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Electron-cadmium ionization for energies near overlapping autoionizing resonances
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The effect of autoionizing resonances on ionization has been studied since the historic work of Fano. In the
autoionization problem, it is not possible to distinguish electrons, that have been directly ejected from the
atom, from those that were first excited to an autoionizing resonance level because of the extremely short
lifetime. As a result, these two processes will interfere. Furthermore if the energy difference between the
resonances is not larger than the width of the resonances, the resonances will also interfere with each other. In
this paper, we examine electron-impact ionization (e,2e) for cadmium in the energy range where the autoion-
izing resonances overlap and interfere. First-order distorted-wave results will be compared with recent mea-
surements and previous calculations.
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I. INTRODUCTION

The theory of photoionization with autoionizing res
nances is well understood and has been studied following
theoretical analysis as developed by Fano and co-wor
@1,2#. In Fano’s approach the Hamiltonian was diagonaliz
using the interaction of the discrete excited states with
continuum via the Coulomb interaction. He stated his res
for the transition amplitude (T matrix! by defining the well-
knownq parameter. Shore@3# obtained an alternative param
etrization for the differential cross section. The relation b
tween the Shore and Fano parameters have been show
McDonald and Crowe@4#. Later Davis and Feldkamp@5#
generalized Fano’s theoretical results to the case of multi
overlapping-autoionization resonances and gave an eas
use formula for calculating the transition amplitude. B
ashov et al. @6,7# have generalized Fano’s results f
photoionization to the case of electron-impact ionization,
which the ejected-electron angle dependence of the diffe
tial cross section is first introduced. Their results reduce
Fano’s results when integrated over the ejected-elec
angles. There are a number of calculations of the Fano an
Shore parameters or directly the differential cross section
the (e,2e) process. Most of the work has concentrated
helium. The theoretical work of Balashovet al. @6,7#, Kheif-
ets @8#, measurements and calculations of Pochatet al. @9#,
McDonald and Crowe@10#, Samardzicet al. @11,12# have all
concentrated on helium. In the situation where there are m
tiple resonances, they are treated as nonoverlapping.
though some work on autoionization has been done
(e,2e) for heavier atoms, experiment on argon by Stef
et al. @13#, experiment on neon by Zhonget al. @14#, experi-
ment on Al21 ion by Thomason and Peart@15#, calculation
on Al21 ion by Teng @16#, experiment on krypton by
Khouilid et al. @17#, there are still very few studies on ove
lapping resonances. There have been many studies on
ionization in photoionization as well. However we have co
fined ourselves to the electron-impact ionization proces
this paper.

Our approach is to generalize the theoretical treatmen
Balashovet al. @6,7# for helium to heavier atoms with a
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emphasis on overlapping resonances. For the triple diffe
tial cross section we have used the basic formulas for p
toexcitation given by Davis and Feldkamp@5# @Eqs.~53! and
~54!# and modified them for electron ionization by adding t
ejected-electron angular dependence using the technique
scribed by Balashovet al. @6,7#. We have applied our result
to e-Cd scattering. This study was motivated by experime
performed by Martin and co-workers@18–21#. Both Madi-
son et al. @22# and Martinet al. @20,21# have done calcula-
tions for triple differential cross sections~TDCSs! on the
e-Cd autoionization problem using a ‘‘nonoverlappin
resonances’’ approach. Both have fairly good agreement w
experiment only for scattering angles less than 7°.

II. THEORY

This paper introduces a model to calculate theT matrix
for (e,2e) processes for which the energy of one of the fin
state continuum electrons is near an autoionizing level.
this case, it is not possible to determine if an observed e
tron comes from direct ionization or from autoionizatio
Thus this process is a coherent sum of two different am
tudes,

uTtotal~k0 ,ka ,kb!u25
1

2 (
m i ,mb ,m0 ,ma

u~Tdir !m0 ,ma

m i ,mb~k0 ,ka ,kb!

1~Tres!m0 ,ma

m i ,mb~k0 ,ka ,kb!u2. ~1!

Herek0 , ka , andkb are the momenta vectors for the initia
scattered, and ejected electrons. The quantitiesm0 , ma , and
mb are the spin projections for the incident, scattered, a
ejected electrons, respectively; andm i is the total spin pro-
jection of the residual ion. The theory should also include
sum over all other possible final states of the ion. Howe
for the system studied here there is only one possible fi
state. Since both ejected and scattered electrons are ind
guishable, instead of labeling them as scattered and eje
electrons it is more convenient to label them as fast and s
electrons. The (Tdir)m0 ,ma

m i ,mb(k0 ,ka ,kb) term is the direct-
©2002 The American Physical Society18-1
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ionization amplitude and the (Tres)m0 ,ma

m i ,mb(k0 ,ka ,kb) term is

the resonance~-autoionization! amplitude. The following
sections will discuss how we calcula
(Tres)m0 ,ma

m i ,mb(k0 ,ka ,kb).

A. Nonoverlapping resonances treatment

Fano derived a formula for the resonance amplitude
photoionization. For a single resonance, Balashovet al. @6,7#
showed that for the (e,2e) process the resonance part of t
T matrix can be written as

~Tres
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!5C~Eb!@~Tdis
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!

2 ipVr* ~Tcon
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!#,

~2!

where r labels the particular resonance. We labelr
51,2,3, . . . , where r 51 corresponds to the lowest energ
resonance and so on. The energy of the autoionizing r
nance isEr and the energy of the ejected electron isEb .
Here Tdis

r is the excitation amplitude coming from the di
crete part of the total wave function andTcon

r is the ioniza-
tion amplitude coming from the continuum part of the to
wave function in the Fano sense. They are both calculate
a specific resonance energyEr . Once the energies of th
incident and ejected electrons are given, conservation of
ergy dictates the energy of the scattered electron. There
Tdis

r andTcon
r do not depend explicitly on the energy of th

scattered electron. Fano’s factorC(Eb) contains the only
explicit ejected-electron energy dependence ofTres

r . It is
given by
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C~Eb!5
1

~e r1 i !pVr*
. ~3!

