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The Levinson theorem for the Schro¨dinger equation with a spherically symmetric potential inD dimensions
is uniformly established by the Sturm-Liouville theorem. It is shown that the Levinson theorem for the cases
without a half bound state does not depend on the spatial dimensionD, namely, the phase-shiftd l(0) of the
scattering state with angular momentuml at zero momentum is equal to the total numbernl of bound states
multiplied by p. When a half bound state occurs the Levinson theorem may be modified.
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I. INTRODUCTION

The Levinson theorem@1# as an important theorem i
quantum scattering theory establishes the relation betw
the total numbernl of bound states with angular momentu
l and the phase shiftd l(0) of the scattering state at zer
momentum for the Schro¨dinger equation with a sphericall
symmetric potentialV(r ) with the boundary conditions@1,2#

E
0

1

r uV~r !udr,`,

E
1

`

r 2uV~r !udr,`. ~1!

The first condition is necessary for the nice behavior of
wave functions at the origin and the second one is requ
by the analytic property of the Jost function. Newton~see
pages 438–439 in@2#! pointed out two examples where th
Levinson theorem is violated when the second condition
not satisfied.

Since 1949, the Levinson theorem has been proved
different methods and generalized to the different equati
and potentials @2–22#. With the interest of higher-
dimensional field theory recently, we have a try to carry o
the Levinson theorem for the Schro¨dinger equation inD di-
mensions by the Sturm-Liouville theorem~SLT!, which is
the main purpose of this paper.

This paper is organized as follows. We discuss scatte
states and bound states for theD-dimensional Schro¨dinger
equation in Sec. II and III, respectively. SLT is studied
Sec. IV. The nonrelativistic Levinson theorem inD dimen-
sions is established in Sec. V. The general case is discu
in Sec. VI.
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II. SCATTERING STATES AND PHASE SHIFTS

Let us consider theD-dimensional Schro¨dinger equation

S 2
\2

2m
,D

2 1V~r ! DC~r !5EC~r !, ~2!

which is invariant in spatial rotation. Following@23#, sepa-
rating the angular variables from the wave functions

C~r !5r 2(D21)/2Rl~r !Yl D21••• l 1
~u1•••uD21!, ~3!

one obtains the radial Schro¨dinger equation as

F d2

dr2
2

l ~ l 1D22!1~D21!~D23!/4

r 2 GRl~r !

5
2m

\2
@E2V~r !#Rl~r !, ~4!

which is a real equation.
For simplicity, we first study Eq.~4! with a cutoff poten-

tial

V~r !50, when r>r 0 , ~5!

wherer 0 is a sufficiently large radius. The general case w
be studied in Sec. VI. Similar to our previous works@20#, we
introduce a parameterl for V(r )

V~r ,l!5lV~r !, V~r ,1!5V~r !. ~6!

Accordingly, Eq.~4! can be modified as

F ]2

]r 2
2

~ l 211D/2!221/4

r 2 GRl~r ,l!

5
2m

\2
@E2V~r ,l!#Rl~r ,l!. ~7!
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We now solve Eq.~7! in two regions and match the loga
rithmic derivatives of the radial functions atr 0

Al~E,l![F 1

Rl~r ,l!

]Rl~r ,l!

]r G
r 5r 02

5F 1

Rl~r ,l!

]Rl~r ,l!

]r G
r 5r 01

. ~8!

From Eq.~1! there is one convergent solution to Eq.~7! in
the region@0,r 0#. WhenV(r ,0)50 this solution is

Rl~r ,0!5~pkr/2!1/2Jl 211D/2~kr !, ~9!

for E.0 andk5(2mE)1/2/\, and

Rl~r ,0!5e2 i (2l 221D)p/4~pkr /2!1/2Jl 211D/2~ ikr !,
~10!

for E<0 andk5(22mE)1/2/\. Jn(x) is the Bessel function
n
ion

th

d

04271
andRl(r ,0) in Eqs.~9! and~10! are real. A multiplied factor
on Rl(r ,0) is not important.

