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of energy levels and transition amplitudes in Be, Mg, Ca, and Sr
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Configuration interactiorfCl) calculations in atoms with two-valence electrons, carried out invifie 2)
Hartree-Fock potential of the core, are corrected for core-valence interactions using many-body perturbation
theory(MBPT). Two variants of the mixed GIMBPT theory are described and applied to obtain energy levels
and transition amplitudes for Be, Mg, Ca, and Sr.
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[. INTRODUCTION turbation theory(MBPT) calculations of energies and oscil-
lator strengths for neutral divalent atoms using an effective
Although Be, Mg, Ca, and Sr atoms have been studieddamiltonian within a small model space, are also found to be
theoretically for many years and numerous calculations aréhaccuratg11,12. Good agreement with experiment for di-
available in the literature, energy levels of those divalentvalent atoms, however, was achieved in REfS—~15 with a
atoms have been treated primarily with semiempirical methcombined C#MBPT method. A related method was applied
ods and only a limited number of low-lying levels have beent© calculations of energies and oscillator strengths for Mg-
evaluated usingb initio methods, which often do not pro- like ions in Ref.[16]. Among theab initio methods, CI
vide sufficient precision or require extensive computer re-- MBPT is particularly attractive since it is capable of giving
sources. Semiempirical methods, to their advantage, do n%zcurate energies and transition rates for both light and

require significant compute resources and oan be applied3¥ X2 =R SIEEE T OO S L B S
easily to a large number of levels; however, such theories P

have limited predictive power and accuracy. Although ener—Of properties of divalent atoms is needed for many possible
b P Y- 9 applications of current interest, including calculations of

gies obtained usmg_sem|emp|r|cal methlods agree well W'thspectra, transition amplitudes, hyperfine structure constants,
one another and with experiment, oscillator strengths beolarizabilities, parity-nonconserving amplitudes, van der
tained by different semiempirical calculations are inconsisyyaais coefficients, and Lennard-Jones coefficients. There is
tent [1]. Examples of semiempirical calculations can begiso growing interest in properties of divalent atoms in con-
found for Be in[1], for Ca in[2], and for Srin[3]. Large-  jynction with low-temperature Bose-Einstein condensation
scaleab initio configuration interactiofCl) calculations of (BEC) experiments. For example, the prospect for achieving
energies and transition rates, although capable of high acc®EC in divalent atoms was discussed ¥,18 and depends
racy, have been performed only for a few low-lying levels inon the size of the van der Waals coefficient.
the Be[4,5] and Mg[6] isoelectronic sequences. The size of At least two major difficulties have been recognized in
the configuration space in such ClI calculations is limited bystudying divalent atoms. First, core-polarization effects are
the available computer resources. Smaller-scale CI calculaignificant and must be taken into account. A similar situa-
tions, carried out in the frozevi®N~2) Hartree-Fock potential tion exists in monovalent atoms where various methods have
of the core, lead to poor results. We found, for example, thabeen successfully applied to describe the valence-core inter-
frozen-core CI calculations in Ca gave energies so inaccuratgction. We have made extensive use of one of these methods,
that it was difficult, if at all possible, to identify many closely MBPT, and have developed methods for calculating all dia-
spaced levels of experimental interest. Multiconfigurationgrams up to the third order for energigk9] and transition
Dirac-Fock (MCDF) and Hartree-FockMCHF) methods  amplitudes[20]. A second major difficulty is that two va-
have also been used to obtain energies and oscillatdence electrons interact so strongly in neutral atoms that two-
strengths in divalent atoms: MCHF for Be-like iofigl and  particle diagrams must be included to infinite order. Since
neutral calcium[8], and MCDF for Mg-like ions[9]. The infinite order is required, the MBPT method is difficult to
accuracy of MCHF and MCDF calculations in neutral atomsapply. However, valence-valence correlations can be ac-
is poor, basically because of computational limits on thecounted for completely using the CI method.
number of configurations. Polarization potentials have been With this in mind, we have developed a meth@imilar
used in conjunction with MCHF calculatioh0] to improve  to that used in Ref§13—15 but with important differences
the accuracy of energies for Cand Cai. Many-body per-  for high-precision calculations of properties of atoms with
two-valence electrons. The method starts with a complete ClI
calculation of the interactions between the valence electrons

