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Helium trimers and tetramers in two dimensions and quasi-two-dimensions
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The ground-state properties 8fle and*He trimers and tetramers in infinite and restricted two-dimensional
and quasi-two-dimension&2D) space are studied. Using Monte Carlo calculation in two stages successively,
simple variational Monte Carlo and diffusion Monte Carlo, we find that all trinfersept one offHe with
spin 3/2 and tetramers are bound. In infinite 2D space the binding enerfetrimer is—183(1) mK and
of tetramer—435(1) mK. In the same environment f8He, using Jastrow-Feenberg-Bruch wave functions
trimer (spin 1/2 is bound with—0.013(1) mK and tetramer with-0.021(1) mK. Employing in the same
procedure “dimerlike” wave functions foPHe molecules in infinite 2D space it is discovered that trimer
prefers the structure of one dimer and one separate particle while a composition of two separate dimers is
preferable for tetramer. In this case binding energies-a@e020(1) mK for trimer and-0.040(1) mK for
tetramer. The binding energies of mixed molecules in infinite 2D space-a#.3(4) mK €He-*He,);

—14(1) mK CHe,-*He); —254(4) mK fHe"*Hey); —118(2) mK CHe,-*He,); —11(1) mK (CHe;-*He).
In holding potentials with well-adjusted parameters there is a drastic increase of binding for trimer and tetramer
in both sorts of helium atoms.
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I. INTRODUCTION trimer than in 3D. They also concluded that fermion helium
trimers probably did not exist in 2D.

Helium trimers and tetramers in infinite space have been Recently Krischnamachari and Chesig8] have studied
the subject of research since the 19gDs11]. Experimental  liquid puddles of*He and bosor’He. They have estimated
detection of helium-4 dimers and trimef$2—14 initiated  that *He does not bind in 2D. Contrary to this conclusion a
further consideration of these and related systems. variational calculation showing the binding of boftHe

In three dimension$3D) many ground-state calculations dimer and trimer in 2D has been performed).
of “Hey system, have shown the existence of binding for any Dimers, trimers, and tetramers may be thought as models
N [15-20. In particular, there are extensive calculations forfor the interactions between many helium atoms in specific
“He trimer [21-2§ showing the existence of two bound real physical environment. Here, for example, one has in
states of angular momentum 0. The excited state is especiallyind solid matrices, where these systems form the conden-
interesting because of the possible manifestation of Efimogation seed for helium clusters, then nanotubes, with a diam-
effect[29]. The recent studies disagree on whether the bounédter between 3 A and 100 A and generally “condensation”
state with nonzero total angular momentum existson a solid or liquid substrate.

[22,25,30,31 In a dilute solution of*He in liquid “*He each®He prefers

Due to the smalPHe mass and the Pauli principle among to float on the surface of théHe rather than to be dissolved
all other possible helium trimers onfHe-*He, is bound in  in the bulk[41]. Thus one may imagine atoms at low tem-
3D [21,22,31,32. peraturegbelow 0.1 K, on the surface of bulk liquidHe, as

Cramer, Bruch, and Cabrdb] constructed a form of a fermion system of spin-1/@r spin-3/2 particles moving
fermion-trimer wave function and showed that binding ofin two-dimensional space*He and “He adsorbed on the
3He trimer was not possible in 3D. The same was shown fographite surface form other almost 2D systems that are being
fermion tetramer by Nakaishi-Maeda and co-workgid].  extensively studiedl42—44.

In a series of papefd5,33—3¢ a minimum number ofHe In this paper we study helium trimers and tetramers in
atoms that form a bound cluster in 3D was found to be beinfinite 2D space and in three holding potentiglk). circle
tween 20 and 40. The recent calculati¢88,38 showed that  with hard core on its edge, which is pure 2D confined space,
this minimum number is 35. (2). Gaussian potentidl45], and (3).“helium-on-graphite”

