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Strong-field approximation to the relativistic channeling of electrons in the presence
of electromagnetic waves

Julio San Roma´n, Luis Plaja, and Luis Roso
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~Received 6 July 2001; published 1 April 2002!

We present a study of the interaction of a relativistically planar channeled electron with an intense electro-
magnetic field. Using aS-matrix approach in the strong-field approximation, it is shown that the crystal
periodicity affects drastically the excitation process, suppressing the possibility of multiphoton absorption
except for some particular cases. This selective excitation opens the possibility to control the dynamics of the
channeling process by means of an external field. Explicit expressions for theS-matrix N-photon excitation
rates together with the corresponding conservation laws are obtained from the relativistic quantum-mechanical
Dirac equation.
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I. INTRODUCTION

Channeling in crystal lattices occurs when an accelera
charged particle is introduced into a crystalline target at s
ficiently large energy. Depending on the crystal orientati
the particle’s trajectory may be aligned with a crystal a
~axial channeling! or with a direction parallel to a crysta
plane ~planar channeling!, and the penetration may reac
anomalous depths. Although the possibility of this effect w
already pointed out very early by Stark@1#, it was demon-
strated experimentally 50 years later by Rolet al. @2#, when
the result of the ion sputtering was found to depend stron
on the orientation of the target crystal. After the discove
the theoretical and experimental work increased rapidly
extended to the case of channeling of electrons and posit
@3#.

In this paper we will investigate the excitation dynami
of a planar channeled electron under the influence of an
ternal electromagnetic~e.m.! field. As a main result, we dem
onstrate that the crystal periodicity introduces a momentu
conservation condition that affects the efficiency of t
different N-photon channels of excitation, leading to th
strong suppression of photon absorption in a broad rang
situations. The multiphoton excitation of channeled partic
has been already addressed by Avetissian and co-wor
@4,5# by assuming an electromagnetic wave copropaga
with the electron, and with a frequency resonant to
~Doppler-shifted! lower-energy-level transitions. In th
present case, however, we are interested in a compleme
situation where the channeled electron is excited to a fi
state lying in the crystal quasicontinuum. Since the transit
is produced by the interaction of the electron with an ext
nal intense optical field, the strong field approximation~SFA!
constitutes a more appropriated procedure in compariso
the discrete level approach in Ref.@4#.

SFA theories have been developed in the context of i
ization of atoms in strong laser fields. Among them, the
called Keldish-Faisal-Reiss theory@6–8# is based on the
S-matrix approach, where the final state is approximated b
Volkov state, which describes the evolution of a free elect
driven by the electromagnetic wave. SFA theories desc
1050-2947/2002/65~4!/042902~8!/$20.00 65 0429
d
f-
,

s

ly
,
d
ns

x-

-

of
s
ers
g
e

ary
al
n
r-

to

-
-

a
n
e

most of the relevant aspects of the atomic ionization, incl
ing multiphoton absorption and multiphoton excitation abo
the ionization threshold.

Although employed mainly in the atomic and molecul
context,S-matrix SFA approaches can be used in any gen
situation in which the field interaction energy is compara
with the energies of the matter system. In fact, for the hig
energy bound states, the intensity of the field required
promote an electron to the continuum does not have to
very high, and yet SFA can be used. On the other hand,
requires the matter potential to be approximately cons
over the complete interaction time. In our case it suffic
with a moderate intensity field, (1012–1013 W/cm2), while
the crystal stability can be ensured by a sufficiently sh
pulse ~about 100 fs!, which still enclose enough cycles t
ensure the adiabatic limit involved in the theoretical a
proach. It should be mentioned that, in the case of at
ionization by strong field, the adiabatic assumption is corr
even in the case of a few cycles pulse length, and there i
reason to think that in this channeling case the thing sho
be different.

