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Electron-cadmium ionization for energies near overlapping autoionizing resonances
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The effect of autoionizing resonances on ionization has been studied since the historic work of Fano. In the
autoionization problem, it is not possible to distinguish electrons, that have been directly ejected from the
atom, from those that were first excited to an autoionizing resonance level because of the extremely short
lifetime. As a result, these two processes will interfere. Furthermore if the energy difference between the
resonances is not larger than the width of the resonances, the resonances will also interfere with each other. In
this paper, we examine electron-impact ionizatier2¢) for cadmium in the energy range where the autoion-
izing resonances overlap and interfere. First-order distorted-wave results will be compared with recent mea-
surements and previous calculations.
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[. INTRODUCTION emphasis on overlapping resonances. For the triple differen-
tial cross section we have used the basic formulas for pho-
The theory of photoionization with autoionizing reso- toexcitation given by Davis and Feldkarffpl [Egs.(53) and
nances is well understood and has been studied following thé4)] and modified them for electron ionization by adding the
theoretical analysis as developed by Fano and co-workergjected-electron angular dependence using the technique de-
[1,2]. In Fano’s approach the Hamiltonian was diagonalizedscribed by Balashoet al.[6,7]. We have applied our results
using the interaction of the discrete excited states with th&o e-Cd scattering. This study was motivated by experiments
continuum via the Coulomb interaction. He stated his resulperformed by Martin and co-workef48-21. Both Madi-
for the transition amplitudeT matrix) by defining the well- ~ sonet al. [22] and Martinet al. [20,21] have done calcula-
knownq parameter. Shor8] obtained an alternative param- tions for triple differential cross section§DCSs on the
etrization for the differential cross section. The relation be-e-Cd autoionization problem using a “nonoverlapping-
tween the Shore and Fano parameters have been shown Eggsonances” approach. Both have fairly good agreement with
McDonald and Crowd4]. Later Davis and Feldkamfb] experiment only for scattering angles less than 7°.
generalized Fano’s theoretical results to the case of multiple-
overlapping-autoionizatio_n resonances _and gave an easy-to- Il. THEORY
use formula for calculating the transition amplitude. Bal-
ashov et al. [6,7] have generalized Fano's results for This paper introduces a model to calculate Thenatrix
photoionization to the case of electron-impact ionization, infor (e,2e) processes for which the energy of one of the final-
which the ejected-electron angle dependence of the differerstate continuum electrons is near an autoionizing level. In
tial cross section is first introduced. Their results reduce tdhis case, it is not possible to determine if an observed elec-
Fano's results when integrated over the ejected-electrotron comes from direct ionization or from autoionization.
angles. There are a number of calculations of the Fano and/dihus this process is a coherent sum of two different ampli-
Shore parameters or directly the differential cross section fotudes,
the (e,2e) process. Most of the work has concentrated on

helium. The theoretical work of Balashey al. [6,7], Kheif- , 1 _

ets[8], measurements and calculations of Poatadl. [9], I Teotai(Ko . Ka Kp)| =3 > |(Tdir)zlc]’zl;(k0akaakb)
McDonald and Crow¢10], Samardziet al.[11,17] have all Hinto#0: e

concentrated on helium. In the situation where there are mul- (T MM (ke K k)2 1
. . ( res) ( 0:Ra» b)| ' ()
tiple resonances, they are treated as nonoverlapping. Al- e

though some work on autoionization has been done on
(e,2e) for heavier atoms, experiment on argon by StefaniHerekg, k5, andky, are the momenta vectors for the initial,
et al.[13], experiment on neon by Zhored al.[14], experi-  Scattered, and ejected electrons. The quantitigsu,, and
ment on AF* ion by Thomason and Pedit5], calculation  up are the spin projections for the incident, scattered, and
on AIP* jon by Teng[16], experiment on krypton by ejected electrons, respectively; apgis the total spin pro-
Khouilid et al.[17], there are still very few studies on over- jection of the residual ion. The theory should also include a
lapping resonances. There have been many studies on auf+m over all other possible final states of the ion. However
ionization in photoionization as well. However we have con-for the system studied here there is only one possible final
fined ourselves to the electron-impact ionization process istate. Since both ejected and scattered electrons are indistin-
this paper. guishable, instead of labeling them as scattered and ejected
Our approach is to generalize the theoretical treatment oflectrons it is more convenient to label them as fast and slow
Balashovet al. [6,7] for helium to heavier atoms with an electrons. The '(di,)zio’zba(ko,ka,kb) term is the direct-
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ionization amplitude and theT(eS)Zio”;b(ko,ka,kb) term is c 1 2
S L . Ey))=—"—"".
the resonanced-autoionization amplitude. The following (Ev) (e +i)mV* ®
sections will discuss how we calculate
i b
(TVES)uowa(ko’ka’kb)' The parametee, is defined to be the energy deviation from
the resonant energy in units of the resonance half-width.
A. Nonoverlapping resonances treatment Thus

Fano derived a formula for the resonance amplitude for
photoionization. For a single resonance, Balastioal.[6,7] _Ey—E

showed that for theg,2e) process the resonance part of the €r r/2 "’ (4)
T matrix can be written as

TO )M (ko Ky Kp) = CE)[(Th )™ #0 (Ko Ko K whereT’, is .the full'width at hallf ma>§imum for the reso-

(Tres)ug 1o (Koo Ka ko) = C(Eo)[(Tais) 7, (Ko Ka o) nance. The interaction strength is defined as

_iWV*(Tr )Iui"ub(k01ka7kb)]=
LTt Vi=((ENIV14P), ®
2

where r labels the particular resonance. We label whereV , is the Cpulomb |nter.act'|on between the 'two elec-
=1,2,3 ..., wherer=1 corresponds to the lowest energy trons, one of which will autoionize. The kétb,) is the

resonance and so on. The energy of the autoionizing res@nysical discrete state, which is used for calculafirig,

nance isE, and the energy of the ejected electrongg.  and[¢(Ey)) is the c?rrespon(_jing continuum state, which is
Here T’ is the excitation amplitude coming from the dis- used for calculating ,,. The interaction strengt¥, is also

crete part of the total wave function afd,, is the ioniza- ~ 'elated to the widti’, by

tion amplitude coming from the continuum part of the total

wave function in the Fano sense. They are both calculated at . IT,

a specific resonance ener@y. Once the energies of the V,=e?r 2
incident and ejected electrons are given, conservation of en-

ergy dictates the energy of the scattered electron. Therefore ) i
T'.. and T, do not depend explicitly on the energy of the Where ¢, is  the  phase of the ratio
scattered electron. Fano's fact@(Ey) contains the only  [(Teon). "> (Ko Ka ko) (Tais),,: . (Ko, ka,ks)] and has an
explicit ejected-electron energy dependenceTff,. It is  implicit spin dependence.

