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Combined configuration-interaction and many-body-perturbation-theory calculations
of energy levels and transition amplitudes in Be, Mg, Ca, and Sr
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Configuration interaction~CI! calculations in atoms with two-valence electrons, carried out in theV(N22)

Hartree-Fock potential of the core, are corrected for core-valence interactions using many-body perturbation
theory~MBPT!. Two variants of the mixed CI1MBPT theory are described and applied to obtain energy levels
and transition amplitudes for Be, Mg, Ca, and Sr.
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I. INTRODUCTION

Although Be, Mg, Ca, and Sr atoms have been stud
theoretically for many years and numerous calculations
available in the literature, energy levels of those dival
atoms have been treated primarily with semiempirical me
ods and only a limited number of low-lying levels have be
evaluated usingab initio methods, which often do not pro
vide sufficient precision or require extensive computer
sources. Semiempirical methods, to their advantage, do
require significant computer resources and can be app
easily to a large number of levels; however, such theo
have limited predictive power and accuracy. Although en
gies obtained using semiempirical methods agree well w
one another and with experiment, oscillator strengths
tained by different semiempirical calculations are incons
tent @1#. Examples of semiempirical calculations can
found for Be in@1#, for Ca in @2#, and for Sr in@3#. Large-
scaleab initio configuration interaction~CI! calculations of
energies and transition rates, although capable of high a
racy, have been performed only for a few low-lying levels
the Be@4,5# and Mg@6# isoelectronic sequences. The size
the configuration space in such CI calculations is limited
the available computer resources. Smaller-scale CI calc
tions, carried out in the frozenV(N22) Hartree-Fock potentia
of the core, lead to poor results. We found, for example, t
frozen-core CI calculations in Ca gave energies so inaccu
that it was difficult, if at all possible, to identify many close
spaced levels of experimental interest. Multiconfigurat
Dirac-Fock ~MCDF! and Hartree-Fock~MCHF! methods
have also been used to obtain energies and oscill
strengths in divalent atoms: MCHF for Be-like ions@7# and
neutral calcium@8#, and MCDF for Mg-like ions@9#. The
accuracy of MCHF and MCDF calculations in neutral ato
is poor, basically because of computational limits on
number of configurations. Polarization potentials have b
used in conjunction with MCHF calculations@10# to improve
the accuracy of energies for CaI and CaII. Many-body per-

*Electronic address: isavukov@nd.edu;
URL: http://www.nd.edu/~isavukov

†Electronic address: johnson@nd.edu;
URL: http://www.nd.edu/~johnson
1050-2947/2002/65~4!/042503~8!/$20.00 65 0425
d
re
t
-

-
ot

ed
s

r-
h
-
-

u-

f
y
la-

t
te

n

or

s
e
n

turbation theory~MBPT! calculations of energies and osci
lator strengths for neutral divalent atoms using an effect
Hamiltonian within a small model space, are also found to
inaccurate@11,12#. Good agreement with experiment for d
valent atoms, however, was achieved in Refs.@13–15# with a
combined CI1MBPT method. A related method was applie
to calculations of energies and oscillator strengths for M
like ions in Ref. @16#. Among the ab initio methods, CI
1MBPT is particularly attractive since it is capable of givin
accurate energies and transition rates for both light
heavy divalent atoms with modest computer resources.

A precise and efficient theoretical method for calculatio
of properties of divalent atoms is needed for many poss
applications of current interest, including calculations
spectra, transition amplitudes, hyperfine structure consta
polarizabilities, parity-nonconserving amplitudes, van d
Waals coefficients, and Lennard-Jones coefficients. Ther
also growing interest in properties of divalent atoms in co
junction with low-temperature Bose-Einstein condensat
~BEC! experiments. For example, the prospect for achiev
BEC in divalent atoms was discussed in@17,18# and depends
on the size of the van der Waals coefficient.