II. GEOMETRY OF THE SYSTEM AND DESCRIPTION
OF THE UNPERTURBED CHANNELED ELECTRON

Let us consider the interacting geometry depicted in F
1. A relativistic electron introduced in a crystal with a sma
tilt angleu respect to thex axis, interacts with a copropagat
ing or a counterpropagating electromagnetic wave. For p
ticular crystal orientations, the electron is confined tra
versely to trajectories close to the initial injection axis. In t
case of planar channeling, the electron is injected alm
parallel to a crystal plane@3,9#, avoiding the coincidence
with any crystal symmetry axis to inhibit axial channelin
We will assume an electromagnetic plane-wave field, wh
propagates in thex axisand linearly polarized in they axis,
i.e., orthogonal to the crystal plane.

Since the channeled particle is injected with a relativis
velocity, the crystal potential may be well approximated by
spatial average over the crystal plane coordinates, as
done in the so-called continuum model@3#,
©2002 The American Physical Society02-1
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V~y!5
1

LxLz
E

2Lx/2

Lx/2 E
2Lz/2

Lz/2

U~x,y,z!dxdz, ~1!

where Lx and Ly are the crystal plane dimensions, a
U(x,y,z) is the crystal potential. With this effective potenti
the electron motion in the crystal channel, driven by the
ternal e.m. field, will be confined to the polarization pla
xy.

In the most general case, the quantum description of
electron’s dynamics is described by the Dirac equation

$ca•~ p̂2eA/c!1bmc21V~y!%F~x!5EBF~x!. ~2!

Let us first consider the unperturbed channeling situat
A50. Since the averaged potential depends only on thy
coordinate, a general positive-energy solution of the ch
neled electron can be written as

F~x!5E dpyA mc2

Epx ,py

upx ,py

1 exp@ i ~pxx1pyy!/\#jpy
,

~3!

whereupx ,py

1 is the positive-energy solution of a free Dira

electron@10,11#, Epx,py
5Ac2px

21c2py
21m2c4,

upx ,py

1 5AEpx ,py
1mc2

2mc2 S 1

0

0

c~px1 ipy!

Epx ,py
1mc2

D . ~4!

Introducing Eq.~3! into Eq. ~2!, with A50, one can ob-
tain the following form for the Dirac equation in momentu
space:

FIG. 1. The system to be studied consists of a relativistic e
tron channeled along a crystal plane and interacting either wi
copropagating or with a counterpropagating electromagnetic fi
~only the counterpropagating case has been plotted in the figure!. As
a consequence of the continuum approximation, the planes ar
sumed to be uniformly charged.
04290
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EBupx ,py

1 jpy
5$caxpx1caypy1bmc2%upx ,py

1 jpy

1E dpy8AEpx ,py

Epx,p
y8
Vpy2p

y8
upx ,p

y8
1

jp
y8
, ~5!

Vp being the Fourier transform of the interplanar potentia
the spatial frequencyp/\. Due to the nature of the average
potential, the channeling along a crystal plane is only p
sible if the energy of the electron’s transversal dynamics
moderate, i.e., nonrelativistic. In this case, it is justified
approximate Eq.~5! to second order ofcpy /Epx

.

Epx ,py
5Ac2px

21c2py
21m2c4'EpxS 11

c2py
2

2Epx

2 D , ~6!

AEpx ,py
1mc2

2Epx ,py

'AEpx
1mc2

2Epx
F12

c2py
2

4Epx

2 S mc2

Epx
1mc2D G ,

~7!

A 2Epx ,py

Epx ,py
1mc2

'A 2Epx

Epx
1mc2F11

c2py
2

4Epx

2 S mc2

Epx
1mc2D G .

~8!

Note that, for the field intensities considered here, this
proximation will remain equally valid when considering th
interaction with the external electromagnetic wave.

By introducing Eqs.~6!–~8! into Eq. ~5!, and since the
scalar potentialVpy2py

is a first-order term incpy /Ex , the
Dirac equation is reduced to the same identity for every n
zero component of the spinorupx ,py

1

EBjpy
5H c2py

2

2Epx

1EpxJ jpy
1E dpy8Vpy-p

y8
jp

y8
. ~9!