The difference in binding properties in 3D and 2D was potential[43]; last two potentials keep the particles close to a
pointed out by Bruch and TjofB] who considered qualita- surface and define quasi-2D space. Dimer binding energies
tively the binding properties of three identical bosons inter-of *He and“He on graphite are also obtained. Binding en-
acting via two-body potential in 2D. They found no Efimov ergies of mixed molecules of three and four helium atoms in
states in 2D. Cabral and Bru¢B] also studied helium trim- infinite 2D space are calculated as well. In Sec. Il we define
ers in 2D and confirmed a larger binding energy for helium-4Hamiltonians, wave functions, and general expression that is

used in the calculation of the energy. A short description of

employed Monte Carlo numerical procedures and results are
*Electronic address: leandra@pmfst.hr presented in Sec. lll. We summarize and discuss the results
"Electronic address: kilic@pmfst.hr in Sec. IV.
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Il. BASIC RELATIONS the value of the energy 135.8707 K and the correspond-
We consider helium atoms as point particles. Atoms of"d function(data set Using Gnufit we managed to fit the

“He are bosons with spin zero and atoms®ble are fermi-  analytical function
ons with spin 1/2, interacting via spin-independent central —a,z

; ' ' ) . Z)=ex 2°—asz 7
pair potential. In general form Hamiltonian of our systems ¢(z)=exdaye 3], )

reads to the data set representing the wave function. This analytical

p2 0 n n form of the wave function with the obtained parametays
— — -1 — -1
H:_Z_Z A+ 2 V(rij)+Z Veu(r). (1) =210.808,a,=1.63445 A%, a;=3.50135 A%, can be
mi= i<j=1 i=1 considered as an excellent approximate function. Namely, it
reproduces almost the same shape as the numerical solution

Taking the corresponding mass for=3 (4) Hamiltonianis 5,4 it gives the energy- 135.868 35 K. So Eq(7) may be
adapted to trimeftetramey of helium 3 and helium 4. Po-  .hcidered as ground-state eigenfunction.

tential V(r;;) describes the interaction between two particles |, poth stages of the calculation we sum the local energies
and in this paper we take Kororet al. symmetry-adapted E =(HV)/¥
perturbation theorySAPT) potential[46]. Vq,(r;) is exter- '

nal holding potential. 1 M
We consider three types of external potentials indepen- E[V]= lim i E E (X)), (8)
dently. The first holding potential is a pure two dimensional M—oe N1 T=1
that keeps particles to move in a circle of the radRjst is
defined by where ¥ is the trial wave function and sample points are
taken from the distribution?? in simple variational Monte
e« for ri=R Carlo (VMC) and from the mixed distributio® ¥ in dif-
Vexdri)= 0 for r.<R 2 fusion Monte Carlo(DMC); ¥, is the exact ground-state
L wave function.
wherer; is two-dimensional position of atom In this po- In the definition of binding energy among atoms in con-

tential the solution of the Schdinger equation for the fineq space we subtract the energy of every single particle in
ground state of a particle islo(Kr) with the energy holding potentia[47]. .
h2K?/2m. J, is Bessel function and ¥2.404 826/R. The Let us now define wave functions.

second is harmonic holding potential in 3D
1. Boson wave functions

V(z)= Emwéziz, 3) A very good trial wave function describing ground state

2 of helium-4 dimer and molecule of one atom of helium 4 and
one atom of helium 3, was obtained and used in R&T].
Short-range correlations between two atoms are described as
72 in Jastrow-FeenbergJF) wave function for liquid helium
- ﬁAd)O(Z)-FV(Z)qSO(Z):6¢0(Z), (4) state. Long-range correlations are introduced by decreasing
exponential function. Thus the product of short- and long-
range correlations is defined by the function

for which the solution of Schidinger equation,

: (€)

! —exg— |2 s,
¢o(Z)ZMeXF{—ZZ/2a2), (5) f(rij)—exl{ (rij) Srjj

wherer;; is the interparticle spacingy, y, ands are varia-

where effective width isa=(A/mwg)'?, andz is the ordi- .
tional parameters.

nate of three-dimensional position of atanfor the smaller ; . . . -
A comparison with numerical solution of Scldiager

effective widths(say up to 3 A) three-dimensional space is equation showed that the best trial form for a dimer in 2D is

reduced to quasi-two-dimensional. The third holding poten- : L .
tial is a realistic one, by Joly and co-worké43], that de- the functionf(r), divided by the square root of the interpar-

scribes one helium atom on araphite substrate ticle distance. In the case of the dimer in 3D we found that a
grap good trial wave function is obtained f{r) is divided by the

