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Three-body recombination of cold helium atoms
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We have developed a method for calculating the rates for three-body recombination of cold atoms. This
method allows us to treat not only zero total angular momentum,J50, states but alsoJ.0 states, so that
recombinations at nonzero collision energies can be considered. Our method is applied to ground-state helium
atoms4He, using a realistic interaction potential. In addition, we obtain the rates for collision induced disso-
ciation.
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I. INTRODUCTION

Three-body recombination, a three-body collision
which two atoms form a bound state and the third one car
away the binding energy, is an important loss mechanism
Bose-Einstein condensates. This process is also importa
nuclear physics and in the chemical dynamics of combus
and gas-phase systems. Only recently have nonperturba
quantum-mechanical investigations been carried out. Pr
ous investigations@1–5# have predicted that the rate for u
tracold three-body recombination of identical bosons sca
generally likea4 ~wherea is the two-body scattering length!.
All of these calculations, using model interaction potentia
have been carried out in the ultracold~or the zero-
temperature! limit, where only the transitions from the low
est three-body continuum channel to the two-body recom
nation channels with zero total angular momentum,J50,
need to be taken into account.

This work extends the previous investigations in Ref.@1#.
We will take into account not onlyJ50 states, but alsoJ
.0 states. Thus, the recombination ratesK3 at nonzero col-
lision energies can be accurately calculated for the first ti
We consider the simple case of ground-state helium at
~for which the dimer has only one bound state! using a real-
istic interaction potential@6#. This work allows a direct com-
parison between theory and experiment since this pro
can be realized experimentally@7,8#, while from the theoret-
ical point of view it is a step towards realistic three-bo
recombination calculations for more complicated syste
Our theoretical method consists of the adiabatic hypersph
cal method@9,10# and theR-matrix method@11#. The boson
permutation symmetry is enforced using a modified vers
of the Smith-Whitten coordinate system@12,13#. Since we
calculate the fullS matrix, it is straightforward to also cal
culate the ratesD3 for the inverse process, namely, collisio
induced dissociation. We note that the rate equation for
density of helium atoms in a thermal gas can then be wri
as
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. ~1!

We explain our method and give all necessary formu
for calculating the rates for three-body recombination a
impact dissociation in Sec. II. The results are presented
Sec. III. A summary of this work is given in Sec. IV. We us
atomic units throughout except where explicitly stated oth
wise.

II. METHOD

We solve the Schro¨dinger equation for three interactin
helium atoms using a combination of the adiabatic hyp
spherical representation@9,10# and theR-matrix method@11#.
In the adiabatic hyperspherical representation, we calcu
eigenfunctions and eigenvalues of the fixed-hyperrad
Hamiltonian in order to construct a set of coupled rad
equations. TheR-matrix method is then used in order to e
tract the scattering matrix from these coupled equations.

After separation of the center-of-mass motion, any thr
particle system~in the absence of an external field! can be
described by six coordinates. Three of these can be chose
the Euler anglesa, b, andg that specify the orientation o
the body-fixed frame relative to the space-fixed frame. T
remaining three internal coordinates can be represented
hyperradiusR and two hyperanglesu andw. To define these
internal coordinates, we modify slightly the definition of th
Smith-Whitten hyperspherical coordinates@12–15#. We first
introduce the mass-scaled Jacobi coordinates@16#

rW 15~rW22rW1!/d, ~2!

rW 25dF rW32
m1rW11m2rW2

m11m2
G ~3!

with
©2002 The American Physical Society25-1
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d25
~m3 /m!~m11m2!

m11m21m3
, ~4!

andm is the three-body reduced mass

m25
m1m2m3

m11m21m3
. ~5!

Here,rW i is the position of the particlei with massmi . In the
case of three identical particles, we haved521/2/31/4 andm
5m/A3. We then write the hyperradiusR as follows:

R25r1
21r2

2 , RP@0,̀ !. ~6!

The hyperanglesu andw are defined by

~rW 1!x5R cos~u/22p/4!sin~w/21p/6!,

~rW 1!y5R sin~u/22p/4!cos~w/21p/6!,

~rW 1!z50, ~7!

