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Nonrelativistic Levinson’s theorem in D dimensions
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The Levinson theorem for the Schilinger equation with a spherically symmetric potentiaDiimensions
is uniformly established by the Sturm-Liouville theorem. It is shown that the Levinson theorem for the cases
without a half bound state does not depend on the spatial dimeBsioamely, the phase-shi&(0) of the
scattering state with angular momentlirat zero momentum is equal to the total numheof bound states
multiplied by 7. When a half bound state occurs the Levinson theorem may be modified.

DOI: 10.1103/PhysReVvA.65.042717 PACS nuniber03.65.Nk, 73.50.Bk

I. INTRODUCTION Il. SCATTERING STATES AND PHASE SHIFTS

The Levinson theorenfi] as an important theorem in Let us consider th®-dimensional Schidinger equation
guantum scattering theory establishes the relation between
the total numben, of bound states with angular momentum
| and the phase shif§;(0) of the scattering state at zero
momentum for the Schainger equation with a spherically
symmetric potentiaV/(r) with the boundary conditionfsl, 2]

2

—;l—MVZD+V(r))‘P(r)=E‘I’(f), @

which is invariant in spatial rotation. Followin@3], sepa-
rating the angular variables from the wave functions

=~ (D-1)/
f1r|V(r)|dr<oc, P(n)=r " CYER)Y, 1 (61-0p-1), (3
0

one obtains the radial Schitimger equation as

J’wr2|V(r)|dr<oc_ (1) d?> 1(1+D-2)+(D-1)(D—-3)/4
1 ﬁ_ r2

R(r)

The first condition is necessary for the nice behavior of the )
wave functions at the origin and the second one is required = ﬁ[E—V(r)]R(r), (4)
by the analytic property of the Jost function. Newt(see
pages 438—439 if2]) pointed out two examples where the
Levinson theorem is violated when the second condition i
not satisfied.

Since 1949, the Levinson theorem has been proved b
different methods and generalized to the different equations V(r)=0,
and potentials [2—-22]. With the interest of higher-

dimensional field theory recently, we have a try to carry outyherer,, is a sufficiently large radius. The general case will

the Levinson theorem for the Schlinger equation irD di-  pe studied in Sec. VI. Similar to our previous wof&€], we
mensions by the Sturm-Liouville theore(8BLT), which is  introduce a parametev for V(r)

the main purpose of this paper.
This paper is organized as follows. We discuss scattering V(r,N)=A\V(r), V(r,1)=V(r). (6)

states and bound states for tBedimensional Schidinger

equation in Sec. Il and Ill, respectively. SLT is studied in Accordingly, Eq.(4) can be modified as

Sec. IV. The nonrelativistic Levinson theorem Ihdimen-

which is a real equation.
S For simplicity, we first study Eq(4) with a cutoff poten-
9al

when r=ry, ©)

sions is established in Sec. V. The general case is discussed #  (1-1+D/2)2—1/4
in Sec. VI. — 5 Ri(r,\)
or r
*Electronic address: dongsh2@yahoo.com = Z_M[E_V(r M) IR(FN). (7)
TElectronic address: mazg@sun.ihep.ac.cn h?

1050-2947/2002/68)/0427176)/$20.00 65042717-1 ©2002 The American Physical Society



SHI-HAI DONG AND ZHONG-QI MA PHYSICAL REVIEW A 65 042717

We now solve Eq(7) in two regions and match the loga- andR,(r,0) in Egs.(9) and(10) are real. A multiplied factor
rithmic derivatives of the radial functions B§ on R,(r,0) is not important.