*Electronic address: isavukov@nd.edu; in a frozen core and accounts for valence-core interactions
URL: http://www.nd.edufisavukov using MBPT. We apply this combined EMBPT method to

"Electronic address: johnson@nd.edu; calculate energy levels and transition amplitudes for Be, Mg,
URL: http://www.nd.edu/johnson Ca, and Sr.
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Il. METHOD E o
AE, .= cc(D|HY D), 2.4
A. Frozen-core ClI ve I K< I| | K> (2.9

We start with a lowest-order description of a divalenthere the configuration weights andcy are taken from the
atom in which the closefii—2 electron core is described in spjution of the CI equation, Eq2.3), andH(?) is that part of
the HF approximation and valence or excited electrons sathe effective Hamiltonian projected onto the valence electron
isfy HF equations in the “frozen’v(N"2) HF core. As we  subspace containing second-order valence-core interactions.
mentioned in the introduction, the strong valence-valencehe dominant second-order parts of the effective Hamil-
correlations must be included to infinite order; the ClI methqunian, beyond those accounted for in the CI calculation, are
accomplishes this. The configuration space for divalent atthe screening and self-energy diagrai§?) = Hscreeny self
oms is built up in terms of the excited HF orbitals. We in- the self energy being much |arger than the Screening and
clude all orbitals with angular momentuts<5 (partial-  poth being larger than the remaining second-order terms.
wave contributions scale as li41/2)*) and we use 25 basis e borrow ready-to-use formulas, derived using standard
functions out of a complete set of 40 for each value of antechniques, from Ref12]. The screening contribution to the
gular momentum. The effect of these restrictions is insignifi-effective Hamiltonian is
cant considering the perturbative treatment of valence-core
correlations. screen

A detailed discussion of the Cl methéas used hejecan v'wow . To'w Tow ,g 5 Ci(a’'B'ap)
be found in Ref.[21]. We introduce a configuration-state a a o
wave-function®,=®,,(ij) in which single-particle basis 5 (—1)lwHotinto fjo g J
orbitalsi andj are combined to give a two-particle wave- X o~ (K] i i k
function with angular momenturd and definite parity. We b “
then expand the general two-particle wave functibg, in Z(a'ban)Z(B'npb)
terms of all®,y,(ij) in our basis set X : (2.5

€gt€ep—€p —€p
\PJM=EI cd, . (2.1)  where
Ci(a'B aB)=(—1) 841, Oprw SurOpw
+ 0arw 0pry1 OqwOpy ]t Oaryr Oprw Sawdpy
Bt D1 By B 2.6

The expectation value of the Hamiltonian becomes

<WJM|H|\PJM>:2 E|C|2+2 VikCiCk (2.2
I LK The self-energy contribution tbl(®) is

whereE, = €+ ¢ is the sum of single-particle HF energies Hﬂ//uw: Norw Towl Owweo v T OorvSwrw
andV is a first-order, two-particle correlation matrix ele- 5
ment (see, for example[21]) between the configuratiors (=1 (SprwZwo T Swrp2pw)],  (2.7)
=(ij) and K=(kl). The variational condition leads to CI h
equations where
(—1)im*in~lizlc X, (icmn)Z,(mnjc)
Eij(60)=2 TR —
> (Eidic+Vik)ek =\, (2.3 kemn Liillk] €0t €™ €m™
K o
LS (—=D)litIn7Ib7le X, (inbc)Z (bcjn)

from which CI energies X) and wave functionsX,c,®,) Koen  LIillK] €t en—€ep—€c
are found. 2.8

In the above equationg, is the angular momentum of the
coupled two-particle states. The coupled radial integrals
Core-polarization effects can be treated using MBPT. Inx, (abcd) and Z,(abcd) are defined in[12]. We use the
this paper, we introduce two procedures that enable us totation[k]=2k+1. The quantitiesy,,, are normalization
combine frozen-core CI and second-order two-valencegonstantsy,,=1/42 for identical particle states and 1, oth-
electron MBPT, which we refer to as “Cl averaging” and gpyise. In the expression for the self energy, the angular
“Brueckner-orbital CI" methods. momenta of theth and jth orbitals satisfyx;=«;, where
k=% (j;j+1/2) forj;=1;£1/2 is the angular quantum num-
ber uniquely specifying the spinor for stateSince we found

