage through crossings. The analysis of robust
of the process suggests to study the dynamics if the cros
is slightly missed. In this case, the small couplingV gives
rise to a thin avoided crossing, which is expected to
passeddiabatically for V sufficiently small with respect to
the speed of the passage. In the following we study w
more detail the dynamics near conical intersections wit
Landau-Zener analysis and give an estimation of the e
ciency of the diabatic passage.

The conditions for adiabatic passage and its associ
robustness are standard, sufficiently far from crossings. M
precisely for two-level systems, adiabatic evolution is sa
fied when the rate of changesuQ̇(t)u in the mixing angle
Q(t), defined as tan 2Q(t)5V(t)/D(t), 2p<2Q(t)<0,
is much smaller than the separation of the eigenval
ul1(t)2l2(t)u/\5AV2(t)1D2(t),

uQ̇~ t !u!AV2~ t !1D2~ t !. ~4!

When the dynamics approaches a conical intersection,
adiabatic approximation is expected to fail and a care
analysis is required. We consider the neighborhood of
conical intersection as a thin avoided crossing. We appro
mate the local dynamics near this intersection by the Ham
tonian ~1! with the linear time-dependent detuningD(t)
5Ḋ(tc)t[Ḋct and the coupling considered as consta
V(t)5V(tc)[Vc , with tc the time when the avoided cross
ing is passed. This Hamiltonian, whose eigenvalues form
avoided crossing, is appropriate for the Landau-Zener tr
ment @16,17#. It gives the probability to jump from one
branch to the other one

Pd5expS 2
pVc

2

2Ḋc
D , ~5!

which defines the efficiency of thediabatic passage. Adia-
batic ~diabatic! evolution through the avoided crossing i
thus, defined asPd'0 (Pd'1). Note that this formula~5!
is valid for any regime adiabatic, diabatic, or intermedia
The condition to achieve the diabatic passage can, thus
formulated as

Ḋc@pVc
2/2. ~6!
7-2
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TOPOLOGY OF ADIABATIC PASSAGE PHYSICAL REVIEW A65 043407
Thus, the Landau-Zener analysis provides the matching
tween the adiabatic evolution far from the conical inters
tion and the local diabatic behavior near the intersection

The peak amplitudes, the delay between the two fields
the pulse shapes are chosen such that the conditions~4! and
~6! are met in the concerned regions. Detailed conditions
achieve diabatic and adiabatic passage can be foun
@10,18# for the example of delayed Gaussian pulses.

We remark that if condition~6! is not satisfied, which is
the case if one misses the conical intersection in an inter
diate regime (Vc

2'Ḋc), the Landau-Zener formula show
that the dynamics splits the population into the two surfa
near the intersection. This gives rise afterwards to two st
that will have their own adiabatic evolution.

In the following section, we describe the topology
STIRAP-like processes, assuming~i! a perfect diabatic evo
lution locally near the conical intersections~or equivalently
an adiabatic evolution through the exact conical inters
tions! and~ii ! a global adiabatic evolution. In multilevel sys
tems, near a conical intersection, where one considers a
ideal diabatic evolution, it is essential that the evolution
indeed at the same time adiabatic with respect to the o
states. Additionally, to new possibilities of transfer, we sh
that the STIRAP process can be understood by thisglobal
adiabatic passage combined with local diabatic evolutio
near conical intersections. We show numerical simulation
that support this analysis.

IV. TOPOLOGY OF STIMULATED RAMAN ADIABATIC
PASSAGE

The adiabatic passage induced by two delayed la
pulses, the well-known process of STIRAP, produces po
lation transfer inL systems@see Fig. 2~a!#. ~The pump field
couples the transition from 1 to 2 and the Stokes fi
couples the transition from 2 to 3.! It is known that, the
initial population being in stateu1&, the complete population
transfer is achieved with delayed pulses, either~i! with a
so-called counterintuitive temporal sequence~Stokes before
pump! for various detunings as identified in Refs.@18,19#, or
~ii ! with a two-photon resonant~or quasiresonant! pulses but
far from the one-photon resonance with the intermed
state u2&, for any pulse sequence~demonstrated in the ap
proximation of adiabatic elimination of the intermediate st

FIG. 2. Diagram of linkage patterns between three atomic st
showing pump~P! and Stokes~S! transitions and the various detun
ings for ~a! L and ~b! V systems.
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@20#!. Here we revisit the STIRAP process through the top
ogy of the associated surfaces of eigenenergies as func
of the two field amplitudes.

