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Three-body recombination of cold helium atoms
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We have developed a method for calculating the rates for three-body recombination of cold atoms. This
method allows us to treat not only zero total angular momentis, states but alsd>0 states, so that
recombinations at nonzero collision energies can be considered. Our method is applied to ground-state helium
atoms“He, using a realistic interaction potential. In addition, we obtain the rates for collision induced disso-
ciation.
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I. INTRODUCTION dnye 2K, 3
_dt :—_6 nHe+2D3nHenHez- (1)
Three-body recombination, a three-body collision in

which two atoms form a bound state and the third one carries

away th_e b”".d'”g energy, 1S an |.mp0rtant Iqss meghamsm fo{or calculating the rates for three-body recombination and
Bose-Einstein condensates. This process is also important Ilpact dissociation in Sec. Il. The results are presented in
nuclear physics and in the chemical dynamics of combustiogec. lIl. A summary of this work is given in Sec. IV. We use

and gas-phase systems. Only recently have nonperturbativgy,mic units throughout except where explicitly stated other-
quantum-mechanical investigations been carried out. Previyise.

ous investigation$1—-5| have predicted that the rate for ul-
tracold three-body recombination of identical bosons scales
generally likea* (wherea is the two-body scattering length
All of these calculations, using model interaction potentials, e solve the Schidinger equation for three interacting
have been carried out in the ultracol@r the zero- helium atoms using a combination of the adiabatic hyper-
temperaturglimit, where only the transitions from the low- spherical representati¢®,10] and theR-matrix method 11].
est three-body continuum channel to the two-body recombiin the adiabatic hyperspherical representation, we calculate
nation channels with zero total angular momentuhs,0,  eigenfunctions and eigenvalues of the fixed-hyperradius
need to be taken into account. Hamiltonian in order to construct a set of coupled radial
This work extends the previous investigations in R&f.  equations. Thé&-matrix method is then used in order to ex-
We will take into account not only=0 states, but alsd tract the scattering matrix from these coupled equations.
>0 states. Thus, the recombination rakesat nonzero col- After separation of the center-of-mass motion, any three-
lision energies can be accurately calculated for the first timeParticle systentin the absence of an external figldan be
We consider the simple case of ground-state helium atomdescribed by six coordinates. Three of these can be phosen as
(for which the dimer has only one bound statsing a real- h€ Euler anglesy, B, andy that specify the orientation of
istic interaction potentidl6]. This work allows a direct com- the b_oqu-flxed fr_ame relative to the space-fixed frame. The
parison between theory and experiment since this proce gmaining three internal coordinates can be represented by a
can be realized experimentally,8], while from the theoret- yperradiusk and wo hyperangle and¢. To define these

ical point of view it is a step towards realistic three-body'memal coordinates, we modify slightly the definition of the

recombination calculations for more complicated s stemssmith'Whitten hyperspherical coordinafd2—1. We first
inatl uiatl Pl Y introduce the mass-scaled Jacobi coordinfi€$

Our theoretical method consists of the adiabatic hyperspheri-
cal method 9,10] and theR-matrix method 11]. The boson

We explain our method and give all necessary formulas

II. METHOD

permutation symmetry is enforced using a modified version p1=(r,—ry)/d, 2
of the Smith-Whitten coordinate systeh2,13. Since we
calculate the fullS matrix, it is straightforward to also cal- b -

. oo . . Mmyrg+mr,
culate the rate®5 for the inverse process, namely, collision pzzd{rs_—} ©)
induced dissociation. We note that the rate equation for the my+m;

density of helium atoms in a thermal gas can then be written
as with
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o (Mg/p)(my+my) @ A?
mi+tmy+mg ﬁ:TﬁT@cJFTr’ ©)
and u is the three-body reduced mass where
m;myMs
2:m1+m2+m3' © T 2 9 Gin2p? (10)
=——————5sin20—,
) * uR%sin26 90 a0
Here,r; is the position of the particlewith massm; . In the
case of three identical particles, we hale 2Y%/3Y* and u 1 g 3.2
=m/ /3. We then write the hyperradilR as follows: T =—(i — —cosa—z) , (11
" uR?sing | ¢ 2
R?=pi+p3, Re[0x). (6)
_ J2 3 J2
The hyperangle® and ¢ are defined by (12

T, = — + _ .
wR?(1—sing) wuR?*(1+sinf) 2uR?

