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Long-range interactions between two 2s excited hydrogen atoms

S. Jonsell,1,2 A. Saenz,3,* P. Froelich,1 R. C. Forrey,4 R. Côté,5 and A. Dalgarno6
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The doubly excited1Sg
1 and 3Su

1 states of the H2 molecule converging to the H(n52)1H(n852) limit
have been calculated using explicitly correlated basis functions, giving accurate results out to a nuclear sepa-
ration sufficiently large to apply asymptotic expansions for the potential energy. The autoionization widths
have been obtained using the complex-scaling method. For nuclear separations larger than 22 a.u., asymptotic
expressions for the interaction energies have been obtained from perturbation theory.
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I. INTRODUCTION

After many years of intensive research Bose-Einstein c
densation in a gas of spin-polarized hydrogen atoms
finally achieved in 1998@1#. In this experiment two-photon
spectroscopy of the 1s-2s line was used as a tool to dete
mine the temperature and density of the condensate, thro
studies of the collisionally shifted and broadened spec
lines @2,3#. The Lyman-a photons from excited metastab
hydrogen were detected following a 2s-2p Stark mixing in-
duced by an electric field. It is important to distinguish th
field-induced quenching of the H(2s) state from collisional
quenching due to the autoionization reaction H(2s)
1H(2s)→H2

11e2 and due to excitation transfer H(2s)
1H(2s)→H(2p)1H(2p), and to understand the effect o
these collisions on the linewidth.

There are also prospects for novel sources of exc
H(2s) atoms, e.g., through the use of Stark chirped adiab
passage@4#. This will not only allow direct experimenta
studies of these excited atoms, but might also deliver a n
source of Lyman-a photons, with applications in high
resolution spectroscopy. The rates for collisional quench
determines the maximum density of H(2s) atoms that can be
achieved in this type of experiment.

The doubly excited H2 states describing the collision o
two H(n52) atoms belong to the so-calledQ2 series lying
below the 2ppu state of H2

1 . Some earlier works have ad
dressed these states@5–7#, but to our knowledge this is the
first calculation addressing the long-range interactions.
numerical calculations extend the data previously availa
from the internuclear distanceR56 a.u. toR522 a.u. The
calculation includes the width due to autoionizatio
Asymptotic formulas are given forR.22 a.u. Our treatmen
does not as yet include the fine-structure splitting or La
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shift. In a recent paper these molecular data have been
to calculate rates for autoionization, excitation transfer, a
elastic scattering at thermal temperatures@8#.

II. MOLECULAR REGION

The molecular region of interatomic distances is whe
the atom-atom interaction is too strong to be treated a
small perturbation of the atomic states, and hence has t
determined numerically by means of a molecular calculati
The characteristic radius of a hydrogen atom scales as
square of the principal quantum numbern. Hence, for a hy-
drogen molecule that asymptotically separates into twon
52 excited hydrogen atoms the molecular region is ab
four times larger than for the ground state of H2. We have
found it sufficient to extend the molecular calculations out
R522 a.u. At this nuclear separation the effects of elect
exchange are negligible. Two H(2s) atoms can form a mo-
lecular state of either1Sg

1 or 3Su
1 symmetry. For each of

these symmetries there are four states that separate into
n52 excited hydrogen atoms.

A. Electronic autoionization

The states calculated in this work are resonances that
decay through autoionization. For resonances the stan
variational principle is not valid. Nevertheless, this princip
can be extended to the case of resonances within
complex-scaling approach~see, e.g., the review in@9# and
references therein!. The complex-scaling operatorU is de-
fined through its action on a functionf of the coordinate
vector r in three-dimensional space,

U~u! f ~r !5e3iu/2f ~eiur !. ~1!

The complex-scaled HamiltonianH(u)5U(u)HU21(u) de-
fines an eigenvalue problem

H~u!ci
u5Ei

uci
u . ~2!
©2002 The American Physical Society01-1
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The complex eigenenergiesEi
u are of three kinds:~i! bound

states, which are unchanged by the complex scaling;~ii ! con-
tinuum states, which are rotated by an angle 2u into the
complex plane;~iii ! resonances, which are uncovered wh
u.argEi

u/2. The real part of a resonance eigenval
Re$Eres%, is the energy position of the resonance, and
imaginary part is related to the widthG of the resonance a
Im$Eres%52G/2.