In this first method, the core-valence interactibk,. is  that the second-order self-energy correction is very impor-
obtained by “averaging” MBPT corrections over Cl wave tant, we also consider the fourth-order self-energy obtained
functions by iteration

B. Combining Cl with MBPT

1. Cl averaging
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2ik(€0)2kj(€o) the Cl averaging methodi(®©+H® is diagonalized first in
E— (2.9  a DHF basisiwhereH® is diagonal to give state energies
and Cl wave functions, theH?) is evaluated using the ClI

In heavy atoms, the choice &f, deserves special consider- Wave functions to give corrections for the core-valence inter-

ation. Problems with denominators arise from the fact thafction. _ _

single-particle orbitals used in the self-energy calculation are. N the Brueckner-orbitalBO)-Cl method, the basis func-

not optimal, in the sense that there is mutual interaction petions are chosen as orthonormal solutions of the quasiparticle

tween vaIenC(a(NeISctrons not accounted for, even approxgduation,

mately, in theV™™ <’ potential and accounted for excessively _ BO

in the V() potential which is used, for example, in RE4]. [RotViet2ij(€)]dj= €. (213

One practical solution to this problem is to use “optimized” |, this BO basis,

denominatorg14]. A consistent theory requires af initio

treatment o_f the denominator problem. Basing calc_ulf'mons (HOHselhy W= 500,5WW,(65‘0+ e\?vo)_ (2.12

of atoms with two-valence electrons on a more realistic po-

tential can reduce uncertainties in the choice of the denomithe basis orbitals include second-order self-energy correc-

nator in the self-energy corrections. tions together with the lowest-order DHF potential. The re-
We calculated energies of several levels using the CI avsidual nontrivial part of the effective Hamiltonian in the BO

eraging method and found that the best agreement with exbasis is the sunH®+HSe"®" |n the Bruckner orbital-Cl

periment for Be and Mg was obtained with equal to 1/2 of method, the residual Hamiltonian matrix is evaluated in the

the CI energy. For the case of Ca, the best agreement wd0 basis and diagonalized to obtain state energies and Cl

obtained choosing, between 1/2 and one times the Cl en- wave functions. The BO-CI method is equivalent to Cl av-

ergy. One advantage of the ClI averaging method is that theraging method if we neglect energy differences in the de-

basic Cl code is simple and that the CI wave functions camominators ofH®" and HS"®®" (of order of the valence-

be stored and used many times. A cutoff condition can bezalence interaction energywhich are small compared to the

imposed, as a compromise between speed and accuracy. Téere excitation energies. The BO-Cl method is also equiva-

fastest approximatiorigiving the poorest accuragys ob-  lent to the effective Hamiltonian method [i&i4] to the same

tained by restricting the MBPT corrections to the leadinglevel of precision, provided all second-order diagrams are

configurations. We used this leading configuration approxiincluded. Some advantage is gained in accuracy compared to

mation to estimate the magnitude of the core-excitation efthe Cl averaging method, since the largest valence-core cor-

fects as the first step in developing our computer code. Adrections[those from;(eo)] are taken into account to infi-

justing the cutoff condition, we readily reached a high levelnite order.

of accuracy(finally we chose the cutoff conditioic,c| The Brueckner-orbital Cl method is very convenient for

<0.002 for all calculations The energies for several states calculations of transition amplitudes; once the residual inter-

of Be, Mg, and Ca presented in this paper have been calc@ction is diagonalized, the associated wave functions are im-

lated with the CI averaging method. The principal drawbackmediately available. We include random-phase approxima-

of this method is that wave functions necessary for calculation (RPA) corrections in calculations of transition

tions of other properties are not automatically obtained.  amplitudes by replacing “bare” matrix elements with

“dressed” elements as explained j&0]. Length-form and

2i]'('fo)—>2i1'(450)+2_
k#i

€j— €k

2. Brueckner-orbital Cl velocity-form dipole matrix elements are found to be in close
The effective Hamiltonian formalisni12] leads to the agreement in BO-CI calculations that include RPA correc-
tions.

problem of diagonalizing the Hamiltonian matrix built on the

frozen-core two-electron configuration state functichbg.
We split this matrix into functionally distinct pieces, ll. CALCULATIONS OF SPECTRA USING CI AVERAGING