At least two major difficulties have been recognized
studying divalent atoms. First, core-polarization effects
significant and must be taken into account. A similar situ
tion exists in monovalent atoms where various methods h
been successfully applied to describe the valence-core in
action. We have made extensive use of one of these meth
MBPT, and have developed methods for calculating all d
grams up to the third order for energies@19# and transition
amplitudes@20#. A second major difficulty is that two va
lence electrons interact so strongly in neutral atoms that t
particle diagrams must be included to infinite order. Sin
infinite order is required, the MBPT method is difficult t
apply. However, valence-valence correlations can be
counted for completely using the CI method.

With this in mind, we have developed a method~similar
to that used in Refs.@13–15# but with important differences!
for high-precision calculations of properties of atoms w
two-valence electrons. The method starts with a complete
calculation of the interactions between the valence electr
in a frozen core and accounts for valence-core interacti
using MBPT. We apply this combined CI1MBPT method to
calculate energy levels and transition amplitudes for Be, M
Ca, and Sr.
©2002 The American Physical Society03-1
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I. M. SAVUKOV AND W. R. JOHNSON PHYSICAL REVIEW A65 042503
II. METHOD

A. Frozen-core CI

We start with a lowest-order description of a divale
atom in which the closedN22 electron core is described i
the HF approximation and valence or excited electrons
isfy HF equations in the ‘‘frozen’’V(N22) HF core. As we
mentioned in the introduction, the strong valence-vale
correlations must be included to infinite order; the CI meth
accomplishes this. The configuration space for divalent
oms is built up in terms of the excited HF orbitals. We i
clude all orbitals with angular momentuml<5 ~partial-
wave contributions scale as 1/(l 11/2)4) and we use 25 basi
functions out of a complete set of 40 for each value of
gular momentum. The effect of these restrictions is insign
cant considering the perturbative treatment of valence-c
correlations.

A detailed discussion of the CI method~as used here! can
be found in Ref.@21#. We introduce a configuration-stat
wave-functionF I[FJM( i j ) in which single-particle basis
orbitals i and j are combined to give a two-particle wav
function with angular momentumJ and definite parity. We
then expand the general two-particle wave functionCJM in
terms of allFJM( i j ) in our basis set

CJM5(
I

cIF I . ~2.1!

The expectation value of the Hamiltonian becomes

^CJMuHuCJM&5(
I

EIcI
21(

I ,K
VIKcIcK , ~2.2!

whereEI5e i1e j is the sum of single-particle HF energie
and VIK is a first-order, two-particle correlation matrix ele
ment ~see, for example,@21#! between the configurationsI
5( i j ) and K5(kl). The variational condition leads to C
equations

(
K

~EId IK1VIK !cK5lcI , ~2.3!

from which CI energies (l) and wave functions (( IcIF I)
are found.

B. Combining CI with MBPT

Core-polarization effects can be treated using MBPT.
this paper, we introduce two procedures that enable u
combine frozen-core CI and second-order two-valen
electron MBPT, which we refer to as ‘‘CI averaging’’ an
‘‘Brueckner-orbital CI’’ methods.

1. CI averaging

In this first method, the core-valence interactionDEvc is
obtained by ‘‘averaging’’ MBPT corrections over CI wav
functions
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DEvc5( cIcK^F I uH (2)uFK&, ~2.4!

where the configuration weightscI andcK are taken from the
solution of the CI equation, Eq.~2.3!, andH (2) is that part of
the effective Hamiltonian projected onto the valence elect
subspace containing second-order valence-core interact
The dominant second-order parts of the effective Ham
tonian, beyond those accounted for in the CI calculation,
the screening and self-energy diagrams:H (2)5Hscreen1Hself,
the self energy being much larger than the screening
both being larger than the remaining second-order terms

We borrow ready-to-use formulas, derived using stand
techniques, from Ref.@12#. The screening contribution to th
effective Hamiltonian is

Hv8w8vw
screen

52hv8w8hvw (
a8b8ab

C1~a8b8ab!

3(
nbk

~21! j w81 j v1 j n1 j b

@k# H j a8 j b8 J

j b j a kJ
3

Zk~a8ban!Zk~b8nbb!

eb1eb2eb82en

, ~2.5!

where

C1~a8b8ab!5~21!J@da8v8db8w8davdbw

1da8w8db8v8dawdbv#1da8v8db8w8dawdbv

1da8w8db8v8davdbw . ~2.6!