While in the exact solution of Eq.~2! the resonance ei
genvalues will be stationary foru.argEres/2, any approxi-
mate solution using a finite basis will yield an eigenval
that varies withu. For resonances the variational princip
reduces to a stationarity principle without lower or upp
bounds. That is, the optimal scaling angleuopt is determined
via the condition thatu5uopt minimizes the derivative of the
energydE(u)/du, which in turn determines the complex e
ergy of the resonanceEres5E(uopt). For practical purposes
in the context of variational calculations it can be shown t
the use of the complex-scaled HamiltonianH(u) is equiva-
lent to the use of complex-scaled basis functions. There
it is possible to uniquely determine a resonance by requi
maximum stability with respect to a variation of the ba
and of the complex-scaling factoru, but it is impossible to
determine a lower or upper bound to the energy position
width of the resonance.

B. Computational details

The application of the complex-scaling approach to m
lecular systems is not straightforward, since the molecu
Born-OppenheimerHamiltonian is not analytic with respec
to dilation. A possible solution to this problem was sugges
for diatomic molecules in Ref.@10#, where it was demon-
strated that by using prolate-spheroidal coordinates@j i
5(r iA1r iB)/R,h i5(r iA2r iB)/R# it is possible to imple-
mentexterior complex scaling solely by scaling of the ele
tronic coordinatesj i .

The calculations were performed using an extended
sion of a computer program originally written by Kołos an
Wolniewicz @11#. The two-electron wave functionC j (1,2)
describing statej is expressed in terms of explicitly corre
lated basis functions as

C j~1,2!5(
i

ci , j~16P12!exp~2aj12āj2!j1
r ih1

sij2
r̄ ih2

s̄irm i

3@exp~bh11b̄h2!6~21!si1 s̄i

3exp~2bh12b̄h2!#, ~3!

where the upper sign gives1Sg
1 symmetry and the lowe

sign gives3Su
1 symmetry. HereP12 is the electron permuta

tion operator,r52r 12/R, with r 12 andR the interelectronic
and internuclear distances, respectively,r i ,si , r̄ i ,s̄i ,m i are
integers, anda,b,ā,b̄ are real numbers. The coefficientsci , j
are determined through the diagonalization of the gene
ized eigenvalue problem.

As discussed in Sec. II A the variational principle cann
be applied for resonances, but instead we use the comp
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scaling method. One possible and practical approach to
termining resonances within the complex-scaling framew
is to perform as a first step a number of real-scaling calcu
tions in order to be able to select a range of real-sca
factors%, where optimal stability of the position of the reso
nance is observed. After fixing the real-scaling parameter
value %opt in this regime, a variation of the phaseu of the
scaling factor is performed as a second step of the calc
tion.

In the present calculation the stability of the real energ
of the resonances was investigated through the scaling oj1
and j2, which for practical reasons was performed by t
equivalent procedure of an inverse scaling of the expone
a and ā in Eq. ~3! by a real parameter. Values of the no
linear parameters giving a good stability under this scal
were sought for integer values ofR, using as a starting poin
the 249-term basis from Ref.@12#. It turns out that it is very
difficult, especially at short internuclear distances, to mak
very precise determination of the best possible nonlinear
rameters. Instead, approximate values ofa,b,ā,b̄ where all
four resonances showed good stability were determin
Sometimes several sets were used for a single value ofR, in
order to be able to assess the accuracy of the results.
nonlinear parameters at noninteger values ofR were obtained
by an interpolation of the optimal exponents determined
integer values ofR.

