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The doubly excited'S ; and °% ] states of the bimolecule converging to the HE 2)+H(n'=2) limit
have been calculated using explicitly correlated basis functions, giving accurate results out to a nuclear sepa-
ration sufficiently large to apply asymptotic expansions for the potential energy. The autoionization widths
have been obtained using the complex-scaling method. For nuclear separations larger than 22 a.u., asymptotic
expressions for the interaction energies have been obtained from perturbation theory.
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[. INTRODUCTION shift. In a recent paper these molecular data have been used
to calculate rates for autoionization, excitation transfer, and
After many years of intensive research Bose-Einstein conelastic scattering at thermal temperatu@s
densation in a gas of spin-polarized hydrogen atoms was
finally achieved in 19981]. In this experiment two-photon Il. MOLECULAR REGION
spectroscopy of thest2s line was used as a tool to deter- ) ) o .
mine the temperature and density of the condensate, through 1h€ molecular region of interatomic distances is where
studies of the collisionally shifted and broadened spectraill® atom-atom interaction is too strong to be treated as a

lines [2,3]. The Lymane photons from excited metastable small perturbation of the atomic states, and hence has to be
hydrog(’an.were detected following &2p Stark mixing in- determined numerically by means of a molecular calculation.

duced by an electric field. It is important to distinguish thisThe characteristic radius of a hydrogen atom scales as the

S . . square of the principal quantum numberHence, for a hy-
fleld-mo!uced quenching of the H$2 sta_lte from C(.)”'S'Onal drogen molecule that asymptotically separates into two
guenching due to the autoionization reaction B)(2

P T =2 excited hydrogen atoms the molecular region is about
+H(2s)—H, +e" and due to excitation transfer H&P  foyr times larger than for the ground state of. Ve have
+H(2s)—H(2p) +H(2p), and to understand the effect of found it sufficient to extend the molecular calculations out to
these collisions on the linewidth. R=22 a.u. At this nuclear separation the effects of electron
There are also prospects for novel sources of exciteéxchange are negligible. Two H§P atoms can form a mo-
H(2s) atoms, e.g., through the use of Stark chirped adiabatigecular state of eithefS; or ®% symmetry. For each of
passagg4]. This will not only allow direct experimental these symmetries there are four states that separate into two
studies of these excited atoms, but might also deliver a new=2 excited hydrogen atoms.
source of Lymanx photons, with applications in high-
resolution spectroscopy. The rates for collisional quenching
determines the maximum density of H{)2atoms that can be
achieved in this type of experiment. The states calculated in this work are resonances that can
The doubly excited bl states describing the collision of decay through autoionization. For resonances the standard
two H(n=2) atoms belong to the so-call&g), series lying Vvariational principle is not valid. Nevertheless, this principle
below the D, state of H . Some earlier works have ad- can be extended to the case of resonances within the
dressed these statF5—7], but to our knowledge this is the Ccomplex-scaling approactsee, e.g., the review if8] and
first calculation addressing the long-range interactions. Oufeferences therejnThe complex-scaling operataf is de-
numerical calculations extend the data previously availabléined through its action on a functiohof the coordinate
from the internuclear distand®=6 a.u. toR=22 a.u. The Vectorr in three-dimensional space,
calculation includes the width due to autoionization. 302 0
Asymptotic formulas are given f&®>22 a.u. Our treatment UCO)F(r)=e"5 (e r). @

does not as yet include the fine-structure splitting or Lamh N 1
The complex-scaled Hamiltonidth(#) =U(6)HU ~~(6) de-

fines an eigenvalue problem

A. Electronic autoionization
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The complex eigenenergi& are of three kinds(i) bound  scaling method. One possible and practical approach to de-
states, which are unchanged by the complex scalingson-  termining resonances within the complex-scaling framework
tinuum states, which are rotated by an angl iato the s to perform as a first step a number of real-scaling calcula-
complex planefiii) resonances, which are uncovered whentions in order to be able to select a range of real-scaling
6>argE//2. The real part of a resonance eigenvaluefactorse, where optimal stability of the position of the reso-
ReE.4, is the energy position of the resonance, and thenance is observed. After fixing the real-scaling parameter to a
imaginary part is related to the widih of the resonance as value @, in this regime, a variation of the phageof the