The parametere r is defined to be the energy deviation fro
the resonant energy in units of the resonance half-wid
Thus

e r5
Eb2Er

G r /2
, ~4!

where G r is the full width at half maximum for the reso
nance. The interaction strengthVr is defined as

Vr5^c~Er !uV1,2uF r&, ~5!

whereV1,2 is the Coulomb interaction between the two ele
trons, one of which will autoionize. The ketuF r& is the
physical discrete state, which is used for calculatingTdis

r ,
and uc(Er)& is the corresponding continuum state, which
used for calculatingTcon

r . The interaction strengthVr is also
related to the widthG r by

Vr5eifrAG r

2p
, ~6!

where f r is the phase of the ratio
@(Tcon

r )m0 ,ma

m i ,mb(k0 ,ka ,kb)/(Tdis
r )m0 ,ma

m i ,mb(k0 ,ka ,kb)# and has an

implicit spin dependence.
SubstitutingC(Eb) into Eq. ~2! we obtain
of the
~Tres
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!5
~Tdis

r !m0 ,ma

m i ,mb~k0 ,ka ,kb!2 ipVr* ~Tcon
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!

~e r1 i !pVr*
. ~7!

Balashovet al. @6,7# showed that the angular distribution with respect to the ejected electron can be factored out
T-matrix elements for each resonance. By setting

~Tdis
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!5~Gr !m0 ,ma

m i ,mb~k0 ,k̂a ,k̂b!tm0 ,ma

r ~k0 ,ka! ~8!

and

~Tcon
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!5~Gr !m0 ,ma

m i ,mb~k0 ,k̂a ,k̂b!tm0 ,ma

r ~k0 ,ka! ~9!

we obtain

~Tres
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!5
~Gr !m0 ,ma

m i ,mb~k0 ,k̂a ,k̂b!@tm0 ,ma

r ~k0 ,ka!2 ipVr* tm0 ,ma

r ~k0 ,ka!#

~e r1 i !pVr*
, ~10!
8-2
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wheretm0 ,ma

r (k0 ,ka) and tm0 ,ma

r (k0 ,ka) are the reduced ex

citation and ionizationT matrices. It should be noted that th
phase f r is also the phase of th
tm0 ,ma

r (k0 ,ka)/tm0 ,ma

r (k0 ,ka) ratio. The angular-distribution

factor (Gr)m0 ,ma

m i ,mb(k0 ,k̂a ,k̂b) will be given explicitly later.

When Eq.~10! is square integrated over all ejected-electr
angles and summed over the ejected electron spin, one
tains Fano’s formula for photoionization. The physical s
nificance is that (Gr)m0 ,ma

m i ,mb(k0 ,k̂a ,k̂b) contains the effect of

the angular distribution of the ejected electron. If the re
nances are assumed to be nonoverlapping the total reson
amplitude can be expressed as a sum of the individual r
nances
e

n

g
tr

f
hu
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~Tres
sum!m0 ,ma

m i ,mb~k0 ,ka ,kb!5(
r

~Tres
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!.

~11!

This was the formula used by Madisonet al. @22#.

B. Overlapping resonances treatment

For overlapping multiple resonances, theTres part must
be expressed as a weighted sum of each resonance.
following the matrix equations of Davis and Feldkamp@5#
we obtain
~Tres
mix!m0 ,ma

m i ,mb~k0 ,ka ,kb!5

(
r

Ar* ~Eb!@~Tdis
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!2 ipVr* ~Tcon
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!#

@ee f f1 i #pVe f f*
. ~12!

We have used the label ‘‘mix’’ to indicate that each resonance is weighted by a mixing coefficientAr(Eb). As shown by
Balashovet al. @6,7# we can factor out the angular-distribution term to obtain

~Tres
mix!m0 ,ma

m i ,mb~k0 ,ka ,kb!5

(
r

~Gr !m0 ,ma

m i ,mb~k0 ,k̂a ,k̂b!Ar* ~Eb!@tm0 ,ma

r ~k0 ,ka!2 ipVr* tm0 ,ma

r ~k0 ,ka!#

@ee f f1 i #pVe f f*
. ~13!
fact
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-
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A derivation of this formula is given in the Appendix. Th
quantities tm0 ,ma

r (k0 ,ka), tm0 ,ma

r (k0 ,ka), and

Gr
m0 ,ma

m i ,mb(k0 ,k̂a ,k̂b) are the same quantities as in the no

overlapping resonance approach. The effectivee parameter
is defined as

ee f f5S (
r

1/e r D 21

. ~14!

The effective interaction strengthVe f f is defined as

Ve f f5(
r

Ar~Eb!Vr , ~15!

where theAr(Eb) are the mixing coefficients used for mixin
the resonances. They are a function of the ejected-elec
energy. Both Fano and Davis and Feldkamp giveAr(Eb) in
the form

Ar~Eb!5
Vr* /~Eb2Er !

F(
s

uVs /~Eb2Es!u2G1/2, r 51,2,3 . . . .

~16!

As Eb approaches a particular resonance, the mixing coe
cients of the other resonances will approach zero. T
-

on

fi-
s

Ar(Er 8)50 for r 5” r 8. In the form of Eq.~16!, the mixing
coefficients are not continuous at a resonance due to the
that in the limit as the energy goes through a resonance
get

lim
Eb→E

r 8
1

Ar~Eb!eifr51d rr 8 , ~17!

lim
Eb→E

r 8
2

Ar~Eb!eifr52d rr 8 , ~18!

where the1 or 2 on Er 8 indicates whetherEb is approach-
ing Er 8 from above or belowEr 8 . Thus as the ejected elec
tron energyEb passes through a particular resonance w
energyEr from above to belowEr ; the mixing coefficient of
that resonanceAr will change from 11 to 21. It is ex-
plained in the appendix that by multiplying each of the m
ing coefficients by the signum function, we can obtain co
tinuity and still satisfy the matrix equation of Davis an
Feldkamp@5# @Eq. ~35! of their paper#. Thus we make the
following replacement:

Ar~Eb!→Ar~Eb!Ps sgn~Es2Eb!, ~19!

where sgn(Es2Eb) is the sign of (Es2Eb), which is either
11 or 21. This multiplication is not necessary theoreticall
8-3
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however it makes the theory easier to understand and e
to compute numerically. With this replacement we now ha

lim
Eb→E

r 8
2

Ar~Eb!eifr5 lim
Eb→E

r 8
1

Ar~Eb!eifr5~21!rd rr 8 .

~20!

It is also possible and convenient to multiply each mixi
coefficient with the same constant phase. In this way on
the mixing coefficients can be made to be purely real.

In the experiments of Martinet al. @21# the triple differ-
ential cross section is obtained as a function of the energ
the slower electron. Therefore to compare with the exp
ments we need to calculate the triple differential cross s
tion for the (e,2e) process for cadmium where the energy
the incident electron is constant. There are threeJ51 au-
toionizing resonances in our energy region of interest. T
following sections shows how each term in Eq.~13! is cal-
culated.

