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Occurrence of unit transmissivity in scattering
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Unit transition probability occurs when a bound state works as a doorway state between two continua. It is
shown that in the limit of small coupling this is still true if there is direct coupling between the continua. A
cancellation of this coupling occurs in the appropriate element of the transition operator.
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I. INTRODUCTION II. INTERFERENCE EFFECTS IN FIELD ASSISTED
DOUBLE-BARRIER RESONANT TUNNELING

Itis a textbook example about resonance effects on scat- o example to show the existence of interference ef-

tering: |_f_a process is mediated bY a resonance, the ransitiog (s in resonant tunneling, let us consider a double barrier
probability reaches the value unity at the resonance eNerQ¥nciosing a well. The barriers are narrow and high, so that
[1]. This is shown by the form taken by the relevant matrixhey pehave practically a8 function barriers. The well ad-
element of the scattering operat8r Let us consider a pro- its a true bound state of ener§y,, because its bottom is
cess involving two continua coupled through a bound stategfficiently below the asymptotic thresholds. The double-
The entrance co_ntmuu_m wave functlon_ with _|ndex_|s barrier structure leads to a set of resonances corresponding to
coupled to the exit continuum wave function of indexia  escape processes through the barriers. In the presence of an
an intermediate bound state. The off-diagonal matrix elemenyscijjating field of frequency, the dressed state correspond-
of the scattering operat@® can be written as ing to the bound state plus a photon acts as an additional
doorway state at energff,+ w. We have previously ana-
lyzed this situatior{8] to show that unit transmissivity can
v} be obtained at this energy in the limit of a weak field ampli-
WE—E +i1T(|v-|2+|v |2)’ .Y tude. The transmissivity profiles were Lorentzian, showing
R : f that the direct continuum-continuum coupling had negligible
effects. The present model, as illustrated in Fig. 1, is similar,
but the § function (or close toé function barriers ensure
enough direct transmission to display the interference effect
etween direct and resonance-mediated processes. The pa-

Sin(E): —2i

whereEg is the resonance position while anduv; are the
discrete-continuum couplings between the bound state a

the continual andf. For a symmetric pptennal W'tb‘:.vf. rameters of the potential are as follows: barrier height
andE=Eg, the square modulus & ; is 1, even forinfi- = _5g a.u., barrier widthe=0.01 a.u., well width 2

nitely small couplings. The transition probability has a _ - . . .
Lorentzian shape. An illustration of this situation is resonant 2 a.u., well depttVo=1 a.u., mass of incoming particle

; . m=1 a.u.. Such a model provides a simple example to
tunneling through a double-barrier structy®, where the . . .
resonance is associated with the well between the barrierverlfy the power of a multiple scattering approach. The mul

L ﬁ'ple scattering formula for the field-free transmissivity
Although the usual way to calculate the transmissivity goes akes use of the transmission and reflection amplitudes at

through a matching of the wave function and its derivative a . : .
each discontinuity of the potential, it is also possible, asris'g’:](t) riogg;t':;n Egr\r/liirv?/édeggi %N rtlatgmv%/ii(t)r(])ﬁr:\r:e:tﬁe
shown by Bardeer3], to evaluate the discrete-continuum Eei ht of a barrier. For a particle inci’dent from the left with
couplings of Eq(1). Other situations with unit transmissivity 9 N P . .
exist, where interference effects show up, leading to Fano@nergyE on the first barrier, with two different thresholds

. - _ 1/2 -
type profiled4]. Such profiles are found in the transmissivity deflntl)ngka_lef; Wa&’i (‘/“mBg“l‘[jm.E] ;’:md a rl!ght v'vaxe
of a particle incident on a well and interacting with an oscil- NUMber 2=[2m( 0)]™, we derive, along a line similar

lating electric field[5], or in the case of an electron incident Eg]tht?]t afpphedl to :h@t;‘]unctlonl_f)%rner \;Vl[th equgl ttmesdho:(ds
on an oscillating square potential wg8]. An example im- , (N€ Tormulas for the ampfitudes of transmissioand o

plying more than one coordinate is laser assisted reactivfaeflecuonr

scattering 7]. Equation(1) cannot account for this behavior. 2i 0
X ; ik ik, —ik,+2Q

A so-called background term has to be introduced in the t=er————— = ———— 2

matrix element of thé operato 1]. We describe in the next ikytik,—20 ikytik,—20

section an example showing this effect. We then develop a L . . .