~rW 2!x5R cos~u/22p/4!cos~w/21p/6!,

~rW 2!y52R sin~u/22p/4!sin~w/21p/6!,

~rW 2!z50.

Here, the axesx, y, andz of the body-fixed frame are define
as follows: thez axis is parallel torW 13rW 2, that is to say,
perpendicular to the plane defined by the three particles,
the x axis is associated with the smallest moment of iner
The hyperanglesu and w span the ranges@0,p/2# and
@0,2p#, respectively, after requiring the wave function to
single valued@13#. The hyperanglew can be further re-
stricted to the range@0,2p/3#. This restriction, together with
the boundary conditions given below, comes from the ind
tinguishability of these three particles~whether they are
bosons or fermions!. In addition, by our hyperangle defin
tion in Eqs.~7!, the interaction potential becomes invaria
under reflections aboutw5p/3. Therefore, in this restricted
domain, the solutions of the Schro¨dinger equation are auto
matically either symmetric~bosonic! or antisymmetric~fer-
mionic! with respect to the exchange of any two partic
~see the Appendix!.

We rewrite the Schro¨dinger equation in terms of a
rescaled wave function, which is related to the us
Schrödinger solution C by c5R5/2C. The volume ele-
ment relevant to integrals overucu2 then becomes
2dRsin 2ududwda sinbdbdg. The Schro¨dinger equation for
three identical particles now takes the form

F2
1

2m

]2

]R2
1

L2

2mR2
1V~R,u,w!GcE5EcE . ~8!

In this expression,L2 is the squared ‘‘grand angular mome
tum operator’’ and is given by@13,15#
04272
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L2

2mR2
5Tu1TwC1Tr , ~9!

where

Tu52
2

mR2 sin 2u

]

]u
sin 2u

]

]u
, ~10!

TwC5
1

mR2 sin2u
S i

]

]w
2cosu

Jz

2 D 2

, ~11!

Tr5
Jx

2

mR2~12sinu!
1

Jy
2

mR2~11sinu!
1

Jz
2

2mR2
. ~12!

The operators (Jx ,Jy ,Jz) are the body-frame components
the total angular momentumJW . The interaction potentia
V(R,u,w) is taken to be a sum of helium dimer potentia
i.e.,

V~R,u,w!5v~r 12!1v~r 23!1v~r 31!, ~13!

wherer i j are the interparticle distances. In terms of the h
perspherical coordinates, they are

r 125321/4R@11sinu sin~w2p/6!#1/2,

r 235321/4R@11sinu sin~w25p/6!#1/2, ~14!

r 315321/4R@11sinu sin~w1p/2!#1/2.

For the helium dimer potential we use the representation
Aziz et al., designated HFD-B3-FCI1@6#.

The first step that must be carried out is the solution of
fixed-R adiabatic eigenvalue equation for a given symme
JP to determine the adiabatic eigenfunctions~or channel
functions! and eigenvalues~or potential curves!. The adia-
batic eigenfunction representation writes the wave funct
cE(R,V) @we will write V[(u,w,a,b,g)# in terms of the
complete, orthonormal set of angular wave functionsFn and
radial wave functionsFnE ,

cE~R,V!5(
n

FnE~R!Fn~R;V!. ~15!

The channel functionsFn are eigenfunctions of the five
dimensional partial differential equation

F L2

2mR2
1

15

8mR2
1V~R,u,w!GFn~R;V!5Un~R!Fn~R;V!,

~16!

whose solutions depend parametrically onR. Insertion ofcE
from Eq. ~15! into the Schro¨dinger equation from Eq.~8!
results in a set of coupled ordinary differential equations
5-2
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F2
1

2m

d2

dR2
1Un~R!GFnE~R!2

1

2m (
n8

F2Pnn8~R!
d

dR

1Qnn8~R!GFn8E~R!5EFnE~R!. ~17!