C; C, interparticle distance. Brucf25] also used such function in

VexdZ) =Aexp—az)— —— -, (6)  the study of helium-4 trimer in 3D. Therefore, we define

' ! symmetric wave functions for helium-4 trimen€3) and

where A=2.26343998%10°P K, «=3.715 A, C, tetramer (=4) in the form

=1.827532376& 10° A®K, C,=1.02915451%10* A% K, n

z; is the ordinate of atom, perpendicular to the graphite \I,O:H F(ry), (10)

surface. i<]

In a numerical solution of Schdinger equation for the
ground state of @He atom in the potentials) we obtained:  where
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In holding potentials the corresponding wave functions

have the form in a circle, 0.015 1
001
n n A
Wo=]1 F(rip Il Jo(Kry), (12) 0005 /N
i<j =1 0 ; e . |
_ _ _ 1 10 100 1000 10000
in harmonic potential, (A)

n " FIG. 1. The fermion radial wave functioi(r) (solid line) and
vo=11 F(rij)H $o(Z), (13)  first derivativef(r) (dashed ling for the parameters derived in
= =1 energy-minimization procedure of thi#e; spin 1/2.

and on graphite, tively, antisymmetric and symmetric under exchange of par-
N , ticles 1 and 2. Spiri-+1/2) projections of the doublets are
Vo=11 F(ripIl &(z), (14) 1
=< =1 Xa(s;=1/12)= E(a1182a3_:81a2a3)’ (17
where agaim= 3 is for the trimer anah=4 for the tetramer.
1
2. Fermion wave functions Xs(s,=1/2)= %(2%0253_ a1fBra3— Brasas),
Since ®He atoms are fermions, trimers and tetramers (18

should be described by antisymmetric wave functions. The ) ]
main problem here is to obtain a good correlation function. ItVheré ai(B;) are the usual spin-ufdown) eigenstates of a

is a known fact that there is no binding state of fermionSPiN-1/2 particle and the subscripts particle label. In the
helium dimer and trimer in infinite 3D spag8]. Our expe- calculation for the space wave functions we combine the

rience in 2D showed that radial functidf), although very following forms:
good for helium-4 dimer andHe-*He molecule, was not ba= IV o= (y1—Y2) ¥

good enough to give bound state of the fermion helium

dimer. This dimer is very largéthe largest diatomic mol- Of

ecule in the ground state we knpand behavior of the cor- XN — (v

relation function in between short and long range is crucial. $a=Pa¥o=017X) Vo, (19
Using Gnuplot graphics and data from numerical solution ofand
Schralinger equation for fermion helium dimg#7], we

i i 1
were able to construct the following trial two-body wave vy _ _
function[40,48; bs= Vo= \/5[()’3 Y1)t (ys—Yy2)1¥o

or

6
wv;mm (15)

1
b=V o=—=[(X3—X1) + (Xz—X) | ¥g. (20)
The explicit form of summands is given in the Appendix. s Teo \/5 * 2 °

The function and its first derivature are plotted in Fig. 1. ) o ) ) )
Variational fermion wave functions are taken over fromFunction¥, is given in the relatior{10), where the function

Bruch and co-workers for trimgi5,9] and from[11,49 for (15)bis introduced isr}stead of the functids).
tetramer. Let us call them Jastrow-Feenberg-BrGafB) (b) trimer (spin 3/2

wave fun.ctions. In all expressions the correlation fdith) V=X, (22)
must be included. They are as follows:
(@) Trimer (spin 1/2 where
W= X+ DXy, (16) ha= (X1Y3—X3Y1 T XoY1—X1Y2+X3Y2—XpY3) W, 22
whereXg and X, are spin doublets, symmetric and antisym- X(s,=3/2) = ajapas, (23

metric, respectively, under exchange of particles 1 and 2
while ¢, and ¢4 are space wave functions that are, respec{c) tetramer(spin 0
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TABLE I. The 3He and“He trimer and tetramer binding ener-

V=R, Xss+RXzaa,
afted T Tsad gies(in mK) in infinite 2D space.