IM{E g =—T/2. scaling factor is performed as a second step of the calcula-
While in the exact solution of E¢2) the resonance ei- tion.
genvalues will be stationary fo#>argE, 42, any approxi- In the present calculation the stability of the real energies

mate solution using a finite basis will yield an eigenvalueof the resonances was investigated through the scaligg of
that varies withd. For resonances the variational principle and &,, which for practical reasons was performed by the
reduces to a stationarity principle without lower or upperequivalent procedure of an inverse scaling of the exponents
bounds. That is, the optimal scaling anglg, is determined o anda in Eq. (3) by a real parameter. Values of the non-
via the condition that= 6, minimizes the derivative of the linear parameters giving a good stability under this scaling
energydE(#)/d@, which in turn determines the complex en- were sought for integer values Bf using as a starting point
ergy of the resonanck,.s=E(6,,). For practical purposes the 249-term basis from RefL2]. It turns out that it is very

in the context of variational calculations it can be shown thadifficult, especially at short internuclear distances, to make a
the use of the complex-scaled Hamiltonidi(#) is equiva-  very precise determination of the best possible nonlinear pa-
lent to the use of complex-scaled basis functions. Thereforgymeters. Instead, approximate valueskgB, a, 8 where all

it is possible to uniquely determine a resonance by requiringoyr resonances showed good stability were determined.
maximum stability with respect to a variation of the basisgometimes several sets were used for a single val® iof

and of the complex-scaling factdk, but it is impossible to  order to be able to assess the accuracy of the results. The
determine a lower or upper bound to the energy position ohonlinear parameters at noninteger valueR ofere obtained

width of the resonance. by an interpolation of the optimal exponents determined at
integer values oR.
B. Computational details In the next step new refined basis sets were obtained by

The application of the complex-scaling approach to mo-l€Sting a large number of sets of integer exponents
lecular systems is not straightforward, since the moleculatxi;ri,s;.ri,si}, and discarding those terms that had only a
Born-OppenheimeHamiltonian is not analytic with respect small effect on the energies of the resonances. Using the sets
to dilation. A possible solution to this problem was suggeste®f integer exponents obtained, together with the nonlinear
for diatomic molecules in Ref.10], where it was demon- parameters optimized before, we arrived at our final basis
strated that by using prolate-spheroidal coordinafgés  Sets. In this way we created for each symmetry three differ-
=(ra+rig)/R mi=(ria—rg)/R] it is possible to imple- ent basis sets covering differeRtintervals, limited in size
mentexterior complex scaling solely by scaling of the elec- by the linear dependence caused by the finite numerical pre-
tronic coordinates; . cision of the calculation. In the case 62; symmetry the

The calculations were performed using an extended verasis-set sizes were 380, 430, and 250Rer6, 6<R=<12,
sion of a computer program originally written by Kotos and andR>12 a.u., respectively, and in the case’df, sym-
Wolniewicz [11]. The two-electron wave functiow;(1,2)  metry 330, 380, and 300 foR<7, 7<R<13, and R
describing statg is expressed in terms of explicitly corre- =13 a.u. In the outermost region we used different basis

lated basis functions as sets with separately optimized sets of integer exponents for
each state, while in the inner regions the same set of integer
. _ N e eSS exponents was used for all four states of the same symmetry.
\I,J(l'z)_Zi Ci,j(1=Pr)exp(—aty—ady) & my &y myp" At the boundaries of the range Bfwe considered, we did,
. _ however, have to reduce successively the size of our basis
X[exp(Bnyt Brm) = (—1)%7s sets in order to avoid linear dependence in the basis.
— The complex resonance energies were obtained using the
Xexp(— B~ B72)], ) complex-scaling operatio& , 7,— o€'%¢; , 7, in the way in-

troduced and described in RdfL3]. For this purpose the

: - + -
where the upper sign givesS; symmetry and the lower i < parametessand e are modified in such a way that

sign gives®X,; symmetry. HereP, is the electron permuta- they contain the previously determingg,, i.e., a calcula-
tion operatorp =2r,/R, with 1, andR the interelectronic o yith 0 =1.0 (and §=0.0) yields now optimal stability
and internuclear distances, respectively,s;,ri,s;,u; are  of the resonant energy on the real axis. Then the Hamiltonian
integers, andr, 8,«, B are real numbers. The coefficiems matrix is calculated for a number afal values of the scaling
are determined through the diagonalization of the generalparametep. Each matrix element is then fitted to a polyno-
ized eigenvalue problem. mial in ¢, which can be analytically continued into the com-
As discussed in Sec. Il A the variational principle cannotplex plane, and thus gives the matrix elementcainplex
be applied for resonances, but instead we use the complexalues ofy= g exp(6). The generalized eigenvalue problem
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FIG. 1. Potential energie® and widths(b) for the 'S states FIG. 2. Potential energie®) and widths(b) for the 33 states
that correlate tm=n’'=2 atomic states. that correlate tav=n’=2 atomic states.