given by SubstitutingC(E,) into Eq.(2) we obtain

(6)

(T(rjis)zi()’zt;( Ko,Ka,Kp) —i WV? (T(r:on)ﬁi()’zt;( Ko, Ka,Kp)

T'0 0 (Ko ke k) = . 7
( res)’uo,lua( 0:"a b) (E,ﬁH)WVf ()

Balashovet al. [6,7] showed that the angular distribution with respect to the ejected electron can be factored out of the
T-matrix elements for each resonance. By setting

(This) ot 42 (Ko Ka  Kn) = (G4 0 (Ko Ka kp) 7). (Ko Ka) 8)
and
(Teon)st 2 (Ko Ka ko) = (GN)1 0 (Ko, Ka ko)t i (Ko Ka) 9)

we obtain

(G2 (Ko, Ko ko) [ 75, (Ko sKa) —177VE L, (Ko iKa)]

Mo Mg

(Tres) 0 (Ko Ka kp) = : (10

(&+i)mVy
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WhererLO,Ma(ko,ka) andtLO’Ma(ko,ka) are the reduced ex- sum s S gy
citation and ionizatio matrices. It should be noted that the ¢ 1765 Vg K0-Ka Ko) = - (Tres) gy KoKa Kn).
phase ¢, is also the phase of the (11

tLo,ua(kO’ka)/TLo,na(kO*ka) ratio. The angular-distribution

factor (G’)Z‘O";b(ko,l?a,lib) will be given explicitly later.
a
When Eq.(10) is square integrated over all ejected-electron
angles and summed over the ejected electron spin, one ob-
tains Fano’s formula for photoionization. The physical sig- B. Overlapping resonances treatment
nificance is thatGr)Zio”;b(ko,Ra,Rb) contains the effect of
a

the angular distribution of the ejected electron. If the reso- For overlapping multiple resonances, thigg part must
nances are assumed to be nonoverlapping the total resonartae expressed as a weighted sum of each resonance. Thus
amplitude can be expressed as a sum of the individual resdellowing the matrix equations of Davis and Feldkarfi
nances we obtain

This was the formula used by Madisenal. [22].

2 AT (E)(Thio) 2 (ko ka ko)~ V7 (e (Ko1K ki)

Tmix Mi Mg k ’k ’k = . 12
( reS)MO,;La( 0:"a b) [Eeff+i]wvsz ( )

We have used the label “mix” to indicate that each resonance is weighted by a mixing coeffi¢{éhy). As shown by
Balashovet al.[6,7] we can factor out the angular-distribution term to obtain

2 (G40 (Ko ka ko) AT (En) 7,0 . (Ko Ka) =1 7VEE, (Ko Ka)]

. r
Tmlx Mi s Mp k ,k ,k — . (13)
(Tres) g e, K0 Ka ko) [€erstilmVey

A derivation of this formula is given in the Appendix. The A (E;/)=0 for r#r’. In the form of Eq.(16), the mixing

quantities T,ruo’# (ko,Kka), tLo,u (Ko, ka), and  coefficients are not continuous at a resonance due to the fact

G M (k. R R 2 h : o in th that in the limit as the energy goes through a resonance we
/‘O'Ma( 0.Ka,Kp) are the same quantities as in the non-get

overlapping resonance approach. The effecivgarameter

is defined as lim A/(Epe¢=+56,,, (17)

1 Ey—E,,
eeff:(Z 1/6,) : (14) |
' lim A/(Ey)e'?r=—6,, (18)
The effective interaction strengW;; is defined as Ep—E,,
Ve”:E A (Ep)V, (15) where the+ or — on E,, indicates whetheE, is approach-
r

ing E,, from above or belovE, . Thus as the ejected elec-

tron energyE,, passes through a particular resonance with
where theA,(E,) are the mixing coefficients used for mixing energyE, from above to belovE, ; the mixing coefficient of
the resonances. They are a function of the ejected-electrafat resonance, will change from+1 to —1. It is ex-

energy. Both Fano and Davis and Feldkamp g\€E) in - plained in the appendix that by multiplying each of the mix-

the form ing coefficients by the signum function, we can obtain con-
. tinuity and still satisfy the matrix equation of Davis and
B Vi I(Ep—E) 3 Feldkamp[5] [Eq. (35) of their papel. Thus we make the
A(Ep)= m =123....

following replacement:
2 |Vsl(By=Eq)?

(16) A (Ep)—A(Ep)ITs sgnEs—Ey), (19

As E,, approaches a particular resonance, the mixing coeffiwhere sgnEs;— E,) is the sign of Es—E,), which is either
cients of the other resonances will approach zero. Thus-1 or —1. This multiplication is not necessary theoretically;
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TABLE I. LS coefficients 8] o) of the cadmium 4°5s?5p IE, ,J,M, Ko, a) =85 d*P1. My Ka s ta)
autoionizing levels, their energies, and widths. '

+BE_,1|3P11MJ akaaMa>

Resonance p 3p D Energy T s
ev)  (ev) +B54°D1, My Ka,ma)  (20)
1 —0.336961 —0.910489 0.239723 3.07 0.041 or more concisely as
2 0.940191 -0.338915 0.34328 3.81 0.140
3 0.04999 0.236952 0.970234 3.94 0.003

|Er WM, 'ka'Ma>:LES IBrL,S|L'Sv‘]!MJ1kaiﬂa> (22

however it makes the theory easier to understand and easi\%(”son [23] has calculated the coefficients_ for each of the_
three states using Hartree-Fock wave functions. However his

to compute numerically. With this replacement we now haveresults for the energies do not match exactly with the experi-
mental resonance energies. Instead we are using the experi-
. i . i mental values foE, andI’,, which were obtained by Martin
lim 7Ar(Eb)e'¢r: lim +Af(Eb)el f= (1) et al.[20,21] from the data. The8 weighting coefficients are
Bo—Eps Bo—FEp also taken from Martif24]. He determined the8 coeffi-
(20 cients by adjusting Wilson'623] results such that the three
J=1 wave functions were orthogonal and yielded the experi-
mental energies. These weighting coefficients that we have
It is also possible and convenient to multiply each mixing|zpeled agB] ¢ for the threeJ=1 states of interest are given
coefficient with the same constant phase. In this way one 6f, Taple | .
the mixing coefficients can be made to be purely real. The physical state that will autoionize is a result of exci-
In the experiments of Martiet al. [21] the triple differ-  tation by an incident electron to all possii¢; substates.
ential cross section is obtained as a function of the energy Qtonsequenﬂy we define the physica| state as a coherent sum
the slower electron. Therefore to compare with the experipyer the possiblé/ ; substates. This state will depend on the

ments we need to calculate the triple differential cross secquantum numbers of both the incident and scattered projec-
tion for the (e,2e) process for cadmium where the energy oftiles. Thus we define

the incident electron is constant. There are thieel au-

toionizing resonances in our energy region of interest. The |E;,J, Ko, t0,Ka\ta)

following sections shows how each term in E3) is cal-

culated. =2 P (ko Ka)|Er I My Ko a), (23
MJ MMy

IIl. RESONANCE PART OF THE T MATRIX where the partial fraction is defined as

In order to obtain the resonance part of fAenatrix we POIMI(k k)= (Er d:My Ko, ual T[@g, Ko, mo)
need to describe the autoionizing states. For cadmium, there#o-#a" 0’2 ) 172
are several closely spaced autoionizing levels lying within 5 % KEr.J,My.Kaia| T|®o, Ko, o)
eV above the ionization potentié8.99 e\j. The ground state
of cadmium has ad'%5s? configuration, the residual ion has (24)