(24)

where

“He SHe
1 .
Xas=5 (a1BrasBat BrasBaas— a1foBsas— PrazaspPa), Trimer —183(1) —0.013(17 —0.020(1f
Tetramer —435(1) —0.021(2} —0.040(1}’
(25
4JFB function.
1 b“Dimerlike” function.
Xsﬂ,:m(alﬁz%ﬁﬁ‘ BiraxBzast ai1fBrfzay
V(1,23 =Fn(ri)Fm(rigF(raa), (32
+ BrasazBa—2a1a,8384—2B1Braza,), (26)
W(12;3)=F(r1)Fm(rigFm(ras), (33
1/, . 1. .
Rs:ﬁ( [ aof 14— §f12f34)‘1’01 (27)  for *He"*He, and 3He,-*He, respectively, and
4
1. . ‘I’(l;234):(H Fm(|’1j))F(fzs)F(r24)F(r34), (34
Razz(r12r34)\lfo. (28) =2

W(12;34 =F(r1)Fm(rig Fm(ria) Fm(r 29 Fm(r2a)F(raa),

The functionW¥ is symmetric and its form depends on the (35)

confinement type.
3

3. “Dimerlike” fermion wave functions V(1234 =V,(123 [ Fm(rja), (36)
j=1

Binding of He trimer and tetramer may be qualitatively
studied in the relation with the dimer binding. Namely, wavefor 3He-*He;, °3He,-*He,, and 3He;-*He, respectively.
functions(16), (21), and(24) treat all atoms in a molecule as F(r) is given in the relatior(11). F(r) has the same form
in JF many-body problem, i.e., the correlations among a|bsF(r), with new variational parametets,, ym,Sm- F(r)
particles are described quite symmetrically. Contrary to thes also given in the relatiofl1) where function(15) is in-

Jastrow-Feenberg-Bruch-type functions we construct functroduced instead of Eq9). ¥5(123) is *He trimer wave
tions that express dimer correlations in each summand eXfunction given in the relatiorf16).

plicitly. They may be called “dimerlike” wave functions.

For trimer spin 1/2 it is
V(123 = (12 ¢(3) x(12)a(3) — h(13) ¢(2) x(13) a(2)
+ (23 (1) x(23) a(1), (29)

where

1

x(ij)= \/E(aiﬁj_,gia’j)r (30

two-body correlation functionj(r;;) is given by relations

(11) and(15), and (i) is the wave function of free particle

i
Similarly, for the tetramer we take

W (1234 =4(12)(34) x(12) x(34)
— (13 4(24) x(13)x(24)

+ (14 (23 x (14) x(23). 31)

4. Mixed-molecule wave functions

Wave functions for study of mixed molecules in infinite
2D space, each containing three and four nonidentical heliumHe-*He,
atoms, have been formed from the above two-body correla= 74 .3(4)

tion functions. They are

IIl. NUMERICAL PROCEDURE AND RESULTS

Monte Carlo procedure is one of the most employed nu-
merical methods for solving few-body problems nowadays.
To obtain effectiveness and precision we perform all calcu-
lations in two stages. In the first stage VMC with simple
sampling is used in order to obtaife) minimizing param-
eters in variational wave functioih) initial trial energy, and
(c) initial walkers configuration. All these are used in the
second stage that is DMC. The number of walkers and steps
in any Markov chain depends on the space where atoms
move and on the type of the atoms. We find that acceptance
about 50% in VMC and above 99.5% in DMC gives a good
stabilization of the results. For helium-4 atoms we take from
500 up to 1000 walkers and for helium-3 atoms we find that
3000-5000 walkers is enough. In particular, due to very
small binding energies fotHe trimer and tetramer in 2D we
performed the calculation with six different blocks of 5000
walkers using different random-number seeds. Generally
speaking the calculation for helium 3 due to extended wave

TABLE II. Binding energies(in mK) of mixed helium mol-
ecules in infinite 2D space.