III. RESONANCE PART OF THE T MATRIX

In order to obtain the resonance part of theT matrix we
need to describe the autoionizing states. For cadmium, t
are several closely spaced autoionizing levels lying withi
eV above the ionization potential~8.99 eV!. The ground state
of cadmium has a 4d105s2 configuration, the residual ion ha
a 4d105s configuration, and the autoionizing levels res
primarily from the 4d95s25p configuration, which gives rise
to several possibleJ states. Martinet al. @19# list 12 states
lying between 3.07 eV and 5.07 eV above the ionizat
threshold. There are three autoionizing states withJ51. The
autoionizing energiesEr and widthsG r are listed in Table I.
There are threeLS-coupled states in the 4d95s25p configu-
ration that can contribute to aJ51 state. They are the1P1 ,
3P1, and 3D1 terms. The standard notation2S11L j is used
here. The cadmium excited-state wave functions
4d95s25p 1P1 ,3P1 ,3D1 were constructed in the ‘‘frozen
core’’ approximation using the usualLS-term-dependen
Hartree-Fock procedures. One obtains threeJ51 states by
taking different linear combinations of the threeLS-coupled
states. Thus the intermediate state composed of a scat
projectile state (ka ,ma), which represents the final scattere
state with the cadmium atom in a specific autoionizing re
nance stater of energyEr andJ,MJ , is written as

TABLE I. LS coefficients (bL,S
r ) of the cadmium 4d95s25p

autoionizing levels, their energies, and widths.

Resonance 1P 3P 3D Energy
~eV!

G
(eV)

1 20.336961 20.910489 0.239723 3.07 0.04
2 0.940191 20.338915 0.34328 3.81 0.140
3 0.04999 0.236952 0.970234 3.94 0.00
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uEr ,J,MJ ,ka ,ma&5b1,0
r u1P1 ,MJ ,ka ,ma&

1b1,1
r u3P1 ,MJ ,ka ,ma&

1b2,1
r u3D1 ,MJ ,ka ,ma& ~21!

or more concisely as

uEr ,J,MJ ,ka ,ma&5(
L,S

bL,S
r uL,S,J,MJ ,ka ,ma& ~22!

Wilson @23# has calculated the coefficients for each of t
three states using Hartree-Fock wave functions. However
results for the energies do not match exactly with the exp
mental resonance energies. Instead we are using the ex
mental values forEr andG r , which were obtained by Martin
et al. @20,21# from the data. Theb weighting coefficients are
also taken from Martin@24#. He determined theb coeffi-
cients by adjusting Wilson’s@23# results such that the thre
J51 wave functions were orthogonal and yielded the exp
mental energies. These weighting coefficients that we h
labeled asbL,S

r for the threeJ51 states of interest are give
in Table I .

The physical state that will autoionize is a result of ex
tation by an incident electron to all possibleMJ substates.
Consequently we define the physical state as a coherent
over the possibleMJ substates. This state will depend on t
quantum numbers of both the incident and scattered pro
tiles. Thus we define

uEr ,J,k0 ,m0 ,ka ,ma&

5(
MJ

Pm0 ,ma

r ,J,MJ~k0 ,k̂a!uEr ,J,MJ ,ka ,ma&, ~23!

where the partial fraction is defined as

Pm0 ,ma

r ,J,MJ~k0 ,k̂a!5
^Er ,J,MJ ,ka ,mauTuF0 ,k0 ,m0&

F(
MJ

z^Er ,J,MJ ,ka ,mauTuF0 ,k0 ,m0& z2G1/2

~24!

and whereF0 is the ground-state atomic wave function. Th
partial fraction gives the complex fraction of the excitation
a particularMJ substate for a particular resonancer.

If the physical state in Eq.~23! is substituted into theT
matrix we have

^Er ,J,k0 ,m0 ,ka ,mauTuF0 ,k0 ,m0&

5F(
MJ

z^Er ,J,MJ ,ka ,mauTuF0 ,k0 ,m0& z2G1/2

. ~25!

This equation is equivalent to results given by Balash
et al. @6# and Madisonet al. @22# who used a coherent sum
on L,ML states. The expression above can also be calle
excitation amplitude. The semirelativistic approach of Ma
son and Shelton@25,26# and Madisonet al. @27# is used for
calculating this quantity. It is also related to thet defined by
Fano for a single resonance. Thus we define
8-4
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tm0 ,ma

r ~k0 ,ka!5^Er ,J,k0 ,m0 ,ka ,mauTuF0 ,k0 ,m0&.
~26!

Following Balashovet al. @6# the reduced transition ampli
tude is combined with the angular-distribution part to obt

~Tdis
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!

5~Gr !m0 ,ma

m i ,mb~k0 ,k̂a ,k̂b!tm0 ,ma

r ~k0 ,ka!. ~27!

The (Gr)m0 ,ma

m i ,mb(k0 ,k̂a ,k̂b) factor describes the angular distr

bution of the ejected slow electron and is given by

~Gr !m0 ,ma

m i ,mb~k0 ,k̂a ,k̂b!

5 (
S,L,MJ

Pm0 ,ma

r ,J,MJ~k0 ,k̂a!bL,S
r

3^L,ML ,m i ,mb ,ka ,mauL,S,J,MJ ,ka ,ma&

3YL,ML
~ k̂b!, ~28!

where^L,ML ,m i ,mb ,ka ,mau is the uncoupledL,ML state of
the 4d95s25p configuration. In other words the partia
fraction Pm0 ,ma

r ,J,MJ(k0 ,k̂a) weighting of theL,ML states deter-

mines the coefficients for theYL,ML
’s. Explicitly, the general

form is

~Gr !m0 ,ma

m i ,mb~k0 ,k̂a ,k̂b!

5 (
S,L,MJ

Pm0 ,ma

r ,J,MJ~k0 ,k̂a!bL,S
r CML ,MS ,MJ

L,S,J

3Cm i ,mb ,MS

1/2,1/2,S YL,ML
~ k̂b!. ~29!

The contribution from the discrete states is much lar
than the contribution from the continuum states. Thus o
the partial fractions from the discrete states,Pm0 ,ma

r ,J,MJ(k0 ,k̂a),

are considered for the angular distribution. HereCl ,m,n
i , j ,k is a

Clebsch-Gordon coefficient. The further decomposition
the L state in terms of the orbital angular momentum eig
states of the ionl ion and the ejected electronl b is omitted
becausel ion50 in our case. ThusL5 l b for this case. How-
ever it must be considered whenever the ion is not in aS
state.