Our results are also valid for ladder and V systems.
also show the following results which are new to our know
edge: ~i! we can transfer the population to stateu3& with
intuitive ~as with counterintuitive! specific quasiresonan
pulses without invoking the approximation of adiabati
elimination, ~ii ! with specific quasiresonant pulses, we c
selectivelytransfer the population to stateu2& for an intuitive
sequence or to stateu3& for a counterintuitivesequence, and
~iii ! with an intuitive or counterintuitive sequence, we c
selectivelytransfer the population to stateu2& or to stateu3&
playing on thedetuningsand on thepeak pulse amplitudes
ratio. We remark that the selectivity~ii ! has been demon
strated in the case of exact two-photon resonant pulses@21#.
This last result is, however, not robust since it depends
using precisely determined total pulse areas.

We also analyze the counterpart of the previous proce
in V systems@see Fig. 2~b!#: the initial population being in
stateu2&, we show that with specific nonresonant pulses,~i!
we canselectivelytransfer the population to stateu1& for an
intuitive sequence or to stateu3& for a counterintuitive se-
quence;~ii ! we canselectivelytransfer the population to stat
u1& or to stateu3& playing on the ratio of the peak puls
amplitudes.

The most general Hamiltonian in the rotating wave a
proximation for these processes reads

H~ t !5
\

2 F 0 VP~ t ! 0

VP~ t ! 2DP VS~ t !

0 VS~ t ! 2~DP2DS!
G , ~7!

with V j (t), j 5P,S the one-photon Rabi frequencies ass
ciated, respectively, to the pump pulse~of carrier frequency
vP) and the Stokes pulse~of carrier frequencyvS). We have
assumed that the statesu1& and u3& have no dipole coupling
and that spontaneous emission from the upper stateu2& is
negligibly small on the time scale of the pulse duration. T
rotating wave transformation is valid ifVP(t)!uE22E1u
andVS(t)!uE32E2u, whereEj , j 51,2,3 are the energie
associated to the bare statesu j &.

The detuningsDP andDS are one-photon detunings wit
respect to the pump and Stokes frequencies, respectively

d5DP2DS ~8!

is the two-photon detuning.
For L, ladder and V systems@see respectively, Figs. 2~a!,

2~b!, and 2~c!#, the one-photon detuningsDP , DS are re-
spectively defined as

\DP5E22E12\vP , \DS5E22E32\vS , ~9a!

\DP5E22E12\vP , \DS5E22E31\vS , ~9b!

\DP5E22E11\vP , \DS5E22E31\vS . ~9c!

es
7-3
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L. P. YATSENKO, S. GUE´RIN, AND H. R. JAUSLIN PHYSICAL REVIEW A65 043407
In what follows we study the topology of the eigenener
surfaces for various generic sets of the parameters. The
pology depends on the detunings that determine the rela
position of the energies at the origin. We study variousqua-
siresonantpulses in the sense that the detunings are sm
with respect to the associated peak Rabi frequencies, i.e

DP&max
t

~VP!, DS&max
t

~VS!, ~10a!

d&max
t

~VP!, d&max
t

~VS!. ~10b!

Allowing large enough amplitudes imply three gene
cases ford.0, which are referred to 213, 132, and 12
~these number sets are associated to the eigenenergie
zero-field amplitudes from the smallest to the biggest!. Three
other symmetric and, thus, equivalent cases~referred as 312
symmetric with 213, 231 with 132, and 321 with 123! appear
for d,0.

A. The cases 213 and 132

The case 213 corresponds toDS,DP,0 and its symmet-
ric 312 to 0,DP,DS . One example for the case 213
diagrammed in Fig. 3 forDP52d/2 andDS523d/2.

The case 132 corresponds to 0,DS,DP ~and its sym-
metric 231 toDP,DS,0) as diagrammed in Fig. 4 forDP
53d/2 andDS5d/2. Figure 4 shows that the topology of th
132 case is similar to the topology of the 213 case. In b
cases, the surface continuously connected to the stateu2& is
isolated from the two other surfaces that present a con
intersection forVS50 (VP50) in the 213 configuration
~132 configuration!. This crossing corresponds to a mu
resonance as described above for chirping. The topolo

FIG. 3. Surfaces of eigenenergies~in units ofd) as functions of
VP /d and VS /d for the case 213. The paths~a! and ~b! ~con-
structed with delayed pulses of the same length and peak amplit!
correspond, respectively, to the intuitive and counterintuitive pu
sequences inL or ladder systems~for which the initial population
resides in stateu1&). The surfaces haave been shifted by2d/2.
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shown on the respective Figs. 3 and 4 are generic for
condition

DPDS.0, ~11!

with, respectively,

uDPu,uDSu and uDPu.uDSu. ~12!