3He,-*He
—14(1)

3He-*He,
—254(4)

*Hey-*He
~11(1)

3Hez_4He2
~118(2)
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RA) TABLE IV. The 3He and*He dimer and trimer binding energies
. 0 2000 4000 6000 8000 10000 (in mK) on graphite.
100 - g:; — *He *He
00 | ) . 1 70005 Dimer —43(2) —0.045(8)
% i { 001 % Trimer —188(3) —0.022(7)
5 300 © . 1 ot
‘¥ i ! 1 -0.015 _ _ _ _ _ _
—400 4 . i F 1 simple and still clear way is the introduction of a dynamic
P ; i 1-0.02 coordinates frame. In this frame one atom is situated in the
*l : : origin, the second jumps along positixeaxis and the third
0 50 100 150 200 moves in the whole plane. Counting the coordinate projec-
R(A) tions of the third atom on the axis, labeledk,, andy axis,

labeledy,, during walk, is the basis for the calculation of
the atomic distribution. Let us call it the “conditional” den-
sity. Figure 8 shows such a distribution for the trimer*éfe
in infinite 2D space. The same distribution is shown Yete

function asks for more walkers and more steps. The therma fimer in Fig. 9; here due to extended helium-3 wave-
PS. unction the coordinates, = *[log;o(|x,| +0.5)+ 1/15] and

ization in every step is 10. Averaging data for the energy S
after an appropriate number of steps we are able to look afp— 0910(Yp+0.5)+1/15 have been used. For simplicity
stabilization of the results. The number of total steps in DMcand Y, are here dimensionless, whilg andy; are in A.

is between 5% 10° and 2x<10°. In most cases we had to Notice thatx, andx, have the same sign. It is also assumed
calculate the energies for different time intervals that WereXr'J=0 for |Xp|<0.5 andy{,=0 fory,<0.5. In order to learn
used. In these cases the result is derived by the extrapolatignore about the shape of trimers and tetramers we have also
to zero time step. Monte Carlo calculation is always timecalculated the probability of specific configurations of atoms.
consuming. In our case for bosons we had to minimize oveln relation to this the Fig. 4 represents the details of the Fig.
three parameters and for fermions over eleven parameters3 for “He tetramer.

The results for the binding energy 8He and“He trimer All distributions are obtained by binning. In the case of
and tetramer in 2D infinite space are presented in Table | anpair and density distribution functions the bin size fote is
for mixed molecules in Table II. Let us mention that all cal- 0.01 A and for®He 1 A. For the conditional density we use
culations in holding potentials are performed using JFBthe fixed bin size of 1 Afor “He while the bin size foFHe
functions. is variable and depends on thg andy, .

Binding energies of both systems in the circle are shown Let us mention that distributions are normalized to one as
in Fig. 2. In quasi-two-dimensional space energies are obfollows:
tained for the width of 3 A of harmonic holding potential
(Table IlI).

The calculation of dimer and trimer binding energies of
3He and “He on graphite are given in Table IV. We have
also studied the effects of mass and spin on the binding of
trimers.

In addition to the ground-state energies we have obtained
the space distributions of atoms in our systems. The distri-

FIG. 2. The®He; (upper and right scaleand “He; (bottom and
left scalé energy vs the radius of the circle. The errorbars“ide
are smaller than the symbol size.

fP(r)rdr=1, j JP(xp,yp)dxpdypzl,
0 ~=Jo

and J p(r)rdr=1.
0

0.06

butions of particle distances from the center of mass are e
shown in Figs. 3—5. The pair distribution functions are pre-
sented in Figs. 6 and 7. 0.05 1.
An image of the arrangement of the atoms in a trimer may
be obtained by the analysis of the atomic coordinates. A very - 0.04 1
< 003 |
TABLE Ill. The 3He and“He dimer, trimer, and tetramer bind- =
ing energiegin mK) in harmonic holding potential with effective < o L
width of a=3 A. )
*He *He oo
Dimer —101.84 -8.28 0
Trimer —482(2) —8.6(7) rA)
Tetramer —1200(20) —16.5(8)
FIG. 3. The density of particles with respect to the center of
%Referencd45]. mass for*He; and “He,.
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0.025 —
He, ——
~ Hey -——
002 ]
N ,}," 0.015
< <
z )
a & 001
0.005 |
0 1 1 1 I
0 5 10 15 20 25
r(R) r(A)
FIG. 4. The total density and the density oA*and “B” con- FIG. 6. The pair distribution function fotHe; and *Hey.