The coupling elementsPnn8(R) andQnn8(R) involve partial
first and second derivatives of the channel functionsFn with
respect toR, and are defined as follows:

Pnn8~R!5 K K Fn~R;V!U ]

]RUFn8~R;V!L L ~18!

and

Qnn8~R!5K K Fn~R;V!U ]2

]R2UFn8~R;V!L L . ~19!

The double-bracket matrix element signifies that integrati
are carried out only over the angular coordinatesV. These
nonadiabatic couplings can peak sharply at avoided cr
ings, leading to numerical difficulties when solving th
coupled equations~17! based on the adiabatic basis expa
sion. As we will see in Sec. III, however, the sharp avoid
crossings among the channels we consider occur at smR
at energies several orders of magnitude larger than the c
sion energies considered~more than 1024 a.u. compared to
a few millikelvin ;1029 a.u.). This crossing is thus we
into the classically forbidden region where the wave fun
tions are vanishingly small. These considerations combi
with our use of a global numerical method rather than
propagation method lead to the conclusion that this cros
has no significant effect on our calculations.

In order to solve the adiabatic equation~16!, we expand
the channel function on WignerD functions

Fn
JMP~R;V!5(

K
fKn~R;u,w!DKM

J ~a,b,g!. ~20!

The quantum numbersK andM denote the projections ofJW
onto the body-fixed and space-fixedz axes, respectively.K
takes the valuesJ,J22, . . . ,2(J22),2J for the ‘‘parity-
favored’’ case,P5(21)J, and J21,J23, . . . ,2(J23),
2(J21) for the ‘‘parity-unfavored’’ case,P5(21)J11,
sinceK should be even for even parity and odd for odd par
@13#. The resulting complex coupled equations inu and w
are solved by expandingfKn(R;u,w) onto a direct product
of fifth-order basis splines@18# in u andw. We generate the
basis splines foru from 50 mesh points, while we use 8
mesh points forw. This leads, for example, to a basis size
17 712 in the case of the 32 symmetry. Typically, a calcula
tion of the 30 lowest eigenvalues of the adiabatic equa
~16! takes about 20 min of CPU time on a 500-MHz alp
EV6 workstation.

The identical particle symmetry was built into the ad
batic equations via the boundary conditions~see the Appen-
dix!
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Fn~R;u,w50,a,b,g!

56FnS R;u,w5
2p

3
,a,b,g D for P561.

~21!

These conditions ensure that each solution is either symm
ric or antisymmetric with respect to the exchange of any t
particles ~about half of the solutions are symmetric!, thus
eliminating all states of mixed symmetry. The symmet
channel functions appropriate for identical bosons are t
extracted in a postsymmetrization procedure as the solut
that satisfy

K K Fn~R;V!U11P23

2 UFn~R;V!L L 51. ~22!

In practice we solve the adiabatic equation~16! for a set
of about 140 radial grid pointsRi up to R'1400 a.u. in
order to obtain the potential curvesUn(R) and the coupling
matrix elementsPnn8(R) and Qnn8(R); for R.1400 a.u.
they are calculated by an extrapolation procedure. T
Pnn8(R) andQnn8(R) are calculated with a simple differenc
ing scheme, i.e.,

]

]R
Fn~R;V!'

Fn~R1DR;V!2Fn~R2DR;V!

2DR
.

~23!

We tested this seemingly crude formula by calculati
Pnn8(R) and Qnn8(R) for several values ofDR and found
that they are stable to at least four significant digits. T
accuracy ofPnn8(R) has also been verified by comparin
them with those calculated using the Hellmann-Feynman
mula Pnn8(R)5^^Fnu]Had/]RuFn8&&/@Un8(R)2Un(R)#.