The self-energy contribution toH (2) is

Hv8w8vw
self

5hv8w8hvw@dw8wSv8v1dv8vSw8w

1~21!J~dv8wSw8v1dw8vSv8w!#, ~2.7!

where

S i j ~e0!5 (
kcmn

~21! j m1 j n2 j i2 j c

@ j i #@k#

Xk~ icmn!Zk~mn jc!

e01ec2em2en

1 (
kbcn

~21! j i1 j n2 j b2 j c

@ j i #@k#

Xk~ inbc!Zk~bc jn!

e01en2eb2ec
.

~2.8!

In the above equations,J is the angular momentum of th
coupled two-particle states. The coupled radial integr
Xk(abcd) and Zk(abcd) are defined in@12#. We use the
notation @k#52k11. The quantitieshvw are normalization
constants,hvw51/A2 for identical particle states and 1, oth
erwise. In the expression for the self energy, the angu
momenta of thei th and j th orbitals satisfyk i5k j , where
k i57( j i11/2) for j i5 l i61/2 is the angular quantum num
ber uniquely specifying the spinor for statei. Since we found
that the second-order self-energy correction is very imp
tant, we also consider the fourth-order self-energy obtai
by iteration
3-2



r-
ha
ar
b
ox
ly

d’’

on
po
m

a
e

w
n-
th

ca
b

. T

ng
x
e

Ad
e

s
lc
c
la

e

,

n

n
n

. I

I
er-

-
ticle

rec-
re-
O

the
CI

v-
de-

e
va-

are
d to
cor-
-

or
ter-
im-
a-

n
h

se
c-

al-
are
ram-

of
this

to

r-

d of

COMBINED CONFIGURATION-INTERACTION AND . . . PHYSICAL REVIEW A65 042503
S i j ~e0!→S i j ~e0!1(
kÞ i

S ik~e0!Sk j~e0!

e i2ek
. ~2.9!

In heavy atoms, the choice ofe0 deserves special conside
ation. Problems with denominators arise from the fact t
single-particle orbitals used in the self-energy calculation
not optimal, in the sense that there is mutual interaction
tween valence electrons not accounted for, even appr
mately, in theV(N22) potential and accounted for excessive
in theV(N) potential which is used, for example, in Ref.@14#.
One practical solution to this problem is to use ‘‘optimize
denominators@14#. A consistent theory requires anab initio
treatment of the denominator problem. Basing calculati
of atoms with two-valence electrons on a more realistic
tential can reduce uncertainties in the choice of the deno
nator in the self-energy corrections.

We calculated energies of several levels using the CI
eraging method and found that the best agreement with
periment for Be and Mg was obtained withe0 equal to 1/2 of
the CI energy. For the case of Ca, the best agreement
obtained choosinge0 between 1/2 and one times the CI e
ergy. One advantage of the CI averaging method is that
basic CI code is simple and that the CI wave functions
be stored and used many times. A cutoff condition can
imposed, as a compromise between speed and accuracy
fastest approximation~giving the poorest accuracy! is ob-
tained by restricting the MBPT corrections to the leadi
configurations. We used this leading configuration appro
mation to estimate the magnitude of the core-excitation
fects as the first step in developing our computer code.
justing the cutoff condition, we readily reached a high lev
of accuracy~finally we chose the cutoff conditionucIcKu
,0.002 for all calculations!. The energies for several state
of Be, Mg, and Ca presented in this paper have been ca
lated with the CI averaging method. The principal drawba
of this method is that wave functions necessary for calcu
tions of other properties are not automatically obtained.

