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Strong-field approximation to the relativistic channeling of electrons in the presence
of electromagnetic waves
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We present a study of the interaction of a relativistically planar channeled electron with an intense electro-
magnetic field. Using &matrix approach in the strong-field approximation, it is shown that the crystal
periodicity affects drastically the excitation process, suppressing the possibility of multiphoton absorption
except for some particular cases. This selective excitation opens the possibility to control the dynamics of the
channeling process by means of an external field. Explicit expressions f&iarix N-photon excitation
rates together with the corresponding conservation laws are obtained from the relativistic quantum-mechanical
Dirac equation.
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I. INTRODUCTION most of the relevant aspects of the atomic ionization, includ-
ing multiphoton absorption and multiphoton excitation above
Channeling in crystal lattices occurs when an acceleratethe ionization threshold.

charged particle is introduced into a crystalline target at suf- Although employed mainly in the atomic and molecular
ficiently large energy. Depending on the crystal orientationcontext,S-matrix SFA approaches can be used in any general
the particle’s trajectory may be aligned with a crystal axissituation in which the field interaction energy is comparable
(axial channeling or with a direction parallel to a crystal with the energies of the matter system. In fact, for the higher
plane (planar channeling and the penetration may reach energy bound states, the intensity of the field required to
anomalous depths. Although the possibility of this effect wagPromote an electron to the continuum does not have to be
already pointed out very early by Stak], it was demon- Very high, and yet SFA can be used. On the other hand, SFA
strated experimentally 50 years later by Rolal. [2], when requires the matter_ potent!al to_ be approximately constant
the result of the ion sputtering was found to depend strongl?Ver the complete interaction time. In ur case it suffices
on the orientation of the target crystal. After the discovery,Vith & moderate intensity field, (16-10 wien?), while
the theoretical and experimental work increased rapidly an

dhe crystal stability can be ensured by a sufficiently short
extended to the case of channeling of electrons and positrorﬁ’éjlse (about 100 % which still enclose enough cycles to

[3] ensure the adiabatic limit involved in the theoretical ap-

In this paper we will investigate the excitation dynamics.proaCh' It should be mentioned that, in the case of atom

. ionization by strong field, the adiabatic assumption is correct
of a planar channeled electron under the influence of an e y J P

. . . *6ven in the case of a few cycles pulse length, and there is no
ternal electromagneti@.m) field. As a main result, we dem-

ST reason to think that in this channeling case the thing should
onstrate that the crystal periodicity introduces a momentumg . yifferent.

conservation condition that affects the efficiency of the
different N-photon channels of excitation, leading to the

strong suppression of photon absorption in a broad range of Il. GEOMETRY OF THE SYSTEM AND DESCRIPTION

situations. The multiphoton excitation qf c_hanneled particles 5 THE UNPERTURBED CHANNELED ELECTRON
has been already addressed by Avetissian and co-workers

[4,5] by assuming an electromagnetic wave copropagating Let us consider the interacting geometry depicted in Fig.
with the electron, and with a frequency resonant to thel. A relativistic electron introduced in a crystal with a small
(Doppler-shiftegl lower-energy-level transitions. In the tilt angle 6 respect to thex axis interacts with a copropagat-
present case, however, we are interested in a complementaing or a counterpropagating electromagnetic wave. For par-
situation where the channeled electron is excited to a findicular crystal orientations, the electron is confined trans-
state lying in the crystal quasicontinuum. Since the transitiorversely to trajectories close to the initial injection axis. In the
is produced by the interaction of the electron with an extercase of planar channeling, the electron is injected almost
nal intense optical field, the strong field approximati&fA)  parallel to a crystal plang3,9], avoiding the coincidence
constitutes a more appropriated procedure in comparison twith any crystal symmetry axis to inhibit axial channeling.
the discrete level approach in R¢4]. We will assume an electromagnetic plane-wave field, which
SFA theories have been developed in the context of ionpropagates in th& axisand linearly polarized in thg axis
ization of atoms in strong laser fields. Among them, the soi.e., orthogonal to the crystal plane.
called Keldish-Faisal-Reiss theof$p—8] is based on the Since the channeled patrticle is injected with a relativistic
Smatrix approach, where the final state is approximated by &elocity, the crystal potential may be well approximated by a
Volkov state, which describes the evolution of a free electrorspatial average over the crystal plane coordinates, as it is
driven by the electromagnetic wave. SFA theories describélone in the so-called continuum modal,
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V,, being the Fourier transform of the interplanar potential at
the spatial frequencp/#. Due to the nature of the averaged
potential, the channeling along a crystal plane is only pos-
sible if the energy of the electron’s transversal dynamics is
FIG. 1. The system to be studied consists of a relativistic elecinoderate, i.e., nonrelativistic. In this case, it is justified to
tron channeled along a crystal plane and interacting either with &PProximate Eq(5) to second order ofp, /E, .
copropagating or with a counterpropagating electromagnetic field
(only the counterpropagating case has been plotted in the fig\ge