Computing the inverse Fourier transform in they coordinate,
we finally end with a Schro¨dinger-like equation@12,13#

eBj~y!5H py
2

2gxm
1V~y!J j~y!, ~10!

whereEpx
5gxmc2, andeB5EB2gxmc2 corresponds to the

nonrelativistic eigenstate energy.
Several explicit forms of the averaged crystal poten

may be found in the literature@3#. Among them, those de
rived from the Thomas-Fermi screened two-body potent
have been widely used@3,9#, and have been fine adjusted b
standard Hartree-Fock many-body calculations@14#. From
the theoretical point of view, model potentials are more co
venient, since they allow for further analytical work whi
keeping the essential features of the interaction. For insta
V(y)524V0y2/d2 was proposed by Avetissianet al. @4# in
the context of computation of the multiphoton transitio
between bound states of the continuum potential, for a p

-
a
ld

as-
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STRONG-FIELD APPROXIMATION TO THE . . . PHYSICAL REVIEW A 65 042902
itron interacting with a strong electromagnetic wave. T
form V(y)52V0 cosh22(y/b) has also been used to stud
the possible amplification of x-ray channeling radiation@5#.
This later form has a better resemblance with the avera
Thomas-Fermi potentials while still allowing for an analy
cal diagonalization and, therefore, we shall use this poten
for our calculations. The transverse energy spectrum for
case can be cast in the following form@5#:

eBn52
\2

2b2mgx

~s2n!2 ~11!

where n can be 0,1, . . . ,@s#, being s52 1
2

1A 1
4 12b2mgxV0 /\2. Note that, as a result of the spati

averaging, the scattering with the continuum potential affe
only to the transverse dynamics of the channeled parti
while the very large longitudinal momentum remains un
fected.

III. S-MATRIX DESCRIPTION OF A CHANNELED
PARTICLE INTERACTING WITH AN

ELECTROMAGNETIC WAVE

Let us now add the electromagnetic excitation to the pr
lem. As it is well known, Eq.~2! does not accept analytica
solutions for a space-time dependent vector potential. In s
situations, theS-matrix approach offers a standard procedu
to find approximated solutions@15#, used specially in quan
tum field theory@10,16,17# and scattering@18#.

A. The general relativistic case

The relativistic SFAS-matrix theory for the Dirac electron
in an atom can be found in Refs.@19–21#. The general ex-
pression for the transition amplitude using time-revers
S-matrix theory has the following form:

Sf i5 lim
t→`

^C f
(2)uF i&. ~12!

Although mainly used in the strong-field ionization of atom
and molecules, this approach is quite general and can
exported to any other system, provided its eigenstates ca
found analytically. To our knowledge, however, this is t
first time that it is applied to the relativistic channeled ele
tron in interaction with an electromagnetic wave. In t
present case,F i corresponds to the unperturbed channe
electron state discussed in Sec. II, andC f

(2) is an arbitrary
final state, solution of the complete Eq.~2!. Since this exact
solution is not available, the success of theS-matrix ap-
proach consist in finding a suitable approximation. In t
strong-field approximation, the interaction with electroma
netic field is assumed to be the relevant for the final st
therefore, C f

(2) is approximated in terms of the Volko
states,CV(x,t) @22,23#. These wave functions are solution
of Eq. ~2! for V(y)50 andA(x,t)5” 0, and describe a free
electron in the presence of an electromagnetic field. In
Lorentz gauge, the form of these states for a laser field p
of arbitrary form is@23#
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CV
(2)~x!5A mc2

~2p!3E
S 11e r

es”A” ~w!

2c~s•p! Dup
r eiS ~13!

e1,251, e3,4521, w5s•x being the phase of the lase
field wheresm[(1,s) ands is a unitary vector that indicate
the direction of propagation of the electromagnetic field, a

S52e r
p•x

\
1E

s•x

` Fe@p•A~w8!#

\c~s•p!
2e r

e2A2~w8!

2\c2~s•p!
Gdw8.

~14!

The S-matrix approach takes as a starting point the f
lowing exact relation:

C f~x!5CV~x!1E d4x8GV~x,x8!g0V~x8!C f~x8!,

~15!

where GV(x,x8) is the Volkov Green’s function@24#, and
keeps the lowest-order term in powers ofV(x). The transi-
tion amplitude obtained is@20,21#

~S21! f i
SFA52

i

\cE d4xC̄V
(2)eAmgmF i

52
i

\c
A mc2

~2p!3E
E d4xe2 iSūp

r

3S eA” 2e r
e2~A•A!s”

2c~s•p! DF i , ~16!

where we have used Eq.~13! and we have assumed the tran
verse character of the e.m. field,s•A52s•A50. Separating
the time and the space integrals in Eq.~16!, the transition
amplitude takes the form

~S21! f i
SFA52 iA mc2

~2p!3E
eūp

r E dt I”1~ t !