H=HO+HO+H@), (2.10 The Cl averagin_g method is fast and convenient for cal-
culations of energies when a large number of levels are

where H® s the zeroth-order Dirac-Fock Hamiltonian, Needed, especially at the stage of adjusting the code param-

which in the Dirac-Hartree-FockDHF) basis is eters. Below, we present our calculations for many levels of
Be, Mg, and Ca atoms to demonstrate the accuracy of this
Hz(ﬁ)w/vw: Syt O (€24 €2), method. We evaluate the valence-core correclié,. to the

Cl energy using a subset of the CI coefficients limited to
and H® is the first-order electron-electron interaction those satisfyingc,c,|<0.002. The parametet, in the self
Hamiltonian energy was chosen to leg /2 for Be and Mg. For calcium it
was increased to &./4 to obtain better agreement for ener-
gies of the 42 states.

The basis set used to set up the calculations consisted of
defined in Ref.[12]. H® is the second-order correction 25/40 DHF basis functions for each valuelef5. The basis
which consists of the two-particle screening correction andunctions were formed as linear combination8Ba$plines of
the one-particle self-energy correction defined previously. Irorder 7, constrained to a cavity of radiRs=80 a,.

HO g

v'w'ow v'w'ow?
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TABLE |. Comparison of Cl-averaging energy levels (ch of B. Calculations for Mg

Be | with experimental data from the NIST databq82]. Another example where the Cl averaging method predicts

energy levels accurately is magnesium. In this atom, how-

Configuration Term J NIST Cl average .
ever, core correlations are larger and the treatment of the
252 1S 0 0 0 valence-core interaction term requires more careful analysis.
2s2p 3P° 0 21978 21996 One important aspect is choosing the parametein the
2s2p 3p° 2 21981 22000 denominators of the MBPT corrections, another is the treat-
2s3s 3s 1 52081 52074 ment of self-energy diagrams. We found mild sensitivity of
2p? 1D 2 56882 56890 final energies in Mg to the choice ef. The corrected ener-
2s3p 3p° 1 58907 58890 gies shown in the column headed “Gl 2nd” in Table I,
2s3p 3p° 2 58908 58896 which were obtained with the choicg= ec/2, are seen to
2p? 3p 1 59695 59749 be in close agreement with experimental enerf2ss.
2p? 3p 2 50697 59747 Typically, the self-energy correction is much larger than
253d 3D 3 62054 62033 other valence-core diagrams; for example, in the Mg ground
253d 1D 2 64428 64414 state, the self energy is1.65<10 2 a.u. while the screen-
2545 3s 1 64506 64528 ing contribution is ten times smaller, 1.830°° a.u.
Valence-core contributions in fourth order, obtained by iter-
2s4s 1S 0 65245 65261 . L .
2s4p 3po 5 66812 66792 ating (or chaining the s_ecp_nd-order Brueckner corrections
are also found to be significant; 6.57x 104 a.u. for the
2s4d 3D 3 67942 67924 . . .
o Mg ground state. The effect of including corrections from
2s4f 3F 3 68241 68224 haini h If h . .
o4 1Fo 3 68241 68224 chaining the self energy shown in the column headed 4Cl
pend D 4th” in Table 1l is seen to further improve the agreement
S 2 68781 68774 with experiment.
2s5s 3S 1 69010 69056

C. Ca atom

A. Calculations for Be In Table IV, several even parity=0 levels are calculated

We chose to study a Be atom for several reasons. Firswith the frozen-core Cl and Cl-averaging methods. Com-
this atom has a small core and, consequently, requires relgared to the frozen-core Cl method, the agreement is signifi-
tively little computation time. Second, because of the smalcantly improved with the addition of MBPT corrections,
size of the core-valence interaction, calculations for Be ar€hanging the difference between experiment and theory from
expected to be very precise. approximately one thousand crhto a few hundred cmt.