(p1)=Rcod 0/2— ml4)sin( /2+ 16),
e The operatorsJy,Jy ,J,) are the body-frame components of

(p1)y=RsSiN(0/2— 7/4)cog /2+ l6), the total angular momenturd. The interaction potential
Y V(R,0,¢) is taken to be a sum of helium dimer potentials,
~ ie.,
(p1):=0, @
V(R,0,¢)=v(r) +v(rag+ou(rsy, (13

(p2)x= R cog /12— m/4)cod ¢/2+ 7/6),
wherer;; are the interparticle distances. In terms of the hy-

(p2)y=—Rsin( /12— ml4)sin p/2+ w/6), perspherical coordinates, they are
(p,),=0. r,=3"YR[1+sin g sin(¢— 7/6)]*2
Here, the axes, y, andz of the body-fixed frame are defined Fpa=3 " Y4R[ 1+ sin @ sin(o—57/6)]Y2 (14)
as follows: thez axis is parallel top; X p,, that is to say,
perpendicular to the plane defined by the three particles, and ry1= 3" VAR[ 1+ sin 6 sin( ¢+ 7/2) ]2

the x axis is associated with the smallest moment of inertia.

The hyperangles? and ¢ span the range$0,7/2] and  por the helium dimer potential we use the representation of
[0,27], respectively, after requiring the wave function to be azj; et al, designated HFD-B3-FCIfi5].

single valued[13]. The hyperanglep can be further re- The first step that must be carried out is the solution of the
stricted to the rangg0,27/3]. This restriction, together with  fived-R adiabatic eigenvalue equation for a given symmetry
the boundary conditions given below, comes from the indis11 {5 determine the adiabatic eigenfunctiofe channel
tinguishability of these three particlevhether they are  fnctiong and eigenvaluegor potential curves The adia-
bosons or fermions In addition, by our hyperangle defini- p5iic eigenfunction representation writes the wave function
tion in Egs.(7), the interaction potential becomes invariant Je(R,Q) [we will write Q=(6,,a,8,7)] in terms of the

under reflections aboug= /3. T}:ﬁerefore, in this restricted complete, orthonormal set of angular wave functidnsand
domain, the solutions of the Schiiager equation are auto- 4ial wave functions ¢,

matically either symmetri¢bosonig or antisymmetric(fer-

mionic) with respect to the exchange of any two particles

(see the Appendix ) Ye(RQ) =2 F,e(RD,(R;Q). (15)
We rewrite the Schmiinger equation in terms of a v

rescaled wave function, which is related to the usual

Schralinger soluton¥ by ¢=R>2F. The volume ele- The channel functionsb, are eigenfunctions of the five-

ment relevant to integrals ovefy|?> then becomes dimensional partial differential equation

2dRsin 26d6deda sin BdBdy. The Schrdinger equation for

three identical particles now takes the form A?
5+ ——+V(R,0,0) [0,(R0)=U,(R1D(RQ),
1 2 A2 2uRe 8uR
- h V(R —Eye. (9 (16)
21 JR2 2 uR? ( ®) Ve Ve

whose solutions depend parametricallyRrinsertion ofyg
In this expressionA? is the squared “grand angular momen- from Eq. (15) into the Schrdinger equation from Eq(8)
tum operator” and is given bj13,15 results in a set of coupled ordinary differential equations
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1 d? Y . 1 s [0 (R d ®,(R;0,0=0,a,8,7)
—ERJFUV( )| Foe( )_ﬂ > o ( )ﬁ
2
=0, R;0,¢=?ﬂ-,a,,8,’y for II==1.
+wa(R)}Fyre(R):EFVE(R)- (17