1 iA mc2

~2p!3E

e2e r

2~s•p!
ūp

r s”E dt I2~ t ! ~17!

I 1(t) andI2(t) being:

I”1~ t !5gm I1,m~ t !5
gm

\ E dxe2 iSAme2 i (EBt/\)F i , ~18!

I2~ t !5
1

\cE dxe2 iS~A•A!e2 i (EBt/\)F i

52
1

\cE dxe2 iSuAu2e2 i (EBt/\)F i . ~19!

Once the transition amplitude (S21) f i
SFA is known, the

total transition rate can be computed as
2-3
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W5E Vdp

~2p!3
w, ~20!

whereV is the normalization volume andw is the transition
probability per unit of time, which is defined as

w5 lim
t→`

1

t
u~S21! f i

SFAu2. ~21!

Another important magnitude is the transition rate per u
of solid angle, which has the form

dW

dV
5

V

~2p!3E wp2dp. ~22!

It should be mentioned that SFAS-matrix theory cannot
be considered as a perturbation series in powers ofV(x)
since the initial statef i is an eigenstate of the potential itse
including all the properties of the crystal. The presence
this wave function produces a new behavior in the scatte
section, introducing all the differences with the atom ioniz
tion or the simple Compton scattering.

B. Application to the case of a monochromatic and linearly
polarized laser field

Let us focus our attention to the geometry depicted in F
1, where the electromagnetic field can be a copropagatin
counterpropagating linear polarized plane wave of freque
v, A(w)5Aj (w)ej5A0 cos(vt2k•x)ej , where ej is the
field’s polarization vector.

The phase factor of the Volkov function~14! now reads as

S52e rS pm

\
1

e2A0
2km

4\c2~k•p!
D xm1

epjA0

\c~k•p!
sin~k•x!

2e r
e2A0

2

8\c2~k\p!
sin@2~k•x!#. ~23!

The resulting exponential factor can be expanded as a s
of Bessel functions

e2 iS5expH i e rF pm

\
1

e2A0
2km

4\c2~k•p!
GxmJ

3 (
N,n52`

1`

JN12n~h!Jn~j!e2 iN(k•x), ~24!
04290
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whereh andj are factors which only depend on the mome
tum of the Volkov function, and the frequency and amplitu
of the laser field

h5
epjA0

\c~k•p!
, j5

e re2A0
2

8\c2~k•p!
. ~25!

Substituting Eq.~24! in Eqs.~18! and ~19!,

I1~ t !52g j I1,j~ t !

52
g j

\ E dxe2 iSAj~w!F i~x!

52
g jA0

\ (
N,n52`

1`
N12n

h
JN12n~h!Jn~j!

3expF i
~\vN2EB!t

\ GF̃ i~qN! ~26!

and

I2~ t !52
1

\cE dxe2 iSuAu2e2 iEBt/\F i

52
A0

2

\c (
N,n52`

1` S ~N12n!2

h2
JN12n~h!

1
1

2h
@JN12n11~h!2JN12n21~h!# D

3Jn~j!ei (\vN2EB)t/\F̃ i~qN!, ~27!

whereqN , vN , andF̃ i(qN) are defined as

qN5
e rp

\
1F e re2A0

2

4\c2~k•p!
2NGk, ~28!

vN5
e rE

\
1F e re2A0

2

4\c2~k•p!
2NGv, ~29!

F̃ i~qN!5E e2 iqN•xF i~x!dx. ~30!

The time integrals appearing in Eq.~17! can now be cal-
culated as
g jE
t0

t

I1,j~t!dt5
g jA0

\ (
N,n52`

1`
N12n

h
JN12n~h!Jn~j!F̃ i~qN!

