
PHYSICAL REVIEW A, VOLUME 65, 042726
Occurrence of unit transmissivity in scattering
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Unit transition probability occurs when a bound state works as a doorway state between two continua. It is
shown that in the limit of small coupling this is still true if there is direct coupling between the continua. A
cancellation of this coupling occurs in the appropriate element of the transition operator.
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I. INTRODUCTION

It is a textbook example about resonance effects on s
tering: if a process is mediated by a resonance, the trans
probability reaches the value unity at the resonance en
@1#. This is shown by the form taken by the relevant mat
element of the scattering operatorS. Let us consider a pro
cess involving two continua coupled through a bound st
The entrance continuum wave function with indexi is
coupled to the exit continuum wave function of indexf via
an intermediate bound state. The off-diagonal matrix elem
of the scattering operatorS can be written as

Sf← i~E!522ip
v fv i*

E2ER1 ip~ uv i u21uv f u2!
, ~1!

whereER is the resonance position whilev i and v f are the
discrete-continuum couplings between the bound state
the continuai and f. For a symmetric potential withv i5v f
andE5ER , the square modulus ofSf← i is 1, even for infi-
nitely small couplings. The transition probability has
Lorentzian shape. An illustration of this situation is reson
tunneling through a double-barrier structure@2#, where the
resonance is associated with the well between the barr
Although the usual way to calculate the transmissivity go
through a matching of the wave function and its derivative
each discontinuity of the potential, it is also possible,
shown by Bardeen@3#, to evaluate the discrete-continuu
couplings of Eq.~1!. Other situations with unit transmissivit
exist, where interference effects show up, leading to Fa
type profiles@4#. Such profiles are found in the transmissivi
of a particle incident on a well and interacting with an osc
lating electric field@5#, or in the case of an electron incide
on an oscillating square potential well@6#. An example im-
plying more than one coordinate is laser assisted reac
scattering@7#. Equation~1! cannot account for this behavio
A so-called background term has to be introduced in
matrix element of theS operator@1#. We describe in the nex
section an example showing this effect. We then develo
simple model to explain that unit transmissivity can pers
even when interference reveals the existence of a di
continuum-continuum coupling.
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II. INTERFERENCE EFFECTS IN FIELD ASSISTED
DOUBLE-BARRIER RESONANT TUNNELING

As an example to show the existence of interference
fects in resonant tunneling, let us consider a double bar
enclosing a well. The barriers are narrow and high, so t
they behave practically asd function barriers. The well ad-
mits a true bound state of energyEb , because its bottom is
sufficiently below the asymptotic thresholds. The doub
barrier structure leads to a set of resonances correspondi
escape processes through the barriers. In the presence
oscillating field of frequencyv, the dressed state correspon
ing to the bound state plus a photon acts as an additio
doorway state at energyEb1v. We have previously ana
lyzed this situation@8# to show that unit transmissivity ca
be obtained at this energy in the limit of a weak field amp
tude. The transmissivity profiles were Lorentzian, show
that the direct continuum-continuum coupling had negligib
effects. The present model, as illustrated in Fig. 1, is simi
but the d function ~or close tod function! barriers ensure
enough direct transmission to display the interference ef
between direct and resonance-mediated processes. Th
rameters of the potential are as follows: barrier heighth
525 a.u., barrier width e50.01 a.u., well width 2L
52 a.u., well depthV051 a.u., mass of incoming particl
m51 a.u.. Such a model provides a simple example
verify the power of a multiple scattering approach. The m
tiple scattering formula for the field-free transmissivi
makes use of the transmission and reflection amplitude
the two d function barriers, each writtenVd(x). In the
present modelV can be viewed ase3h, the width times the
height of a barrier. For a particle incident from the left wi
energyE on the first barrier, with two different threshold
defining a left wave numberk15@2mE#1/2 and a right wave
numberk25@2m(E1V0)#1/2, we derive, along a line simila
to that applied to thed function barrier with equal threshold
@9#, the formulas for the amplitudes of transmissiont and of
reflectionr

t5
2ik1

ik11 ik222V
, r 5

ik12 ik212V

ik11 ik222V
. ~2!

For a particle incident on the right barrier the amplitud
are obtained by permutingk1 andk2. They are denotedt̃ and
r̃ . The multiple scattering expression for the transmiss
©2002 The American Physical Society26-1
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amplitude is obtained by summation of all wavelets reach
the right asymptotic region after all possible transmissio
and reflections of a unit amplitude wave incident from t
left. A geometric series is generated:

T5teib t̃ 1teib r̃ eib r̃ eib t̃ 1teib r̃ eib r̃ eib r̃ eib r̃ eib t̃ 1••• .
~3!

b is the phase:

b5E
2L

1L

k2dx. ~4!