In the next step new refined basis sets were obtained
testing a large number of sets of integer expone

$m i ;r i ,si , r̄ i ,s̄i%, and discarding those terms that had only
small effect on the energies of the resonances. Using the
of integer exponents obtained, together with the nonlin
parameters optimized before, we arrived at our final ba
sets. In this way we created for each symmetry three dif
ent basis sets covering differentR intervals, limited in size
by the linear dependence caused by the finite numerical
cision of the calculation. In the case of1Sg

1 symmetry the
basis-set sizes were 380, 430, and 250 forR,6, 6<R<12,
and R.12 a.u., respectively, and in the case of3Su

1 sym-
metry 330, 380, and 300 forR,7, 7<R,13, and R
>13 a.u. In the outermost region we used different ba
sets with separately optimized sets of integer exponents
each state, while in the inner regions the same set of inte
exponents was used for all four states of the same symm
At the boundaries of the range ofR we considered, we did
however, have to reduce successively the size of our b
sets in order to avoid linear dependence in the basis.

The complex resonance energies were obtained using
complex-scaling operationj i ,h i→%eiuj i ,h i in the way in-
troduced and described in Ref.@13#. For this purpose the
basis-set parametersa andā are modified in such a way tha
they contain the previously determined%opt, i.e., a calcula-
tion with %51.0 ~and u50.0) yields now optimal stability
of the resonant energy on the real axis. Then the Hamilton
matrix is calculated for a number ofreal values of the scaling
parameter%. Each matrix element is then fitted to a polyn
mial in %, which can be analytically continued into the com
plex plane, and thus gives the matrix element atcomplex
values ofg5% exp(iu). The generalized eigenvalue proble
1-2
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LONG-RANGE INTERACTIONS BETWEEN TWO 2s . . . PHYSICAL REVIEW A 65 042501
of this complex symmetricHamiltonian is then solved for a
series ofu values. The complex energy of the resonance
determined from the minimum value ofdE/du. After numer-
ous tests we found that the best results were obtained
using a real grid of 15% values in the interval 0.86–1.14 i
steps of 0.02 on the real axis and by fitting each ma
element to a fourth-order polynomial.

C. Results

The electronic potentials and autoionizing widths o
tained are presented in Fig. 1 for1Sg

1 symmetry and Fig. 2
for 3Su

1 symmetry. Only states having the asymptotic ene
20.25 a.u. are displayed. We find two binding and two no
binding states of each symmetry.

An avoided crossing between the second and third1Sg
1

states atR.5.5 a.u. is clearly visible in Fig. 1. Also th
corresponding autoionization widths show a striking chan
of character at this internuclear distance. Further avoi
crossings occur at shorter internuclear distances. In par
lar, a fifth more highly excited state correlating to then
53,n852 threshold, and consequently not displayed in F
1, crosses the fourth state atR.4.5 a.u. Our basis sets, be
ing optimized for states correlating to then5n852 thresh-
old, did not give a good description of this more highly e
cited state. Therefore we have not continued our calcula
of state 4 inside this avoided crossing. For the3Su

1 symme-
try a similar avoided crossing between the fourth state an
more highly excited state occurs already atR.8.6 a.u.

The molecular states discussed in this paper were rece
calculated in the range 0<R<6 a.u. by Sanchez and Marti

FIG. 1. Potential energies~a! and widths~b! for the 1Sg
1 states

that correlate ton5n852 atomic states.
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@7# using the method of Feshbach projectors. In this meth
the H2 states are expanded in a basis of bound and c
tinuum one-electron orbitals of H2

1 . The H2
1 orbitals were

calculated in a one-center basis built onB splines. This
method is known to be accurate at short internuclear
tances and has advantages in facilitating a physical inter
tation of the molecular states. This method can, however,
be used for large internuclear distances because the
center approach used runs into numerical problems for
creasing internuclear distances.

Our method, on the other hand, being based on prol
spheroidal coordinates that by definition are centered on b
nuclei, gives accurate results out to an internuclear dista
sufficiently large to apply the asymptotic forms described
Sec. III. In principle, our method is also well suited for ca
culations at short internuclear distances, since it very e
ciently incorporates electronic correlation. The ground st
of H2 has been accurately calculated atR50.2 a.u. using a
249-term basis of the same type as ours@12#. When consid-
ering the doubly excited states, however, the situation
quite complicated at short internuclear distances, since th
are many closely lying states and many avoided crossings
fact, at short distances the states we have calculated
energies less than the 2psu state of H2

1 , under which there
is a Rydberg series containing an infinite number of sta
that will be crossed. Hence, to accurately determine the d
bly excited states at short internuclear distances it is not
ficient to use, as we have done, the same basis set fo
states of the same symmetry. Instead, for each state
would have to carefully optimize an individual basis set. A

FIG. 2. Potential energies~a! and widths~b! for the 3Su
1 states

that correlate ton5n852 atomic states.
1-3
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S. JONSELLet al. PHYSICAL REVIEW A 65 042501
ditionally, since the states rapidly change character whenR is
decreased and avoided crossings are encountered, this
mization would have to be repeated at each internuclear
tance. Since our main interest has been the long-range i
actions we have not found it worthwhile to go through th
very elaborate procedure.