10 . ; i
utoionizing levels result . . .
a 4d s configuration, and the a g and whered, is the ground-state atomic wave function. The

primarily from the 41°5s?5p configuration, which gives rise . . : : -
to several possibld states. Martinet al. [19] list 12 states partlall fraction gives the complex fract|on of the excitation to
a particularM ; substate for a particular resonarnce

lying between 3.07 eV and 5.07 eV above the ionization . . . . :
threshold. There are three autoionizing states @ittl. The maIIriTsvg?;S\zal state in Eq(23) is substituted into th&

autoionizing energiek, and widthsrI', arﬁglistzed in Table I.
There are thre& S-coupled states in thed#5s5p configu-

ration thag can contribute to k=1 state. Trgﬁ%y are théP, (Er dikossio Ka.pialT| o ko, o)
3p,, and D, terms. The standard notaticiv" L, is used

here. The cadmium excited-state wave fdnctions for - ME KE: .3 M; Ka sl TI®o ko, o)l - (25)
4d°5s?5p 1P, ,3P,,3D, were constructed in the “frozen- ’

core” approximation using the usudlS-term-dependent This equation is equivalent to results given by Balashov
Hartree-Fock procedures. One obtains thieel states by et al. [6] and Madisoret al. [22] who used a coherent sum
taking different linear combinations of the thre&-coupled onL,M, states. The expression above can also be called as
states. Thus the intermediate state composed of a scatteregcitation amplitude. The semirelativistic approach of Madi-
projectile state K,,u,), which represents the final scattered son and Sheltof25,26] and Madisoret al. [27] is used for
state with the cadmium atom in a specific autoionizing resoealculating this quantity. It is also related to thelefined by
nance state of energyE, andJ,M;, is written as Fano for a single resonance. Thus we define

1/2
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T;/,O,Ma(kkaa):<Er1J-k0u“01ka1/'La|T|(I)Oik0a/-LO>- @ ,,Ko, 0. Ka ta)
(26) 2 L
_ o SMU kg
Following Balashowet al. [6] the reduced transition ampli- LM ey POHaSMs Ok M

tude is combined with the angular-distribution part to obtain

g P X|q)ionn“iuwraLaMLvMbvkaw“a>- (30)
I \MiMp

(Tdis)uo,ua(ko Ka Kp) Since ui+up=Mg andMg+M =Mj;, summation orM

. S e implies a sum orM ;. Here we have defined

= (G5 (Ko, Ka ko) 7)o (Ko, Ka) - (27)

Mo Mg

: PP aitowa;’l'\\/l/l;(ko'ka): P;’j’,'\::(ko-ka)ck/if'fms,mf (31
The (Gr)l’j' "’:f’(ko,ka ,kp) factor describes the angular distri-
bution of toheaejected slow electron and is given by The same partial fractions are used for both the excitation
and ionization amplitudes. For cadmiuinjs the orbital an-
(G"M ,ub(koﬁalkb) g_ular momentum of the continuum electrbnsince the re-
Ko:Ha sidual ion has zero angular momentum. It should be noted
that Eq.(30) represents an atomic wave function with one of
= 2 Pr’J’MJ(kO,Ra),B’LS the orbitals being in a continuum state. The continuum part

Mo P .
SL.M,; 2 of the reduced resonandematrix is given by

X{L,M |, i, pp Ko ptalL, S, I, M3 Ky,
< Lo e a| e a> tLo,#a(kkaa):<wr-‘]ka1M0-ka-:Ufa|T|q)kaO!/'LO>

XYL, (Kp), (28) (32)
where(L,M| ,ui,tp.Ka,1al is the uncoupled.,M, state of '
the 4d°5s?5p configuration. In other words the partial- F (ke ko)
fraction P;j’xJ(ko,Ra) weighting of theL,M, states deter- Hoka 0712
a
mines the coefficients for the, M, 'S- Explicitly, the general ; LM, £\ 12,1025
: = (Ko, ky)Ce
form is L,MLZ,ui b a“O'“asyMs( 0:Ka) €y M
(Gr)/’“i ,Mb(kovl’(\av[&b) ><<CI)i0n y M Wy 1L1ML yMp vkav/’La|T|q)OakOaMO>-
fota (33)
A ° _ .
=SL2M P;LOYM:(kO1ka)BrL,SC|Mf’:]MS,MJ We write this as
LM
x CH2L28 (k). 29 _ LML |
iy M LMy (Kb) (29 t;o,,L;ko,ka)—L’MLZm o (g ) sg(ko Ka)
The contribution from the discrete states is much larger (1T )MH (ko K. (34)
than the contribution from the continuum states. Thus only LM g g 0007

the partial fractions from the discrete stat@%,j‘l'\fJ(ko,lza),
M,

wherel| MLZ;’ib(kO,ka) is the amplitude for the projectile
! Pa

are considered for the angular distribution. Hé]}e}nkn is a lectron t itation int " tate with
Clebsch-Gordon coefficient. The further decomposition ofS'€ctron 1o cause an excitation into a continuum state wi
energyw, , orbital angular momenturh, L projectionM, ,

the L state in terms of the orbital angular momentum eigen-""" A . .