(21)

The coupling elementB,, (R) andQ,,(R) involve partial  These conditions ensure that each solution is either symmet-
first and second derivatives of the channel functidnswith  ric or antisymmetric with respect to the exchange of any two
respect toR, and are defined as follows: particles (about half of the solutions are symmejri¢hus
eliminating all states of mixed symmetry. The symmetric
) d ] channel functions appropriate for identical bosons are then
Py (R)= < < QV(R’Q)(;_R(I)V’(R’Q)» (18) extracted in a postsymmetrization procedure as the solutions
that satisfy
and
1+ Py

<<®ARKD’ >

In practice we solve the adiabatic equatid®) for a set
The double-bracket matrix element signifies that integrationsf about 140 radial grid point®; up to R~1400 a.u. in
are carried out only over the angular coordinafesThese order to obtain the potential curvés,(R) and the coupling
nonadiabatic couplings can peak sharply at avoided crossnatrix elementsP,,,(R) and Q,,.(R); for R>1400 a.u.
ings, leading to numerical difficulties when solving the they are calculated by an extrapolation procedure. The
coupled equation§l7) based on the adiabatic basis expan-P,,(R) andQ,, (R) are calculated with a simple differenc-
sion. As we will see in Sec. Ill, however, the sharp avoideding scheme, i.e.,
crossings among the channels we consider occur at $tall
at energies several orders of magnitude larger than the colli- ® (R+AR;Q)—d (R-AR;Q)
sion energies consideréthore than 10* a.u. compared to ﬁq)y(R;Q)% SAR .
a few millikelvin ~10°° a.u.). This crossing is thus well
into the classically forbidden region where the wave func-
tions are vanishingly small. These considerations combinegv . . .
with our use of a global numerical method rather than aﬁ:e tested this seemingly crude formula by calculating

2

Jd

@AR1D>>=1. (22)
IR?

@w(R1D>>. (19

(23

propagation method lead to the conclusion that this crossin w(R) andQ,, (R) for several value§ OA.R and 'fo.und
has no significant effect on our calculations at they are stable to at least four significant digits. The

in order 10 solve the acabatc eqUAIES), we expand  SCCLr20) o (%) has also been verfed by comparng
the channel function on Wignéd functions mula P, (R) = ((®,]|H,o JRID )Y[U .(R)— U (R)].
The ®, are a priori complex quantities that may have
OIMIR0)=D de(R;0,0)Diy(a,B,y). (200  arbitrary phases upon numerical diagonalization. While their
K overall phase is not important, a consistent phase convention
. isrequired in order foP,,/(R) andQ,, (R) to be continu-
The quantum numbeis andM denote the projections &f  ous in R. Therefore, we require that the projection of the
onto the body-fixed and space-fixecaxes, respectivelyk  channel functions onto the lowest hyperspherical harmonic
takes the valued,J—2,...,—(3J—2),—J for the “parity-  be real. If their projection equals zero, their phase is fixed
favored” case,[1=(—1)’, and J-1J-3,...,—(J-3), using the second lowest hyperspherical harmonic instead.
—(J—1) for the “parity-unfavored” casell=(—1)""1,  These hyperspherical harmonics, which are the eigenfunc-
sinceK should be even for even parity and odd for odd paritytions of the squared grand angular momentum operafor
[13]. The resulting complex coupled equationsérand ¢ should be calculated using the same boundary conditions
are solved by expandingy,(R;8,¢) onto a direct product given in Eq.(21). The channel functions have now been
of fifth-order basis splinegl8] in # and ¢. We generate the determined only up to an overall sign. Thus, the additional
basis splines fom from 50 mesh points, while we use 80 condition Re&(® ,(R;;Q)|P ,(Ri;1;Q)))>0 is imposed.
mesh points fok. This leads, for example, to a basis size of Our experience indicates that the coupling matrix elements
17 712 in the case of the 3symmetry. Typically, a calcula- P,,/(R) and Q,,.(R) become purely real quantities with
tion of the 30 lowest eigenvalues of the adiabatic equatiorthis phase convention.
(16) takes about 20 min of CPU time on a 500-MHz alpha We solve the coupled equatiofit7) using the adiabatic
EV6 workstation. finite element methodFEM) [19]. About 1¢ FEM sectors,
The identical particle symmetry was built into the adia-in each of which fifth-order polynomials are used to expand
batic equations via the boundary conditidsse the Appen- the radial wave function, extend froR=5 to 5X10° a.u.,
dix) and 12 adiabatic channels are used. The scatt&ingtrix is
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then extracted using tHe-matrix method 11]. Each energy L5 BN
took about 4 min of CPU time on a 500-MHz alpha EV6 "
workstation. i
We adopt the convention of Mott and Massg30] in 'r I‘.\\ ‘-\
defining the cross sectiowy for three identical particle col- ! \\
lisions as the ratio of the scattered radial flux to the incident '3 o5 | \\ \ \ %00 000
flux in only oneof the six symmetrizing permutations of the .~ NN
incident plane wavé1l]. The total event rate constant for 2
three-body recombination is then expressedths conver- = Or
sion from a.u. to s is 1 a.u=9.07805<10 34 cmP/s) NG
Kk -0.5
Ky=—ak=> K31, (24)
M 311
whereK:l,H is the partial recombination rate corresponding to 10 20 40 60 8 100 120 140 160
the I symmetry R(@u)
10223+ 1) FIG. 1. Two lowest potential curves for thB'=0%,1", 2*,
K%H:E |Sf]E||2 (25) and 3= symmetries. The inset shows the asymptotic behavior of
if ,uk these potential curves.