There will be a corresponding set of atomic states co
sponding to the configuration 4d105s;v rL, wherev rL cor-
responds to a continuum state with energyv r above the ion-
ization energy such thatv r5Er , with angular momentumL.
We can write this state as a sum of substates
uF ion ,m i ,v r ,L,ML ,mb ,ka ,ma&, whereF ion is the atomic
state of the ion. The quantum numbersL,ML ,mb label the
continuum wave function of the ejected electron. The phy
cal state for the continuum@i.e., continuum equivalent to Eq
~22!# is obtained by coupling the ejected~slow! electron with
the ion and forming a coherent sum onMJ . Thus we define
04271
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uv r ,J,k0 ,m0 ,ka ,ma&

5 (
L,ML ,m i ,mb

am0 ,ma

r
S,MS

L,ML~k0 ,k̂a!Cm i ,mb ,MS

1/2,1/2,S

3uF ion ,m i ,v r ,L,ML ,mb ,ka ,ma&. ~30!

Sincem i1mb5MS and MS1ML5MJ , summation onML
implies a sum onMJ . Here we have defined

am0 ,ma

r
S,MS

L,ML~k0 ,k̂a!5Pm0 ,ma

r ,J,MJ~k0 ,k̂a!CML ,MS ,MJ

L,S,J . ~31!

The same partial fractions are used for both the excita
and ionization amplitudes. For cadmium,L is the orbital an-
gular momentum of the continuum electronl b since the re-
sidual ion has zero angular momentum. It should be no
that Eq.~30! represents an atomic wave function with one
the orbitals being in a continuum state. The continuum p
of the reduced resonanceT matrix is given by

tm0 ,ma

r ~k0 ,ka!5^v r ,J,k0 ,m0 ,ka ,mauTuF0 ,k0 ,m0&
~32!

or

tm0 ,ma

r ~k0 ,ka!

5 (
L,ML ,m i ,mb

am0 ,ma

r
S,MS

L,ML~k0 ,k̂a!Cm i ,mb ,MS

1/2,1/2,S

3^F ion ,m i ,v r ,L,ML ,mb ,ka ,mauTuF0 ,k0 ,m0&.

~33!

We write this as

tm0 ,ma

r ~k0 ,ka!5 (
L,ML ,m i ,mb

~am0 ,ma

r !S,MS

L,ML~k0 ,k̂a!

3~ I L,ML

r !m0 ,ma

m i ,mb~k0 ,ka!, ~34!

where I L,ML

r
m0 ,ma

m i ,mb(k0 ,ka) is the amplitude for the projectile

electron to cause an excitation into a continuum state w
energyv r , orbital angular momentumL, L projectionML ,
spin projectionmb , and at the same time be scattered into
direction defined byk̂a with spin projectionma . Its calcula-
tion is similar to the calculation of the direct amplitud
(Tdir)m i ,mb

m0 ,ma(ka ,kb) which is presented in the following sec

tion. The continuum equivalent of Eq.~26! is thus

~Tcon
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!

5~Gr !m0 ,ma

m i ,mb~k0 ,k̂a ,k̂b!tm0 ,ma

r ~k0 ,ka!. ~35!

As pointed out before,Tcon
r does not depend explicitly on

the energy of the scattered electron because of energy
servation. LikewiseI L,ML

r does not depend explicitly on th

energy of the scattered electron.
8-5
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IV. DIRECT KNOCKOUT AMPLITUDE

We use the standard first-order distorted-wave Born
proximation ~DWBA! for calculating direct knockout and
ionization amplitudes such as (Tdir)m0 ,ma

m i ,mb(ka ,kb) and

(I L,ML

r )m0 ,ma

m i ,mb(k0 ,ka). For the direct knockout amplitude w

follow the calculations of Madisonet al. @22#. The details of
the DWBA can be found in Refs.@28,29#. Since the electrons
are identical particles, exchange also must be taken into
count. From conservation of spin we know thatm05ma
1mb1m i . As a result, the directT matrix can be expresse
as

~Tdir !m i ,mb

m0 ,ma~k0 ,ka ,kb!5~21!1/21m0@ f dm0 ,ma
dm i ,2mb

2gdm0 ,mb
dm i ,2ma

#, ~36!

where f is the direct scattering amplitude andg is the ex-
change amplitude. Equation~36! can be found in Ref.@22#,
as well as the following expressions for direct and excha
amplitudes:

f 5
4

Ak0
3kakb

(
l 0l al bmb

l̂ 0
2

l̂ al̂ b

i l 02 l a2 l bRl 0l al b

k0kakbC0,mb ,mb

l 0 ,l a ,l b

3C0,0,0
l 0 ,l a ,l bYl ama

* ~ k̂a!Yl bmb
~ k̂b!, ~37!

g5
4

Ak0
3kakb

(
l 0l al bmb

l̂ 0
2

l̂ al̂ b

i l 02 l a2 l bRl 0l al b

k0kbkaC0,mb ,mb

l 0 ,l b ,l a

3C0,0,0
l 0 ,l b ,l aYl ama

* ~ k̂b!Yl bmb
~ k̂a!, ~38!

wherel̂ 5A2l 11. The factorR, which contains all the radia
integrals, is defined as

Rl 0l al b

k0kakb5E
0

`E
0

`

x l a
a ~ka ,r 1!x l b

b ~kb ,r 2!
r

,

l b

r
.

l b11

3c0~r 2!x l 0
0 ~k0 ,r 1!dr1dr2 . ~39!

Here x is a distorted wave. The indices 0,a,b represent
the incoming, faster, slower electrons, respectively,c0 is the
04271
-

c-

e

single-particle atomic wave function for the active electr
and r , (r .) is the usual lesser~greater! value for the two
coordinates (r 1 ,r 2).

Finally the amplitude for exciting the continuum part
the autoionizing resonance, which is theI L,ML

r
m0 ,ma

m i ,mb(k0 ,ka)

factor of Eq.~34!, may be obtained as a subset of the amp
tudes contained in Eqs.~37! and ~38!. For the present prob
lem, the amplitude for exciting the atom into a state that h
a continuum orbital withL is needed. This amplitude is ob
tained from Eqs.~37! and~38! by settingl b5L, dropping the
sum overmb , and eliminating the spherical harmonic wit
k̂b . So

~ I L,ML

r !m0 ,ma

m i ,mb~k0 ,ka!5~21!1/21m0@ f L,ML

r dm0 ,ma
dm i ,2mb

2gL,ML

r dm0 ,mb
dm i ,2ma

#, ~40!

f L,ML

r 5
4

Ak0
3kakb

(
l i l a

l̂ 0
2

l̂ al̂ b

i l 02 l a2LRl 0l aL
k0kakb

3C0,ML ,ML

l 0 ,l a ,L C0,0,0
l 0 ,l a ,LYl ama

* ~ k̂a!, ~41!

wherev r5kb
2/2 in atomic units,

gL,ML

r 5
4

Ak0
3kakb

(
l 0l a

l̂ 0
2

l̂ aL̂
i l 02 l a2LRl 0i l aL

k0kbka

3C0,mL ,mL

l 0 ,L,l a C0,0,0
l 0 ,L,l aYL,ML

~ k̂a!. ~42!