3exp@ i ~\vN2EB!~ t1t0!/2\#
sin~\vN2EB!T/2\

~\vN2EB!/2\
~31!
2-4
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and

E
t0

t

I2~t!dt52
A0

2

\c (
N,n52`

1` S ~N12n!2

h2
JN12n~h!1

1

2h
@JN12n11~h!2JN12n21~h!# D Jn~j!F̃ i~qN!

3exp@ i ~\vN2EB!~ t1t0!/2\#
sin~\vN2EB!T/2\

~\vN2EB!/2\
~32!
w

e

beingT5t2t0.
To compute the rate of excitation, we should use this t

equations together with Eq.~17! to calculate

u~S21! f i
SFAu25T11T21T31T4 ~33!

with

T15
mc2

~2p!3E
e2F E dt I1,j~ t !G1

g j 1g0up
r up

r 1g0g j

3E dt I1,j~ t !, ~34!

T25
mc2

~2p!3E

e re3

2~k•p!
F E dt I1,j~ t !G1

g j 1g0up
r up

r 1g0k”

3E dt I2~ t !, ~35!
04290
o
T35T2* , ~36!

T45
mc2

~2p!3E
S e re2

2~k•p! D
2F E dt I2~ t !G1

gm1kmg0up
r up

r 1g0k”

3E dt I2~ t !. ~37!

Substituting the time integrals~31! and~32!, in each term,
we may calculate the transition probability per unit of tim
as

w5 lim
t→`

1

t
u~S21! f i

SFAu25 lim
t→`

T11T21T31T4

t

5t11t21t31t4 , ~38!

where
t15
mc2

8p2E

e2A0
2

\2 (
N52`

1` F (
n52`

1`
~N12n!

h
JN12n~h!Jn~j!G2

d~\vN2EB!F̃ i
1~qN!g j 1g0up

r up
r 1g0g jF̃ i~qN!, ~39!

t252
mc2

8p2E

e re3A0
3

2\2c~k•p!
(

N52`

1`

(
n,n852`

1` S ~N12n8!2

h2
JN12n8~h!1

1

2h
@JN12n811~h!2JN12n821~h!# D

3Jn8~j!
~N12n!

h
JN12n~h!Jn~j!d~\vN2EB!F̃ i

1~qN!g j 1g0up
r up

r 1g0k”

3F̃ i~qN!, ~40!

t35t2* , ~41!

t45
mc2

8p2E
S e re2A0

2

2\c~k•p!
D 2

(
N52`

1` F (
n52`

1` S ~N12n!2

h2
JN12n~h!1

1

2h
@JN12n11~h!2JN12n21~h!# D G 2

3d~\vN2EB!F̃ i
1~qN!k”1g0up

r up
r 1g0k” F̃ i~qN!. ~42!
2-5
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Finally, the excitation rate is

w5
mc2

8p2E
S eA0

\ D 2

(
N52`

1` FS1
2D12

e reA0

c~k•p!
S2 Re~D2!

1S eA0

2c~k•p! D
2

S4
2D4Gd~\vN2EB!, ~43!

where we have defined

S15 (
n52`

1`
~N12n!

h
JN12n~h!Jn~j!,

~44!

S25 (
n,n852`

1` S ~N12n8!2

h2
JN12n8~h!1

1

2h
@JN12n811~h!

2JN12n821~h!# D Jn8~j!
~N12n!

h
JN12n~h!Jn~j!,

~45!

S45 (
n52`

1` S ~N12n!2

h2
JN12n~h!1

1

2h
@JN12n11~h!

2JN12n21~h!# D Jn~j!, ~46!

D15F̃ i
1~qN!g j 1g0up

r up
r 1g0g jF̃ i~qN!,

~47!

D25F̃ i
1~qN!g j 1g0up

r up
r 1g0k” F̃ i~qN!, ~48!

D45F̃ i
1~qN!k”1g0up

r up
r 1g0k” F̃ i~qN!. ~49!

IV. CONSERVATION LAWS AND CLOSING
OF EXCITATION CHANNELS

As expressed in Eq.~43!, the transition probability is a
function of the initial momentum-space probability amp
tude,F̃ i(qN). Let us now assume injected electron of po
tive energy with a wave function of the form~3!, therefore,
e r511. From thed function in Eq. ~43!, we obtain the
following energy conservation relation:

E1F e2A0
2

4\c2~k•p!
2NG\v5EB . ~50!