of this complex symmetrielamiltonian is then solved for a i , ,

series ofg values. The complex energy of the resonance is./] USing the method of Feshbach projectors. In this method
determined from the minimum value dE/d 6. After numer-  (he H states are expanded in a basis of bound and con-
ous tests we found that the best results were obtained pjpuum one-electron orbitals ofj_—l The H orbitals were
using a real grid of 1% values in the interval 0.86—1.14 in Calculated in a one-center basis built @& splines. This
steps of 0.02 on the real axis and by fitting each matrixn€thod is known to be accurate at short internuclear dis-

element to a fourth-order polynomial. tances and has advantages in facilitating a physical interpre-
tation of the molecular states. This method can, however, not
C. Results be used for large internuclear distances because the one-

] i o i center approach used runs into numerical problems for in-
The electronic potentials and autoionizing widths 0b-¢reasing internuclear distances.

tained are presented in Fig. 1 foE; symmetry and Fig. 2 Our method, on the other hand, being based on prolate-
for 3% symmetry. Only states having the asymptotic energyspheroidal coordinates that by definition are centered on both
—0.25 a.u. are displayed. We find two binding and two nonnuclei, gives accurate results out to an internuclear distance
binding states of each symmetry. sufficiently large to apply the asymptotic forms described in
An avoided crossing between the second and tﬁEq Sec. lll. In principle, our method is also well suited for cal-
states atR=5.5 a.u. is clearly visible in Fig. 1. Also the culations at short internuclear distances, since it very effi-
corresponding autoionization widths show a striking changeiently incorporates electronic correlation. The ground state
of character at this internuclear distance. Further avoidedf H, has been accurately calculatedRat 0.2 a.u. using a
crossings occur at shorter internuclear distances. In partici249-term basis of the same type as durg]. When consid-
lar, a fifth more highly excited state correlating to the ering the doubly excited states, however, the situation is
=3,n" =2 threshold, and consequently not displayed in Fig.quite complicated at short internuclear distances, since there
1, crosses the fourth state Rt=4.5 a.u. Our basis sets, be- are many closely lying states and many avoided crossings. In
ing optimized for states correlating to tme=n’=2 thresh- fact, at short distances the states we have calculated have
old, did not give a good description of this more highly ex- energies less than thep#, state of H , under which there
cited state. Therefore we have not continued our calculatiois a Rydberg series containing an infinite number of states
of state 4 inside this avoided crossing. For i symme- that will be crossed. Hence, to accurately determine the dou-
try a similar avoided crossing between the fourth state and hly excited states at short internuclear distances it is not suf-
more highly excited state occurs alreadyRat 8.6 a.u. ficient to use, as we have done, the same basis set for all
The molecular states discussed in this paper were recentBtates of the same symmetry. Instead, for each state one
calculated in the rangesOR<6 a.u. by Sanchez and Martin would have to carefully optimize an individual basis set. Ad-
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FIG. 3. Comparison of our results for potentials of thﬁg
states(solid lineg to the results in Ref.7] (crossey Ref.[6] (tri-
angle$, and Ref[5] (diamonds.

ditionally, since the states rapidly change character wisn
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as a sign of better accuracy, but as noted in Sec. Il B this
need not necessarily be true for calculations of resonances.
For the widths we note that our results for the second state of
33+ symmetry are significantly smaller than the results of
Sanchez and Martin. All in all, considering that very differ-
ent computational approaches have been used, we find that
the agreement with the data of Sanchez and Martin is re-
markably good. This gives us confidence in our results for
R>6 a.u., especially, since better stability of the eigenval-
ues was observed for larger internuclear distances.

IIl. ASYMPTOTIC REGION

In this section we shall discuss the asymptotic molecular
states in terms of atomic states with well-defined orbital an-
gular momentum,m; and spinsmg. This means that the
spin-orbit interaction will be ignored here, an approximation
that is valid when the collision energy is higher than the
fine-structure splitting of the hydrogen atom, 4.5
X10°° eV=0.53 K. Hence the € and 2 states of the
hydrogen atom are approximated as being degenerate in en-

decreased and avoided crossings are encountered, this Opsigy. At large internuclear distances the wave function will
tance. Since our main interest has been the long-range integaen pelow, a linear combination of such produder suf-
actions we have not found it worthwhile to go through thisficiently large internuclear distances the molecular potential

very elaborate procedure.

energies may then be calculated analytically treating the

In the region ofR where our calculations overlap with glectrostatic atom-atom interaction by perturbation theory.