states of the ior,, and the ejected electrdn is omitted spin projectionuy,, aAnd at the same time be scattered into the

because;,,=0 in our case. Thuk =1, for this case. How- direction defined by, with spin projectionu, . Its calcula-

ever it must be considered whenever the ion is not irSan tion is similar to the calculation of the direct amplitude

state. (Tdir)ZF"l’:;‘(ka,kb) which is presented in the following sec-
There will be a corresponding set of atomic states corregjop, The continuum equivalent of E(6) is thus

sponding to the configurationd4’ss; w,L, wherew,L cor-

responds to a continuum state with enesgyabove the ion- (T 12 (Ko, Ka ,Kp)
ization energy such thaé, = E, , with angular momenturh. Kok
We can write this state as a sum of substates of — (7MiM R
: . =(G"" 10 (kg Ka, Kp)t ko, ko). (35
|q)i0n1Mi vwraLyMLyﬂb!ka!Iu’a>l Whereq)ion IS the atomlc ( )#OY/‘La( 0 2 b) Ho-# ( 0 a) ( )

state of the ion. The quantum numberdV, ,u, label the . ; .
continuum wave function of the ejected electron. The physi- AS pointed out beforeT,, does not depend explicitly on

cal state for the continuufiie., continuum equivalent to Eq. the energy of the scattered electron because of energy con-
(22)] is obtained by coupling the ejectéslow) electron with ~ Servation. Likewisd| \, does not depend explicitly on the
the ion and forming a coherent sum bh;. Thus we define energy of the scattered electron.
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single-particle atomic wave function for the active electron
andr_ (r-) is the usual lessefgreatey value for the two

We use the standard first-order distorted-wave Born apeoordinates (y,r,).

proximation (DWBA) for calculating direct knockout and

ionization amplitudes such asT((i,)Z‘()"’;b(ka,kb) and

Finally the amplitude for exciting the continuum part of
the autoionizing resonance, which is tr[eMLZ‘O“;b(ko,ka)
! Fa

(|fL‘M )i #b (ko k,). For the direct knockout amplitude we factor of Eq.(34), may be obtained as a subset of the ampli-

L Mo Mg
follow the calculations of Madisogt al.[22]. The details of

the DWBA can be found in Ref§28,29. Since the electrons
are identical particles, exchange also must be taken into a

count. From conservation of spin we know thap= u,

+upt+ wi .- As aresult, the direct matrix can be expressed

tudes contained in Eq$37) and(38). For the present prob-
lem, the amplitude for exciting the atom into a state that has
a continuum orbital with_ is needed. This amplitude is ob-

fained from Eqs(37) and(38) by settingl,= L, dropping the

sum overm,, and eliminating the spherical harmonic with

b- S0

as
Tain) 0" 2(ko,Ka Kp) = (= D)V2 #[f5, , 5, _ :
( dlr)’” ’”b( o-Ka ko) =(~1) [ Ho-#a " Hi ™ Kb (IrL,ML)ZIOYvZZ(kO’ka):(_1)1/2+#0[er,M|_5M0'#35#irfﬂb
~ 08, O ) (36)
e Ty —gL‘MLéﬂo’#béﬂi',ﬂa], (40)
wheref is the direct scattering amplitude awgdis the ex-
change amplitude. Equatig86) can be found in Refl22], 5
as well as the following expressions for direct and exchange oo 4 |_0i|0_|a_|_Rk0kakb
amplitudes: LM /_3_k0kakb 0, ol oL
. lodal ~lodabyx
f= 4 > AI—?i|oflaf|bRk0kakbd0~'a"b XCOvMLrMLCOrO'O Ylama(ka)’ (4)
/kogkakb Lol aTpm, |a| b lolalp ~0my,my
X A2 OV | (Rp)Y)my (o), (377  wherew,=k§/2 in atomic units,
4 TS 72
— i1o—1a—IpRKokbkalo b a 4 |
== ——1'07a bR roo_ 0 L1g—1,— Lpkokpk
° Ukako T Ty folalo 0 My o™ ke i R
lodplavs ([ c R
X Colog” Viam ko) Yiym(Ka). 39 XCon # Coos Yim (ko) (42
wherel = 21+ 1. The factorR, which contains all the radial V. TRIPLE DIFFERENTIAL CROSS SECTION
integrals, is defined as . : . L .
g The triple differential cross section is defined as
. I d3c 5
kokak < - _
Rl(())l:llbb: JO fo X?a(ka'rl))(lbb(kb!rz)m dEbkoakob |Ttota|(k0,ka,kb)| (43)
>

X lﬂo(rz)X?O(ko,rl)dfldrz- (39

Here y is a distorted wave. The indicesaQb represent
the incoming, faster, slower electrons, respectivélyis the

In the preceding sections thlematrix elements are defined
in such a way that the normal flux factors are already in-
cluded in theT-matrix elements. The formula for a single
resonance is

(T(rjis)ﬁioyzt;( Ko,Ka,Kp) —i va (T(r:on)ﬁi()’zt;( Ko, Ka,Kp)

(Ties)zio"l;l;( kO ’ ka ’ kb) =

It is easy to see that for a single resonance all the asymmetry with respect to energy comes from the interference between the

direct knockout amplitude and the resonance amplitude.

44
(&+i)mV* “9

For many resonances using the nonoverlapping resonance approach tf)Ethe triple differential cross section is given

by
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|Ttota|(k0-ka -kb)|2: |(Tdir)Z?:lZ§(k0-ka ,kb)|2
+ |(T$:s Zlol;t;( kOaka !kb)|2

+2 Rd(Tdir)Z?”lgs(kO vka vkb)

X(THE™ ™ 45k Ky ke) ] (45)

As can be seen from Ed45) there will be cross terms
associated with(T;es l’jio”:’(ko,ka,kb)|2 in addition to the
a

PHYSICAL REVIEW A 65 042718
Teanstant[(Thio) 24 (Ko Ka ko)
—mVE (Teon)t 2 (Ko Ka k)]
X[(TES ) 2 (Ko Ka ko)
FimV (TR 0 (Ko Ka k)] (48)

is a constant amplitude as it is not a function of the ejected-
electron energy. At a particular resonance enefgy-E, ,
the €, parameter vanishes. The contribution at the particular

cross terms with the direct amplitude. The cross terms beresonance from the cross terms becomes

tween each resonance arise from

|(Trseus Zi()"l;t;( kO vka 1kb)|2

= 2 [(Thed (Ko Ka ko) 2

+2 2 2RE(Tiegl "0 (ko ka ko)

rorldr

X (TH) A0 (Ko Ka ko) ], (46)

and when written explicitly the energy dependence of theS

cross terms are

2 2 2RE(Tiol "0 (ko ka,kp)

T Lr MM

X(TH) e 40 (Ko Ka ko)

r,r’

T
E 2 Re C-Onstzant ) (49)
r’#r |(€rr_|)7T V:‘Vr,

So the magnitude of the contribution from the other reso-
nances’ to that particular resonanageare directly propor-
tional to the magnitude of both resonances and inversely
proportional to the parametey, = (E,—E,,)/(I',,/2), which
is the ratio of the energy difference to the half-width. The
contribution is also strongly related to the phases. In our case
the second resonance has the largest amplitude and the larg-
est width so it has a big effect on the first and the third
resonance. However the first resonance is too far from the
econd and the third resonance in the sense that the energy
difference between them is much larger than the width of the
resonance itself. This makes the,;(—E,)/(I'1/2) too small
to make any significant contribution near the second and
third resonances. Similarly the third resonance has a very
small value for thel matrix (T3, .<TZ ) so it does not make
a significant contribution either.