On the other hand, an additional conservation law relates
momentum of the final and initial states,p and pi , respec-
tively, in Eq. ~28!. For a positive-energy electron, this rea
as

pi5
p

\
1F e2A0

2

4\c2~k•p!
2NGk. ~51!
04290
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Since the electromagnetic field propagates along thex axis,
this condition may be split into two parts

~px! i5px6F e2A0
2

4\c2~k•p!
2NG\k, ~52!

~py! i5py ~53!

with (k•p)5k(E/c7px), and wherek5uku, the top sign re-
fers to a field copropagating with the electron, and the b
tom to the counterpropagating case. Equations~50!, ~52!, and
~53! describe the energy and momentum changes due to
stimulated absorption or emission ofN photons. Combining
these with the energy expression for the final state,E
5Ac2px

21c2py
21m2c4, we obtain a closed formula for th

energy conservation of the multiphoton process, in terms
the initial momentum and the field parameters

N\v@17~bx! i #5

c2~px! i
21c2~py! i

21m2c42EB
21

A0
2e2

2

2gBmc2
,

~54!

where we have defined the initial energy of the electron
EB5gBmc2, and the initial relativistic velocity factor
(bx) i5(px) i /gBmc. Since EB'eB1(gx) imc2, with (gx) i

5A1/@12(bx) i
2# we have

N\vgB@17~bx! i #'
~py! i

2

2m
2~gx! ieB1

A0
2e2

4mc2
. ~55!

The interpretation of this energy conservation relation
straightforward if we take as reference system a frame pro
gating with the electron, with its initial velocity
(px) i /(gx) im. The frequencyv85vgB„17(bx) i… corre-
sponds to the Doppler-shifted electromagnetic wave,
(gx) ieB is the result of the Lorentz transform of the boun
state energy~11! from the laboratory to the moving frame
Equation~55! states the resonance condition for a~Doppler-
shifted! N-photon transition from a bound state to a sta
lying in the crystal quasicontinuum of momentum given
Eqs.~52! and~53!. This is, in essence, the crystal equivale
to the ionization of atoms by intense fields. Note, howev
that in the atom case an ionization channel for any pho
numberN is always possible, since the initial state is distri
uted continuously over the momentum space and, theref
a nonzero transition probability exists for any (py) i which
fulfills the condition~55!. This is not the case for the chan
neled electron, since the crystal plane periodicity force
discretization of the electron states in the transverse coo
nate of the momentum spacepy5ñ2ph/dp5ñDpy , beingñ
an integer anddp the interplanar distance. As a consequen
in the general case theN-photon channel of excitation shoul
be strongly suppressed, except in those particular case
which
2-6
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N1
~gx! ieB

\v8
'

1

\v8
S ñ2Dpy

2

2m
1

A0
2e2

4mc2D ~56!

holds forN andñ as integer numbers. As a consequence,
opens the possibility of selective excitation of channe
electrons in terms of their initial velocity, or permits its co
trol through the variation of the electromagnetic field para
eters. Figures 2~a!–2~d! show the possibleN-photon channel
excitations as a function of the initial electron’s energy a
for the lowest orders of transverse momentum transferreñ.
Each plot shows the result for a different initial channeli
bound state. We assume planar channeling along the (
plane of Si by selecting the potential parametersV0
520.4 eV andb50.03 nm reproducing@25#, and a counter-
propagating TiSa laser of 3.5131012 W/cm2 (l.800 nm).
Note that the number of photonsN should be an intege
quantity, therefore, the figure shows clearly that, except
very particular choices of the electron’s initial energy, t
excitation channels are closed.