In the region (y,*), we haveV(r,\)=0. ForE>0, the

A(EN)= 1 dR(rN) combination of two oscillatory solutions to E¢r) can al-
"= R(r,N) ar e ways satisfy the matching conditioi®) so that there is a
0 continuous spectrum
1 OIR(r,N)
- Ri(r,N)  or —_ ® Ri(r,\)=(mkr/2)Yqcoss(k,\)J -1 pra(Kr)

—sinG(K,N)Nj-14pp(kr)]
From Eq.(1) there is one convergent solution to E@) in

the region[0,ro]. WhenV(r,0)=0 this solution is ~coa{kr— (2|+D—_3)77+ 6i1(k,\)
4 ’
Ri(r,0)=(mkr/2)Y23, 1, pp(kr), ©)
when r—o, (11

for E>0 andk=(2uE)Y%#, and

R(r,0)=e i(2-2+D)m/4 /2)123 iKr). where N, (kr) is the Neumann function. Althougi((r,\)
(r.0)=e (it 12)731-1+pral1 €T) (10  does not depend an in the region (o,), through Eq.(®),
R/(r,\) and 6,(k,\) depend on\. In fact, we can obtain
for E<0 andx=(—2uE)Y%#. J,(x) is the Bessel function from Eq. (8)

Ji-1+pra(Krp)

tand(k,\)= ————
M) =R olkro)
y A(EN) =K1, ppa(kro)/di—14pa(Kre) = 1/(2r o) 12
AI(EN) —KN/_ 1 pa(Kro) /N 14 pra(Kro) = 1/(2r )
|
5(k)=46(k,1), (13) It is worth paying some attention to the solutions wih

=0. If A|(0,1) (zero momentum and=1) is equal to (3
where the prime denotes the derivative of the Bessel func=2l—D)/(2r), it matches a solution
tion, the Neumann function, and later the Hankel function
with respect to their arguments. It is found from ER) that R(r,1)=r@=2-D)2 o (ro,), (16)
8,(k,\) is determined up to a multiple of due to the period

of the ttz_:mg(;,-nt tfr:JnctLon. Fo;_f;:onvenience, we may use th(f'rom which we know the solution describes a bound state for
convention for the phase shifts |>2—D/2 and a half bound state fo=2—D/2.

6(k)=0, when V(r)=0, (149
IV. STURM-LIOUVILLE THEOREM

which implies thatd) () =0 [24]. Since Eq.(7) is a Sturm-type equation, there exists SLT,

which shows that the logarithmic derivative of wave func-

IIl. BOUND STATES tions is monotonic with respect tB [25] and provides a
There is only one convergent solution to Ha) in the E)werful tool for.provmg the Levinson theo&am. Denote by
region (o,») for E<0 Ri(r,\) the solution to Eq(7) for the energyE
Ri(r,\)=e' PRz j2)V2HD, ) o(ikr)~e ™ 2 (I-1+D/2)2—1/4]_
— > Ri(r,\)
ar r
when r—oo, (15
2u — _
where H{!(x) is the Hankel function of the first kind. In = ﬁ[E—V(W\)]RN,)\)- 17

fact, Ri(r,\) in Eq. (15) does not depend ox. The match-

ing condition(8) may be satisfied only for some discrdie .

where the bound states appear. Therefore, there exists a digultiplying Eqg. (7) and Eqg.(17) by R/(r,\) and Ri(r,\),
crete spectrum foE<O. respectively, and calculating their difference, we have
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(9R|(r,)\)

IR(r,\)
r ar

Jd _
E R|(r1)\)&—_R|(r1)\)

2u — _
=—?(E—E)R|(r,7\)R|(r,>\)- (18)
From the boundary condition, both solutiofg(r,\) and

R(r,\) vanish at the origin. Integrating E¢L8) from 0 to
ro, we obtain

1 {R( Maﬁ.(r,x) R )\)aR|(r,)\)
—— r, _— r, B —
E-E ! ar ! ar f=rg-
z“froﬁ( MR(r\)d
=—— r, r,n)dr.
n2Jo l
Taking the limit asE to E, we have
INEN) 9] 1 RN
JE  OE|R(r,\)  ar |
I'—I'O
2 r
=——“f °Ri(r,\)2dr<0. (19)
ﬁle(r01)\)2 0
WhenE=%2k?/(2u) is larger than zero and tends to zero,
we have
A(EN)=A(0N)—c?k?+---, ¢c?=0. (20