those of Sanchez and Martin, comparisons of the results havge resulting asymptotic potential-energy curve has the form
been made in Figs. 3 and 4. The comparisons also include

results by Gubermafb] and Tennysori6]. Our results for
the '3 states agree very well with the results of Sanchez
and Martin. We confirm their conclusion that the energy of
state 1 calculated by Tennyson is somewhat too high. Also
our width of state 1 agrees closely with Sanchez and Martin,

C C C C
_ =3 5+_6_|__8+..., (4)

B = e e TR RE

while Tennyson obtained a larger width. F& | symmetry
our calculation only extends down R=5 a.u., limiting the

opportunities for comparisons with earlier works. We note
that our energies are significantly lower than those o
Sanchez and Martin for all four states. Usually this is take
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FIG. 4. Same as Fig. 3 but for the widths. Lines show our data

coded as in Fig. 1. Results frof#]: state 1(open trianglek state 2
(crossey state 3(open diamonds state 4(squares Results from
[6]: state 1(filled triangles, state 3(filled diamonds.

where theC; and Cy terms come from first-order perturba-
tion theory, and are nonvanishing as a result of the degen-
eracy of the 8 and 2 states, while theCg and Cg arise

rom second-order perturbation theory, and are present even
if the degeneracy is lifted.

n

A. Exchange

The atom-atom interaction contains also a contribution
from the exchange of the two electrons. At large internuclear
distances this contribution vanishes exponentially, i.e., faster
than the electrostatic interaction. The exchange contribution
is difficult to treat consistently in perturbation theory. In the
following section we shall show how this contribution may
be extracted from our numerical data.

We denote the product state of two noninteracting?2
hydrogen atom#\ and B by |2I,2I,’,>. Herel,l” specify the
angular momentum, the subscriptsl’=A,B denote to
which hydrogen atom the orbital belongs, and the ordering
reflects which electron is occupying the orbital, i.e., “elec-
tron 1” belongs to the first orbital and “electron 2” to the
second.

The molecular Hamiltonian is invariant under inversion
of all electronic coordinates, electron exchamyg, and re-
flection in a plane containing the nuclei. Let= =1 be the
parity under inversiorigeradeor ungeradesymmetry, and
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o= *1 the parity under exchangsinglet or triplet symme- 10
try). From an atomic product stat@l ,215) one may then
generate asymptotic orbitals adapted to the molecular sym
metries(symmetrization with respect to reflection is not in-
cluded:

1 , 3
|V o = ——===I[121a215) + pa(—1)'*"'[21,2I¢) =
2 1+5||r E)’
, L
+a]21521 )+ p(—1) 2121 0)]. (5) 10° |

In this work we are primarily interested in the interaction
between two 8 atoms. Hence, the relevant orbitals are those
with '3 " and®X | symmetriegin the case of spin-polarized 10 o - PP oo
hydrogen only the latter symmetry is relevant since all col- Internuclear distance R (a.u.)
lisions will then have triplet spin There are four orbitals of

each symmetry converging to tine=n’=2 threshold. These FIG. 5. Exchange contribution of state (solid), state 2

are degenerate asymptoticallf spin-orbit interaction is ig- (dashed) state 3(long dashejl and state 4dash-dotteld
nored, but not for finiteR. The actual molecular states cor-

relate not to single products of atomic states, but to lineagxchange contributions for the four pairs of states calculated
combinations. Hence, we cannot focus only on|@&,2sg)  in Sec. Il are displayed in Fig. 5.

asymptote. The molecular interaction couples teea@d 2o We see that the exchange contributions are smooth, expo-
atomic states, and hence there is a possibility fer-2p nentially decreasing curves. Some jitter on the level of
transitions to occur in elastics22s collisions. The structure 107> a.u. due to numerical inaccuracies can be observed at

of Eq. (5) will still remain valid for the actual asymptotic Very largeR. However, the exchange contributions clearly
molecular states, although each teffi 215) will be re- ~ show the expected exponential decrease with distance. Con-

placed by a linear combination of such terms. sidering that the exchange contribution is a very small en-
Using a symmetry-adapted molecular orbital of the formergy difference that has been extracted from two nearly de-
in Eq. (5), the expectation value of the Hamiltonian is generate states, these results indicate good accuracy for our

calculations all the way out tR=22 a.u.
At R=22 a.u. the exchange energies are of the order of
1 10" ° a.u. or less, while the total binding energies are of the
(W mol Hmol W moy = ————[ (21 a2l | Hmoll 21 21 &) order of 10 % a.u.(the only exception being the second state
1+6y that has a binding energy 76.0"°> a.u. and an exchange
PN , , energy 10° a.u.). Hence, foR=22 a.u. the exchange ef-
+po(—1)" (21a21g[Hmol214218) fects give a negligible contribution to the total energy. In the
+ (21 )21 5| Hnol 21 21 ) following sections we _shaII, therefore, ignore ex_change v_vhen
we develop asymptotic formulas for the potential energies.