Here,i andf label the incidentthree-body continuujnand  symmetries. For each case the lowest curve asymptotically
outgoing (two-body recombinationchannels, respectively, corresponds to two atoms bound in a dimer, with the third
and k= (24E)Y? are the hyperradial wave numbers in the atom far away. The asymptotic value of these potentials
incident channels. The case of helium atoms is simple, sincequals the two-body binding ener@,= —5.0<10°° a.u.
there is only one two-body recombination channel in the sunThe second channel for each symmetry corresponds to the
of Eq. (25). This generalized cross secti@r@f has units of lowest three-body continuum state, i.e., all three atoms far
(lengthy, as is appropriate to characterize scattering in six@away from each other. Recall that in the adiabatic hyper-
dimensions. spherical representation the three-body continuum is rigor-
On the other hand, the collision induced dissociation rateusly discretized since the adiabatic Hamiltonian depends
is expressed aghe conversion from a.u. to cits is 1 a.u. only on the bounded hyperangles. These three-body con-

=6.126 15<10"° cm’/s) tinuum channel functions converge asymptotically to the hy-

. perspherical harmonics. Therefore, the corresponding poten-

_Kizgs U3D=E DIl (26) tial curves behave as

M12,3 JII

where the partial dissociation rate is given by AMA+4)+ a4
U y( R)— T for R—oo, (28)
(2d+1) = 2
D=2 ————IS|% 27
it Mg, 3k12 3

In principle, A can take on any non-negative integer value,

. but the requirements of permutation symmetry limit its mini-
Here,i and f correspond to the two-body and three-body = At A
channels, respectlvelyglz +=2m/3 is the two-body reduced mum value,_)\min—o, 3, .2’ and 3 forl _.0 » 17, 2", and
massk [21124E—ELy)]"2is the two-body wave num- 3 . respectl\{ely. Knowing the asyrnpt_otlc form of the hyper-
ber, ané? i thleztwo boé binding enerav. This ex ress|0nradlal potentials allows a generalization of Wigner’s thresh-

. 12 ) y g energy. P old law [17], leading to the partial recombination rates

differs from Eq.(25) in two ways. The first is that since the

initial state is a two-body channel instead of a three-body K3 oc EAmin (29)

channel, the cross section needs to be divided Ky §°

rather thark® (ki, ;andk* in the rate. The second is that the and the partial dissociation rates

factor 192 is absent. This factor comes from the product of

the symmetrization factor for the three identical particles, Dg,nml?m”‘+2 (30

31=6, and the factor 32 for the usual three-body collision

cross-section formula. near threshold. The different threshold energy dependencies
can be traced to energy denominators in E88) and (27)

Ill. RESULTS AND DISCUSSION since both use the sanfematrix element.