FIG. 2. This figure shows the values of (gx) i needed to open a
specificN-photon excitation channel for the lowest orders of tra

verse momentum transferredñ. All the pictures correspond to a
electron channeled along the (110) plane of silicon, driven b
counterpropagating linear polarized Ti:sapphire laser,l5800 nm,
of 3.5131012 W/cm2. The different pictures represent distinct in
tial bound states of the interplanar potential. The top one co
sponds to the ground state case (n50), the second picture to th
first excited state (n51), and so on. The continuous, dotted, a
dashed lines represent the excitation process with zero, one,

two quanta of transverse momentum transferred (ñ50,61,62),
respectively.
04290
is
d

-

d

0)

r

The same figure can be done for the case of a copro
gating electromagnetic field. Figures 3~a!–3~d! show again
the possibleN-photon channel excitations as a function
the initial electron’s energy, for the lowest orders of tran
verse momentum transferred assuming the same crystal
laser parameters as in Fig. 2. An important increase of
number of photons needed to excite the electron, attributa
to the Doppler redshift, can be observed. Under this circu
stance, even when the energy and momentum constraint
fulfilled, the process may involve a very small transitio
probability due to the high number of photons needed.
give an idea of the order of this probability one can make
of the asymptotic expansion of the Bessel functions for la
orders, Jn(x)'(1/A2pn)(nex/2n)n @26#, being ne
5 limn→`(111/n)n, to calculate a limit of the number o
photons above which the transition probability will be ne
ligible. The criterion to be used here will be to consid
negligible the Bessel function whenneuxu/2nLimit<0.1. Ap-
plying it to our case one obtain the limit of the number
photons for each transverse momentum transferred as a f
tion of the final energy of the electron

NLimit5
5neueuA0

mc\v8
S uñuDpy1

ueuA0

2c D , ~57!

wherev85vg(12bx). Assuming that the electron finishe
in a state of the crystal quasicontinuum and that the ene
along the axial direction do not change significantly duri

-

a

-

nd

FIG. 3. The same situation as in Fig. 2 but with the exter
electromagnetic field copropagating with the channeled elect
The arrows represent theNLimit for each transition line. The thinne
arrow in~a! must only be considered as a qualitative estimation~see
text!. The transition lines without arrow mean that theNLimit occurs
for parameters beyond the plotted region.
2-7
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the evolution, one can approximateg'(gx) i and bx
'(bx) i . Consequentlyv8, and therefore,NLimit , can be ex-
pressed as a function of the initial electron’s energy. Figu
3~a!–3~d! show with arrows the point when the number
photons required for the excitation process surpass
NLimit . For energies above this point, the transition proba
ity reduces drastically and we can consider that no excita
takes place, even though the energy and momentum co
vation relations may be fulfilled. It should be pointed out th
Eq. ~57! is only valid for the case of large orders in th
Bessel functions. This means that it should be taken qua
tively in all cases in whichNLimit is a small quantity, as, fo
instance, in Fig. 3~a! for the caseñ50. Note also that those
cases in which the arrow is not shown correspond toNLimit
outside the plotting region, i.e., theN-photon excitation is
possible along the complete plotted line.

Finally, let us remark the fact that the photon excitati
number is greater than in the counterpropagating case
creases the sensitivity of the channel process to the sele
excitation in terms of the laser parameters.

V. CONCLUSIONS

We have computed the explicit forms of theS-matrix tran-
sition probabilities for theN-photon absorption of a relativ
istic electron channeled along a crystal plane. In contras
previous works, we consider the interaction with an inten
electromagnetic wave, generated externally, which may
za

d

d

s

ns

04290
s

e
l-
n
er-
t

a-

n-
ive

to
e
x-

cite the electron to high-energy states lying in the crys
quasicontinuum. Due to the crystal periodicity, we show t
the energy and momentum conservation equations const
strongly this excitation process, suppressing the multipho
absorption except for some particular cases. Under these
cumstances, the selection of a single multiphoton channe
excitation is feasible by an adequate choice of the exte
laser parameters, opening a broad range of possibilities
the coherent control of the channel electron’s dynamics. T
case of an electromagnetic field copropagating with the
jected electron is also studied showing an important incre
of the number of photons needed to excite the electron du
the Doppler redshift. For this case, we give an estimation
the maximum photon number for which the excitation pr
cess is not negligible. The selective excitation in the c
propagating case is found to be more sensitive to the e
tron’s energy and the transverse momentum transferred in
transition than in the counterpropagating one.
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