2. Brueckner-orbital CI

The effective Hamiltonian formalism@12# leads to the
problem of diagonalizing the Hamiltonian matrix built on th
frozen-core two-electron configuration state functionsF I .
We split this matrix into functionally distinct pieces,

H5H (0)1H (1)1H (2), ~2.10!

where H (0) is the zeroth-order Dirac-Fock Hamiltonian
which in the Dirac-Hartree-Fock~DHF! basis is

Hv8w8vw
(0)

5dvv8dww8~ev
01ew

0 !,

and H (1) is the first-order electron-electron interactio
Hamiltonian

Hv8w8vw
(1)

5Vv8w8vw
(1) ,

defined in Ref.@12#. H (2) is the second-order correctio
which consists of the two-particle screening correction a
the one-particle self-energy correction defined previously
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the CI averaging method,H (0)1H (1) is diagonalized first in
a DHF basis~whereH (0) is diagonal! to give state energies
and CI wave functions, thenH (2) is evaluated using the C
wave functions to give corrections for the core-valence int
action.

In the Brueckner-orbital~BO!-CI method, the basis func
tions are chosen as orthonormal solutions of the quasipar
equation,

@h01VHF1S i j ~e!#f j5eBOf i . ~2.11!

In this BO basis,

~H (0)1Hself!v8w8vw5dvv8dww8~ev
BO1ew

BO!. ~2.12!

The basis orbitals include second-order self-energy cor
tions together with the lowest-order DHF potential. The
sidual nontrivial part of the effective Hamiltonian in the B
basis is the sumH (1)1Hscreen. In the Bruckner orbital-CI
method, the residual Hamiltonian matrix is evaluated in
BO basis and diagonalized to obtain state energies and
wave functions. The BO-CI method is equivalent to CI a
eraging method if we neglect energy differences in the
nominators ofHself and Hscreen ~of order of the valence-
valence interaction energy!, which are small compared to th
core excitation energies. The BO-CI method is also equi
lent to the effective Hamiltonian method in@14# to the same
level of precision, provided all second-order diagrams
included. Some advantage is gained in accuracy compare
the CI averaging method, since the largest valence-core
rections@those fromS i j (e0)# are taken into account to infi
nite order.

The Brueckner-orbital CI method is very convenient f
calculations of transition amplitudes; once the residual in
action is diagonalized, the associated wave functions are
mediately available. We include random-phase approxim
tion ~RPA! corrections in calculations of transitio
amplitudes by replacing ‘‘bare’’ matrix elements wit
‘‘dressed’’ elements as explained in@20#. Length-form and
velocity-form dipole matrix elements are found to be in clo
agreement in BO-CI calculations that include RPA corre
tions.

III. CALCULATIONS OF SPECTRA USING CI AVERAGING

The CI averaging method is fast and convenient for c
culations of energies when a large number of levels
needed, especially at the stage of adjusting the code pa
eters. Below, we present our calculations for many levels
Be, Mg, and Ca atoms to demonstrate the accuracy of
method. We evaluate the valence-core correctionDEvc to the
CI energy using a subset of the CI coefficients limited
those satisfyingucIcKu<0.002. The parametere0 in the self
energy was chosen to beeCI/2 for Be and Mg. For calcium it
was increased to 3eCI/4 to obtain better agreement for ene
gies of the 4p2 states.

The basis set used to set up the calculations consiste
25/40 DHF basis functions for each value ofl<5. The basis
functions were formed as linear combinations ofB splines of
order 7, constrained to a cavity of radiusR580 a0.
3-3
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A. Calculations for Be

We chose to study a Be atom for several reasons. F
this atom has a small core and, consequently, requires
tively little computation time. Second, because of the sm
size of the core-valence interaction, calculations for Be
expected to be very precise.

A comparison of the resulting CI energies with measu
energies from the National Institute of Standards and Te
nology ~NIST! database@22# is shown in Table I. This com-
parison provides the first test of the CI averaging meth
The values listed in the table agree with experiment at
level of tens of cm21. The residual deviation can be ex
plained as neglect of small Coulomb and Breit diagram
which will be the subject of future investigations.

It is also interesting to compare CI energies, with a
without the MBPT correctionsDEvc , with energies from the
NIST database. Such a comparison is given in Table II
illustrates the importance of the valence-core corrections

The agreement with experiment improves by an orde
magnitude for the CI-averaging method as compared wi
frozen-core CI calculation. Indeed, we found it necessary
use the more precise energies obtained from the
averaging method to properly identify the transitions sho
in this table.