When we introduce the mixing coefficients for the
overlapping-resonance treatment, the direct part

|(Tdir)ﬁi°"5§(ka,kb)|2 does not change. However there are

significant changes in the cross terms. At the exact resonance
energyE,=E,, Eq.(12) reduces to

’ . i ’ . 2
(Taig) 20 (ko ka kp) =iV, (Teon)ut . (Ko, Ka k)]

Tr,r’
:E 2 ZR{ . con-stant , (47)
roriér (Er+|)(€r1_|)(7TZV:CVrr)
where
. 0 MM
|(Tred) o (Ko Ka ko) 2= -
since
I|m Geff:O, (51)
Ep—E;/
lim A*(Ep)=(—1)" 5, €%, (52
Ep—E,
lim Vi=(—1)"e?V¥. (53
EbHEI”

, 50
i 'n'V:‘, 0

The Kronecker delta reduces thesum to 1; namely, the’

term. There is exactly zero contribution for the “mix” terms

at the other resonances. Consequently, the cross terms do not
contribute. This results in a relative decrease of the ampli-
tudes in our case. The second resonance is almost not af-
fected because the widths and amplitude of the first and the
third resonances are small. However there is a significant
decrease of the first resonance amplitude for all the angles,
which results in a better agreement with the experiment.
There is also a sharp minimum and maximum near the third
resonance, which will be discussed in the following section.
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VI. RESULTS 1400 — T

Martin et al. [21] have performed several coincidence Fast electron at 2°
Slow at 90°and 270°

measurements ofe(2e) for cadmium. The incident elec-

tron’s energy was held constant at 150 eV. In the final state a

fast electron was detected for scattering angles ranging be- 700
tween 2° and 15°. Slovejected electrons were detected by
two detectors separated by 180°. The ejected-electron ener-
gies ranged from 2.6 eV to 4.6 eV to scan the energy region
corresponding to thd=1 autoionizing levels of cadmium.

All the angles in this paper are defined counterclockwise
from the incident-beam direction in the scattering plane so
that the angular range is from 0° to 360°. This is different
from the angle convention used by Mart@t al. [21]. The
detectors for the slower electron are locatedéat,, and 700
Os10w— 180°. For each fast-electron scattering angle, the
slow-electron detector angk, ., is chosen in three possible

ways. It is either the momentum-transfer directi@gp, or

1400

TDCS [a,2 /Ry sr)]

Fast electron at 2°
Slow at 90° and 270°
Convoluted

Opmt— Op2, OF Oy1— Op3, Wherefp, and fp5 are the magic 0 e &aroa Rt
angles where the second- and third-order Legendre polyno- 2.6 3.0 3.4 3.8 4.2 4.6
mials vanish, respectively. The momentum-transfer direction Energy [eV]

dlepends on bo.th the Iejectﬁd-electrond err:erg};f and the ffahst- FIG. 1. Triple differential cross sectidDCS) for the fast elec-
electron scattering angle. The sum and the difference of t ffon scattered at 2° and the slow electron ejected at either 90° or
counts from the two detectors were measured for thos§7O°. The solid line in the top portion is for our present results

angles by Martiret al. [21]. ' _ based on the overlapping-resonances treatment of the problem. The
The TDCS was calculated using both the overlappingashed line is the previous results of Madisairal. [22] based on
resonances approach and the nonoverlapping-resonances g nonoverlapping-resonances treatment of the problem. The open
proach for the measured angles. The results were thegircles are the data labeled aB2 sum by Martinet al. [21]. The
summed forfg),,, and 64,,,— 180° in order to compare with bottom portion presents our results based on the overlapping-
the experimental measurement. In Fig. 1 the experimentaksonances treatment of the problem convoluted with the experi-
and theoretical results are compared for the fast-electromental energy resolution, which is 0.04 eV. The open circles are the
scattering at an angle of 2° measured counterclockwise frorfata labeled as theP2 sum by Martinet al. [21].
the incident direction. The slow electron’s energy ranges
from 2.6 eV to 4.6 eV. For this case the momentum-transfethird resonance. The solid curve in the bottom portion of Fig.
direction 6,7 varies from 320° to 325°. The data in Fig. 1 1 presents our result in the top portion of Fig. 1 convoluted
correspond to one of the slow-electron detectors settp  With the experimental energy-resolution function. Again, the
— 0p» Where 6p,=54.7°. For the energy range of the de- fast-electron scattering angle is 2° and our result is the sum
tected slow electron®y,, varies between 265° to 270°. of the slow ejected electrons detected at 270° and 90°. As
Martin et al. [21] set the two detectors aft,,=270° and can be seen, the sharp structure we find at the third resonance
f<10w— 180°=90° for the whole energy range. The solid iS Washed out because of the energy resolution. Thus the
curve in the top portion of Fig. 1 is the present overlappingﬁhafp structure near the third resonance would not be de-
resonances-treatment result and the dashed curve is the pigcted by Martinet al. [21].
ViOUS nonover|apping_resonances_treatment resu|t Of the The characteristic line Shape at the th|rd resonance reSUltS
problem by Madisoret al. [22]. The open circles are the from the interference between the direct and resonance parts
summed experimenta| results of Martm al. [21] The ex- of theT matriX as We” as the phase diﬁ:erence betWeen the
periment is normalized at the secofidrges} resonance en- Mixing coefficientsA,(E) and A3(E) near the third reso-
ergy E,=3.81 eV to the present calculation. From the figurenance. As is shown in the Appendix, the mixing coefficient
it can be seen that the present approach predicts the height f(E) is proportional to V¥, which is defined as
the first resonance better than Madisdral.[22] and thereis e '*r\T',/27. In Fig. 2, e'*'A (E) is plotted for the three
some sharp structure near the third resonance whereas thergtoionizing-resonance states as a function of energy for the
was no sharp structure in the Madisenhal. [22] calcula-  energy region of interest. The functiogl®A,(E) equals
tions. The sharp structure near the third resonance is chara¢c—1)" at the resonance corresponding tand it equals zero
teristic of this approach and appears in all of the results. at the other resonances. The 2 resonance has the largest
The experimental resolution was given by Maréhal.  affect on the TDCS. This is becaukeg is three times larger
[21] as 0.04 eV. The width of the third resonance is quitethanI’; and over 46 times larger thdh, (see Table)l It is
narrow ("3=0.003 eV). Therefore we decided to convolute seen from Fig. 2 tha¢'?2A,(E) changes sign as the energy
our results with the experimental energy-resolution functioncrosses the third resonance. The rapid changg %, (E)
in order to ascertain its affect on the third resonance since thigom nearly +1 to almost—1 near the third resonance en-
experimental results do not indicate any sharp structure at thergy leads to constructive and destructive interference be-
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™ 1300 T T T T T T T T
W
: Fast electron at 3°
: Slow at 90° and 270°
[} —
N ). &
<+ AN IR o
:Erf' 2}
& = 650
) [ —
e 1 | ?L 8
_1 L tea e ) ) i E
26 30 34 38 42 46
Energy [eV]
FIG. 2. Plot ofe' %A (E) as a function of energy for the three
resonances. Resonance energiesare marked as vertical dashed 02.6
lines. The solid line ie'#2A,(E), which is the mixing coefficient
for the second resonance. The dotted line='iéA,(E) and the Energy [eV]