figurations with respect to the center of mass fbie,.
IV. DISCUSSION

Using mixed estimator one finds correct values for the ) ]
energy, but obtains only an approximatidetter than the It is shown that atoms ofHe form stable trimers and
VMC) for operators that do not commute with the Hamil- téramers in infinite. 2D space. Binding energies are
tonian. This approximation is of the first order in the error of ~183(1) mK(trimen) and —435(1) mK (tetramey.
the trial wave function. To obtain a better estimate for vari- N the case ofHey atoms in infinite 2D space both types
ous radial distribution functions it is common to use the so-0f wave functions, JFB and dimerlike, give bound states. For

called “second-order approximatior50], JFB wave functions binding energies ar®.013(1) mK for
N=3 and spin 1/2 and- 0.021(2) mK forN=4 and spin O.
(AY=2(A)pmc—(Alvmc, (37  Atthe same time dimerlike wave functions give lower ener-

gies: —0.020(1) mK for N=3 and spin 1/2 and
whereA is a local operator. The valu@) differs from the ~ —0-040(1) mK forN=4 and spin 0. o _
exact expectation value @ in the integral of second order F.or comparison we cite here the dlrger p|nd|ng energies
in the W ;— . In our calculations fof'He, VMC, DMC, and [47]: —40.7 mK (*He) and—0.02 mK (He); let us men-
second-order distribution functions are very close, which idion that using our procedure we reproduce the same results.
due to good trial wave functions. FdHe however, the dif- In order to compare our results with others we have first
ferences between DMC and VMC at some distances are sig'S€d JFB wave functions. o
nificant, but the average distance among particles from vMC [N the consideration of the binding-energy depend-
to DMC is not changed so much. ence on j[he mass a_nd the statistics in trimers the follow-
For the sake of clarity errorbars on the Figs. 3—10 are nof"d €nergies are obtglne4&:0.25(1) mK for bo_sorF’He and
shown. In the case dfHe molecules they vary from 2—5 % —29(1) mK for fermion®He. A comparison with the results
depending on the corresponding distance. Bide systems in the Table | shows that mass effect in boson trimer lowers
errors are on the average 10%. binding 732 times and in fermion trimer increases binding
The calculations were performed using origin 3700 superf"round 2200 times. Similarly we find that statistics effect in
3 . - . .
computer at Johannes Kepler University in Linz, Austria. _1€s decreases binding 19 times and fhie; 6.3 times.
Recently, Krishnamachari and Ches{&9] have obtained

6x107~7 h
HE 1.4x1075 3
7 | 4 ] He, ——
5x10 v, 5 3He __________
e 1.2x107 ¢ 4 1
—7 | A
410 1x107 |
o
[}
_7 —~
‘% 3x1077 |  8x107f |
=4 <
2x10~ F E:/ 6x10°°
1107 - 4x107¢
. 2x107° |
1 10 100 1000 10000 0 . . > .
rd) 1 10 100 1000 10000

r(A)
FIG. 5. The density of particles with respect to the center of

mass for®He; and *He,. FIG. 7. The pair distribution function fofHe; and *He,.
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1.8x107

_5 nge3
POpypIA™) 0002 ——- 1.6x107 | Heo — ]
' 14x107° |
0%% 1.2x107 |
0.002 ‘z‘;\ x1073 +
0.0015 <
%005 s 8x107° |
0.0005
0 6x107° ©
4x1078 |
-20 2x107° |
0 . s
1 10 100 1000 10000

A
FIG. 8. The conditional density function presenting the distribu- @

tion of one particle in*He; when one of the other two particles is FIG. 10. The pair distribution function ofHe; and 3He, for

situated in the origin and the second moves along the positive sid&jimerlike” function. For both systemsféOAP(r)rdr=1/3 that in-
of x axis. x, andy, are projections of considered particle on the yicates the formation of dimers.
axesx andy, respectively.

o ~_represent all the configurations in which one particle is
that the minimum number of mass-3 bosons that bind in 2Bithin a triangle formed by the other three. TBecomprises

is greater than 11. On the other hand, we have found thg|| other cases, thus pure quadrilaterals. We find that 35% of
bound states for botfiHe dimer and trimefas a boson and  the walkers are in the configuratiénand 65% are in the.

a fermion. It is possible that their wave function was not This is shown in Fig. 4.

extended eﬂough for ||qU|d pUddleS haVing very small num- The average distance between atoms of 4300 lg\Hﬂg

ber of particles. . is about 8.3 times greater than fide dimer. The value of
Calculating density functions and some other related locaims deviation is 1600 A. The number of nonlinear walkers

quantities we are able to get an insight into the structure ofs aimost the same as in the case e trimer, (94%).