TABLE I. Comparison of CI-averaging energy levels (cm21) of
Be I with experimental data from the NIST database@22#.

Configuration Term J NIST CI average

2s2 1S 0 0 0
2s2p 3Po 0 21978 21996
2s2p 3Po 2 21981 22000
2s3s 3S 1 52081 52074
2p2 1D 2 56882 56890
2s3p 3Po 1 58907 58890
2s3p 3Po 2 58908 58896
2p2 3P 1 59695 59749
2p2 3P 2 59697 59747
2s3d 3D 3 62054 62033
2s3d 1D 2 64428 64414
2s4s 3S 1 64506 64528
2s4s 1S 0 65245 65261
2s4p 3Po 2 66812 66792
2s4d 3D 3 67942 67924
2s4 f 3Fo 3 68241 68224
2s4 f 1Fo 3 68241 68224
2s4d 1D 2 68781 68774
2s5s 3S 1 69010 69056
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B. Calculations for Mg

Another example where the CI averaging method pred
energy levels accurately is magnesium. In this atom, ho
ever, core correlations are larger and the treatment of
valence-core interaction term requires more careful analy
One important aspect is choosing the parametere0 in the
denominators of the MBPT corrections, another is the tre
ment of self-energy diagrams. We found mild sensitivity
final energies in Mg to the choice ofe0. The corrected ener
gies shown in the column headed ‘‘CI1 2nd’’ in Table III,
which were obtained with the choicee05eCI/2, are seen to
be in close agreement with experimental energies@22#.

Typically, the self-energy correction is much larger th
other valence-core diagrams; for example, in the Mg grou
state, the self energy is21.6531022 a.u. while the screen
ing contribution is ten times smaller, 1.8331023 a.u.
Valence-core contributions in fourth order, obtained by it
ating ~or chaining! the second-order Brueckner correctio
are also found to be significant,26.5731024 a.u. for the
Mg ground state. The effect of including corrections fro
chaining the self energy shown in the column headed ‘‘CI1
4th’’ in Table III is seen to further improve the agreeme
with experiment.

C. Ca atom

In Table IV, several even parityJ50 levels are calculated
with the frozen-core CI and CI-averaging methods. Co
pared to the frozen-core CI method, the agreement is sig
cantly improved with the addition of MBPT correction
changing the difference between experiment and theory f
approximately one thousand cm21 to a few hundred cm21.
This significant change clearly indicates the importance
the valence-core interaction, which is much stronger than
the case of Be and Mg. As a result, the final accuracy of
CI1MBPT method is also lower than for the lighter atom
While the poor accuracy of frozen CI energies prevents
identification of energy levels, more accurate CI1MBPT en-
ergies permit one to identify many Ca levels. It is interesti
to notice that the sequence of experimental levels for
states of a particular symmetry is the same as the sequen
theoretical eigenvalues. Once the question of classificatio
solved, various properties of atoms can be calculated us
for example, frozen-core CI.

In the case of Ca, another problem that needs attentio
the choice of the parametere0 in the self energy, the domi
nant part of the core-valence interaction. We find that ther
an optimal value of this parameter betweeneCI/2, our stan-
dard value for Be and Mg, andeCI , for which the ground
state becomes very accurate. In Table IV we chose this
TABLE II. Comparison of frozen-core CI energies (cm21) and CI-averaging energies for BeI with
experimental energies from the NIST database@22#.

Configuration Term J NIST CI average Difference Frozen CI Difference

2s3s 1S 0 54677 54664 213 54509 168
2p2 3P 0 59694 59737 43 60090 2396
2s5s 1S 0 69322 69307 215 69387 165
3-4



h
nergies

COMBINED CONFIGURATION-INTERACTION AND . . . PHYSICAL REVIEW A65 042503
TABLE III. Comparison of energies~a.u.! in Mg obtained from frozen-core CI, CI averaging wit
second-order self-energy, and CI averaging with chained fourth-order self-energy, with experimental e
from the NIST database@22#.