A comparison of the resulting Cl energies with measuredrhis significant change clearly indicates the importance of
energies from the National Institute of Standards and Techthe valence-core interaction, which is much stronger than in
nology (NIST) databas¢22] is shown in Table I. This com- the case of Be and Mg. As a result, the final accuracy of the
parison provides the first test of the CI averaging methodCI+MBPT method is also lower than for the lighter atoms.
The values listed in the table agree with experiment at th&Vhile the poor accuracy of frozen Cl energies prevents the
level of tens of cm®. The residual deviation can be ex- identification of energy levels, more accuratetGABPT en-
plained as neglect of small Coulomb and Breit diagramsgergies permit one to identify many Ca levels. It is interesting
which will be the subject of future investigations. to notice that the sequence of experimental levels for the

It is also interesting to compare Cl energies, with andstates of a particular symmetry is the same as the sequence of
without the MBPT correctiondE, ., with energies from the theoretical eigenvalues. Once the question of classification is
NIST database. Such a comparison is given in Table Il angolved, various properties of atoms can be calculated using,
illustrates the importance of the valence-core corrections. for example, frozen-core Cl.

The agreement with experiment improves by an order of In the case of Ca, another problem that needs attention is
magnitude for the Cl-averaging method as compared with #he choice of the parameteg in the self energy, the domi-
frozen-core Cl calculation. Indeed, we found it necessary taant part of the core-valence interaction. We find that there is
use the more precise energies obtained from the Clan optimal value of this parameter betweesy2, our stan-
averaging method to properly identify the transitions showrdard value for Be and Mg, anéc, for which the ground
in this table. state becomes very accurate. In Table IV we chose this pa-

TABLE IIl. Comparison of frozen-core Cl energies (ch and Cl-averaging energies for Bavith
experimental energies from the NIST databg#.

Configuration Term J NIST Cl average Difference Frozen CI Difference
2s3s 1s 0 54677 54664 -13 54509 168
2p? 3P 0 59694 59737 43 60090 —396
2s5s 1S 0 69322 69307 -15 69387 +65
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TABLE lll. Comparison of energiesa.u) in Mg obtained from frozen-core CI, Cl averaging with
second-order self-energy, and Cl averaging with chained fourth-order self-energy, with experimental energies
from the NIST databasg22].

Configuration Level Cl C+2nd CH-4th Experiment A (cm™Y)
3s?1s, 0.818 0.8329 0.833513 0.833518 1
3s4sls, 0.624 0.6349 0.635260 0.635303 9
3s5sls, 0.583 0.5938 0.594240 0.594056 40
3s6s's, 0.566 0.5772 0.577813 0.577513 66
3p23P, 0.562 0.5695 0.569747 0.570105 79
3s3p°®P, 0.723 0.7336 0.733991 0.733869 27
3s3p'P,; 0.661 0.6733 0.673673 0.673813 31
3s4p°P, 0.604 0.6156 0.615834 0.651524 68
3s4ptpP,; 0.597 0.6086 0.608606 0.608679 16
3s3p3P, 0.723 0.7333 0.733867 0.733684 67

rameter to be 0.7&,. In the following section, we will il-  tion amplitudes were used to take into account RPA correc-

lustrate our calculations of transition amplitudes for severafions, which provide better length- and velocity-form agree-
levels of Mg, Ca, and Sr where other precise calculations anthent. We completely neglected the extremely time

measurements exist. consuming structural radiation corrections which are ex-
pected to be small for the length form; for this reason, the

IV. CALCULATIONS USING THE BRUECKNER-ORBITAL result calculated in length form should be considered as more
Cl METHOD accurate. Small normalization corrections are also omitted.

In this section, we present our calculations of energies and
transition amplitudes with the Brueckner-orbital CI method.
Our basis consisted of 28]\ orbitals (those orbitals were The most accurate results for divalent atoms are expected
constructed from 4® splines in a cavity of radius 80 a)ju. for Be since it contains the smallest MBPT corrections. In
in which 14 lowest excited states were replaced with BrueckTable VI, we compare our calculations with available precise
ner orbitals. The resulting one-valence electron energies faralculations and experiment. Transition energies agree with
the divalent atoms were tested by comparing with experiexperiment to better than 0.1%, except for the transition
mental energies for the corresponding monovalent ions. Fa2s3s'S—2s2p P which has 0.4% accuracy. Our oscillator
Mg™, the BO energies agree with experiment better than dstrengths agree well with those obtained in very accuabte
the second-order energi€¢$able V). A second iteration of initio calculations of Ref[23] and in semiempirical calcula-
the BO equation was also included in the Cl-averagingions of Ref.[1] that reproduce energies very closely; for the
method(Table I1l) to improve accuracy. The small size of the principal transition 22 1S—2s2p 1P, our value 1.375 differs
residual deviation from experiment in both tables can be atby one in the fourth digit from the value 1.374 in RE23],
tributed to higher-order diagrams. Two-particle screeninghe accuracy being better than 0.1%, and coincides with the
corrections with the restriction<15 were included in the value of Ref[1]. Very close agreement witab initio theory
effective Hamiltonian, diagonalization of which provided the is also achieved for the transitions2s'S—2s3p *P. For
initial and final state wave functions necessary for the calcusuppressed transitions, an accuracy of 1% is obtained. Con-
lation of transition amplitudes. We checked that restrictiongducting a simple statistical analysis, we found that energy
on the number of BO and screening diagrams included in thdifferences in the Cl averaging and BO-CI calculations have
calculation did not lead to significant errors. Dressed transisimilar statistical errors, but slightly different systematic