2
. . . — 212 22 2~4 Czpy
a consequence of the continuum approximation, the planes are as- pr,py— \/C px+copy+mc %pr 1+ > | (6)
sumed to be uniformly charged. pr
1 (L2 (L2 \/pr,pﬁmcz pr+mcz[ c’ps [ me
V(y)= U(x,y,z)dxdz 1 - ,
V=L))o 02 @) I 2B, |7 4E2 | E, +mc
_ _ (7
where L, and L, are the crystal plane dimensions, and
U(x,y,2) is the crystal potential. With this effective potential 2E 2E [ 2 2 2
the electron motion in the crystal channel, driven by the ex- Px:Py P |14 ¢ Py m _
ternal e.m. field, will be confined to the polarization plane Epp, T mc Ep * mczl 4E; Ep +mc”
XY.
In the most general case, the quantum description of the ®

electron’s dynamics is described by the Dirac equation
y y a Note that, for the field intensities considered here, this ap-

proximation will remain equally valid when considering the
{ca (f)—eA/c)+,8mcz+V(y)}<I>(x)= Eg®(x). (2 interaction with the external electromagnetic wave.
By introducing Egs.(6)—(8) into Eq. (5), and since the
scalar potentia}\/py,py is a first-order term ircp, /E,, the

Let us first consider the unperturbed channeling situation,_. o . .
Dirac equation is reduced to the same identity for every non-

A=0. Since the averaged potential depends only onythe fth inor
coordinate, a general positive-energy solution of the chanZ€"© component of the spinar, ,
neled electron can be written as

C2p2
— y ’
Epry— [ 2pr + pr] gpy-i— J dppry_p;fp)//. 9

mc
¢<x>=f dpy\/E——Up, p, EXHi(PX+Pyy)/A]E,
/ pr,py Px Py * Y Py Computing the inverse Fourier transform in theoordinate,
(3)  we finally end with a Schidinger-like equatiori12,13

2
whereu? is the positive-energy solution of a free Dirac fsf(y)=[ Py +V(y)] &), (10)
m

Py P
Y _ [ 22 24 2%x
electron[10,11], pr,py— CE R py+m-c,

whereE, =y,mc’, andeg=Eg— y,mc” corresponds to the

1 nonrelativistic eigenstate energy.
Several explicit forms of the averaged crystal potential

E e 0 may be found in the literaturf8]. Among them, those de-
T Px Py 0 4) rived from the Thomas-Fermi screened two-body potentials
Px Py omc , ' have been widely usgd,9], and have been fine adjusted by
c(pxtipy) standard Hartree-Fock many-body calculati¢fid]. From
pr,py+ mc the theoretical point of view, model potentials are more con-

venient, since they allow for further analytical work while
keeping the essential features of the interaction. For instance,
Introducing Eq.(3) into Eq. (2), with A=0, one can ob- V(y)=—4V,y?/d? was proposed by Avetissiaet al. [4] in
tain the following form for the Dirac equation in momentum the context of computation of the multiphoton transitions
space: between bound states of the continuum potential, for a pos-
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itron interacting with a strong electromagnetic wave. The me / ebA(¢)
form V(y)=—V,cosh %(y/b) has also been used to study (I (x)= 1+é€ )ugeis (13
the possible amplification of x-ray channeling radiat[&m (2m)%E! 2¢(s-p)

This later form has a better resemblance with the averaged

Thomas-Fermi potentials while still allowing for an analyti- €"?=1, €3*=—1, ¢=s-x being the phase of the laser
cal diagonalization and, therefore, we shall use this potentidield wheres*=(1,s) andsis a unitary vector that indicates
for our calculations. The transverse energy spectrum for thighe direction of propagation of the electromagnetic field, and
case can be cast in the following foifrb]:

X (= |e[p-Alg’ e?A%(p’
I Sz—efp—+f [p-ACeDI _ (¢") do'.
€an= — (s—n)? (11) hio Jsx| he(s-p) 2fic%(s-p)
2b%my, (14
where n can be 0,,..[s], being s=-3 The Smatrix approach takes as a starting point the fol-

+ /1 +2b2my,V, /42 Note that, as a result of the spatial 10Wing exact relation:

averaging, the scattering with the continuum potential affects

only to the transverse dynamics of the channeled particle, q,f(x):q,v(x)Jrf 4%’ Gy(x,x" ) YOV (X )W (x'),
while the very large longitudinal momentum remains unaf-

fected. (19

where G,/(x,x") is the Volkov Green’s functiorj24], and
keeps the lowest-order term in powers\¢fx). The transi-
tion amplitude obtained i20,21]

lll. SMATRIX DESCRIPTION OF A CHANNELED
PARTICLE INTERACTING WITH AN
ELECTROMAGNETIC WAVE

Let us now add the electromagnetic excitation to the prob-
lem. As it is well known, Eq(2) does not accept analytical
solutions for a space-time dependent vector potential. In such
situations, thesmatrix approach offers a standard procedure i [ mc 4 —isT
to find approximated solution4.5], used specially in quan- T he (277)3Ef d*xe"up
tum field theory[10,16,17 and scattering18].

i —
(S—1)FFA=— %f d*x¥{ JeA, y o,

e2(A~A)$)
eA—e——— | D, (16)

x 2c(s-p)

A. The general relativistic case

The relativistic SFAS-matrix theory for the Dirac electron
in an atom can be found in Refil9—21. The general ex- where we have used E(1L3) and we have assumed the trans-
pression for the transition amplitude using time-reversed/€rse character of the e.m. fiekl A= —s- A=0. Separating
Smatrix theory has the following form: the time and the space integrals in Ed6), the transition
amplitude takes the form

Spi=lim(W{7|d;). (12)

too [ m&& _
— SFA:— _— r
(S—1)j i (277)3Eeupf dtz,(t)

Although mainly used in the strong-field ionization of atoms

and molecules, this approach is quite general and can be 5

exported to any other system, provided its eigenstates can be 4 / mc  e’e sl dtz 1) (17)
found analytically. To our knowledge, however, this is the (2m)3E2(s'p) P 2

first time that it is applied to the relativistic channeled elec-

tron in interaction with an electromagnetic wave. In thell(t) andZ,(t) being:

present caseP; corresponds to the unperturbed channeled

electron state discussed in Sec. I, ali¢) is an arbitrary o . '

final state, solution of the complete E@). Since this exact Ti(t)=y* Ty (1) = TJ dxe 'SA e (B, (18)

solution is not available, the success of tBenatrix ap-
proach consist in finding a suitable approximation. In the
strong-field approximation, the interaction with electromag-
netic field is assumed to be the relevant for the final state,
therefore, W{™) is approximated in terms of the Volkov
states,V(x,t) [22,23. These wave functions are solutions - if dxe S|A[2e”IEat) . | (19)
of Eq. (2) for V(y)=0 andA(x,t)#0, and describe a free he '

electron in the presence of an electromagnetic field. In the

Lorentz gauge, the form of these states for a laser field pulse Once the transition amplitudeS¢1)77* is known, the
of arbitrary form is[23] total transition rate can be computed as