Configuration Level CI CI12nd CI14th Experiment D (cm21)

3s2 1S0 0.818 0.8329 0.833513 0.833518 1
3s4s1S0 0.624 0.6349 0.635260 0.635303 9
3s5s1S0 0.583 0.5938 0.594240 0.594056 40
3s6s1S0 0.566 0.5772 0.577813 0.577513 66
3p2 3P0 0.562 0.5695 0.569747 0.570105 79
3s3p 3P1 0.723 0.7336 0.733991 0.733869 27
3s3p 1P1 0.661 0.6733 0.673673 0.673813 31
3s4p 3P1 0.604 0.6156 0.615834 0.651524 68
3s4p 1P1 0.597 0.6086 0.608606 0.608679 16
3s3p 3P2 0.723 0.7333 0.733867 0.733684 67
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rameter to be 0.75eCI . In the following section, we will il-
lustrate our calculations of transition amplitudes for seve
levels of Mg, Ca, and Sr where other precise calculations
measurements exist.

IV. CALCULATIONS USING THE BRUECKNER-ORBITAL
CI METHOD

In this section, we present our calculations of energies
transition amplitudes with the Brueckner-orbital CI metho
Our basis consisted of 25VHF

N22 orbitals~those orbitals were
constructed from 40B splines in a cavity of radius 80 a.u.!,
in which 14 lowest excited states were replaced with Brue
ner orbitals. The resulting one-valence electron energies
the divalent atoms were tested by comparing with exp
mental energies for the corresponding monovalent ions.
Mg1, the BO energies agree with experiment better than
the second-order energies~Table V!. A second iteration of
the BO equation was also included in the CI-averag
method~Table III! to improve accuracy. The small size of th
residual deviation from experiment in both tables can be
tributed to higher-order diagrams. Two-particle screen
corrections with the restrictionn,15 were included in the
effective Hamiltonian, diagonalization of which provided th
initial and final state wave functions necessary for the ca
lation of transition amplitudes. We checked that restrictio
on the number of BO and screening diagrams included in
calculation did not lead to significant errors. Dressed tran
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tion amplitudes were used to take into account RPA corr
tions, which provide better length- and velocity-form agre
ment. We completely neglected the extremely tim
consuming structural radiation corrections which are
pected to be small for the length form; for this reason,
result calculated in length form should be considered as m
accurate. Small normalization corrections are also omitte

A. Be case

The most accurate results for divalent atoms are expe
for Be since it contains the smallest MBPT corrections.
Table VI, we compare our calculations with available prec
calculations and experiment. Transition energies agree w
experiment to better than 0.1%, except for the transit
2s3s 1S–2s2p 1P which has 0.4% accuracy. Our oscillato
strengths agree well with those obtained in very accurateab
initio calculations of Ref.@23# and in semiempirical calcula
tions of Ref.@1# that reproduce energies very closely; for t
principal transition 2s2 1S–2s2p 1P, our value 1.375 differs
by one in the fourth digit from the value 1.374 in Ref.@23#,
the accuracy being better than 0.1%, and coincides with
value of Ref.@1#. Very close agreement withab initio theory
is also achieved for the transition 2s3s 1S–2s3p 1P. For
suppressed transitions, an accuracy of 1% is obtained. C
ducting a simple statistical analysis, we found that ene
differences in the CI averaging and BO-CI calculations ha
similar statistical errors, but slightly different systema
The

nt
TABLE IV. Comparison of the accuracy of frozen-core CI and CI averaging calculations for Ca.
parametere050.75eCI .