dashed-dotted line ig' #2A;(E). . . . .
ashed-dotted line ie""As(E) FIG. 4. Triple differential cross sectid@DCS) for the fast elec-

he di . hich i tron scattered at 3° and the slow electron ejected at either 90° or
tween the direct and resonance parts offitmatrix, which is 270°. The solid line is for our present results based on the

manifested in the characteristic line shape seen at the thirglerlapping-resonances treatment of the problem. The dashed line
resonance. For energies slightly less than the third resonange for the previous results of Madisoet al. [22] based on the
the interference is constructive and for energies slightlynonoverlapping-resonances treatment of the problem. The open

greater than the third resonance energy the interference gcles are the data labeled a3 sum by Martinet al. [21].
destructive. The slight rise in the TDCS as the ejected-

electron energy approaches the third resonance is due to coifing angle becomes larger. For example, in Fig. 9 the scat-
structive interference. After the convolution of our resultstering angle is 9° and the data were taken at angles corre-
with the experimental resolution function there is still a smallsponding to a zero of the third-order Legendre polynomial,
“bump” remaining, which originated from the constructive fp3=39.2°. Thus the detectors for the slower electron were
interference. set atfgow= OuT— Op3 and Oy 1— Op3— 180°. At this scat-

Figures 3—9 show our results for a sample of differenttering angledr varies from 288.8° to 291.3° corresponding
scattering angles. Similar to Fig. 1, in the bottom part ofto a slow electron of energy 2.6 eV and 4.6 eV, respectively.
Figs. 7 and 9 we show our present results convoluted witfhus 60, varies from 249.6° to 252.1°. The average value
the experimental resolution function. Just as in Fig. 1 thedf 65,,,~251°. Therefore, the two electron detectors were
sharp structure predicted at the third resonance is no longéet at 251° and 71° for the data in Fig. 9. It can be seen that
apparent in Figs. 7 and 9 after convolution with the experi-the previous results of Madisaet al.[22] yield a very poor
mental resolution function. Overall the present results give dit to the ratio of the peak heights. Martiet al. [21] have
better fit to the ratio of peak heights, especially as the scatlso

650 T T T T T T T T T
2000 T T T T T b T T T
Fast electron at 6°
Fast electron at 3° | Slow at 116° and 296°
Slow at 130°and 310° =
— —
% o
(2=
& S 8%
«, 1000 S,
S, n
()
8 =
a
e
0 i R 486
2.6 3.0 3.4 3.8 42 46
Energy [eV] Energy [eV]
FIG. 3. Triple differential cross sectidiiDCY) for the fast elec- FIG. 5. Triple differential cross sectigiiDCS) for the fast elec-

tron scattered at 3° and the slow electron ejected at either 130° dron scattered at 6° and the slow electron ejected at either 116° or
310°. The solid line is for our present results based on the296°. The solid line is for our present results based on the
overlapping-resonances treatment of the problem. The dashed lireverlapping-resonances treatment of the problem. The dashed line
is for the previous results of Madisoet al. [22] based on the is for the previous results of Madisoet al. [22] based on the
nonoverlapping-resonances treatment of the problem. The opemonoverlapping-resonances treatment of the problem. The open
circles are the data labeled as 3MT sum by Maetiral. [21]. circles are the data labeled as 6MT sum by Maetiral. [21].

042718-9



M. M. TABANLI, J. L. PEACHER, AND D. H. MADISON PHYSICAL REVIEW AG65 042718

320 T T T T T T T T T 120 T T T T T ) T T T
Fast electron at 6° d Scattered electron at 9°
Slow at 62° and 242° | | Ejected at 56° and 236°
% %
B B
& &
«, 160 .
=, -,
8 8
a a
=] =]
2.6
Energy [eV] Energy [eV]
FIG. 6. Triple differential cross sectidDCS) for the fast elec- FIG. 8. Triple differential cross sectid@DCS) for the fast elec-

tron scattered at 6° and the slow electron ejected at either 62° dron scattered at 9° and the slow electron ejected at either 56° or
242°. The solid line is for our present results based on the236°. The solid line is for our present results based on the
overlapping-resonances treatment of the problem. The dashed lireverlapping-resonances treatment of the problem. The dashed line
is for the previous results of Madisoet al. [22] based on the is for the previous results of Madisoet al. [22] based on the
nonoverlapping-resonances treatment of the problem. The opemonoverlapping-resonances treatment of the problem. The open

circles are the data labeled aP® sum by Martinet al.[21]. circles are the data labeled aP® sum by Martinet al. [21].
500 —————————————— 20— ———————————
Fast electron at 6° v Fast electron at 9°
Slow at 77° and 257° Slow at 71° and 251°
250 100
B B
& &
o 900 o 200
(&) (&)
a a
E= Fast electron at 6° E= Fast electron at 9°
Slow at 77° and 257° Slow at 71° and 251°
Convoluted Convoluted
250
0 R - (% 0 il L Wl
2.6 3.0 34 3.8 4.2 4.6 2.6 3.0 34 3.8 4.2 4.6
Energy [eV] Energy [eV]
FIG. 7. Triple differential cross sectidiiDCY) for the fast elec- FIG. 9. Triple differential cross sectigiiDCS) for the fast elec-

tron scattered at 6° and the slow electron ejected at either 77° dron scattered at 9° and the slow electron ejected at either 71° or
257°. The solid line in the top portion is for our present results251°. The solid line in the top portion is for our present results
based on the overlapping-resonances treatment of the problem. Thased on the overlapping-resonances treatment of the problem. The
dashed line is for the previous results of Madisdral. [22] based  dashed line is for the previous results of Madisiral. [22] based

on the nonoverlapping-resonances treatment of the problem. Then the nonoverlapping-resonances treatment of the problem. The
open circles are the data labeled &36sum by Martinet al.[21]. open circles are the data labeled @39sum by Martinet al.[21].