In the following, we describe in detail the 213 case~see
Fig. 3!. For the process inL or ladder systems, where th
initial population resides in stateu1&, two different adiabatic
paths lead to the complete population transfer, depending
the pulse sequence. The path denoted as~a! corresponds to
an intuitive sequence for the increasing pulses. The pu
pulse is switched on first, making the levels connected to
statesu1& and u2& repel each other~dynamical Stark shift!
until the level connected tou1& crosses the level connected
u3&. The Stokes pulse is switched on after the crossing. N
the two pulses can decrease in any sequence. The path~b! is
associated to a counterintuitive sequence for the decrea
pulses. The two pulses can be switched on for any seque
The pump pulse has to decrease through the crossing w
the Stokes pulse is already off. These two results are v
even without application of adiabatic elimination. The co
ditions of global adiabaticity are very similar to the ones
the chirping case~4!. As studied in Sec. III, an analysis fo
the diabatic evolution near the conical intersections can
made locally with the Landau-Zener approximation a
gives the same condition~6!.

The V systems are uninteresting in these cases since
final population comes back to the stateu2& for any pulse
sequence.

B. The case 123

The case 123 corresponds toDS,0,DP and its symmet-
ric 321 to DP,0,DS . One example for the case 123

e
e

FIG. 4. Surfaces of eigenenergies~in units ofd) as functions of
VP /d and VS /d for the case 132. The paths~a! and ~b! ~with
pulses of the same length and peak amplitude! correspond, respec
tively, to the intuitive and counterintuitive pulse sequences inL or
ladder systems.
7-4
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TOPOLOGY OF ADIABATIC PASSAGE PHYSICAL REVIEW A65 043407
diagrammed in Fig. 5 forDP5d/2 andDS52d/2. The to-
pology shown on this figure is generic for the condition

DPDS,0. ~13!

In this configuration, two conical intersections involve t
intermediate surface, one with the lower surface and ano
with the upper surface. This topology gives here more p
sibilities for transfer:the combined choice of the pulse s
quence and the ratio of the peak amplitudes allows the
lective transfer into the two other states.

Figure 5 shows that, for the process inL ~or ladder! sys-
tems, two different adiabatic paths lead to different, comp
population transfers, depending on the pulse sequence.
path ~a! characterizes an intuitive pulse sequence~for de-
creasing pulses! and allows to populate at the end the sta
u2&. The Stokes and pump pulses are switched on in
sequence and the pump pulse is switched off before
Stokes. The path~b! characterizes a counterintuitive puls
sequence~for increasing pulses! and allows to populate at th
end the stateu3&. The Stokes pulse is switched on before t
pump and the pulses are switched off in any sequence.
can, thus, selectively populate the statesu2& or u3& provided
the peak amplitudes are sufficiently strong to induce
adiabatic path to cross the intersection involved.

For the process in V systems, the paths~a! and~c! of Fig.
5 show the respective selective transfer into the statesu1& or
u3&.

Figure 6 corresponds to the same topology of Fig. 5
with a different path~a!. Figure 6 shows that, forL ~or
ladder! systems with counterintuitive sequences, we can
lectively populate the statesu2& or u3& if the pulse sequence

FIG. 5. Surfaces of eigenenergies~in units ofd) as functions of
VP /d and VS /d for the case 123. The paths~a! and ~b! ~with
pulses of the same length and peak amplitude! correspond, respec
tively, to the intuitive~transfer tou2&) and counterintuitive~transfer
to u3&) pulse sequences inL or ladder systems leading to the s
lective transfer. The paths~a! and ~c! correspond to the selectiv
transfer in V systems~for which the initial population resides in
u2&), respectively, tou1& and u3&.
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are designed differently in their sequence and their peak
plitude. The path~b! corresponds to the previous path~b! of
Fig. 5 and allows to populate at the end the stateu3&. The
path ~a! is characterized by a pump pulse~still switched on
after the Stokes pulse! longer and of smaller peak amplitud
and allows to populate at the end the stateu2&. Note that we
can obtain a similar path~a! with a counterintuitive pulse
sequence and equal peak amplitudes if the detuningDP is
taken smaller so that the crossing forVS50 is pushed to
higher pump pulse amplitudeVP .

For V systems, Fig. 6 shows that this selectivity@paths~a!
and ~c!# also occurs~for any sequence of the pulse!.

V. DISCUSSION AND CONCLUSIONS

In this paper we have applied simple geometrical tools
two- and three-level systems in the rotating wave appro
mation to classify all the possibilities of complete populati
transfer by adiabatic passage, when the two-level syste
driven by a chirped laser pulse and the three-level system
two delayed pulses. We have shown that the complete tr
fer by adiabatic passage is intrinsically related to the top
ogy of the eigenenergy surfaces. We have found the follo
ing new results in the three-level systems such as, inL or
ladder systems,~i! robust population transfer to the stateu3&
by an intuitive sequence of quasiresonant pulses,~ii ! robust
selective transfer to the statesu2& and u3& depending on the
design of the pulses~lengths, amplitudes, and delay!.