In the region ofR where our calculations overlap wit
those of Sanchez and Martin, comparisons of the results h
been made in Figs. 3 and 4. The comparisons also inc
results by Guberman@5# and Tennyson@6#. Our results for
the 1Sg

1 states agree very well with the results of Sanch
and Martin. We confirm their conclusion that the energy
state 1 calculated by Tennyson is somewhat too high. A
our width of state 1 agrees closely with Sanchez and Mar
while Tennyson obtained a larger width. For3Su

1 symmetry
our calculation only extends down toR55 a.u., limiting the
opportunities for comparisons with earlier works. We no
that our energies are significantly lower than those
Sanchez and Martin for all four states. Usually this is tak

FIG. 3. Comparison of our results for potentials of the1Sg
1

states~solid lines! to the results in Ref.@7# ~crosses!, Ref. @6# ~tri-
angles!, and Ref.@5# ~diamonds!.

FIG. 4. Same as Fig. 3 but for the widths. Lines show our d
coded as in Fig. 1. Results from@7#: state 1~open triangles!, state 2
~crosses!, state 3~open diamonds!, state 4~squares!. Results from
@6#: state 1~filled triangles!, state 3~filled diamonds!.
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as a sign of better accuracy, but as noted in Sec. II B
need not necessarily be true for calculations of resonan
For the widths we note that our results for the second stat
3Su1 symmetry are significantly smaller than the results
Sanchez and Martin. All in all, considering that very diffe
ent computational approaches have been used, we find
the agreement with the data of Sanchez and Martin is
markably good. This gives us confidence in our results
R.6 a.u., especially, since better stability of the eigenv
ues was observed for larger internuclear distances.

III. ASYMPTOTIC REGION

In this section we shall discuss the asymptotic molecu
states in terms of atomic states with well-defined orbital
gular momentuml,ml and spins,ms . This means that the
spin-orbit interaction will be ignored here, an approximati
that is valid when the collision energy is higher than t
fine-structure splitting of the hydrogen atom, 4
31025 eV50.53 K. Hence the 2s and 2p states of the
hydrogen atom are approximated as being degenerate in
ergy. At large internuclear distances the wave function w
approach a product of two atomic states~or rather, as will be
seen below, a linear combination of such products!. For suf-
ficiently large internuclear distances the molecular poten
energies may then be calculated analytically treating
electrostatic atom-atom interaction by perturbation theo
The resulting asymptotic potential-energy curve has the fo

E~R!5
C3

R3
1

C5

R5
1

C6

R6
1

C8

R8
1•••, ~4!

where theC3 andC5 terms come from first-order perturba
tion theory, and are nonvanishing as a result of the deg
eracy of the 2s and 2p states, while theC6 and C8 arise
from second-order perturbation theory, and are present e
if the degeneracy is lifted.

A. Exchange

The atom-atom interaction contains also a contribut
from the exchange of the two electrons. At large internucl
distances this contribution vanishes exponentially, i.e., fa
than the electrostatic interaction. The exchange contribu
is difficult to treat consistently in perturbation theory. In th
following section we shall show how this contribution ma
be extracted from our numerical data.

We denote the product state of two noninteractingn52
hydrogen atomsA andB by u2l I2l I 8

8 &. Here l ,l 8 specify the
angular momentum, the subscriptsI ,I 85A,B denote to
which hydrogen atom the orbital belongs, and the order
reflects which electron is occupying the orbital, i.e., ‘‘ele
tron 1’’ belongs to the first orbital and ‘‘electron 2’’ to th
second.