V. TRIPLE DIFFERENTIAL CROSS SECTION

The triple differential cross section is defined as

d3s

dEbdVka
dVkb

5uTtotal~k0 ,ka ,kb!u2 ~43!

In the preceding sections theT-matrix elements are define
in such a way that the normal flux factors are already
cluded in theT-matrix elements. The formula for a singl
resonancer is
tween the

n

~Tres
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!5
~Tdis

r !m0 ,ma

m i ,mb~k0 ,ka ,kb!2 ipVr* ~Tcon
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!

~e r1 i !pVr*
. ~44!

It is easy to see that for a single resonance all the asymmetry with respect to energy comes from the interference be
direct knockout amplitude and the resonance amplitude.

For many resonances using the nonoverlapping resonance approach of Eq.~11!, the triple differential cross section is give
by
8-6
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uTtotal~k0 ,ka ,kb!u25u~Tdir !m i ,mb

m0 ,ma~k0 ,ka ,kb!u2

1u~Tres
sum!m0 ,ma

m i ,mb~k0 ,ka ,kb!u2

12 Re@~Tdir !m i ,mb

m0 ,ma~k0 ,ka ,kb!

3~Tres* sum!m0 ,ma

m i ,mb~k0 ,ka ,kb!#. ~45!

As can be seen from Eq.~45! there will be cross terms
associated withu(Tres

sum)m0 ,ma

m i ,mb(k0 ,ka ,kb)u2 in addition to the

cross terms with the direct amplitude. The cross terms
tween each resonance arise from

u~Tres
sum!m0 ,ma

m i ,mb~k0 ,ka ,kb!u2

5(
r

u~Tres
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!u2

1(
r

(
r 85” r

2 Re@~Tres
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!

3~Tres* r 8!m0 ,ma

m i ,mb~k0 ,ka ,kb!#, ~46!

and when written explicitly the energy dependence of
cross terms are

(
r

(
r 85” r

2 Re@~Tres
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!

3~Tres* r 8!m0 ,ma

m i ,mb~k0 ,ka ,kb!#

5(
r

(
r 85” r

2 ReF Tconstant
r ,r 8

~e r1 i !~e r 82 i !~p2Vr* Vr 8!
G , ~47!

where
04271
e-

e

Tconstant
r ,r 8 5@~Tdis

r !m0 ,ma

m i ,mb~k0 ,ka ,kb!

2 ipVr* ~Tcon
r !m0 ,ma

m i ,mb~k0 ,ka ,kb!#

3@~Tdis* r 8!m0 ,ma

m i ,mb~k0 ,ka ,kb!

1 ipVr 8~Tcon* r 8!m0 ,ma

m i ,mb~k0 ,ka ,kb!# ~48!

is a constant amplitude as it is not a function of the eject
electron energy. At a particular resonance energyEb5Er ,
the e r parameter vanishes. The contribution at the particu
resonancer from the cross terms becomes

(
r 85” r

2 Re
Tconstant

r ,r 8

i ~e r 82 i !p2Vr* Vr 8

. ~49!

So the magnitude of the contribution from the other re
nancesr 8 to that particular resonancer are directly propor-
tional to the magnitude of both resonances and invers
proportional to the parametere r 85(Eb2Er 8)/(G r 8/2), which
is the ratio of the energy difference to the half-width. T
contribution is also strongly related to the phases. In our c
the second resonance has the largest amplitude and the
est width so it has a big effect on the first and the th
resonance. However the first resonance is too far from
second and the third resonance in the sense that the en
difference between them is much larger than the width of
resonance itself. This makes the (E12E2)/(G1/2) too small
to make any significant contribution near the second a
third resonances. Similarly the third resonance has a v
small value for theT matrix (Tres

3 !Tres
2 ) so it does not make

a significant contribution either.
When we introduce the mixing coefficients for th

overlapping-resonance treatment, the direct p
u(Tdir)m i ,mb

m0 ,ma(ka ,kb)u2 does not change. However there a

significant changes in the cross terms. At the exact resona
energyEb5Er 8 , Eq. ~12! reduces to
u(Tres
mix)m0 ,ma

m i ,mb (k0 ,ka ,kb)u25U(Tdis
r 8 )m0 ,ma

m i ,mb (k0 ,ka ,kb)2 ipVr 8
* (Tcon

r 8 )m0 ,ma

m i ,mb (k0 ,ka ,kb)]

ipVr 8
* U2

, ~50!
s
o not
pli-
t af-
the
ant
les,
nt.
ird

on.
since

lim
Eb→Er 8

ee f f50, ~51!

lim
Eb→Er 8

Ar* ~Eb!5~21!r 8d rr 8e
ifr 8, ~52!

lim
Eb→Er 8

Ve f f* 5~21!r 8eifr 8Vr 8
* . ~53!
The Kronecker delta reduces ther sum to 1; namely, ther 8
term. There is exactly zero contribution for the ‘‘mix’’ term
at the other resonances. Consequently, the cross terms d
contribute. This results in a relative decrease of the am
tudes in our case. The second resonance is almost no
fected because the widths and amplitude of the first and
third resonances are small. However there is a signific
decrease of the first resonance amplitude for all the ang
which results in a better agreement with the experime
There is also a sharp minimum and maximum near the th
resonance, which will be discussed in the following secti
8-7
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VI. RESULTS

Martin et al. @21# have performed several coinciden
measurements of (e,2e) for cadmium. The incident elec
tron’s energy was held constant at 150 eV. In the final sta
fast electron was detected for scattering angles ranging
tween 2° and 15°. Slow~ejected! electrons were detected b
two detectors separated by 180°. The ejected-electron e
gies ranged from 2.6 eV to 4.6 eV to scan the energy reg
corresponding to theJ51 autoionizing levels of cadmium
All the angles in this paper are defined counterclockw
from the incident-beam direction in the scattering plane
that the angular range is from 0° to 360°. This is differe
from the angle convention used by Martinet al. @21#. The
detectors for the slower electron are located atuslow and
uslow2180°. For each fast-electron scattering angle,
slow-electron detector angleuslow is chosen in three possibl
ways. It is either the momentum-transfer directionuMT , or
uMT2uP2, or uMT2uP3, whereuP2 and uP3 are the magic
angles where the second- and third-order Legendre poly
mials vanish, respectively. The momentum-transfer direc
depends on both the ejected-electron energy and the
electron scattering angle. The sum and the difference of
counts from the two detectors were measured for th
angles by Martinet al. @21#.