trimers and tetramers. . However, its shape is different from tHiéle trimer. Namely,
Consider first"He trimer. The average distance betweenthe number of the configurations with all angles in the tri-

atoms in“He trimer is 9.5 A that is about 1.4 times less thanangle greater than 15° is 16% fdHe, and 69% for*He,,

in “He dimer. Root-mean-squafiens) deviation is 3.9 A-.A signifying that the form of*He; is far from resembling the
peak for smallr in Fig. 3 corresponds to the contributions equilateral triangle. Moreover, the number of the configura-
from linear configurations. However, trimer does not spendions with the distance between two particles less than
much time in such configurations. Namely, the number of1000 A and the other two interparticle distances bigger than
trimer walkers that have two angles less than 1° is 1%, andpoo A is 46%. This also may be seen from the shape of the
with two angles less than 5° is 5%. We may conclude thapair distribution function, Fig. 7, which for interparticle dis-
about 95% of its time the trimer is a nonlinear molecule.  ances less than 1000 A closely resembles the dimer pair
In “He tetramer the average distance between atoms @istribution function.
9.1 A and rms deViati-On 24 A In this case one may Study 3He4 has the average distance between atoms 3100 A
two types of the configurations, sayA" and “B.” Let A and rms deviation is 1500 A. In this case the configuration
A comprises 22%, while iB there are 78%. Let us define
the bond angle as the angle betwegnandr;, . If we now
Py A 3x1078 e consider the configurations with at least one of the bond
angles smaller then 1°, we find 7% of them féde and
28% for *He tetramer. Such configurations occur when there
are at least two particles close and o the remaining
two) relatively far away.
In conclusion we may say thdHe trimers and tetramers
in 2D space are floppy molecules. Trimers on the average
form triangles and tetramers quadrilaterals. Howevéte
trimers and tetramers are much more compact and symmetric
then ®He, and *He,. Namely, 3He, shows a slight indication
to have two particles closdtike one dimey and the third
particle relatively far away. Similarly, two separate pairs of
FIG. 9. The conditional density function fdiHe;. Due to ex-  particles occasionally formiHe,. Having in mind the above
tended helium-3 wave function the coordinates are defined as folPbservation and the values He dimer, *He; and *He,
lows: x;=*[log;o(|x,|+0.5)+1/15] and y;=log;o(y,+0.5)  binding energies we have studied particle distributions using
+1/15. “dimerlike” functions. The results given in Fig. 10 show that
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TABLE V. Binding energies(in mK) of helium molecules in  was studied. It was found that its properties are very close to
infinite 3D space taken from the recent literature. 2D helium.
. For He we find that the dimer binding is increased two
Hes —126.4[32] —125[26] —125.9[28] —126.4[27]  {imes when compared to pure infinite 2D and it is
. 1252(22] ~219.1[24] —128[20]  —181[25]  _0045(8) mK; for *He; it is —0.022(7) mK. But, the
436' He, —14.2[37] —13.66[27] 0 calculation of He; energy is very unstable so we can only
5 e44 —559.1[32] —557[26] —559.2[20] say that it seems to be less bound than the dimer.
3He- 563 —296.7[37] Different behavior of molecules in harmonic and helium-
He,-"He, —102[32] on-graphite potential may be explained. Binding of one he-
lium atom on graphite substrate is relatively strong and lo-

3He. has the struct f di q t " ralized. One can imagine that atoms move in a thin plane
& 3as € structure ot.one dimer and one separate partic gyer that is parallel to the substrate plane and about 3 A
while *He, has the form of two separate dimers. The same

conclusion follows from the comparison with the dimer away from it. The Gaussian wave function fora A has