The molecular Hamiltonian is invariant under inversioni
of all electronic coordinates, electron exchangeP12, and re-
flection in a plane containing the nuclei. Letp561 be the
parity under inversion~geradeor ungeradesymmetry!, and

a

1-4
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s561 the parity under exchange~singlet or triplet symme-
try!. From an atomic product stateu2l A2l B8 & one may then
generate asymptotic orbitals adapted to the molecular s
metries~symmetrization with respect to reflection is not i
cluded!:

uCmol&5
1

2A11d l l 8

@ u2l A2l B8 &1ps~21! l 1 l 8u2l A82l B&

1su2l B82l A&1p~21! l 1 l 8u2l B2l A8 &]. ~5!

In this work we are primarily interested in the interactio
between two 2s atoms. Hence, the relevant orbitals are tho
with 1Sg

1 and 3Su
1 symmetries~in the case of spin-polarize

hydrogen only the latter symmetry is relevant since all c
lisions will then have triplet spin!. There are four orbitals o
each symmetry converging to then5n852 threshold. These
are degenerate asymptotically~if spin-orbit interaction is ig-
nored!, but not for finiteR. The actual molecular states co
relate not to single products of atomic states, but to lin
combinations. Hence, we cannot focus only on theu2sA,2sB&
asymptote. The molecular interaction couples the 2s and 2p
atomic states, and hence there is a possibility for 2s→2p
transitions to occur in elastic 2s-2s collisions. The structure
of Eq. ~5! will still remain valid for the actual asymptotic
molecular states, although each termu2l A2l B8 & will be re-
placed by a linear combination of such terms.

Using a symmetry-adapted molecular orbital of the fo
in Eq. ~5!, the expectation value of the Hamiltonian is

^CmoluHmoluCmol&5
1

11d l l 8

@^2l A2l B8 uHmolu2l A2l B8 &

1ps~21! l 1 l 8^2l A2l B8 uHmolu2l A82l B&

1s^2l A2l B8 uHmolu2l B82l A&

1p~21! l 1 l 8^2l A2l B8 uHmolu2l B2l A8 &#.

~6!

The first two terms are the direct contributions to the ene
which will be treated by perturbation theory in the followin
section, and the last two terms are the exchange contr
tions. Although approximate analytical formulas valid f
large R exist for the exchange terms@14# these are quite
involved, and here we shall instead extract the exchange
tribution from our numerical data.

The way to extract the exchange contribution is easy
infer from the form of Eq.~6!. For 1Sg

1 symmetry one has
p5s51, while for 3Su

1 , p5s521. Hence, we see from
Eq. ~6! that for a1Sg

1 , 3Su
1 pair of states that asymptoticall

separate to the same combination of atomic orbitals, the
rect contributions are identical, while the exchange contri
tions differ by a factor21. Hence, the difference in energ
of the two states equals twice the exchange contribution.
04250
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exchange contributions for the four pairs of states calcula
in Sec. II are displayed in Fig. 5.

We see that the exchange contributions are smooth, e
nentially decreasing curves. Some jitter on the level
1025 a.u. due to numerical inaccuracies can be observe
very largeR. However, the exchange contributions clea
show the expected exponential decrease with distance. C
sidering that the exchange contribution is a very small
ergy difference that has been extracted from two nearly
generate states, these results indicate good accuracy fo
calculations all the way out toR522 a.u.

At R522 a.u. the exchange energies are of the orde
1025 a.u. or less, while the total binding energies are of
order of 1023 a.u.~the only exception being the second sta
that has a binding energy 7.631025 a.u. and an exchang
energy 1026 a.u.). Hence, forR>22 a.u. the exchange ef
fects give a negligible contribution to the total energy. In t
following sections we shall, therefore, ignore exchange wh
we develop asymptotic formulas for the potential energie

B. Long-range interaction

In this section we shall look at the contributions to t
potential energy arising from first-order perturbation theo
in the electrostatic atom-atom interaction. Since the molec
dissociates into neutral atoms the interaction will be of
pole, and higher multipole, type. For the molecular grou
state, dissociating into two ground-state atoms possessin
dipole moment, the energy correction from first-order pert
bation theory vanishes. The same is true for hydrogen at
in the 2s state. We shall, however, see that through the
generacy with the 2p state, a first-order energy shift appea
In fact, due to the previously mentioned mixing induced
the interaction, the asymptotic molecular states turn out to
linear combinationsof the different symmetry-adapted mo
lecular orbitals.