The TDCS was calculated using both the overlappi
resonances approach and the nonoverlapping-resonance
proach for the measured angles. The results were
summed foruslow anduslow2180° in order to compare with
the experimental measurement. In Fig. 1 the experime
and theoretical results are compared for the fast-elec
scattering at an angle of 2° measured counterclockwise f
the incident direction. The slow electron’s energy rang
from 2.6 eV to 4.6 eV. For this case the momentum-trans
directionuMT varies from 320° to 325°. The data in Fig.
correspond to one of the slow-electron detectors set touMT
2uP2 where uP2554.7°. For the energy range of the d
tected slow electronsuslow varies between 265° to 270°
Martin et al. @21# set the two detectors atuslow5270° and
uslow2180°590° for the whole energy range. The sol
curve in the top portion of Fig. 1 is the present overlappin
resonances-treatment result and the dashed curve is the
vious nonoverlapping-resonances-treatment result of
problem by Madisonet al. @22#. The open circles are th
summed experimental results of Martinet al. @21#. The ex-
periment is normalized at the second~largest! resonance en
ergyE253.81 eV to the present calculation. From the figu
it can be seen that the present approach predicts the heig
the first resonance better than Madisonet al. @22# and there is
some sharp structure near the third resonance whereas
was no sharp structure in the Madisonet al. @22# calcula-
tions. The sharp structure near the third resonance is cha
teristic of this approach and appears in all of the results.

The experimental resolution was given by Martinet al.
@21# as 0.04 eV. The width of the third resonance is qu
narrow (G350.003 eV). Therefore we decided to convolu
our results with the experimental energy-resolution funct
in order to ascertain its affect on the third resonance since
experimental results do not indicate any sharp structure a
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third resonance. The solid curve in the bottom portion of F
1 presents our result in the top portion of Fig. 1 convolut
with the experimental energy-resolution function. Again, t
fast-electron scattering angle is 2° and our result is the s
of the slow ejected electrons detected at 270° and 90°.
can be seen, the sharp structure we find at the third reson
is washed out because of the energy resolution. Thus
sharp structure near the third resonance would not be
tected by Martinet al. @21#.

The characteristic line shape at the third resonance res
from the interference between the direct and resonance p
of the T matrix as well as the phase difference between
mixing coefficientsA2(E) and A3(E) near the third reso-
nance. As is shown in the Appendix, the mixing coefficie
Ar(E) is proportional to Vr* , which is defined as
e2 ifrAG r /2p. In Fig. 2, eifrAr(E) is plotted for the three
autoionizing-resonance states as a function of energy for
energy region of interest. The functioneifrAr(E) equals
(21)r at the resonance corresponding tor and it equals zero
at the other resonances. Ther 52 resonance has the large
affect on the TDCS. This is becauseG2 is three times larger
thanG1 and over 46 times larger thanG3 ~see Table I!. It is
seen from Fig. 2 thateif2A2(E) changes sign as the energ
crosses the third resonance. The rapid change ineif2A2(E)
from nearly11 to almost21 near the third resonance en
ergy leads to constructive and destructive interference

FIG. 1. Triple differential cross section~TDCS! for the fast elec-
tron scattered at 2° and the slow electron ejected at either 90
270°. The solid line in the top portion is for our present resu
based on the overlapping-resonances treatment of the problem
dashed line is the previous results of Madisonet al. @22# based on
the nonoverlapping-resonances treatment of the problem. The
circles are the data labeled as 2P2 sum by Martinet al. @21#. The
bottom portion presents our results based on the overlapp
resonances treatment of the problem convoluted with the exp
mental energy resolution, which is 0.04 eV. The open circles are
data labeled as the 2P2 sum by Martinet al. @21#.
8-8
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tween the direct and resonance parts of theT matrix, which is
manifested in the characteristic line shape seen at the
resonance. For energies slightly less than the third reson
the interference is constructive and for energies sligh
greater than the third resonance energy the interferenc
destructive. The slight rise in the TDCS as the eject
electron energy approaches the third resonance is due to
structive interference. After the convolution of our resu
with the experimental resolution function there is still a sm
‘‘bump’’ remaining, which originated from the constructiv
interference.

Figures 3–9 show our results for a sample of differe
scattering angles. Similar to Fig. 1, in the bottom part
Figs. 7 and 9 we show our present results convoluted w
the experimental resolution function. Just as in Fig. 1
sharp structure predicted at the third resonance is no lo
apparent in Figs. 7 and 9 after convolution with the expe
mental resolution function. Overall the present results giv
better fit to the ratio of peak heights, especially as the s

FIG. 2. Plot ofeifrAr(E) as a function of energy for the thre
resonances. Resonance energiesEr are marked as vertical dashe
lines. The solid line iseif2A2(E), which is the mixing coefficient
for the second resonance. The dotted line iseif1A1(E) and the
dashed-dotted line iseif3A3(E).

FIG. 3. Triple differential cross section~TDCS! for the fast elec-
tron scattered at 3° and the slow electron ejected at either 130
310°. The solid line is for our present results based on
overlapping-resonances treatment of the problem. The dashed
is for the previous results of Madisonet al. @22# based on the
nonoverlapping-resonances treatment of the problem. The o
circles are the data labeled as 3MT sum by Martinet al. @21#.
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tering angle becomes larger. For example, in Fig. 9 the s
tering angle is 9° and the data were taken at angles co
sponding to a zero of the third-order Legendre polynom
uP3539.2°. Thus the detectors for the slower electron w
set atuslow5uMT2uP3 and uMT2uP32180°. At this scat-
tering angleuMT varies from 288.8° to 291.3° correspondin
to a slow electron of energy 2.6 eV and 4.6 eV, respectiv
Thususlow varies from 249.6° to 252.1°. The average val
of uslow.251°. Therefore, the two electron detectors we
set at 251° and 71° for the data in Fig. 9. It can be seen
the previous results of Madisonet al. @22# yield a very poor
fit to the ratio of the peak heights. Martinet al. @21# have
also

or
e
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en

FIG. 4. Triple differential cross section~TDCS! for the fast elec-
tron scattered at 3° and the slow electron ejected at either 90
270°. The solid line is for our present results based on
overlapping-resonances treatment of the problem. The dashed
is for the previous results of Madisonet al. @22# based on the
nonoverlapping-resonances treatment of the problem. The o
circles are the data labeled as 3P3 sum by Martinet al. @21#.