A. Be case

TABLE IV. Comparison of the accuracy of frozen-core Cl and CI averaging calculations for Ca. The
parameterey=0.75, .

Configuration Level Frozen CI Difference Cl-average Difference Experiment
4s5s s, 31901 —1416 33196 -121 33317
4p? P, 36699 -1718 38900 483 38418
4s6s s, 39376 —1314 40504 —186 40690
4p? 1s, 41480 —306 42366 580 41786
4s7s s, 42673 —1604 43841 —436 44277
4s8s s, 44277 —1610 45551 —336 45887
4s9s s, 45629 —1206 46912 77 46835
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TABLE V. Comparison of DHF spline energies “DHF,” second-

PHYSICAL REVIEW A65 042503

TABLE VII. Comparison of BO-CI energies (cnt) with ex-

order energies, and energies resulting from diagonalization of theeriment for Mg, Ca, and Sr.

self-energy matrix, Brueckner-orbital “BO” energies, with experi-

ment for the Mg ion. The core configuration iss?2s?2p®. The Levels Theory Experiment Difference
size of the self-energy matrix is ¥414 for each angular momen-
tum. All energies are expressed in th Mg atom

3s4s's, 43452 43503 —51
States DHF second order BO Experiment ~ 3s5s'S, 52517 52556 -39

3s6s 1S, 56154 56187 -33
3sy 118825 121127 121184 121268 3s3p °P, 21834 21870 _aa
4syp 50858 51439 51446 51463 3s3p 1P, 35059 35051 8
5172 28233 28467 28469 28477 3s4p 3P, 47806 47844 _ag
4py 40250 40625 40633 40648 Ca atom
5Py 23642 23808 23811 23812 4s5s1s, 33505 33317 188

4p? 3P, 38651 38418 233
shifts which can be explained partially by different denomi- 4s6s'S, 40862 40690 172
nators in the two methods. Another reason is the cut-off con- 4s4p 3P, 15595 15210 385
dition 0.002 in the former method and restriction on the 4s4p!P, 23797 23652 145
number of Brueckner orbitals in the latter. The effect of the 4s5p3P, 36760 36555 205
partial-wave restriction on the ground-state energy in both 4s5p'p, 36917 36732 185
methods is 6 cm?. If this value is accounted for, the agree- Sr atom
ment becomes slightly better. The results in our tables are notssgs !s, 30874 30592 282
extrapolated owing to the smallness of the omitted partial- 5p23p 35913 35193 720
wave contributions. 5p2 1P, 37696 37160 536

TABLE VI. Comparison of the present transition energies 5s5p °P; 15081 14504 577

(a.u) and oscillator strengtrisfor Be with those from other theories ~ 5S5p *Py 21981 21699 282
and experiment. A few allowed singlet-singlet transitions of the type 5s6p *P; 34293 33868 425
Sy-P] between low-lying states are considered. The experimental 5s6p P, 34512 34098 414

uncertainties are given in parentheses.