The summation provides for the total transmission amplitu
the expression

T5
t t̃ eib

12 r̃ 2e2ib
. ~5!

We show in Fig. 1 the transmission probability~that is,
uTu 2) calculated in two ways:~a! by a transfer matrix tech

FIG. 1. Transmissivity of a doubled function barrier. The pa-
rameters of the potential are as follows: barrier heighth525 a.u.,
barrier widthe50.01 a.u., well width 2L52 a.u., well depthV0

51 a.u., mass of incoming particlem51 a.u.. Left panel: the po-
tential, with the bound state energy~dashed horizontal line!, and the
resonance energies~dotted horizontal lines!. Right panel: the field-
free transmissivity. Unit transmissivity is reached at each resona
energy associated with the well between the barriers. Solid cu
transfer matrix calculation. Dashed curve: multiple scattering
mulation.
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nique based on the true parameters of the structure and~b!
with the multiple scattering formula. The transmissio
reaches unity at each resonance energy, as expected.
very good agreement between the two procedures shows
each barrier correctly mimics ad function barrier. In the
following we will need the transmissivity far from a reso
nance. This transmissivity can be equally well estimated
multiple scattering or the transfer matrix.

We turn now to the effect of an oscillating field interactin
with the particle. As explained above~and well documented
in the literature@5,6#! a different resonance effect is ex
pected: ifv is the frequency of the field, in the presence o
bound state of energyEb , there is the possibility of virtual
desorption and absorption of a photon. The bound state
ergy in our case isEb;20.51 a.u. We show in Fig. 2 the
transmissivity in the neighborhood of the energyEb1v,
with v50.5297 a.u. and a peak field amplitudeE050.1
31023 a.u. The transmissivity reaches a value very close
unity. We recall@5,8# that this is an indication that, in the
escape of a particle initially trapped in the well, only on
photon processes are allowed. However, the profile is
Lorentzian. This is not in accordance with Eq.~1!. There is
clearly an interference effect giving a Fano-type profile. W

ce
e:
-

FIG. 2. Transmissivity in the neighborhood of the energyEb

1v. Eb is the energy of the bound state accommodated by the
below the asymptotic thresholds~true bound state in the absence
the field!. The frequencyv is 0.5259 a.u. and the peak field amp
tude 0.131023 a.u. Solid curve: transfer matrix calculation wit
the field. Dashed curve: field-free transmissivity.
6-2



i
ce

th
io

e
e

is

ua.

r-

the
cts
not

-
ket
eri-

en
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also show the field-free transmissivity. The transmissivity
perturbed only in the vicinity of the field-induced resonan

III. CANCELLATION OF THE DIRECT COUPLING

We develop now an analytic approach to account for
findings of the previous section. The so-called configurat
interaction method of Fano@4,10# is adopted. The Hamil-
tonian is partitioned intoH5H01H1. The eigenkets ofH0
consist of two energy-normalized continua writtenuaE& and
ubE& and a bound state of ketuf i& and energyEi . Residual
couplings are due toH1. All couplings are assumed to b
sufficiently smooth to allow them to be taken energy ind
pendent. We introduce the notation

^aEuH1ubE8&5W,

^f i uH1uaE&5^f i uH1ubE&5V. ~6!

A symmetric pattern of discrete-continuum couplings
assumed. The transition operatorT is written H1
1H1GH1 . G is the Green operator (z2H)21. Let us as-
sume first thatW50 ~no continuum-continuum coupling!.
We obtain

^b ĒuTuaE&5^b ĒuH1uf i&^f i uGuf i&^f i uH1uaE&

5uVu2^f i uGuf i&. ~7!
si
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The diagonal matrix element of the Green function is

^f i uGuf i&5
1

z2Ẽi1 iG
. ~8!

Ẽi is the shifted bound state energy. The half-widthG is
given by

G52puVu2. ~9!

The factor 2 accounts for the decay toward the two contin
At the ~real! resonance energyz5Ẽi , the matrix element of
T takes the form2 i /2p. From the expression of the scatte
ing operatorS5122ipT, we finally obtain

z^b Ẽi
uSua Ẽi

& z251. ~10!

This is the explanation, reduced to its essentials, for
unit transition probability observed when a bound state a
as a doorway state between two continua. The result does
depend on the strength of the couplings~provided, of course,
they are not zero!. However, too small a width of the reso
nance may forbid the construction of a realistic wave pac
that would reveal the phenomenon in a scattering exp
ment.