FIG. 5. Triple differential cross section~TDCS! for the fast elec-
tron scattered at 6° and the slow electron ejected at either 116
296°. The solid line is for our present results based on
overlapping-resonances treatment of the problem. The dashed
is for the previous results of Madisonet al. @22# based on the
nonoverlapping-resonances treatment of the problem. The o
circles are the data labeled as 6MT sum by Martinet al. @21#.
8-9
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FIG. 6. Triple differential cross section~TDCS! for the fast elec-
tron scattered at 6° and the slow electron ejected at either 62
242°. The solid line is for our present results based on
overlapping-resonances treatment of the problem. The dashed
is for the previous results of Madisonet al. @22# based on the
nonoverlapping-resonances treatment of the problem. The o
circles are the data labeled as 6P2 sum by Martinet al. @21#.

FIG. 7. Triple differential cross section~TDCS! for the fast elec-
tron scattered at 6° and the slow electron ejected at either 77
257°. The solid line in the top portion is for our present resu
based on the overlapping-resonances treatment of the problem
dashed line is for the previous results of Madisonet al. @22# based
on the nonoverlapping-resonances treatment of the problem.
open circles are the data labeled as 6P3 sum by Martinet al. @21#.
The bottom portion presents our results based on the overlapp
resonances treatment of the problem convoluted with the exp
mental energy resolution, which is 0.04 eV. The open circles are
data labeled as the 6P3 sum by Martinet al. @21#.
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FIG. 8. Triple differential cross section~TDCS! for the fast elec-
tron scattered at 9° and the slow electron ejected at either 56
236°. The solid line is for our present results based on
overlapping-resonances treatment of the problem. The dashed
is for the previous results of Madisonet al. @22# based on the
nonoverlapping-resonances treatment of the problem. The o
circles are the data labeled as 9P2 sum by Martinet al. @21#.

FIG. 9. Triple differential cross section~TDCS! for the fast elec-
tron scattered at 9° and the slow electron ejected at either 71
251°. The solid line in the top portion is for our present resu
based on the overlapping-resonances treatment of the problem
dashed line is for the previous results of Madisonet al. @22# based
on the nonoverlapping-resonances treatment of the problem.
open circles are the data labeled as 9P3 sum by Martinet al. @21#.
The bottom portion presents our results based on the overlapp
resonances treatment of the problem convoluted with the exp
mental energy resolution, which is 0.04 eV. The open circles are
data labeled as the 9P3 sum from Martinet al. @21#.
8-10
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calculated the TDCS. Their results also fail to give a go
ratio of the peak heights for large angles. Neither the pres
results nor the previous results of Madisonet al. @22# have
quite the same shape as the experimental results. Howev
is interesting to note that the more elementary approac
Madisonet al. @22# tends to predict the width and the sha
of the second resonance better than the present approa

VII. CONCLUSION

If the resonances are treated as overlapping resonan
we find that the mixing coefficientsAr(E) are identically
zero at all resonances exceptr. Therefore there is no inter
ference between the resonances at an exact resonance e
@see Eqs.~17! and ~18!#. Thus the TDCS value at the exa
resonance energy is the same as the value obtained
single resonance. However there is interference between
overlapping resonances for energies not equal to an e
resonance energy. For the problem considered here, the
ond resonance dominates the spectrum. The third reson
is very weak compared to the second resonance and
causes the second mixing termeif2A2(E) to have a nearly
step-function behavior at the third resonance. This beha
appears as constructive and destructive interference as
energy passes through the third resonance energy, whic
sults in a very sharp characteristic line shape at the t
resonance. The characteristic line shape results from the
havior of the mixing termeif2A2(E) and the relative phases
Consequently the characteristic line shape is not necess
a general feature of the many-overlapping-resonances t
ment. For systems with different relative phases the ef
would be different. However if we convolute our results wi
the experimental resolution function quoted by Martinet al.
@21#, the sharp structure at the third resonance dissapp
The only remnant after the convolution is a small ‘‘bump
near the third resonance.

Near the first resonance, the TDCS calculated using
overlapping-resonances treatment is always smaller than
TDCS calculated using the nonoverlapping-resonances t
ment. This is due to the fact that the second resonance
tributes near the first resonance in the nonoverlapp
resonances treatment, whereas in the overlapping-resona
treatment it does not contribute. Since the width of the s
ond resonanceG2 is large, this contribution can be signifi
cant. As a result the present approach yields a much b
peak-to-peak ratio between the first and the second r
nances than was found in Madisonet al. @22#

Neither our results nor the previous results of Madis
et al. @22# yield a good fit to the shape of the second re
nance. This shape is mainly determined by the phase of
second resonanceeif2. Different approaches for calculatin
continuum wave functions do not significantly change
magnitude of the (I L,ML

r )m0 ,ma

m i ,mb(k0 ,ka) amplitude. However

different continuum waves would have different phas
which determine the shape. Another explanation for the
crepancy in the shape is that a very basic approximation
used in Eq.~6! to obtain the phase of the interaction streng
Vr . In that approximation we assumed that the discrete w
function is real and the phase should come only from
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continuum wave function. However since the physicalJ51
continuum state is constructed as a coherent sum, that su
well as the spatial integral affects the phase. We concl
that a full theoretical calculation of the phase of the inter
tion strengthVr5^cJ

r uV(1,2)uFJ
r & is needed to determine th

shape better.
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APPENDIX

If we use theL,ML ,S,MS ,E quantum numbers to labe
the continuum states, there are two types of continu
states, namely, total-spin-singlet and -triplet states. HereS is
constructed from the spin of the ionm i and the spin of the
ejected electronmb . Since l ion50, L corresponds to the
orbital angular momentum of the ejected electronl b . How-
ever anyL,ML ,S,MS ,E state can be written in terms of th
coupled L,S,J,MJ ,E states. These states are construc
from the L,ML ,S,MS states via Clebsch-Gordan coeffi
cients. Since we are dealing with autoionization of a spec
J51 state, theJ states other thanJ51 do not interfere with
the discrete part of the wave function. Further, using a
herent sum on those indices, we can construct a singleJ state
and express it withm0 andma indices. This will correspond
to the continuum part of the autoionizing state@Eq. ~30!#. We
assume that there is one type of continuum state as a func
of energy for our autoionization problem. It is convenient
use theK>N formalism of Davis and Feldkamp@5# with the
number of continuum states equal to one (k51) as men-
tioned. The fundamental equation is Eq.~35! of @5#, namely,

@Hnm1Fnm2Ednm#Am1Z~E!Vkn* VkmAm50 ~A1!

or

@Hnm1Fnm2Ednm#Am1Z~E!GnmAm50, ~A2!

where

Gnm5Vkn* Vkm ~A3!

is the interaction matrix. The Einstein summation convent
is used. The solution of this equation gives the mixing co
ficients Ar(Eb). The matrixFnm is the energy-shift matrix.
Since experimental values are used for the resonance en
and theLS coefficients of each resonance~Table I!, we as-
sume that the matrixHnm1Fnm is diagonalized and the ef
fect of the energy shift is already included in the energy
the resonances. Thus we assume

Hnm1Fnm5Endnm . ~A4!