binding energies. Finaly, as binding energy for “dimerlike” large .exten5|on'|n comparison W't.h the case of helium-on-
wave functions is below the binding energy for JFB Wavegr"’1phlte pqtentlal _and_thus prowdes_ more space f_or the
functions we conclude that the ground state of three and fodfiovement in the direction. In harmonic potential maximal
3He atoms in infinite 2D is dimerized. It means three atomslimer binding[45] was obtained for the potential width of
form a dimer and a free particle, while four atoms form two @Pout & 3.2 A. There it was shown that taking smaller
dimers. It is interesting to notice that quite recent st{jj ~ Widths binding becomes weaker and in the limit @f-0
on 2D *He“*He mixtures has shown the formation dle  dains the value as in the case of infinite 2D space.
dimers within the*He background for smaffHe concentra- Brami and co-workers have studied in a VMC calculation
tions. the binding of *He adsorbed on graphite. Taking into ac-
To the best of our knowledge no results for the bindingcount the delocalization of atoms in tiedirection they
energy of three and four helium atoms of any sort in infiniteshowed thafHe atoms form a self-bound state. For the same
2D space have been obtained using modern potentials. lsystem in infinite 2D space Miller and Nosan¢®2] found
older paperg9,10] only the binding of helium-4 trimer and no binding. We may notice that such behavior is not ob-
tetramer has been obtained. The agreement with our results¢erved for a small number of particles, namely, we find bind-
only qualitative. ing in 2D in all studied cases. Furthermore, the enhancement
It is interesting to compare the binding in infinite 2D and of the binding on graphite is qualitatively confirmed.
3D space. Let us cite the recent results of other authors in 3D |t is known that Casimir retarded forces may affect the
(Table V). Our results(Tables | and Il show that all three-  pinding energy of these very large systems. We use two re-
atomic helium systems are bound stronger in 2D then in 3Dtarded potentialg53], SAPT1 and SAPT2. A reduction of the
Notice that in contrast to 3D all three-atomic molecules arepinding energy for helium-3 dimer in 2D of 6.6% for SAPT2
bound in 2D. and 11.2% for SAPT1 is obtained. Our variational calcula-
Concerning four-atomic molecules in 3D binding hastions shows that these percentages are slightly higher for
been obtained only fof'He,, *He*He;, and 3He,-*He,.  3He,. We conclude that retarded forces do not change the
Again all four-atomic molecules are bound in 2D. But in this general features of helium trimers and tetramers.
case molecule$He, and *He-*He; are bound stronger in  Cabral and Bruch9] have showed that for some values of
3D. coupling constant the energy 8He; with spin 3/2 is lower
In circular confined 2D spacéHe; and *He; show simi-  then for the®He, with spin 1/2. We have not met this prob-
lar behavior as dimer§47]; binding is stronger for some |em with real interaction. We have found that oriiie; with
values of the radius of the circle. In the linfit—c, whichis  spin 1/2 is bound.
nearly achieved foR=10000 A in case ofHe;, and for In connection with experimental observation of helium-3
R=200 A in case of*He;, the trimer binding energies in molecules, it seems one should consider the adsorption on
infinite space are obtained. It is interesting to notice thakuch substrates that provide wider wells than the graphite in
®He; is not bound foiR<700 A and that the increase in the the direction perpendicular to the substrate. Also, our results
binding energy is much smaller than for the dinér]. for helium 3 in circle suggest that if the surface of substrate
In quasi-2D space derived by holding harmonic potentialhas step irregularities on the scale less than about 1500 A
with width of 3 A, binding is drastically increased. Binding trimers are not self-bound. However, this number may be
energies of*He trimer and tetramer are 482(2) mK and  reduced when one considers the realistic substrates because
—1200(20) mK, respectively. In the same holding potentialthe average distance among atoms in that case is consider-
binding energies ofHe; and 3He, are —8.6(7) mK and  ably diminished.
—16.5(8) mK, respectively’He; and *He, have the same Consideration offHe trimer and tetramer in holding po-
binding energy(up to the error width and *He, has twice tentials with dimerlike wave functions is in progress. Our
the dimer energy. preliminary results for binding energy in circle show stronger
In helium-on-graphite potential binding dHe is almost  binding for the radiu®R~10000 A and weaker binding for
the same as in 2D: for the dimer it is43(2) mK and for R<5000 A when compared with results obtained by JFB
the trimer—188(3) mK. In Ref[44] a “He film on graphite  wave functions.
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APPENDIX

The explicit form of the summands in fermion correlation
function (15) reads fo(r)=g1VrKo(—sr), refre,»],

f1(r)=a, ex _(%) % re[ryr,] whereK, is modifieo_l Bessel function. It has 24 parameters
! 1 r ’ r2d and 13 of them are independent.
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