The bottom portion presents our results based on the overlappinghe bottom portion presents our results based on the overlapping-
resonances treatment of the problem convoluted with the experkesonances treatment of the problem convoluted with the experi-
mental energy resolution, which is 0.04 eV. The open circles are thenental energy resolution, which is 0.04 eV. The open circles are the
data labeled as theF8 sum by Martinet al.[21]. data labeled as thePB sum from Martinet al. [21].
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calculated the TDCS. Their results also fail to give a goodcontinuum wave function. However since the physitall

ratio of the peak heights for large angles. Neither the preserdontinuum state is constructed as a coherent sum, that sum as
results nor the previous results of Madisenal. [22] have  well as the spatial integral affects the phase. We conclude
quite the same shape as the experimental results. Howevertitat a full theoretical calculation of the phase of the interac-
is interesting to note that the more elementary approach afon strengthv, = (45| V(1,2)®}) is needed to determine the
Madisonet al. [22] tends to predict the width and the shape shape better.

of the second resonance better than the present approach.
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If the resonances are treated as overlapping resonancesssions with N. L. S. Martin. This project was supported by
we find that the mixing coefficientd,(E) are identically = NSF.
zero at all resonances excaptTherefore there is no inter-
ference between the resonances at an exact resonance energy APPENDIX
[see Eqs(17) and(18)]. Thus the TDCS value at the exact
resonance energy is the same as the value obtained for a If we use theL M, ,S,Ms,E quantum numbers to label
single resonance. However there is interference between tfige continuum states, there are two types of continuum
overlapping resonances for energies not equal to an exagtates, namely, total-spin-singlet and -triplet states. t$ase
resonance energy. For the problem considered here, the sé@nstructed from the spin of the igw and the spin of the
ond resonance dominates the spectrum. The third resonaneiected electroru,. Sincel;,,=0, L corresponds to the
is very weak compared to the second resonance and th@bital angular momentum of the ejected electlgn How-
causes the second mixing te@if2A,(E) to have a nearly ever anyL,M,,S Ms,E state can be written in terms of the
step-function behavior at the third resonance. This behaviogoupled L,S,J,M;,E states. These states are constructed
appears as constructive and destructive interference as tfi@m the L,M,S,Ms states via Clebsch-Gordan coeffi-
energy passes through the third resonance energy, which reients. Since we are dealing with autoionization of a specific
sults in a very sharp characteristic line shape at the third=1 state, theJ states other thad=1 do not interfere with
resonance. The characteristic line shape results from the béhe discrete part of the wave function. Further, using a co-
havior of the mixing terme'?2A,(E) and the relative phases. herent sum on those indices, we can construct a sihglate
Consequently the characteristic line shape is not necessarignd express it withto and u, indices. This will correspond
a general feature of the many-overlapping-resonances tred® the continuum part of the autoionizing stgis. (30)]. We
ment. For systems with different relative phases the effecassume that there is one type of continuum state as a function
would be different. However if we convolute our results with of energy for our autoionization problem. It is convenient to
the experimental resolution function quoted by Masiral.  use theK=N formalism of Davis and Feldkan{j] with the
[21], the sharp structure at the third resonance dissappeansumber of continuum states equal to orle=(l) as men-
The only remnant after the convolution is a small “bump” tioned. The fundamental equation is E85) of [5], namely,
near the third resonance. .

Near the first resonance, the TDCS calculated using the [Homt Fom= EdnmlAm* Z(E)ViVinAn=0 (A1)
overlapping-resonances treatment is always smaller than the
TDCS calculated using the nonoverlapping-resonances treals
ment. This is due to the fact that the second resonance con- [Hom+ Fom—ESnmlAn+ Z(E)TmAm=0,  (A2)
tributes near the first resonance in the nonoverlapping-
resonances treatment, whereas in the overlapping-resonancelsere
treatment it does not contribute. Since the width of the sec-
ond resonancé’, is large, this contribution can be signifi- 'm=VinVikm (A3)

cant. As a result the present approach yields a much better

peak-to-peak ratio between the first and the second resé the interaction matrix. The Einstein summation convention
nances than was found in Madisenal. [22] is used. The solution of this equation gives the mixing coef-

Neither our results nor the previous results of Madisonfi¢l€nts A.(Ey). The matrixF,y, is the energy-shift matrix.
et al. [22] yield a good fit to the shape of the second reso-Since experlmer)tal values are used for the resonance energy
nance. This shape is mainly determined by the phase of th@"d theLS coefficients of each resonanc®able ), we as-
second resonanag?2. Different approaches for calculating SUMe that the matrikl,,+Fnp, is diagonalized and the ef-
continuum wave functions do not significantly change thef€ct of the energy shift is already included in the energy of

magnitude of the I( ML)Z‘O“;b(kO,ka) amplitude. However the resonances. Thus we assume
’ Pa

different continuum waves would have different phases Homt Fam=Endnm- (A4)
which determine the shape. Another explanation for the dis-
crepancy in the shape is that a very basic approximation was In the main textV, was defined in Eq(6) as
used in Eq(6) to obtain the phase of the interaction strength
V, . In that approximation we assumed that the discrete wave V.= el /i (A5)
function is real and the phase should come only from the r 27
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For theV, obtained from thd", values in Table I, it is pos- Furthermore, by multiplying this vector by the signum func-
sible to separate the contribution from the singlet part andion, we can still keep the normalization and satisfy the ma-

the triplet part as trix equation.
This definition ofZ(E) in Eq. (A10) corresponds to Eq.
Fn:1_‘singlet,n+Ftriplet,n- (AG) (60) in Fano’s papefl], name')/,
This will give rise to a further separation & to Vingietr V2
and Vyipier,r» Which may be labeled a¥;, and Vy,. The T _ o VN o 1
many-discrete-states and many-continuum-states formalismz(g) tan(4)= En: tar(An)—En: E-E, _En: €'
of [5] should be used. However this separation does not af- (A12)

fect the interaction matriX',,,,. Thus it does not change the
mixing coefficientsA,(Ey). Therefore we can use the=1

formalism of[5]. Fork=1 there is no sum ok in Eqg. (A3). -1
Thus we suppress the=1 index and define Z(E) 7= ( E 1/en) , (A13)
n
V,=Vi, (A7)
and the interaction matrix becomes ean_ En_ (A14)
r,/2
[om= ilcnvlm:V: Vin. (A8)
With k=1, in the basis of the eigenstates of the Hamiltonian_ The transition rate is discussed in Sec. V of Fano's paper.
plus the energy shift, EJA2) can be written as The wave function that includes both discrete and continuum
parts is expressed in E(pO) of Davis and Feldkamp’s paper
E-E, 0 -~ 0 A, as
0 E-E, --- 0 A,
‘ - ‘ ' [W(E)=C(E) 2 An(E)| )+ Z(E)Valt(En)].
0 0 -+ E-E,/ \A, n
(A15)
l_‘11 F:L2 e Iﬂlm Al
F21 I“22 e I‘|2m AZ .
=Z(E)| . ] ) , (A9)  The indexk and the energy dependence of tke,(E)) and

|##(E)) states used in their paper has been dropped. The co-

Pt Tme 0 Tm/ | An efficient A,, is the nth element ofA(E) in Eq. (A11). We
chooseC(E) such that

wherem labels a resonance. The elements of the normalized
vector, which satisfies this equation, gives the mixing coef-
ficients A (E,). Due to the symmetry of the matrix there is . _
only one solution satisfying this matrix equation. If we take C(E) = 77; AnBVH[Z(BE)/m—i],  (A16)
1 & VA
Z(E) i1 (E-Ep)’