At large internuclear distances the interaction of the t
atoms may be treated as a perturbation,Hmol5Hatoms1V,
whereV can be expressed in a multipole expansion

FIG. 5. Exchange contribution of state 1~solid!, state 2
~dashed!, state 3~long dashed!, and state 4~dash-dotted!.
1-5
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V5
1

R
2

1

r 1B
1

1

r 12
2

1

r 2A

5(
l 52

`
4p

Rl 11 (
l 1 ,l 251

l 11 l 25 l

r 1
l 1~2r 2! l 2

3A 2l !

~2l 111!! ~2l 211!!

3 (
m52min$ l 1 ,l 2%

min$ l 1 ,l 2%

^ l0u l 1ml22m&Yl 1m~ r̂1!Yl 22m~ r̂2!,

~7!

whereYlm is the spherical harmonic and^ lmu l 1m1l 2m2& are
Clebsch-Gordan coefficients. The leading term in the exp
sion ~7! is l 52, giving a contribution proportional to 1/R3,

V35
1

R3
~r1•r223z1z2!. ~8!

The next contribution comes froml 54, giving a contribu-
tion proportional to 1/R5. In the basis of the four degenera
1Sg

1 or 3Su
1 molecular orbitals u2s2s&, u2p02p0&,

(1/A2)(u2s2p0&2u2p02s&), and (1/A2)(u2p12p2&
1u2p22p1&) the first-order perturbation matrix~without ex-
change! up to l 54 is

Ṽ5S 0 218/R3 0 29A2/R3

218/R3 864/R5 0 432A2/R5

0 0 18/R3 0

29A2/R3 432A2/R5 0 432/R5

D .

~9!

Diagonalization ofṼ gives the four asymptotic eigenenergi

E152
9A6~A8641R4212A6!

R5
.2

9A6

R3
1

648

R5
,

E250,

E35
18

R3
,

E45
9A6~A8641R4112A6!

R5
.

9A6

R3
1

648

R5
,

~10!

and the corresponding asymptotic eigenfunctions are
leading order@that is, if terms proportional to 1/R5 in Eq. ~9!
are neglected#,
04250
n-

to

u1&5
1

A2
u2s2s&1

1

A3
u2p02p0&1

1

A12
~ u2p12p2&

1u2p22p1&), ~11!

u2&5
1

A3
~ u2p02p0&2u2p12p2&2u2p22p1&),

u3&5
1

A2
~ u2s2p0&2u2p02s&),

u4&5
1

A2
u2s2s&2

1

A3
u2p02p0&2

1

A12
~ u2p12p2&

1u2p22p1&).

In Fig. 6 the asymptotic expressions for the energies
compared to the numerical data after removing the excha
energy as explained in Sec. III A. We find that the asympto
energies accurately join the numerical results atR522.
Hence, our calculation in combination with the results in@7#
gives the molecular energies all the way fromR50 out to
nuclear separations where fine structure and Lamb shift
come important.

IV. CONCLUSIONS

We have calculated the energies and widths of the f
1Sg

1 and the four3Su
1 states asymptotically converging t

the energy20.25 a.u., characteristic of then52,n852
atomic states. For short (R,6 a.u.) internuclear distances
our results agree well with those of Sanchez and Martin@7#.

FIG. 6. Numerical energies after removing the exchange con
bution ~crosses! compared to asymptotic energies from first-ord
perturbation theory~lines!.
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We are not aware of any previous calculation of these st
for larger internuclear distances. We have calculated ana
cally the asymptotic energies of these states in first-or
perturbation theory. From our numerical data we extrac
the exchange energy and we conclude that it is less
1025 a.u. forR.22 a.u.

In a future work we will include the effects of spin-orb
coupling and the Lamb shift in our asymptotic formulas. Th
will allow us to extend our calculations of the collision
quenching of the H(2s) state at finite temperatures~larger
than a few kelvin! @8# into the regime of ultracold collisions
relevant for Bose-Einstein condensation in hydrogen.
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