Transition Source w (theory o (experiment f
252-2s2p  Present 0.194126 0.193954 1.3750
[24] 1.380.12
[25] 1.340.09
[1] 0.19412 1.375
[23] 0.193914 1.374
[26] 1.3847
[27] 1.470
[28] 1.375
2s?-2s3p Present 0.274231 0.274251 0.00904
[1] 0.27441 0.00901
[23] 0.274236 0.00914
[26] 0.0104
[27] 0.037
[7] 0.00885
2s3s-2s2p  Present  0.054977 0.05519 0.1188
[1] 0.05509 0.118
[23] 0.055198 0.1175
[26] 0.1199
[27] 0.140
2s3s-2s3p  Present 0.025128 0.025107 0.9557
[24] 0.0252 0.958
[23] 0.025124 0.9565
[26] 0.9615

B. The cases of Mg, Ca, and Sr

The accuracy of both the CI averaging and the BO-CI
calculations considered above decreases from light to heavy
divalent atoms. Table VIl illustrates this tendency in BO-CI
calculations: for Mg, the theory-experiment differences
range within 50 cm?, similar to what we have in Table IlI,
and for Ca the deviation from experiment increases to about
200 cm ! which is comparable to that in Table IV. The
lowest accuracy is for Sr, which has the largest core and
MBPT corrections. Similar results for energies have been
obtained in Ref[14]. Our experiment-theory differences ex-
hibit a systematic shift, which if subtracted, brings results
into better agreement. For example, in Ca this shift is
216 cml. After its subtraction, the residual deviation is
73 cm L. This subtraction procedure can be used in cases
where closely spaced levels are difficult to identify. The sys-
tematic shift can be attributed to omitted correlations that
affect mostly the ground state which is used as a reference.
The cutoff condition in the Cl-averaging method and restric-
tions on the number of BO and screening diagrams also has
some effect on the accuracy of our results. This is one reason
why the two methods give slightly different energies. In fu-
ture development of our computer code, we will try to re-
move such restrictions completely. Another reason why the
two methods give different results is that the choicespf
were different. In Table VIII, we illustrate our calculations of
transition amplitudes for Mg, Ca, and Sr. All of our transition
amplitudes completely agree with those of recent IBPT
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TABLE VIII. Comparison of our length forniL) and velocity
form (V) calculations with those from Refl14] and with experi-
ment.

Mg Ca Sr
'P(nsnp-'Sy(ns?)
L 4.026 4.892 5.238
\Y 4.019 4.851 5.212
Other? 4.032) 4.91(7) 5.299)
Experiment 4.1610)° 4.9679) ® 5.576) "
4.0610) ° 4.994)f 5.408)"
4.126)¢ 4.9311) 9
*P(nsnp-'Sy(ns?)
L 0.0063 0.0323 0.164
\Y 0.0070 0.0334 0.166
Other? 0.00647) 0.0344) 0.16Q15)
Experiment 0.005@) 0.03574)" 0.155516) °
0.00564)] 0.0352100™  0.151@18)™
0.006110)%  0.035716)"  0.148617)P

3Porsevet al.[14].

b jlieby et al.[29].

‘Lundin et al.[30].

dSmith and Gallagheii31].
€Zinneret al. [18].

fKelly and Mathuret al. [32].
9Hansen33].

Pparkinsonet al. [34].

iGodone and Nover35].
iKwong et al. [36].

KMitchell [37].

'Husain and Robert38].
"Drozdowskiet al. [39].
"Whitkop and Wiesenfel@4Q].
°Husain and Schifing41].
PKelly et al. [42].
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in relativistic basis is not properly maintained, the results for
nonrelativistically forbidden transitions will be unstable. In
addition, those transitions were affected by the number of
BO and screening diagrams included in calculations. To
minimize or exclude those effects in the BO-CI method, the
BO orbitals and cut-off conditions were made completely
symmetric with respect tb+1/2 andl —1/2 orbitals and in-
cluded BO and screening corrections with the number of
excited orbitals less than 15.

V. SUMMARY AND CONCLUSION

In this paper, we have introduced two methods to improve
the accuracy of the frozen-core ClI calculations using MBPT:
the Cl-averaging method and the Brueckner-orbital ClI
method. We have applied these methods to Be, Mg, Ca, and
Sr atoms. Our calculated energies and transition amplitudes
for those atoms are in close agreement with the results of the
best available theories and experiments. Compared to semi-
empirical theories, our method has an advantage in accuracy,
and compared to otheab initio theories, an advantage of
simplicity. These two methods can also be used to evaluate
properties of Rydberg states for which only semiempirical
calculations exist. Further improvement in accuracy is pos-
sible and is being pursued. This theory can be extended eas-
ily to treat particle-hole excited states of closed-shell atoms,
atoms with three valence electrons, and other more compli-
cated systems.
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