In the main textVr was defined in Eq.~6! as

Vr5eifrAG r

2p
. ~A5!
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For theVr obtained from theG r values in Table I, it is pos-
sible to separate the contribution from the singlet part a
the triplet part as

Gn5Gsinglet,n1G tr iplet,n . ~A6!

This will give rise to a further separation ofVr to Vsinglet,r
and Vtriplet,r , which may be labeled asV1n and V2n . The
many-discrete-states and many-continuum-states forma
of @5# should be used. However this separation does not
fect the interaction matrixGnm. Thus it does not change th
mixing coefficientsAr(Eb). Therefore we can use thek51
formalism of@5#. For k51 there is no sum onk in Eq. ~A3!.
Thus we suppress thek51 index and define

Vn5V1n ~A7!

and the interaction matrix becomes

Gnm5V1n* V1m5Vn* Vm . ~A8!

With k51, in the basis of the eigenstates of the Hamilton
plus the energy shift, Eq.~A2! can be written as

S E2E1 0 ••• 0

0 E2E2 ••• 0

A A A A

0 0 ••• E2Em

D S A1

A2

A

Am

D
5Z~E!S G11 G12 ••• G1m

G21 G22 ••• G2m

A A A A

Gm1 Gm2 ••• Gmm

D S A1

A2

A

Am

D , ~A9!

wherem labels a resonance. The elements of the normali
vector, which satisfies this equation, gives the mixing co
ficientsAr(Eb). Due to the symmetry of the matrix there
only one solution satisfying this matrix equation. If we ta

1

Z~E!
5 (

n51

m uVnu2

~E2En!
, ~A10!

then we find that the solution vector given by

AW ~E!5N~E!S V1* /~E2E1!

V2* /~E2E2!

A

Vm* /~E2Em!

D ~A11!

satisfies the matrix equation. This corresponds to theAr(E)
used in Eq.~16!. It can also be found in Fano’s paper. Th
factor N(E) is a normalization factor. It is not necessary
normalize this vector because it appears in both the deno
nator and the numerator of the final formula for theT matrix.
04271
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Furthermore, by multiplying this vector by the signum fun
tion, we can still keep the normalization and satisfy the m
trix equation.

This definition ofZ(E) in Eq. ~A10! corresponds to Eq
~60! in Fano’s paper@1#, namely,

p

Z~E!
52tan~D!52(

n
tan~Dn!5(

n

puVnu2

E2En
5(

n

1

en
,

~A12!

Z~E!/p5S (
n

1/enD 21

, ~A13!

en5
E2En

Gn/2
. ~A14!

The transition rate is discussed in Sec. V of Fano’s pa
The wave function that includes both discrete and continu
parts is expressed in Eq.~50! of Davis and Feldkamp’s pape
as

uC~E!&5C~E!(
n

An~E!@ uFn&1Z~E!Vnuc~En!&].

~A15!

The indexk and the energy dependence of theuFn(E)& and
uc(E)& states used in their paper has been dropped. The
efficient An is the nth element ofAW (E) in Eq. ~A11!. We
chooseC(E) such that

C~E!215p(
n

An~E!Vn@Z~E!/p2 i #, ~A16!

and substituting it into Eq.~A15! we have

uC~E!&5

(
n

An~E!uFn&1Z~E!(
n

An~E!Vnuc~En!&

@Z~E!/p2 i #(
n

pAn~E!Vn

.

~A17!

SinceAn appears in both the numerator and the denomina
the normalization factor will cancel out and will not affe
the calculated TDCS. That allows us to construct mixi
coefficients that are continuous, with one of them real. T
T-matrix element for the resonance process then becom
8-12
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^C~E!uTu0&5

(
n

An* ~E!^FnuTu0&1Z~E!(
n

An* ~E!Vn* ^c~En!uTu0&

p@Z~E!/p1 i #(
n

An* ~E!Vn*
. ~A18!

When we add and subtract the term

@Z~E!/p1 i #(
n

An* ~E!Vn* ^c~En!uTu0&

@Z~E!/p1 i #(
n

An* ~E!Vn*
, ~A19!

we obtain

^C~E!uTu0&5

(
n

An* ~E!Vn* ^c~En!uTu0&

(
n

An* ~E!Vn*
1

(
n

An* ~E!^FnuTu0&2 ip(
n

An* ~E!Vn* ^c~En!uTu0&

p@Z~E!/p1 i #(
n

An* ~E!Vn*
. ~A20!

The significance of this equation is that in Fano’s formulationTdir contains all the continuum states except the one
interferes with the discrete wave function. By taking out that part from the resonanceT matrix and including it in the definition
of Tdir we obtain an expression whereTdir contains all the continuum wave functions. Although in this form(nAn* (E)Vn* does
not cancel out to give exactly the appropriate continuum wave function, near resonances it will cancel out. Also at ve
energies the deviation becomes significant. However, in our region of interest it is a very good approximation and is th
way to express direct ionization. By defining

Ve f f5(
n

An~Eb!Vn , ~A21!

ee f f5S (
n

1/enD 21

~A22!

and including the angular distribution function (Gr)m0 ,ma

m i ,mb(k0 ,k̂a ,k̂b) we obtain Eq.~13!, namely,

~Tres
mix!m0 ,ma

m i ,mb~k0 ,ka ,kb!5

(
r

~Gr !m0 ,ma

m i ,mb~k0 ,k̂a ,k̂b!Ar* ~Eb!@tm0 ,ma

r ~k0 ,ka!2 ipVr* tm0 ,ma

r ~k0 ,ka!#

@ee f f1 i #pVe f f*
. ~A23!
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