The Fn are a priori complex quantities that may hav
arbitrary phases upon numerical diagonalization. While th
overall phase is not important, a consistent phase conven
is required in order forPnn8(R) andQnn8(R) to be continu-
ous in R. Therefore, we require that the projection of th
channel functions onto the lowest hyperspherical harmo
be real. If their projection equals zero, their phase is fix
using the second lowest hyperspherical harmonic inste
These hyperspherical harmonics, which are the eigenfu
tions of the squared grand angular momentum operatorL2,
should be calculated using the same boundary condit
given in Eq. ~21!. The channel functions have now bee
determined only up to an overall sign. Thus, the additio
condition Rê^Fn(Ri ;V)uFn(Ri 11 ;V)&&.0 is imposed.
Our experience indicates that the coupling matrix eleme
Pnn8(R) and Qnn8(R) become purely real quantities wit
this phase convention.

We solve the coupled equations~17! using the adiabatic
finite element method~FEM! @19#. About 104 FEM sectors,
in each of which fifth-order polynomials are used to expa
the radial wave function, extend fromR55 to 53105 a.u.,
and 12 adiabatic channels are used. The scatteringSmatrix is
5-3
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SUNO, ESRY, GREENE, AND BURKE PHYSICAL REVIEW A65 042725
then extracted using theR-matrix method@11#. Each energy
took about 4 min of CPU time on a 500-MHz alpha EV
workstation.

We adopt the convention of Mott and Massey@20# in
defining the cross sections3 for three identical particle col-
lisions as the ratio of the scattered radial flux to the incid
flux in only oneof the six symmetrizing permutations of th
incident plane wave@1#. The total event rate constant fo
three-body recombination is then expressed as~the conver-
sion from a.u. to cm6/s is 1 a.u.59.078 05310234 cm6/s)

K35
k

m
s3

K5(
J,P

K3
JP , ~24!

whereK3
JP is the partial recombination rate corresponding

the JP symmetry

K3
JP5(

i , f

192~2J11!p2

mk4
uSf← i

JP u2. ~25!

Here, i and f label the incident~three-body continuum! and
outgoing ~two-body recombination! channels, respectively
and k5(2mE)1/2 are the hyperradial wave numbers in t
incident channels. The case of helium atoms is simple, s
there is only one two-body recombination channel in the s
of Eq. ~25!. This generalized cross sections3

K has units of
(length)5, as is appropriate to characterize scattering in
dimensions.

On the other hand, the collision induced dissociation r
is expressed as~the conversion from a.u. to cm3/s is 1 a.u.
56.126 1531029 cm3/s)

D35
k12,3

m12,3
s3

D5(
J,P

D3
JP , ~26!

where the partial dissociation rate is given by

D3
JP5(

i , f

~2J11!p

m12,3k12,3
i uSf← i

JP u2. ~27!

Here, i and f correspond to the two-body and three-bo
channels, respectively,m12,352m/3 is the two-body reduced
mass,k12,3

i 5@2m12,3(E2E12
i )#1/2 is the two-body wave num

ber, andE12
i is the two-body binding energy. This expressi

differs from Eq.~25! in two ways. The first is that since th
initial state is a two-body channel instead of a three-bo
channel, the cross section needs to be divided by (k12,3

i )2

rather thank5 (k12,3
i andk4 in the rate!. The second is that the

factor 192 is absent. This factor comes from the produc
the symmetrization factor for the three identical particl
3!56, and the factor 32p2 for the usual three-body collision
cross-section formula.

III. RESULTS AND DISCUSSION

Since the4He dimer has only a singlel 50 bound state,
three-body recombination is allowed only for the parit
favored cases, that is,P5(21)J. Figure 1 shows the two
lowest potential curves for theJP501,12, 21, and 32
04272
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symmetries. For each case the lowest curve asymptotic
corresponds to two atoms bound in a dimer, with the th
atom far away. The asymptotic value of these potent
equals the two-body binding energyE12525.031029 a.u.
The second channel for each symmetry corresponds to
lowest three-body continuum state, i.e., all three atoms
away from each other. Recall that in the adiabatic hyp
spherical representation the three-body continuum is rig
ously discretized since the adiabatic Hamiltonian depe
only on the bounded hyperangles. These three-body c
tinuum channel functions converge asymptotically to the
perspherical harmonics. Therefore, the corresponding po
tial curves behave as

Un~R!→
l~l14!1

15

4

2mR2
for R→`. ~28!