simple model to explain that unit transmissivity can persist For a particle incident on the right barrier the an“tUdeS

even when interference reveals the existence of a diredre obtained by permutirig andk;. They are denotetiand

continuum-continuum coupling. r. The multiple scattering expression for the transmission
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FIG. 1. Transmissivity of a doublé function barrier. The pa- FIG. 2. Transmissivity in the neighborhood of the enefgy
rameters of the potential are as follows: barrier heiyght25 a.u.,  + . E is the energy of the bound state accommodated by the well

barrier widthe=0.01 a.u., well width 2=2 a.u., well depttVy,  below the asymptotic thresholdsue bound state in the absence of
=1 a.u., mass of incoming particte=1 a.u.. Left panel: the po- the field. The frequencyw is 0.5259 a.u. and the peak field ampli-
tential, with the bound state ener@ashed horizontal lingand the  tude 0.x10™ 3 a.u. Solid curve: transfer matrix calculation with
resonance energigdotted horizontal lings Right panel: the field-  the field. Dashed curve: field-free transmissivity.

free transmissivity. Unit transmissivity is reached at each resonance

energy associated with the well between the barriers. Solid curve: b d h f th d
transfer matrix calculation. Dashed curve: multiple scattering for-NIqUe based on the true parameters of the structure(lain

mulation. with the multiple scattering formula. The transmission
reaches unity at each resonance energy, as expected. The

amplitude is obtained by summation of all wavelets reaching/ery good agreement between the two procedures shows that

the right asymptotic region after all possible transmissiongach barrier correctly mimics & function barrier. In the

and reflections of a unit amplitude wave incident from thefollowing we will need the transmissivity far from a reso-

left. A geometric series is generated: nance. This transmissivity can be equally well estimated by
, o o multiple scattering or the transfer matrix.
T=te'’t+tefrefrefi+tefrefrefrefreft+ .. . We turn now to the effect of an oscillating field interacting

) with the particle. As explained abovand well documented
in the literature[5,6]) a different resonance effect is ex-
pected: ifw is the frequency of the field, in the presence of a
+L bound state of energl,, there is the possibility of virtual
B= JfL kodx. (4) desorption and absorption of a photon. The bound state en-
ergy in our case i€~ —0.51 a.u. We show in Fig. 2 the
The summation provides for the total transmission amplituddéransmissivity in the neighborhood of the enerBy+ w,

B is the phase:

the expression with ©=0.5297 a.u. and a peak field amplituéig=0.1
o X102 a.u. The transmissivity reaches a value very close to
- tte'? ®) unity. We recall[5,8] that this is an indication that, in the
1-T 228’ escape of a particle initially trapped in the well, only one-

photon processes are allowed. However, the profile is not
We show in Fig. 1 the transmission probabilitfrat is,  Lorentzian. This is not in accordance with Ea). There is
|71 ?) calculated in two ways(a) by a transfer matrix tech- clearly an interference effect giving a Fano-type profile. We
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also show the field-free transmissivity. The transmissivity is The diagonal matrix element of the Green function is
perturbed only in the vicinity of the field-induced resonance.
lll. CANCELLATION OF THE DIRECT COUPLING (¢ilGli)= B ®
We develop now an analytic approach to account for the- . . R
findings of theF:) previous sec'zon. 'IE)r?e so-called configuratiorn is the shifted bound state energy. The half-widthis
interaction method of Fanp4,10] is adopted. The Hamil- given by
tonian is partitioned intdd=Hy+H,. The eigenkets oH, I'=2m|V[2 (9)
consist of two energy-normalized continua writfer:) and
|Be) and a bound state of ké#;) and energyE; . Residual  The factor 2 accounts for the decay toward the two continua.
couplings are due téi;. All couplings are assumed to be At the (real) resonance energy=E; , the matrix element of
sufficiently smooth to allow them to be taken energy inde-1 takes the form-i/2s. From the expression of the scatter-

pendent. We introduce the notation ing operatorS=1—2i T, we finally obtain
(ag[Hi|Be)=W, KBz |Slag )P=1. (10
(dilHi|ae)=(i|H4|Be) = V. (6) This is the explanation, reduced to its essentials, for the

unit transition probability observed when a bound state acts
as a doorway state between two continua. The result does not
depend on the strength of the couplingsovided, of course,
they are not zeno However, too small a width of the reso-
nance may forbid the construction of a realistic wave packet

A symmetric pattern of discrete-continuum couplings is
assumed. The transition operatofF is written H;
+H,;GH,. G is the Green operatorz¢- H) . Let us as-
sume first thatW=0 (no continuum-continuum coupling

We obtain that would reveal the phenomenon in a scattering experi-
T = H.ldb: M b |Gld M b |H ment.
(BelTlae)=(BelHil 1) 4i[ Gl #i)( #ilHal ae) We turn now to the case where a direct coupling between
=|V|% ¢i|G| ;). (7)  the continua is operating. Equati¢p) is replaced by