1 . .
I(t)= %f dxe 'S(A-A)e (e,
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vd
W= f psw, (200  tum of the Volkov function, and the frequency and amplitude
(2m) of the laser field
whereV is the normalization volume and is the transition
probability per unit of time, which is defined as B epAo B e’eZAg 25
7" fic(k-p)’ 8hic2(k-p)’
1
w= I|m?|(S— DA (21) Substituting Eq(24) in Egs.(18) and(19),
t—ox
Another important magnitude is the transition rate per unit  Z1(t)=— Zy(t)
of solid angle, which has the form
Y s
W v -2 [ dxe oA ()00
2
—=—3pr dp. (22 _ B
@ (2m) YA, < N+2n
. . =- > ———Jnsan(mIn(é)
It should be mentioned that SFB:matrix theory cannot i NAT—= 7
be considered as a perturbation series in power¥ (o)
since the initial state; is an eigenstate of the potential itself (hon—Ep)t 5.
. . , xXexpi i(an) (26)
including all the properties of the crystal. The presence of h
this wave function produces a new behavior in the scatterin
section, introducing all the differences with the atom ioniza-2"
tion or the simple Compton scattering.
1 . .
- —iS 2,—iEgt/Ag.
B. Application to the case of a monochromatic and linearly oY) ﬁcf dxe™ ™Al i
polarized laser field
. R AZ 0 [(N+2n)2
Let us focus our attention to the geometry depicted in Fig. =— — ———Jnsan( )
1, where the electromagnetic field can be a copropagating or AC NA=- 7
counterpropagating linear polarized plane wave of frequency 1
o, A(p)=Aj(¢)g=Agcost—k-X)e, where g is the L _
field’s polarization vector. 277[‘]”*2”“( M~ Inren-1(7)]
The phase factor of the Volkov functid4) now reads as _ _
X Jn (&) ren=Eelli;(qy), (27)
M eZAzkﬁ ) ~ .
S=—¢ L 0 X+ epAo sin(k-x) whereqy, wy, and®;(qy) are defined as
fi o anc(k-p)) " fic(k-p)
[ ra2p2
e’AZ e'p e'e”Aj
e N . ON=F 1| = —— NIk, (28)
€ BhCZ(khp)SIr{Z(k X)] (23) A _4hC2(k p)
The resulting exponential factor can be expanded as a series £ [ e2a2
of Bessel functions R B
Wy + N|w, (29
ho | 4hc*(k-p)
. ko e?AZkH
e"s=exp{ie’{p—+ 2—leﬂ} - .
h 4hc(k-p) q)i(QN):J e 'IXD;(x)dx. (30)
+ oo
% E Inson( 7)o (£)e NG (24) The time integrals appearing in E7) can now be cal-
NS T em N ’ culated as
|
< N+2n

. t 'ﬁAo
Y'It Ty(n)dr="—— | >
0

n=-—o

X exfi(foy—Eg)(t+10)/24]
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where# and¢ are factors which only depend on the momen-

Ing2n(7)In(€)Di(an)

sin(fwy—Eg) T/2%
(hhon—Eg)/2h

(31)
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and
t AZ T [(N+2n)2 1 -
fzz<r>dr=—ﬁ—c 2| e+ 5 Dnran () = Inszn- ()] | In(EBi(an)
to N,n=—oo n Y
(haoy— Eq) (t+tg)/2h ] ot on ~ Eg) T/2h 32
xexdi(hon—Eg)(t+1tg)/2%] (hwy—Eg)/2h (32
|
being T=t—t,. Ts=T3, (36)
To compute the rate of excitation, we should use this two
equations together with Eq17) to calculate
— mC2 6r ! ,u+ n r+ 0
(S—1)SFAZ=T + T+ To+T, (3 T ) ) GRO] R Tk
with
xf dt Z,(t). (37)
— m02 2 ’ O ,r+.0
T1—(2 VoE dtZy ()| ¥y upup ™%y Substituting the time integral81) and(32), in each term,
. we may calculate the transition probability per unit of time
as
x f Atz (1), (34
T +To+T3+T
e —Ilm—|(S 1)SFA2= |im %
T,= fdtI )| ¥ yupupt %k ot e
2" (2m%E 2(k- p){ il | 4 -
=ttt +t3+1,, (38
XJ dtZ,(1), (35 where
me e®A2 T [ I (N+2n) 2 ~
= — > Ine2n(MIN(E) | S(fawn—Eg)®] (an) ¥ Houbus" ¥y @i(qn), (39
87°E A° N=—o |n=-w= 7
: m €A 2 (N+2n )ZJ . ) ()3 )]
= - - + ! - r_
2 872E Zﬁzc(k-p) N N+2n'{77 27 N+2n’+1\77 N+2n'—1{7
(N+2n) ~ :
X3y (€) In+2n( 1) In(€) Sy —Eg)P; (qn) ¥~ ¥ upuy ™ vk
X ®;(ay), (40)
t3=t3, (41)
me [ €e?A \2 7 [ 2 [(N+2n)? 1 ?
t4:871-2E 2hclk-p) N;x 228 Tszn(’?)JrE[JN+2n+1(7l)—JN+2n—1(77)]
X 8(hoy—Eg)®;" (an)K" YOupup*yok®; (). (42)
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Finally, the excitation rate is Since the electromagnetic field propagates alongxtbgis,
this condition may be split into two parts