We turn now to the case where a direct coupling betwe
the continua is operating. Equation~7! is replaced by
^b ĒuTuaE&5^b ĒuH1uaE&1^b ĒuH1uf i&^f i uGuf i&^f i uH1uaE&1E dE8^b ĒuH1uaE8&^aE8uGuf i&^f i uH1uaE&

1E dE9^b ĒuH1uf i&^f i uGubE9&^bE9uH1uaE&1E E dE8dE9^b ĒuH1uaE8&^aE8uGubE9&^bE9uH1uaE&.

~11!
gy-
With the assumptions about the couplings@Eq. ~6!#, this re-
duces to

^b ĒuTuaE&5W* 1uVu2^f i uGuf i&

1W* VE dE8^aE8uGuf i&

1W* V* E dE9^f i uGubE9&

1W* 2E E dE8dE9^aE8uGubE9&. ~12!

The matrix elements of the Green operator are ea
found from its definitionG(z2H)51. We only provide the
results of the integrations present in Eq.~12!. We find

E dE8^aE8uGuf i&52 ip
V* ~12 ipW!

11p2uWu2
Gi ,i , ~13!
ly

E dE9^f i uGubE9&52 ip
V~12 ipW!

11p2uWu2
Gi ,i , ~14!

E E dE8dE9^aE8uGubE9&52
p2W

11p2uWu2

2
p2uVu2~12 ipW!2

~11p2uWu2!2
Gi ,i .

~15!

Gi ,i stands for̂ f i uGuf i& and is given by

Gi ,i5S z2Ei1
p2uVu2~W1W* !

11p2uWu2
12ip

uVu2

11p2uWu2
D 21

.

~16!

The resonance energy is shifted even with ener
independent couplings@11#. At the real resonance energy
6-3
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ER5Ei2
p2uVu2~W1W* !

11p2uWu2
, ~17!

the matrix element of the transition operator takes the fo

^bER
uTuaER

&5W* 2
i

2p
~11p2uWu2!

2
W*

2
~12 ipW!2

W*

2
~12 ipW!

2p2
WW* 2

11p2uWu2
1

ipW* 2

2

~12 ipW!2

11p2uWu2
.

~18!

The last two terms arise from the double integral. We ha
displayed on purpose the terms corresponding to the
single integrals of Eq.~12! ~third and fourth terms!, although
they give equal contributions. This is to show that ter
arising from theH1GH1 part of the transition operatorex-
actly cancelthe termW* arising from the direct continuum
continuum coupling. Another way to write this matrix el
ment is

^bER
uTuaER

&52
i

2p

12p2W* 2

11p2uWu2
. ~19!

The dimensionless continuum-continuum coupling co
tributes only to second order to the transition probabil
since forW!1 we can write

^bER
uTuaER

&;2
i

2p
@12p2~W* 21uWu2!#. ~20!

The transition probability is no longer exactly 1 on the res
nance. In the absence of discrete-continuum couplings,
transition probability is 4p2uWu2.

IV. LINE SHAPE ANALYSIS

We continue by derivation of the parameters associa
with the Fano profile. Let us define

e5
E2ER

G̃
~21!

with ER given by Eq.~17! andG̃ being the half-width of the
resonance@cf. Eq. ~16!#:

G̃5
2puVu2

11p2uWu2
. ~22!

We now consider the matrix element of theT operator for
an off-resonance energy. It is possible to reduce it to the fo
04272
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^bEuTuaE&5
W*

~11p2uWu2!

1

e1 i

3S e1
1

2pW*
2

pW*

2 D . ~23!

We have for the transition probability

z^bEuSuaE& z254p2z^bEuTuaE& z2

54p2
uWu2

~11p2uWu2!2

ue1qu2

e211
~24!

with the Fano parameterq:

q5
1

2pW*
2

pW*

2
. ~25!

It is easy to check that as the continuum-continuum c
pling W goes to zero, one recovers a Lorentzian line sha
For a nonzero and real coupling, there is vanishing of
transition probability at an energy obtained from the con
tion

e52
1

2pW
1

pW

2
. ~26!

Solving this equation inE gives

E5ER2
uVu2

W~11p2W2!
1

p2uVu2W

~11p2W2!
. ~27!

If the dimensionless quantityW is much smaller than
unity, the vanishing probability occurs at an energy

E5ER2
uVu2

W~11p2W2!
. ~28!

The distance between the maximum and the zero increas
W decreases, while the profile is more and more Lorentz
An estimate of the resonance width and of this distan
could lead to an estimate of the direct continuum-continu
coupling.

V. CONCLUSION

From the expression of the transition operator one exp
a first order contribution of the direct continuum-continuu
coupling. We have shown that on resonance this term is c
celed, and the transition amplitude is affected, as compa
to that valid in the absence of this coupling, only by secon
order terms. The extreme narrowness of the resonance
ture in Fig. 2 validates an analysis based on ener
independent couplings.
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