Recombination and dissociation occur via nonadiabatic

Since the*He dimer has only a single=0 bound state, couplings between the two-body recombination channel and

three-body recombination is allowed only for the parity- three-body continuum channels. A useful parametrization
favored cases, that ig]=(—1)’. Figure 1 shows the two of this coupling is the unitless “nonadiabatic coupling

lowest potential curves for the"'=0",1", 2", and 3 strength,” defined as the ratio of the squared coupling matrix
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FIG. 2. Nonadiabatic coupling strengths between the lowest and FIG. 4. Total collision induced dissociation rabg as well as
the second lowest channels for thé=0", 17, 2", and 3 sym-  partial dissociation rate®3" for the J"=0", 17, 2", and 3
metries. symmetries as a function of the collision enefgyth respect to the

three-body continum threshold

elementP,, (R)? to the product of the difference in the o
adiabatic curvesAU(R)=U,,(R)—U(R) and the reduced law, Eq.(29) [17]. In the ultracold limit, hereE<30 uK,
massu. Figure 2 shows the nonadiabatic coupling strengthghe total recombination raté; is constant, and the Opar-
between the lowest two channels for tHé=0%,1",2*, and tiaJ recombination rate dominates. For this symmetry, the
3~ symmetries. The nonadiabatic couplings are importanbtuckelberg minimum is not as deep as that found in Ref.
for R=10-40 a.u. and foR=300~800 a.u., but recombi- [3]. This difference can be understood from the fact that they
nation and dissociation occur mainly in the latter range. Thdncluded only one three-body continuum channel, which per-
peakd"=0" is located around®~ 3a, with the helium two- mits completely destructive interference within their two
body scattering lengtta=172 a.u., as is expected from channel calculation. The present calculation, on the other
Refs.[1,3]. It is interesting to note that the peak position for hand, includes 11 continuum channels, resulting in less than
higher J's does not appear to follow any systematic trendcompletely destructive interference. o
with eitherd or \ . Figure 4 shows the total collision induced dissociation
Figure 3 shows the total three-body recombination kage  "ate D3 as well as the partial dissociation rag’ for the
as well as the partial recombination ratég" for the J J° =07, 17, 2, and 3" symmetries as a function of the
=0*, 17, 2%, and 3~ symmetries as a function of the col- collision energy(with respect to the three-body continum
lision energy. At the lower collision energies, the partial re-threshold. At the lower collision energies, the partial recom-

combination rates behave Emn, as predicted by Wigner's bination rates behave @s'mn"2 as predicted by Wigner's
law. As for recombination, the partial dissociation rate corre-

sponding to the 0 symmetry dominates fdE<30 uK.

Finally, to facilitate future comparison with experimental
data, Table | gives the values for the total recombination and
dissociation rates as functions of the energy. We have
checked the stability of the results with respect to the final
matching distance, the number of FEM sectors, and the num-
ber of coupled channels, and have found our results accurate
to the two significant figures given.

IV. SUMMARY

In this work, we have generalized our earlier work to
calculate the rates for three-body recombination and collision
induced dissociation at nonzero collision energies. Although
T T v E— we have calculated the repombination and dissociatipn rates
E (1K) _for E<_ 10 r_nK, those for higher energies can be obtained by

including higherJ states. We expect that at 10 mK our re-

FIG. 3. Total three-body recombination ratg as well as partial ~ sults are sufficiently accurate, because for the next contrib-
recombination ratek3!" for theJ'=0",1" 2%, and 3~ symmetries ~ uting symmetryJ"'=4", \ ;. is equal to 4, leading to re-
as a function of the collision energy. combination and dissociation rates much smaller than those
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TABLE |. Recombination rate and collision induced dissocia- TABLE Il. Effects of permutation operations on the hyperangle