Configuration Level Frozen CI Difference CI-average Difference Experime

4s5s 1S0 31901 21416 33196 2121 33317
4p2 3P0 36699 21718 38900 483 38418
4s6s 1S0 39376 21314 40504 2186 40690
4p2 1S0 41480 2306 42366 580 41786
4s7s 1S0 42673 21604 43841 2436 44277
4s8s 1S0 44277 21610 45551 2336 45887
4s9s 1S0 45629 21206 46912 77 46835
3-5
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I. M. SAVUKOV AND W. R. JOHNSON PHYSICAL REVIEW A65 042503
shifts which can be explained partially by different denom
nators in the two methods. Another reason is the cut-off c
dition 0.002 in the former method and restriction on t
number of Brueckner orbitals in the latter. The effect of t
partial-wave restriction on the ground-state energy in b
methods is 6 cm21. If this value is accounted for, the agre
ment becomes slightly better. The results in our tables are
extrapolated owing to the smallness of the omitted part
wave contributions.

TABLE V. Comparison of DHF spline energies ‘‘DHF,’’ second
order energies, and energies resulting from diagonalization of
self-energy matrix, Brueckner-orbital ‘‘BO’’ energies, with expe
ment for the Mg1 ion. The core configuration is 1s22s22p6. The
size of the self-energy matrix is 14314 for each angular momen
tum. All energies are expressed in cm21.

States DHF second order BO Experimen

3s1/2 118825 121127 121184 121268
4s1/2 50858 51439 51446 51463
5s1/2 28233 28467 28469 28477
3p1/2 84295 85508 85542 85598
4p1/2 40250 40625 40633 40648
5p1/2 23642 23808 23811 23812

TABLE VI. Comparison of the present transition energiesv
~a.u.! and oscillator strengthsf for Be with those from other theorie
and experiment. A few allowed singlet-singlet transitions of the ty
S0-P1

o between low-lying states are considered. The experime
uncertainties are given in parentheses.

Transition Source v ~theory! v ~experiment! f

2s2-2s2p Present 0.194126 0.193954 1.3750
@24# 1.38~0.12!
@25# 1.34~0.05!
@1# 0.19412 1.375
@23# 0.193914 1.374
@26# 1.3847
@27# 1.470
@28# 1.375

2s2-2s3p Present 0.274231 0.274251 0.00904
@1# 0.27441 0.00901
@23# 0.274236 0.00914
@26# 0.0104
@27# 0.037
@7# 0.00885

2s3s-2s2p Present 0.054977 0.05519 0.1188
@1# 0.05509 0.118
@23# 0.055198 0.1175
@26# 0.1199
@27# 0.140

2s3s-2s3p Present 0.025128 0.025107 0.9557
@24# 0.0252 0.958
@23# 0.025124 0.9565
@26# 0.9615
04250
-
-

h

ot
l-

B. The cases of Mg, Ca, and Sr

The accuracy of both the CI averaging and the BO-
calculations considered above decreases from light to he
divalent atoms. Table VII illustrates this tendency in BO-
calculations: for Mg, the theory-experiment differenc
range within 50 cm21, similar to what we have in Table III
and for Ca the deviation from experiment increases to ab
200 cm21 which is comparable to that in Table IV. Th
lowest accuracy is for Sr, which has the largest core a
MBPT corrections. Similar results for energies have be
obtained in Ref.@14#. Our experiment-theory differences ex
hibit a systematic shift, which if subtracted, brings resu
into better agreement. For example, in Ca this shift
216 cm21. After its subtraction, the residual deviation
73 cm21. This subtraction procedure can be used in ca
where closely spaced levels are difficult to identify. The s
tematic shift can be attributed to omitted correlations t
affect mostly the ground state which is used as a refere
The cutoff condition in the CI-averaging method and restr
tions on the number of BO and screening diagrams also
some effect on the accuracy of our results. This is one rea
why the two methods give slightly different energies. In f
ture development of our computer code, we will try to r
move such restrictions completely. Another reason why
two methods give different results is that the choices ofe0
were different. In Table VIII, we illustrate our calculations o
transition amplitudes for Mg, Ca, and Sr. All of our transitio
amplitudes completely agree with those of recent CI1MBPT

e

e
al

TABLE VII. Comparison of BO-CI energies (cm21) with ex-
periment for Mg, Ca, and Sr.