me [eAg\? < €'ehy
:—(— > [SiA— S Re(Ay) 252
8m2E\ A | NEa c(k-p) e“Ag
(Px)i=Px* 2—_N fik, (52
eA, \? 4nc(k-p)
+<2C(k_p)) sﬁm}@(th—EB), (43
(Py)i=py (53
where we have defined
. with (k- p) =k(E/c+ py), and wherek= |k|, the top sign re-
B (N+2n) fers to a field copropagating with the electron, and the bot-
Sl_n:z_m In+2n(7)In(€), tom to the counterpropagating case. Equati@®, (52), and
(44) (53) describe the energy and momentum changes due to the
stimulated absorption or emission Wfphotons. Combining
+oo 2 these with the energy expression for the final stdfe,
(N+2n ) 1 >
S,= Z NN (7;)+ [JN+2n,+1( n) =c%p +c p +m?c* we obtain a closed formula for the
nn’=-—o energy conservatlon of the multiphoton process, in terms of

(N+2n) the initial momentum and the field parameters
—Jn+2n -1l 7])])Jn'(f)Tszn(ﬂ)Jn(f),

Ade?

c?(p)2+c¥(py)2+mct—E3+

(45 _ 2
NAw[1%(By)i]= :
+ o0 2 2'meCZ
(N+2n) 1 (54)
Si= 2| = Inean(m 5 Dniansa(n)
where we have defined the initial energy of the electron as
Eg=7ysmc®, and the initial relativistic velocity factor,
-J _ Jn(§), 46
N zn 1(’7”) nl4) 8 (8,)i=(p.)i/veme. Since Eg~ep+ (1M, with ()

=JyN1- (ﬂx).z] we have

A1=&>i+(QN)7'+70ULUL+707j¢i(QN)1 2.2
(47) (py)? Age
NAwys[1+ (Byil~ —(iest

(59

5 - = 2m amc2’
=0 (qn) Y " ¥Oupup T YOkDi(ay), (48)
~ 0 The interpretation of this energy conservation relation is
A= (an)k* youbul* yok®i(qy). (49 straightforward if we take as reference system a frame propa-
gating with the electron, with its initial velocity
IV. CONSERVATION LAWS AND CLOSING (i /(v)im. The frequencyw’=wyg(1+(By)i) corre-
OF EXCITATION CHANNELS sponds to the Doppler-shifted electromagnetic wave, and

(vx)i€g is the result of the Lorentz transform of the bound-

As expressed in Eq43), the transition probability is a state energy11) from the laboratory to the moving frame.
function of the initial momentum-space probability ampli- Equation(55) states the resonance condition fofQoppler-
tude, ®;(qy). Let us now assume injected electron of posi-shifted N-photon transition from a bound state to a state
tive energy with a wave function of the forf), therefore, lying in the crystal quasicontinuum of momentum given by
e'=+1. From thed function in Eq. (43), we obtain the EQs.(52) and(53). This is, in essence, the crystal equivalent
following energy conservation relation: to the ionization of atoms by intense fields. Note, however,
that in the atom case an ionization channel for any photon
numberN is always possible, since the initial state is distrib-
—N|hio=Eg. (500 uted continuously over the momentum space and, therefore,
a nonzero transition probability exists for angJ; which
. . fulfills the condition(55). This is not the case for the chan-
On the other hand, an additional conservation law relates thﬁeled electron, since the crystal plane periodicity forces a

momentum of the final and_ |_n|t|al states,andp;, FESPEC-  jiscretization of the electron states in the transverse coordi-
tively, in Eq. (28). For a positive-energy electron, this reads ~ ~ e
nate of the momentum spapg=n2=h/d,=nAp,, beingn

2A2
4ﬁcz(k p)

as
an integer and, the interplanar distance. As a consequence,
2A2 in the general case thd-photon channel of excitation should
p=rt+|——— Kk (51) be strongly suppressed, except in those particular cases in
h|anci(k-p) which
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FIG. 2. This figure shows the values of,); needed to open a FIG. 3. The same situation as in Fig. 2 but with the external
specificN-photon excitation channel for the lowest orders of trans-electromagnetic field copropagating with the channeled electron.
verse momentum transferred All the pictures correspond to an The arrows represent thé ;.,;; for each transition line. The thinner
electron channeled along the (110) plane of silicon, driven by aarrow in(a) must only be considered as a qualitative estimatsa®
counterpropagating linear polarized Ti:sapphire laze¥,800 nm,  texi). The transition lines without arrow mean that thg,;; occurs
of 3.51x 10" W/cn?. The different pictures represent distinct ini- for parameters beyond the plotted region.
tial bound states of the interplanar potential. The top one corre-
sponds to the ground state case=(0), the second picture to the
first excited stater{=1), and so on. The continuous, dotted, and
dashed lines represent the excitation process with zero, one, al

two quanta of transverse momentum transferrae: 0,+1,£2),

The same figure can be done for the case of a copropa-
gating electromagnetic field. FiguresaB-3(d) show again