<:8aT|aE>:<IBE1HllaE>+<BaHl|¢i><¢i|G|¢i><¢i|Hl|aE>+f dE'(BelH1|ag ){(ae/|G|#i){¢pi|H | ag)

+jdEN(:BE'Hﬂ¢i><¢i|G|IBE”><IBE”|H1|aE>+J JdE,dEN(ﬂE‘Hlla'E’><a'E’|G|BE”><BE”|H1|QE>-

11
|
With the assumptions about the couplirigsy. (6)], this re- V(1—i7W)
duces to f dE"(¢|G|Ber)=—imT——F=G;;, 14
<¢|| |BE> ™ l+772|W|2 ii (14
(Bel Tlag)=W* +|V|*(¢|G]| ¢;)
f de’dE”( |G| Ber) W
(641 n)y—= — ———————
+W*Vf dE"(ag/|G| i) FITIPE 1+ 72| W2
w2 V]2 (1—i7W)?
+VV*V*J’dE”(¢i|G|,3E,,) - (1+ 72 W[2)2 i
15
+W*2f f dE'dE"(ag/|G|Ber). (12 13
G;,; stands for ¢;|G|¢;) and is given by
The matrix elements of the Green operator are easily 21\ 12 2 -1
found from its definitionG(z—H)=1. We only provide the G = ( z—E+ M -WL
results of the integrations present in Ef2). We find ’ 1+ 72| W|? 1+ 72| W|?
(16)
. g
J dE'(ae/|G|¢)= _WM Lo ~ The resonance energy is shifted even with energy-
1+ 2| W)|? independent couplingsl1]. At the real resonance energy
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B - TV W) (17 (BelTlag) = ——0 2
= . — o = .
T 14 aw? EUTE (14 w2 wj?) et
i iti 1 TW*
the matrix element of the transition operator takes the form | et B 23)
_ 27W* 2
i
=W* — —(1+ mw2|W)|? " -
(BeglTlagy) =W* oIt W) We have for the transition probability
W* W*
—7(1—i7TW)—7(1—i7TW) |<:8E|S|aE>|2:4W2|<BE|T|aE>|2
: . , WP Je+gl
WWF2 W2 (1—-imW)?2 =4m TR (24)
— 772 + . (1+7%|W|%)? e“+1
1+ 72| W|? 2 1+ 7 w|?
(18)  with the Fano parametey.
The last two terms arise from the double integral. We have 1 TW*
displayed on purpose the terms corresponding to the two q= W T (25
aa

single integrals of Eq(12) (third and fourth termys although

they give equal contributions. This is to show that terms
arising from theH1G Hl part of the transition Operat(nx- It is easy to check that as the continuum-continuum cou-
actly cancelthe termwW* arising from the direct continuum- Pling W goes to zero, one recovers a Lorentzian line shape.
continuum coupling. Another way to write this matrix ele- FOr @ nonzero and real coupling, there is vanishing of the

ment is transition probability at an energy obtained from the condi-
tion
el Tlaey= - o 0 (19 1w
Epl |1 ¥Eg/ ™ T 5 - 2112 - T
T 1+ 79| W| € w2 (26)

The dimensionless continuum-continuum coupling con- . . T
tributes only to second order to the transition probability, >°!ViNg this equation if gives
since forW<1 we can write
V2 m?|V[*W

ROW(L+72W2)  (1+ 72W2)

(27)

(Be Tlae)~— 5= [1-72(W 2+ [WIR)T. (20

If the dimensionless quantityV is much smaller than
The transition probability is no longer exactly 1 on the reso-unity, the vanishing probability occurs at an energy
nance. In the absence of discrete-continuum couplings, the
transition probability is 4r?|W)|2. V|2

WL+ WA (28

—ER
IV. LINE SHAPE ANALYSIS

We continue by derivation of the parameters associate@he distance between the maximum and the zero increases as

with the Fano profile. Let us define W decreases, while the profile is more and more Lorentzian.
An estimate of the resonance width and of this distance
E—Eg could lead to an estimate of the direct continuum-continuum

€= = (2)  coupling.

. . ~ . . V. CONCLUSION
with Eg given by Eq.(17) andI” being the half-width of the

resonancécf. Eq. (16)]: From the expression of the transition operator one expects
a first order contribution of the direct continuum-continuum

_ 27-r|V|2 coupling. We have shown that on resonance this term is can-

r=———. (220  celed, and the transition amplitude is affected, as compared
1+ 2| W|? to that valid in the absence of this coupling, only by second-

order terms. The extreme narrowness of the resonance fea-
We now consider the matrix element of theoperator for ture in Fig. 2 validates an analysis based on energy-
an off-resonance energy. It is possible to reduce it to the fornndependent couplings.
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