+p(— 1) (21521 Hino| 21 521 p) ]
(6)

B. Long-range interaction

In this section we shall look at the contributions to the
. . o potential energy arising from first-order perturbation theory
The first two terms are the direct contributions to the energyjn, the electrostatic atom-atom interaction. Since the molecule
which will be treated by perturbation theory in the following gissociates into neutral atoms the interaction will be of di-
section, and the last two terms are the exchange CpntrlbLbo|e’ and higher multipole, type. For the molecular ground
tions. Although approximate analytical formulas valid for giate dissociating into two ground-state atoms possessing no
large R exist for the exchange ternfd4] these are quite gipole moment, the energy correction from first-order pertur-
involved, and here we shall instead extract the exchange Coation theory vanishes. The same is true for hydrogen atoms
tribution from our numerical data. o in the 2 state. We shall, however, see that through the de-
The way to extract the exchange contribution is easy tQieneracy with the g state, a first-order energy shift appears.
infer from the form of Eq.(6). For 'S symmetry one has |n fact, due to the previously mentioned mixing induced by
p=o=1, while for *%, p=0=—1. Hence, we see from the interaction, the asymptotic molecular states turn out to be
Eq.(6) that for a'X ;, °% | pair of states that asymptotically linear combinationsof the different symmetry-adapted mo-
separate to the same combination of atomic orbitals, the diecular orbitals.
rect contributions are identical, while the exchange contribu- At large internuclear distances the interaction of the two
tions differ by a factor— 1. Hence, the difference in energy atoms may be treated as a perturbatibh,,=H zioms™ V,
of the two states equals twice the exchange contribution. ThevhereV can be expressed in a multipole expansion
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3 1 1 1 1
R rig I roa
% I+1,=1
2 > '1(_r2)|2
—2 | =1

(2|1+1)l 2| S+ 1)1

min{ly,l5}

>

m=—min{lq,l5}

X (10[lmlp=m)Y| (T Yy, - m(T2),
(7

whereY, is the spherical harmonic aréim|l;m;I,m,) are

Clebsch-Gordan coefficients. The leading term in the expan-

sion (7) is 1 =2, giving a contribution proportional to R?,

1
V3:%(r1' I‘2—32122).

®)

The next contribution comes froin=4, giving a contribu-
tion proportional to IR%. In the basis of the four degenerate
'S4 or 3% molecular orbitals [2s2s), [2p°2p°),
(112 )(|2s2p°> 2p°2s)), and  (142)(|2p*2p")
+|2p~2p™)) the first-order perturbation matriwithout ex-
change up tol=4 is

0 ~18R3 0 -9J2/R®
N ~18R®  864R° 0  432/2/R°
V= 0 0 18R3 0
-9\2/R® 4322/R® 0 432R°

9

Diagonalization o/ gives the four asymptotic eigenenergies

9.6(\/864+R*~12\/6) 9.6 648
Ei=— G == Re +¥,
EZZO,

18
E3:¥,
 96(V/864+R*+12/6) 96 648
v R® “ROR
(10)

and the corresponding asymptotic eigenfunctions are, tthe energy—0.25 a.u.,

leading ordefthat is, if terms proportional to RP in Eq. (9)
are neglectef
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FIG. 6. Numerical energies after removing the exchange contri-
bution (crosses compared to asymptotic energies from first-order
perturbation theorylines).

V2 V3

+[2p~2p™)).

|1)= |2szs>+ |2p°2p°>+

\/—|2P 2p7)

(11)
|2>=—1 (]2p°2p°% —[2p*2p~)—|2p~2p™))
V3 ’

1
3=

V2

(|2s2p°% —[2p%2s)),

1 1

= —|2s2s)— —=[2p%2p% — —(|2p*2p~

|4) ﬁISS> ﬁlp p°) @(Ip p)
+[2p~2p™)).

In Fig. 6 the asymptotic expressions for the energies are
compared to the numerical data after removing the exchange
energy as explained in Sec. lll A. We find that the asymptotic
energies accurately join the numerical results Rat 22.
Hence, our calculation in combination with the result$h
gives the molecular energies all the way fré®s0 out to
nuclear separations where fine structure and Lamb shift be-
come important.

IV. CONCLUSIONS

We have calculated the energies and widths of the four
'3 and the four®s| states asymptotically converging to
characteristic of the=2,n"=2
atomic states. For shorRK 6 a.u.) internuclear distances,
our results agree well with those of Sanchez and Mdifin
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