In the region (r 0 ,`), we haveV(r ,l)50. ForE.0, the
combination of two oscillatory solutions to Eq.~7! can al-
ways satisfy the matching condition~8! so that there is a
continuous spectrum

Rl~r ,l!5~pkr/2!1/2@cosd l~k,l!Jl 211D/2~kr !

2sind l~k,l!Nl 211D/2~kr !#

;cosFkr2
~2l 1D23!p

4
1d l~k,l!G

when r→` , ~11!

where Nn(kr) is the Neumann function. AlthoughV(r ,l)
does not depend onl in the region (r 0 ,`), through Eq.~8!,
Rl(r ,l) and d l(k,l) depend onl. In fact, we can obtain
from Eq. ~8!
tand l~k,l!5
Jl 211D/2~kr0!

Nl 211D/2~kr0!

3
Al~E,l!2kJl 211D/28 ~kr0!/Jl 211D/2~kr0!21/~2r 0!

Al~E,l!2kNl 211D/28 ~kr0!/Nl 211D/2~kr0!21/~2r 0!
, ~12!
for

T,
c-

by
d l~k![d l~k,1!, ~13!

where the prime denotes the derivative of the Bessel fu
tion, the Neumann function, and later the Hankel funct
with respect to their arguments. It is found from Eq.~12! that
d l(k,l) is determined up to a multiple ofp due to the period
of the tangent function. For convenience, we may use
convention for the phase shifts

d l~k!50, when V~r !50, ~14!

which implies thatd l(`)50 @24#.

III. BOUND STATES

There is only one convergent solution to Eq.~7! in the
region (r 0 ,`) for E<0

Rl~r ,l!5ei ( l 1D/2)p/2~pkr /2!1/2Hl 211D/2
(1) ~ ikr !;e2kr

when r→`, ~15!

where Hn
(1)(x) is the Hankel function of the first kind. In

fact, Rl(r ,l) in Eq. ~15! does not depend onl. The match-
ing condition~8! may be satisfied only for some discreteE,
where the bound states appear. Therefore, there exists a
crete spectrum forE<0.
c-

e

is-

It is worth paying some attention to the solutions withE
50. If Al(0,1) ~zero momentum andl51) is equal to (3
22l 2D)/(2r 0), it matches a solution

Rl~r ,1!5r (322l 2D)/2, r P~r 0 ,`!, ~16!

from which we know the solution describes a bound state
l .22D/2 and a half bound state forl<22D/2.

IV. STURM-LIOUVILLE THEOREM

Since Eq.~7! is a Sturm-type equation, there exists SL
which shows that the logarithmic derivative of wave fun
tions is monotonic with respect toE @25# and provides a
powerful tool for proving the Levinson theorem. Denote
R̄l(r ,l) the solution to Eq.~7! for the energyĒ

F ]2

]r 2
2

~ l 211D/2!221/4

r 2 G R̄l~r ,l!

5
2m

\2
@Ē2V~r ,l!#R̄l~r ,l!. ~17!

Multiplying Eq. ~7! and Eq.~17! by R̄l(r ,l) and Rl(r ,l),
respectively, and calculating their difference, we have
7-2
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]

]r H Rl~r ,l!
]R̄l~r ,l!

]r
2R̄l~r ,l!

]Rl~r ,l!

]r J
52

2m

\2
~Ē2E!R̄l~r ,l!Rl~r ,l!. ~18!

From the boundary condition, both solutionsRl(r ,l) and
R̄l(r ,l) vanish at the origin. Integrating Eq.~18! from 0 to
r 0, we obtain

1

Ē2E
FRl~r ,l!

]R̄l~r ,l!

]r
2R̄l~r ,l!

]Rl~r ,l!

]r
G

r 5r 02

52
2m

\2 E0

r 0
R̄l~r ,l!Rl~r ,l!dr.

Taking the limit asĒ to E, we have

]Al~E,l!

]E
5

]

]EF 1

Rl~r ,l!

]Rl~r ,l!

]r G
r 5r 02

52
2m

\2Rl~r 0 ,l!2E0

r 0
Rl~r ,l!2dr,0. ~19!

When E5\2k2/(2m) is larger than zero and tends to zer
we have

Al~E,l!5Al~0,l!2c2k21•••, c2>0. ~20!