In principle, l can take on any non-negative integer valu
but the requirements of permutation symmetry limit its min
mum value,lmin50, 3, 2, and 3 forJP501, 12, 21, and
32, respectively. Knowing the asymptotic form of the hype
radial potentials allows a generalization of Wigner’s thres
old law @17#, leading to the partial recombination rates

K3
JP}Elmin ~29!

and the partial dissociation rates

D3
JP}Elmin12 ~30!

near threshold. The different threshold energy dependen
can be traced to energy denominators in Eqs.~25! and ~27!
since both use the sameS-matrix element.

Recombination and dissociation occur via nonadiaba
couplings between the two-body recombination channel
three-body continuum channels. A useful parametrizat
of this coupling is the unitless ‘‘nonadiabatic couplin
strength,’’ defined as the ratio of the squared coupling ma

FIG. 1. Two lowest potential curves for theJP501,12, 21,
and 32 symmetries. The inset shows the asymptotic behavior
these potential curves.
5-4
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THREE-BODY RECOMBINATION OF COLD HELIUM ATOMS PHYSICAL REVIEW A65 042725
elementPnn8(R)2 to the product of the difference in th
adiabatic curvesDU(R)5Un8(R)2Un(R) and the reduced
massm. Figure 2 shows the nonadiabatic coupling streng
between the lowest two channels for theJP501,12,21, and
32 symmetries. The nonadiabatic couplings are import
for R510–40 a.u. and forR5300;800 a.u., but recombi-
nation and dissociation occur mainly in the latter range. T
peakJP501 is located aroundR;3a, with the helium two-
body scattering lengtha5172 a.u., as is expected from
Refs.@1,3#. It is interesting to note that the peak position f
higher J’s does not appear to follow any systematic tre
with eitherJ or lmin .

Figure 3 shows the total three-body recombination rateK3

as well as the partial recombination ratesK3
JP for the JP

501, 12, 21, and 32 symmetries as a function of the co
lision energy. At the lower collision energies, the partial
combination rates behave asElmin, as predicted by Wigner’s

FIG. 2. Nonadiabatic coupling strengths between the lowest
the second lowest channels for theJP501, 12, 21, and 32 sym-
metries.

FIG. 3. Total three-body recombination rateK3 as well as partial
recombination ratesK3

JP for theJP501,12,21, and 32 symmetries
as a function of the collision energy.
04272
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law, Eq. ~29! @17#. In the ultracold limit, hereE,30 mK,
the total recombination rateK3 is constant, and the 01 par-
tial recombination rate dominates. For this symmetry,
Stückelberg minimum is not as deep as that found in R
@3#. This difference can be understood from the fact that th
included only one three-body continuum channel, which p
mits completely destructive interference within their tw
channel calculation. The present calculation, on the ot
hand, includes 11 continuum channels, resulting in less t
completely destructive interference.

Figure 4 shows the total collision induced dissociati
rateD3 as well as the partial dissociation ratesD3

JP for the
JP501, 12, 21, and 32 symmetries as a function of th
collision energy~with respect to the three-body continu
threshold!. At the lower collision energies, the partial recom
bination rates behave asElmin12, as predicted by Wigner’s
law. As for recombination, the partial dissociation rate cor
sponding to the 01 symmetry dominates forE,30 mK.

Finally, to facilitate future comparison with experiment
data, Table I gives the values for the total recombination a
dissociation rates as functions of the energy. We h
checked the stability of the results with respect to the fi
matching distance, the number of FEM sectors, and the n
ber of coupled channels, and have found our results accu
to the two significant figures given.