(A10) and substituting it into Eq(A15) we have

then we find that the solution vector given by

2 A(B)| o) +Z(E) 2 An(E)Vo|(En)
|V (E))= :
(A1) [Z(E)/w—i]; 7ALE)V,

ViI(E-Ey)
VE/(E—E,)

A(E)=N(E)

' (A17)
V*I(E—Ep)

satisfies the matrix equation. This corresponds toAR&) SinceA,, appears in both the numerator and the denominator,
used in Eq.(16). It can also be found in Fano’s paper. The the normalization factor will cancel out and will not affect
factor N(E) is a normalization factor. It is not necessary tothe calculated TDCS. That allows us to construct mixing
normalize this vector because it appears in both the denomeoefficients that are continuous, with one of them real. The
nator and the numerator of the final formula for thenatrix. ~ T-matrix element for the resonance process then becomes
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; A:<E><¢nITIO>+Z(E>; A% (E)VE(Y(E,)|T|0)
(W(E)|T|0)= . (A18)
[ Z(E)lw+i]>, A (E)V*

When we add and subtract the term

[Z(E>/w+i]§ AF(E)VE(H(E,)|T|0)

, (A19)
[Z(E)/m+i]12 AX(E)VE

we obtain

2 A% (E)VE(y(E,)|T|0) 2 A:<E><<I>H|T|0>—iw§ A% (E)VE(y(E,)|T|0)
(¥(B)|T|0)= + . (A20)
> ANE)VS 7l Z(E) m+i1>, AX(E)VE

The significance of this equation is that in Fano’s formulatig contains all the continuum states except the one that
interferes with the discrete wave function. By taking out that part from the resoflamegrix and including it in the definition

of T4i, we obtain an expression wheFg;, contains all the continuum wave functions. Although in this f&pAy; (E)V}; does

not cancel out to give exactly the appropriate continuum wave function, near resonances it will cancel out. Also at very large
energies the deviation becomes significant. However, in our region of interest it is a very good approximation and is the proper
way to express direct ionization. By defining

Vett= En: An(Ep) Vi, (A21)

-1
eeffz(; 1/en) (A22)
and including the angular distribution functioGr()ZL"’;b(ko,IZa,Rb) we obtain Eq.(13), namely,

2 (G (Ko ka k) AT (Bp) 7, 4, (Ko Ka) 1 VE L, (Ko Ka) ]

mixy 4 » M fota 8 F Hota
iMb —
(Tres MO'#a(ko,ka,kb) [€eriti]mVess . A2
[1] U. Fano, Phys. Re\l24, 1866(1961). [11] O. Samardzic, A. S. Kheifets, E. Weigold, B. Shang, and M. J.
[2] U. Fano and J. W. Cooper, Phys. R&87, 1364(1965. Brunger, J. Phys. 28, 725(1995.
[3] B. W. Shore, Rev. Mod. Phy&89, 439 (1967). [12] O. Samardzic, L. Campbell, M. J. Brunger, A. S. Kheifets, and
[4] D. G. McDonald and A. Crowe, J. Phys. 25, 4313(1992. E. Weigold, J. Phys. B0, 4383(1997.
[5] L. C. Davis and L. A. Feldkamp, Phys. Rev. B5, 2961 [13] G. Stefani, L. Avaldi, A. Duguet, and A. Lahmam-Bennani, J.
(1977. Phys. B19, 3787(1986.
[6] V. V. Balashov, S. S. Lipovetsky, and V. S. Senashenko, Zh[14] Z. P. Zhong, S. L. Wu, R. F. Feng, B. X. Yang, Q. Ji, K. Z.
Eksp. Teor. Fiz.63, 1622 (1972 [Sov. Phys. JETF6, 858 Zou, and J. M. Li, Phys. Rev. A5, 3388(1997.
(1973]. [15] J. W. G. Thomason and B. Peart, J. Phys3BL201 (1998.
[7] V. V. Balashov, S. E. Martin, and A. Crowe, J. Phys.2B, [16] H. G. Teng, J. Phys. B3, L553(2000.
L337 (1996. [17] M. Khouilid, S. Cherkani-Hassani, N. Adimi, S. Rachafi, and
[8] A. S. Kheifets, J. Phys. B6, 2053(1993. P. Defrance, J. Phys. B4, 3239(2001).
[9] A. Pochat, R. J. Tweed, M. Doritch, and J. Peresse, J. Phys. BL8] N. L. S. Martin, J. Phys. B3, 2223(1990.
15, 2269(1982. [19] N. L. S. Martin, D. B. Thompson, R. P. Bauman, and M.
[10] D. G. McDonald and A. Crowe, J. Phys. 25, 2129(1992. Wilson, Phys. Rev. A0, 3878(1994.

042718-13



M. M. TABANLI, J. L. PEACHER, AND D. H. MADISON PHYSICAL REVIEW A65 042718

[20] N. L. S. Martin, R. P. Bauman, D. B. Thompson, M. Wilson, (1973.

and K. J. Ross, J. Phys. B, 4457(1996. [26] D. H. Madison and W. N. Shelton, Phys. Rev. A 514
[21] N. L. S. Martin, R. P. Bauman, and M. Wilson, Phys. R&9, (1973.

2764(1999. [27] D. H. Madison, K. Bartschat, and R. Srivastava, J. Phy24B
[22] D. H. Madison, V. D. Kravtsov, J. B. Dent, and M. Wilson, 1839(199).

Phys. Rev. A56, 1983(1997). [28] D. H. Madison, R. V. Calhoun, and W. N. Shelton, Phys. Rev.
[23] M. Wilson, J. Phys. BL, 736 (1968. A 16, 552 (1977.
[24] N. L. S. Martin (private communication [29] D. H. Madison, V. D. Kravtsov, S. Jones, and R. P. McEachran,
[25] D. H. Madison and W. N. Shelton, Phys. Rev. A 499 Phys. Rev. A53, 2399(1996.

042718-14