Similarly, from the boundary condition th&(r,\) tends
to zero at infinity forE<O0, we have

a{ 1 0R|(r,)\)}
JE r=rg+

Ri(r,N)  or

2 o
Z%f R|(I’,)\)2dr
h R|(r01)\) "o

>0. (21)

This is another form of SLT25]. As E increases, the
logarithmic derivative of the radial function aty,— de-
creases monotonically, but that g+ for E<O increases
monotonically. ForE<0, because both sides of E@®) are

_ ,n_(kro)2|72+D
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monotonic asE changes, the variation of\(O\) as A\
changes determines the number of bound states.

V. LEVINSON THEOREM

In this section we will show from SLT that bot (0,\)
and n; are related with the variation oA;(O\). We first
study the relation betweeam andA,(0,A) when the potential
changes. FOE<O0, from SLT the logarithmic derivative of
the radial function at is monotonic with respect t. From
Eq. (15) we obtain the logarithmic derivative

( 1 IR(r,\)
Ri(r,N)  or

r=rg+
_ iHY, L ppali ko)’ 1
HI(£)1+D/2(iKrO) 2rg

3—-2I-D
= 2rg

when E~O0
(22)

— 0

when E— —ox,

which does not depend ox. On the other hand, when
=0 we obtain from Eq(10)

A|(E,0)=(

1 aR|(r,0))
R(r.0 o | _

-0

ik _1ipplikTo) 1

J-1ipplicrg)  2rg
2l1-1+D
_ when E~O
= 2rg (23
o0 when E— —ox,

It is evident from Eqs(22) and(23) that when\ =0 and as
E increases from- to 0, there is no overlap between two

variant ranges of two logarithmic derivatives such that there

is no bound state except for the casés00 andD =2 where
a half bound state occurs Bt=0.

Second, we study the relation betwedi(O\) and
A;(O\) when the potential changes. TABEO\) is the limit

of §,(k,\) ask tends to zero. Therefore, we are interested in

d,(k,\) at a sufficiently small momentuk k<1/rg. In this
case we obtain from Ed12)

A(ILN)—(21=1+D)/(2rg) (243

tand,(k,\) =
(kM) 22=24D1 (| + D/2)T (I — 1+ D/2)

when|>2-D/2,

A(ON)—c?k?— 1-

3-21-D 2(krg)? ’
(2l+D-3)(21+D—4)

2rg
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50N = —7T(kr0)2 50N = T
tand;( ,)\)—T tand( ,)\)—m
- 1
% AI(O,)\l) 3/(2r0) , AI(O’)\)_CZkZ_Z_rO[l_(krO)Z]
A(ON)—c?k?+ F[1+2(kr0)zln(kr0)] X 1 5T
0 A|(0,)\)_C2k2— 2—[14'7}
(24b) o n(kro)
whenl=2-D/2 (D=4 andl=0 orD=2 andl=1), (249
A(ON)—1/rg
ta”‘sl(k*’\):_(krO)A(O)\)_Czkz+k2r (249 \whenl=1-D/2 (D=2 andI=0). Likewise, we can also
ne 0 obtain from Eq.(12) that §,(k,\) increases monotonically as
whenl=(3-D)/2 (D=3 andl=0), and A(E,\) decreases
|
ISk [ —8rgco 6,(k,\)

= <0, 25
IAEM ar{[2r A (EN) — 1IN| 14 pra(Kro) = 2KI N/, oK)} 29

wherek=(2uE)Y%4.