tion rate as a function of the collision energy. ¢ and the WigneD function.
E (1K) K (cmb/s) D; (cm/s) Permutation ¢ Diu
— 28 —19
1 7.1< 10 7.1x10 P, 47 (—1)°*D?
3 7.1x10° %8 6.4x10° 18 3
5 7.1x10° %8 1.8x10°Y Pos 2w (-=1)’D?
7 7.0<x10° %8 3.4x10° Y 3
10 7.0<10" 28 7.0<10° Y7 Pa1 2m—¢ (-1)’D%y
30 6.9<10 % 6.2x10° 16 2 Kewd
50 6.9<10 28 1.7x10°15 P1aPar et 3 (= 1) Dicu
— 28 —15
70 6.9<10 3.3x10 P1oPas L D,
100 7.1x10°28 6.8x 10715 T3
300 1.1x 10 % 8.9x 1014
— 27 — 13 . . .. .
500 1.1 10_27 3.7X 10_13 to the channel functions. For this purpose, it is convenient to
700 2.4X10 9.9x10 consider basis functions of the form
1000 3.5¢10° %7 2.7x10712
3000 7.0<10° %7 3.7x10 1 IMM i 3
5000 7.3%10°2 8.8x10 11 Pin (D) =F1(0)e™Dicyy (. 5,7) (A3)
7000 6.7 10 %7 1.4x10°1°

rather than the basis splines éhand ¢ that were actually
used in the computation. The effects of the permutation op-
erations in Eq(A2) are shown in Table [[it is not difficult

for lower J's. We hav nsidered the relatively simol to see that the interaction potentid3) is invariant under
or‘ower.Js. We have considered the relatively Simplé Caséy,qse operatiojsThe continuity condition in EqlAl) leads

e o oot peiedo the condiion thak 2+ must be megral. Thus, for
Y 11ch rigorc . y even parityll=+ 1, orK even,m must be integral, while for
ried out. Its simplicity is a result of the single two-body

recombination channel. While we have neglected the threeQdd parityl[=—1, orK odd, m must be half integral. The

body term in the interaction potential, its inclusion would not application of$ to the functions(A3) leads to
complicate our approach. For heliums atoms, however, the

three-body term is expected to play only a minor role. We SOIMQ)=f,(9)[1+ e CmEIm(— 1)K gl (47/3m)
thus hope that our results will allow a direct comparison with

10000 5% 10 % 2.1x10°10

future experimental data. With further improvements, exten- X[ €MDy + (—1)I(— 1) Gm3m
sions may be possible to the more complicated cases of spin- _
polarized alkali atoms such as H and Li, where the large xe mep? | 1. (A4)
number of two-body recombination channels currently poses
difficulties. These quantities vanish unless
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APPENDIX: BOUNDARY CONDITIONS wheren is any integer. In other words, the dependence of

the basis functions should take the foeri"¢ for I1=+1
ande'(®"32¢ for [T= — 1. These functions obey the bound-
ary conditions given in Eq21) for each parity, allowing the
application of the boundary conditions themselves. Unfortu-
nately, the application of the antisymmetrization operator
O (R 0,0,a,8,7)=P,(R;0,0+2m,a,B,y+m), =1—P;y— Pys— Pg+ P,Pg+P,Pys to  the functions
(A1) (A3) leads to the same boundary conditions. Thus, after solv-
ing the adiabatic equatiofi6), we must extract the bosonic
solutions. In practice, this postsymmetrization is accom-
plished by checking the effect ¢f,3 on the solutions of the
S=1+ Pyt Pozt P3t PoPai+P1oPos (A2)  adiabatic equatioKil6).

The boundary conditions, E1), can be derived by im-
posing the continuity condition required for Smith-Whitten
hypersherical coordinatg43],

and by applying the symmetrization operator
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