The topology gives information on the dynamics f
purely adiabatic passage. For real pulses of finite dura
one has to complement these information with the analysi
the effects of nonadiabatic corrections. Figure 7 shows
merical calculations that illustrate some of the predictions
the analysis of Sec. III. Its displays the populations of t

FIG. 6. Surfaces of eigenenergies~in units of d) with the same
parameters as Fig. 5 showing the selective transfer with pulse
different peak amplitudes and length. For counterintuitive
quences inL or ladder systems, the path~b! @corresponding to the
path~b! of Fig. 5# shows the transfer tou3&, and the path~a! ~with
pulses of different length and peak amplitude! characterizes the
transfer tou2&. The paths~a! and ~c! correspond to the selectiv
transfer in V systems.
7-5
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FIG. 7. Transfer efficienciesP2 to u2& ~upper
row! and P3 to u3& ~lower row! as functions of
the detuningsDP andDS ~in units ofVmax) at the
end of the pulses for the intuitive~left column!
and counterintuitive~right column! sequences of
delayed sine-squared pulses with the same p
amplitudeVmax and a large temporal areaVmaxt
5500 (t is the pulse length and the delay ist/2).
The efficient population transfers are bounded
DP50 and DS50 ~thick full lines! and the
branches of hyperbolas~dashed lines!. The areas
bounded by the full lines are labeled by the cas
213, 132, 123, . . . . Thethree first ones corre-
spond, respectively, to Figs. 3, 4, and 5.
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statesu2& and u3& at the end of the pulses for intuitive an
counterintuitive sequences with a large pulse area.
boundaries of the areas of efficient transfer~black areas! are
predicted quite accurately by the topology analysis: They
determined by~i! the straight lines~thick full lines! DP50
and DS50 coming from the inequalities~11! and ~13! and
~ii ! the branches of the hyperbolas~dashed lines!

DS5DP2
~Vmax!

2

4DP
, ~14!

DP5DS2
~Vmax!

2

4DS
, ~15!

which are determined from the positions of the conical int
sections. Figure 7 shows that the efficiency of the rob
population transfer to the statesu2& or u3& is identical for the
intuitive and counterintuitive sequences except in two
gions:~i! areas bounded byDPDS,0 and the branches of th
hyperbolas, where the population is transferred in a rob
way to stateu2& for the intuitive sequence or to stateu3& for
the counterintuitive sequence and~ii ! an area~smaller for
longer pulse areas! near the origin wherenonadiabatic ef-
fects are strong for the intuitive sequence and where
population transfer depends precisely on the pulse area
this intuitive sequence~see the comments below!. Nonadia-
batic effects, which are smaller for larger pulse areas, a
occur near the straight line boundary regions.Nondiabatic
effectsarise as well near the hyperbola boundary regions
04340
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For the concrete realization with finite pulses of moder
areas, we have to analyze the precise influence of nona
batic and nondiabatic effects. In the following we study the
nonadiabatic effects referring to Fig. 3 supposing that
detunings are small enough with respect to the speed of
process to yield nonadiabatic transitions.

In the intuitive case, at the beginning of the process,
statesu1& and u2& are coupled by the pump pulse, and, thu
nonadiabatic transitions can occur near the origin betw
the surfaces connected tou1& andu2&. In the counterintuitive
case, at the beginning of the process, stateu1& is not coupled
to the other levels and there are no nonadiabatic transit
near the origin. At the end of the process, the adiabatic p
ending in u3& is not coupled to the other levels, implyin
again absence of nonadiabatic transitions near the origin.
thus, recover the well-known fact that resonant STIRAP
more favorable with counterintuitive pulse sequence a
leads to Rabi oscillations in the intuitive case.

The consequences of the topology on the populat
transfer with exact resonances atVS50, VP50 giving rise
to degeneracies will be discussed in a forthcoming work.

ACKNOWLEDGMENTS

We acknowledge support by INTAS 99-00019. L.
thanks l’Universite´ de Bourgogne for the invitation during
which this work was accomplished. We thank K. Bergma
and R. G. Unanyan for useful discussions.
7-6



ys

el

ev

nd

W

,

n

t.

.

A

TOPOLOGY OF ADIABATIC PASSAGE PHYSICAL REVIEW A65 043407
@1# K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Ph
32, 814 ~1974!.

@2# M. M. T. Loy, Phys. Rev. Lett.32, 814 ~1974!.
@3# R. G. Brewer and E. L. Hahn, Phys. Rev. A11, 1641~1975!.
@4# L. Allen and J. H. Eberly,Optical Resonance and Two-Lev

Atoms~Dover, New York, 1987!.
@5# H. P. Breuer and M. Holthaus, Phys. Lett. A140, 507 ~1989!.
@6# S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, Phys. R

Lett. 65, 2355~1990!.
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