ﬁHe possibleN-photon channel excitations as a function of
the initial electron’s energy, for the lowest orders of trans-
verse momentum transferred assuming the same crystal and

respectively. laser parameters as in Fig. 2. An important increase of the
number of photons needed to excite the electron, attributable
(7,) i€ 1 ﬁZApi AZe? to the Doppler redshift, can be observed. Under this circum-
N+ Pl B + (56) stance, even when the energy and momentum constraints are
ho ho m 4mc* fulfilled, the process may involve a very small transition

probability due to the high number of photons needed. To

holds f 0¥ asi b hi give an idea of the order of this probability one can make use
olds forN andn as integer numbers. As a consequence, thig¢ o asymptotlc expansion of the Bessel functions for large

opens the possibility of selective excitation of channeledorderS (x)~(L/N2mn)(nx/2n)" [26], being n
electrons in terms of their initial velocity, or permits its con- _ i, m(f+ 1/n)", to calcuieate a limit of, the numbereof
trol through the variation of the electromagnetic field param photc?r?s above which the transition probability will be neg-
eters. Figures (@)-2(d) show the possiblél-photon channel |i5ipie The criterion to be used here will be to consider
excitations as a function of the initial electron’s energy a”dneg||g|ble the Bessel function whem|x|/2n mi;=<0.1. Ap-

for the lowest orders of transverse momentum transfemred plying it to our case one obtain the limit of the number of
Each plot shows the result for a different initial channelingphotons for each transverse momentum transferred as a func-
bound state. We assume planar channeling along the (11@bn of the final energy of the electron

plane of Si by selecting the potential parametérg

=20.4 eV andb=0.03 nm reproducinf25], and a counter- 5n |e|
propagating TiSa laser of 3.5110'2 W/cn? (A=800 nm). Niimie=———-
Note that the number of photorid should be an integer

quantity, therefore, the figure shows clearly that, except fowherew’ = wy(1— 8y). Assuming that the electron finishes
very particular choices of the electron’s initial energy, thein a state of the crystal quasicontinuum and that the energy
excitation channels are closed. along the axial direction do not change significantly during

A
Flant 502 67
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the evolution, one can approximatg~(y,); and B,  cite the electron to high-energy states lying in the crystal
~(By)i. Consequently»’, and thereforel, ;mi:» can be ex-  quasicontinuum. Due to the crystal periodicity, we show that
pressed as a function of the initial electron’s energy. Figureshe energy and momentum conservation equations constraint
3(a)—-3(d) show with arrows the point when the number of strongly this excitation process, suppressing the multiphoton
photons required for the excitation process surpass thgbsorption except for some particular cases. Under these cir-
Niimit - FOr energies above this point, the transition probabil-cumstances, the selection of a single multiphoton channel of
ity reduces drastically and we can consider that no excitatiogxcitation is feasible by an adequate choice of the external
takes place, even though the energy and momentum consesser parameters, opening a broad range of possibilities for
vation relations may be fulfilled. It should be pointed out thatthe coherent control of the channel electron’s dynamics. The
Eq. (57) is only valid for the case of large orders in the case of an electromagnetic field copropagating with the in-
Bessel functions. This means that it should be taken qualitgected electron is also studied showing an important increase
tively in all cases in whichN_;n;; is @ small quantity, as, for  of the number of photons needed to excite the electron due to
instance, in Fig. @) for the casen=0. Note also that those the Doppler redshift. For this case, we give an estimation of

cases in which the arrow is not shown correspondlitg,;;  the maximum photon number for which the excitation pro-
outside the plotting region, i.e., thd-photon excitation is cess is not negligible. The selective excitation in the co-
possible along the complete plotted line. propagating case is found to be more sensitive to the elec-

Finally, let us remark the fact that the photon excitationtron’s energy and the transverse momentum transferred in the
number is greater than in the counterpropagating case irfansition than in the counterpropagating one.
creases the sensitivity of the channel process to the selective
excitation in terms of the laser parameters.
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