Levels Theory Experiment Difference

Mg atom
3s4s 1S0 43452 43503 251
3s5s 1S0 52517 52556 239
3s6s 1S0 56154 56187 233
3s3p 3P1 21834 21870 244
3s3p 1P1 35059 35051 8
3s4p 3P1 47806 47844 238
3s4p 1P1 49317 49347 230

Ca atom
4s5s 1S0 33505 33317 188
4p2 3P0 38651 38418 233
4s6s 1S0 40862 40690 172
4s4p 3P1 15595 15210 385
4s4p 1P1 23797 23652 145
4s5p 3P1 36760 36555 205
4s5p 1P1 36917 36732 185

Sr atom
5s6s 1S0 30874 30592 282
5p2 3P0 35913 35193 720
5p2 1P0 37696 37160 536
5s5p 3P1 15081 14504 577
5s5p 1P1 21981 21699 282
5s6p 3P1 34293 33868 425
5s6p 1P1 34512 34098 414
3-6
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calculations by Porsevet al. @14#, and are close to experi
mental values. Length-form and velocity-form amplitud
agree to better than 1% for allowed transitions. Forbidd
transitions are more problematic, owing to cancellation
fects, and have poorer agreement between gauges and
experiment. The inclusion of the Breit interaction a
negative-energy contributions, which are more important
the velocity form, might improve the situation. We also n
ticed that, if the balance between states such asp1/2 andp3/2

TABLE VIII. Comparison of our length form~L! and velocity
form ~V! calculations with those from Ref.@14# and with experi-
ment.

Mg Ca Sr

1P1
o(nsnp)-1S0(ns2)

L 4.026 4.892 5.238
V 4.019 4.851 5.212
Othera 4.03~2! 4.91~7! 5.28~9!

Experiment 4.15~10! b 4.967~9! e 5.57~6! f

4.06~10! c 4.99~4! f 5.40~8! h

4.12~6! d 4.93~11! g

3P1
o(nsnp)-1S0(ns2)

L 0.0063 0.0323 0.164
V 0.0070 0.0334 0.166
Othera 0.0064~7! 0.034~4! 0.160~15!

Experiment 0.0053~3! i 0.0357~4! l 0.1555~16! o

0.0056~4! j 0.0352~10! m 0.1510~18! m

0.0061~10! k 0.0357~16! n 0.1486~17! p

aPorsevet al. @14#.
bLiljeby et al. @29#.
cLundin et al. @30#.
dSmith and Gallagher@31#.
eZinner et al. @18#.
fKelly and Mathuret al. @32#.
gHansen@33#.
hParkinsonet al. @34#.

iGodone and Novero@35#.
jKwong et al. @36#.
kMitchell @37#.
lHusain and Roberts@38#.
mDrozdowskiet al. @39#.
nWhitkop and Wiesenfeld@40#.
oHusain and Schifino@41#.
pKelly et al. @42#.
Sc

e

04250
n
f-
ith

r

in relativistic basis is not properly maintained, the results
nonrelativistically forbidden transitions will be unstable.
addition, those transitions were affected by the number
BO and screening diagrams included in calculations.
minimize or exclude those effects in the BO-CI method, t
BO orbitals and cut-off conditions were made complete
symmetric with respect tol 11/2 andl 21/2 orbitals and in-
cluded BO and screening corrections with the number
excited orbitals less than 15.

V. SUMMARY AND CONCLUSION

In this paper, we have introduced two methods to impro
the accuracy of the frozen-core CI calculations using MBP
the CI-averaging method and the Brueckner-orbital
method. We have applied these methods to Be, Mg, Ca,
Sr atoms. Our calculated energies and transition amplitu
for those atoms are in close agreement with the results of
best available theories and experiments. Compared to s
empirical theories, our method has an advantage in accur
and compared to otherab initio theories, an advantage o
simplicity. These two methods can also be used to evalu
properties of Rydberg states for which only semiempiri
calculations exist. Further improvement in accuracy is p
sible and is being pursued. This theory can be extended
ily to treat particle-hole excited states of closed-shell atom
atoms with three valence electrons, and other more com
cated systems.
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