Since Eq.(7) is analogous to that of two-dimensior(@D) cas€]20], the analysis is very similar to that {20]. The reader
is strongly suggested to refer to our previous wdrk@|. Repeating the proof carried out [20], we can obtain the nonrel-
ativistic Levinson theorem iD dimensions for noncritical cases

5|(0): nym. (263)
Similarly, for the critical casé=2—D/2 andl=(3—D)/2, it should be modified as

(npt1)m, whenl=1, D=2, orl=0, D=4

0=\ 1/2)m, whenl=0, D=3,

(26b)

when a half bound state occurs. The Levinson theorem giveRquation(7) thus becomes
in Eq. (26) coincides with the previous results in 2D and 3D.
&2R|(r A)

VI. DISCUSSION ar?

2uE  1v¥—1/4
52 N r2

R(r,\)=0, r=rg.

We now discuss the general case where the potewidl (29
has a tail atr >r,. Letrq be so large that only the leading |f ,2<0, there are infinite number of bound states. We will
term inV(r) is concerned in the regiorm {,) not discuss this case as well as the case with0 here.
When »?>>0, we taker>0. Some formulas given in the

ﬁZ . . .
R previous sections can be obtained through replaclrgl(
vi(r) Z,ubr , when r—e, @7 +D/2) by v. Equation(22) becomes
whereb is a nonvanishing constant ands a positive con- 1 JR(r,\) CikH (kg1
stant, not necessarily to be an integer. From &g.n should R(r,\) or - HD(i xr o) 21,
be larger than 3. However, we are also interested in the r=fo* v 0
modification of the Levinson theorem far=2, in which 1—2p
Newton [2] found two examples where the Levinson theo- or when E~O0
rem is violated. = 0
Whenn=2, we define — 0 when E— —x,
(30)
v>=(1—1+D/2)%+b. (28)  The scattering solutiongl 1) in the region (,,*) become

042717-4



NONRELATIVISTIC LEVINSON'S THEOREM IND . ..

[arKkr ]
R|(I’,)\)= T{Cosyh(ki)\)‘]u(kr)_SIn nl(ki)\)Nu(kr)}

~sin(kr—g+g+ m(k,N) |, when r—oo,
(31
The 6,(k) can be thus calculated from(k,1)
8,(k)=n(k,1)+ (21 =2+ D — 2v) /4. (32)

n(k,\) satisfies

J,(krg)
tanm(k,)\):ﬁ

A(EN)—kJ(krg)/J,(krg)—1/(2rg)
X ;
A(E,N)— KN (krg)/N,(krg) —1/2r¢)
(33
and it increases monotonically &s(E,\) decreases
dam(Kk,\)
IA(EN) |,
—8rgco 7(k,\)
= go-
m{[2r A /(E,N) — 1IN, (Krg) — 2KroN! (krg)}?
(34)

For a sufficiently smallk, the asymptotic formulas of
tan#,(k,\) can be obtained from E@24) through replacing

| by v+1—D/2, except for the cases o<Ov<<1/2 and 1/2

<wp<1. For the latter cases we have

PHYSICAL REVIEW A 65 042717

tana,(k,\)
 —m(krg)®
22"y (v)?
y AON) = (v+1/2)/rg
1-2v 2wco kro\ 2"
A(ON)—c?k?— i 1(WT)(—O)
2rg rol(v)? | 2

(39

Repeating the proof of the Levinson theoré?6), we obtain
the modified Levinson theorem for the noncritical cases

8(0)=(4n,+21—2+D—2v) /4. (363

For the critical case wheré\(0,1)=(—v+1/2)/r,, the
modified Levinson theoreni26g holds for v>1, but it
should be revised for@v<1 as

8,(0)=(4n,+ 21 —2+D+2v)w/4. (36b)

When n>2, for any arbitrarily given smalk, one can
always find a sufficiently large, such thafV(r)|<e/r? in
the region (g,%). Since v?’=(1—1+D/2)%+e~(1—1
+D/2)?, the Levinson theorer(26) holds for this case. It is
easy to check, similar to that done[i20], that two examples
in D=3 pointed out by Newtoiisee pages 438—-439 [g]),
where the Levinson theorer(26) is violated, satisfy the
modified Levinson theoren(B6).
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