IV. SUMMARY

In this work, we have generalized our earlier work
calculate the rates for three-body recombination and collis
induced dissociation at nonzero collision energies. Althou
we have calculated the recombination and dissociation r
for E,10 mK, those for higher energies can be obtained
including higherJ states. We expect that at 10 mK our r
sults are sufficiently accurate, because for the next cont
uting symmetryJP541, lmin is equal to 4, leading to re
combination and dissociation rates much smaller than th

d FIG. 4. Total collision induced dissociation rateD3 as well as
partial dissociation ratesD3

JP for the JP501, 12, 21, and 32

symmetries as a function of the collision energy~with respect to the
three-body continum threshold!.
5-5
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SUNO, ESRY, GREENE, AND BURKE PHYSICAL REVIEW A65 042725
for lower J’s. We have considered the relatively simple ca
of ground-state helium atoms, as it is one of the few phys
systems for which rigorous calculations can currently be c
ried out. Its simplicity is a result of the single two-bod
recombination channel. While we have neglected the th
body term in the interaction potential, its inclusion would n
complicate our approach. For heliums atoms, however,
three-body term is expected to play only a minor role. W
thus hope that our results will allow a direct comparison w
future experimental data. With further improvements, ext
sions may be possible to the more complicated cases of s
polarized alkali atoms such as H and Li, where the la
number of two-body recombination channels currently po
difficulties.
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APPENDIX: BOUNDARY CONDITIONS

The boundary conditions, Eq.~21!, can be derived by im-
posing the continuity condition required for Smith-Whitte
hypersherical coordinates@13#,

Fn~R;u,w,a,b,g!5Fn~R;u,w12p,a,b,g1p!,
~A1!

and by applying the symmetrization operator

S511P121P231P311P12P311P12P23 ~A2!

TABLE I. Recombination rate and collision induced dissoc
tion rate as a function of the collision energy.

E (mK) K3 (cm6/s) D3 (cm3/s)

1 7.1310228 7.1310219

3 7.1310228 6.4310218

5 7.1310228 1.8310217

7 7.0310228 3.4310217

10 7.0310228 7.0310217

30 6.9310228 6.2310216

50 6.9310228 1.7310215

70 6.9310228 3.3310215

100 7.1310228 6.8310215

300 1.1310227 8.9310214

500 1.1310227 3.7310213

700 2.4310227 9.9310213

1000 3.5310227 2.7310212

3000 7.0310227 3.7310211

5000 7.3310227 8.8310211

7000 6.7310227 1.4310210

10000 5.7310227 2.1310210
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to the channel functions. For this purpose, it is convenien
consider basis functions of the form

F lm
JPM~V!5 f l~u!eimwDKM

J ~a,b,g! ~A3!

rather than the basis splines inu and w that were actually
used in the computation. The effects of the permutation
erations in Eq.~A2! are shown in Table II@it is not difficult
to see that the interaction potential~13! is invariant under
these operations#. The continuity condition in Eq.~A1! leads
to the condition thatK/21m must be integral. Thus, fo
even parityP511, orK even,m must be integral, while for
odd parityP521, or K odd, m must be half integral. The
application ofS to the functions~A3! leads to

SF lm
JPM~V!5 f l~u!@11ei (2p/3)m~21!K1ei (4p/3)m#

3@eimwDKM
J 1~21!J~21! i (2p/3)m

3e2 imwD2KM
J #. ~A4!

These quantities vanish unless

m53n for P511,

m53n1
3

2
for P521, ~A5!

wheren is any integer. In other words, thew dependence of
the basis functions should take the formei3nw for P511
andei (3n13/2)w for P521. These functions obey the bound
ary conditions given in Eq.~21! for each parity, allowing the
application of the boundary conditions themselves. Unfor
nately, the application of the antisymmetrization operatorA
512P122P232P311P12P311P12P23 to the functions
~A3! leads to the same boundary conditions. Thus, after s
ing the adiabatic equation~16!, we must extract the bosoni
solutions. In practice, this postsymmetrization is acco
plished by checking the effect ofP23 on the solutions of the
adiabatic equation~16!.

TABLE II. Effects of permutation operations on the hyperang
w and the WignerD function.

Permutation w DKM
J

P12
4p

3
2w (21)J1KD2KM

J

P23
2p

3
2w (21)JD2KM

J

P31 2p2w (21)JD2KM
J

P12P31 w1
2p

3
(21)KDKM

J

P12P23
w1

4p

3
DKM

J
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