Similarly, from the boundary condition thatRl(r ,l) tends
to zero at infinity forE<0, we have

]

]EF 1

Rl~r ,l!

]Rl~r ,l!

]r G
r 5r 01

5
2m

\2Rl~r 0 ,l!2Er 0

`

Rl~r ,l!2dr

.0. ~21!

This is another form of SLT@25#. As E increases, the
logarithmic derivative of the radial function atr 02 de-
creases monotonically, but that atr 01 for E<0 increases
monotonically. ForE<0, because both sides of Eq.~8! are
04271
,

monotonic asE changes, the variation ofAl(0,l) as l
changes determines the number of bound states.

V. LEVINSON THEOREM

In this section we will show from SLT that bothd l(0,l)
and nl are related with the variation ofAl(0,l). We first
study the relation betweennl andAl(0,l) when the potential
changes. ForE<0, from SLT the logarithmic derivative o
the radial function atr 0 is monotonic with respect toE. From
Eq. ~15! we obtain the logarithmic derivative

S 1

Rl~r ,l!

]Rl~r ,l!

]r D
r 5r 01

5
ikHl 211D/2

(1) ~ ikr 0!8

Hl 211D/2
(1) ~ ikr 0!

2
1

2r 0

5H 322l 2D

2r 0
when E;0

2` when E→2`,

~22!

which does not depend onl. On the other hand, whenl
50 we obtain from Eq.~10!

Al~E,0!5S 1

Rl~r ,0!

]Rl~r ,0!

]r D
r 5r 02

5
ikJl 211D/28 ~ ikr 0!

Jl 211D/2~ ikr 0!
2

1

2r 0

5H 2l 211D

2r 0
when E;0

` when E→2`.

~23!

It is evident from Eqs.~22! and~23! that whenl50 and as
E increases from2` to 0, there is no overlap between tw
variant ranges of two logarithmic derivatives such that th
is no bound state except for the case ofl 50 andD52 where
a half bound state occurs atE50.

Second, we study the relation betweend l(0,l) and
Al(0,l) when the potential changes. Thed l(0,l) is the limit
of d l(k,l) ask tends to zero. Therefore, we are interested
d l(k,l) at a sufficiently small momentumk, k!1/r 0. In this
case we obtain from Eq.~12!
tand l~k,l!5
2p~kr0!2l 221D

22l 221DG~ l 1D/2!G~ l 211D/2!

Al~ l ,l!2~2l 211D !/~2r 0!

Al~0,l!2c2k22
322l 2D

2r 0
F12

2~kr0!2

~2l 1D23!~2l 1D24!G
, ~24a!

when l .22D/2,
7-3
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tand l~k,l!5
2p~kr0!2

4

3
Al~0,l!23/~2r 0!

Al~0,l!2c2k21
1

2r 0
@112~kr0!2ln~kr0!#

,

~24b!

when l 522D/2 (D54 andl 50 or D52 andl 51),

tand l~k,l!52~kr0!
Al~0,l!21/r 0

Al~0,l!2c2k21k2r 0

, ~24c!

when l 5(32D)/2 (D53 andl 50), and
ive
D

g

th

o

04271
tand l~k,l!5
p

2 ln~kr0!

3

Al~0,l!2c2k22
1

2r 0
@12~kr0!2#

Al~0,l!2c2k22
1

2r 0
F11

2

ln~kr0!G
,

~24d!

when l 512D/2 (D52 and l 50). Likewise, we can also
obtain from Eq.~12! thatd l(k,l) increases monotonically a
Al(E,l) decreases
-

]d l~k,l!

]Al~E,l!
U

k

5
28r 0 cos2 d l~k,l!

p$@2r 0Al~E,l!21#Nl 211D/2~kr0!22kr0Nl 211D/28 ~kr0!%2
<0, ~25!

wherek5(2mE)1/2/\.
Since Eq.~7! is analogous to that of two-dimensional~2D! case@20#, the analysis is very similar to that of@20#. The reader

is strongly suggested to refer to our previous works@20#. Repeating the proof carried out in@20#, we can obtain the nonrel
ativistic Levinson theorem inD dimensions for noncritical cases

d l~0!5nlp. ~26a!

Similarly, for the critical casel 522D/2 andl 5(32D)/2, it should be modified as

d l~0!5H ~nm11!p, when l 51, D52, or l 50, D54

~nm11/2!p, when l 50, D53,
~26b!
ill
when a half bound state occurs. The Levinson theorem g
in Eq. ~26! coincides with the previous results in 2D and 3

VI. DISCUSSION

We now discuss the general case where the potentialV(r )
has a tail atr .r 0. Let r 0 be so large that only the leadin
term in V(r ) is concerned in the region (r 0 ,`)

V~r !;
\2

2m
br2n, when r→`, ~27!

whereb is a nonvanishing constant andn is a positive con-
stant, not necessarily to be an integer. From Eq.~1!, n should
be larger than 3. However, we are also interested in
modification of the Levinson theorem forn52, in which
Newton @2# found two examples where the Levinson the
rem is violated.

Whenn52, we define

n25~ l 211D/2!21b. ~28!
n
.

e

-

Equation~7! thus becomes

]2Rl~r ,l!

]r 2
1F2mE

\2
2

n221/4

r 2 GRl~r ,l!50, r>r 0 .

~29!

If n2,0, there are infinite number of bound states. We w
not discuss this case as well as the case withn50 here.
When n2.0, we taken.0. Some formulas given in the
previous sections can be obtained through replacing (l 21
1D/2) by n. Equation~22! becomes

S 1

Rl~r ,l!

]Rl~r ,l!

]r D
r 5r 01

5
ikHn

(1)~ ikr 0!8

Hn
(1)~ ikr 0!

2
1

2r 0

5H 122n

2r 0
when E;0

2` when E→2`.

~30!

The scattering solutions~11! in the region (r 0 ,`) become
7-4
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Rl~r ,l!5Apkr

2
$cosh l~k,l!Jn~kr !2sinh l~k,l!Nn~kr !%

;sinS kr2
np

2
1

p

4
1h l~k,l! D , when r→`.

~31!

The d l(k) can be thus calculated fromh l(k,1)

d l~k!5h l~k,1!1~2l 221D22n!p/4. ~32!

h l(k,l) satisfies

tanh l~k,l!5
Jn~kr0!

Nn~kr0!

3
Al~E,l!2kJn8~kr0!/Jn~kr0!21/~2r 0!

Al~E,l!2kNn8~kr0!/Nn~kr0!21/~2r 0!
,

~33!

and it increases monotonically asAl(E,l) decreases

]h l~k,l!

]Al~E,l!
U

k

5
28r 0 cos2 h l~k,l!

p$@2r 0Al~E,l!21#Nn~kr0!22kr0Nn8~kr0!%2
<0.

~34!

For a sufficiently smallk, the asymptotic formulas o
tanh l(k,l) can be obtained from Eq.~24! through replacing
l by n112D/2, except for the cases of 0,n,1/2 and 1/2
,n,1. For the latter cases we have
ys

04271
tanh l~k,l!

5
2p~kr0!2n

22nnG~n!2

3
Al~0,l!2~n11/2!/r 0

Al~0,l!2c2k22
122n

2r 0
1

2p cot~np!

r 0G~n!2 S kr0

2 D 2n
.

~35!

Repeating the proof of the Levinson theorem~26!, we obtain
the modified Levinson theorem for the noncritical cases

d l~0!5~4nl12l 221D22n!p/4. ~36a!

For the critical case whereAl(0,1)5(2n11/2)/r 0, the
modified Levinson theorem~26a! holds for n.1, but it
should be revised for 0,n<1 as

d l~0!5~4nl12l 221D12n!p/4. ~36b!

When n.2, for any arbitrarily given smalle, one can
always find a sufficiently larger 0 such thatuV(r )u,e/r 2 in
the region (r 0 ,`). Since n25( l 211D/2)21e;( l 21
1D/2)2, the Levinson theorem~26! holds for this case. It is
easy to check, similar to that done in@20#, that two examples
in D53 pointed out by Newton~see pages 438–439 in@2#!,
where the Levinson theorem~26! is violated, satisfy the
modified Levinson theorem~36!.
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