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Characterization of distillable and activatable states using entanglement witnesses
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We introduce a formalism that connects entanglement witnesses and the distillation and activation properties
of a state. We apply this formalism to two cases: First, we rederive the results presented in Eggaling
(e-print quant-ph/0104095namely, that one copy of any bipartite state with nonpositive partial transpose
(NPPT) is either distillable, or activatable. Second, we show that there exist three-partite NPPT states, with the
property that two copies can neither be distilled, nor activated.
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I. INTRODUCTION introduce our notation and summarize some known results
concerning separability. There, we will also generalize the
Entanglement is one of the most fascinating features imotion of entanglement witnességW's) and some results
quantum mechanics. It has been shown that maximally erconcerning EW’s [17,18 to more than two systems
tangled states of two parties can be used in many app|ic£l7,19,2q. Then we review the results on distillation and
tions of quantum informatiofil]. For instance one can tele- activation of entanglemer{9]. The technical details, con-
port a state of a particle to another parti¢®, which is  cerning EW's, but also the notion of completely positive
spatially separated from it. It was also shown how to use afaps (CPM’s) are written in an appendix. There we also
entang'ed state to Send secret messages from one p|acer%0rmulate the problem of distillation and aCtiVati(?n of en-
another[B]_ In most of those proposa|s one needs pure maxitanglement In terms Of CPM's. The reason fOI’ that IS that the
mally entangled states. In reality, however, the states whicR1ain results of this paper can be understood without those
are produced in the laboratories are, due to the interactiofgchnical details, but we need them to prove our statements.
with the environment, mixed. Section Il is divided into two parts. In the first part we
It was shown by Bennett al.[4], Deutschet al.[5], and consider a density operatgr,which describes the state of a
by Gisin [6], how to obtain, out of some copies of an en- System composed of two subsystems. For an arbitrary num-
tangled mixed state, pure maximally entangled states, usingel. sayN, of copies of this state we define an operator
only local operations and classical communicatighg]. ~ W,en. Then we show that thode copies of the state can be
This process is called distillation. Later on the Horodeckidistilled if and only if (iff) W,«n is not an EW, the entangle-
family proved that any entangled state of two quiiitso- ~ ment of thoseN copies can be activated via a PPTES iif
level) systems can be distilled to a maximally entangled stat&V,en is a special EW, namely, a nondecomposable EW
[9]. They also showed that a necessary condition for distill{NDEW). Furthermore, if the entanglement of a state can be
ability is that the partial transpog8) of the density operator distilled, then the introduced formalism gives us a distillation
must be nonpositive semidefinit0]. In higher dimensions, Protocol. If the entanglement can be activated, then we know
however, there exist states, fulfilling this necessary conditiovhich PPTES activates it. In the second part of Sec. IlI, we
for distillation, but it is not possible to transform some copiesgeneralize those results to density operators describing more
of this state into a maximally entangled stf1d,12. Then than two parties, by concentrating on three systems. Section
there is still the possibility to distill some entanglement, if [V contains two applications of the formalism developed.
one allows Alice and Bob to share, in addition to their statesFirst we rederive the above-explained result presentgtéh
an entangled state, whose partial transpose is positivéd @ simple manner. Second, we present an example of a
(PPTES [13]. This process is called activation, since thethree-partite state, whose partial transpose is not positive
entanglement contained in the copies of the original state i§emidefinite, but, nevertheless one copy of the state can nei-
activated by a PPTES. ther be distilled, nor activated. We then show that even if we
Recently, it has been showii4] that one copy of any consider two copies of some of those states the entanglement
bipartite state can always be either distilled or activated by &an neither be distilled, nor activated. Section V contains a
PPTES[15]. We will show that this is not the case if we summary of the results.
consider systems composed of more than two subsystems.
That is, we give an ex_amplg of a three-partite_ state, where Il. NOTATION AND REVIEW
one copy(even two copiesof it can neither be distilled, nor
activated. We will introduce a formalism, which allows usto  The aim of this section is twofold. On the one hand we
connect the problem of entanglement witnes$ESV’s), introduce our notation and on the other hand we summarize
which are observables that allow us to detect entangledome known facts which we use to prove the main results of
states, to the problem of distillation and activation, for arbi-this paper. In the first subsection we recall the notion of
trary state§16]. separability. Then we generalize the results concerning en-
This paper is divided into four sections. In Sec. Il, we tanglement withessg4.7,18 to more than two partieg20].
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In the last section we recall the notion of distillation andtranspose of an Hermitian operafOrwith respect to system
activation of entanglement. As mentioned before, the techniY in the computational bas[®3] is defined as
cal details concerning EW'’s, the notion of CPM’s, and the

connection between CPM'’s and the distillation and activation dy
problem can be found in the appendices. OTv= 1010 i) (] 3
Throughout this paper we denote fit),...|d)} the com- i,jzzl Ol @

putational basis irt%. Whenever we consider two or more
systemsA,B,..., we use thaotation|i),|j)g=]i,j)as and

if it is clear to which Hilbert spaces the states belong to the
we omit the subscripts. For instance we write thenormal-
ized maximally entangled state i1 (% as

rFrom the condition(2) it can be easily seen that a statés
separable iffp"Y is separable, for any syste¥ Thus, it is
clear that the partial transpose of a separable state is positive
semidefinite. In the following we call a state Y-PPT if its

d partial transpose with respect to systernis a positive
|Dgy= >, |Kk.k), (1)  semidefinite operator. Otherwise we cal¥iNPPT. If a state

k=1 has a positive(nonpositive semidefinite partial transpose

. . . with respect to all systems then we call it simply PPT
Whered=m|n{d1,d2}._ln the following, th? superscript de- (NPPT). If we consider, for instance, only two systems, we
notes the transposition in the computational basis 3Bk have p'e=(p"A)T and thereforep is ANPPT iff it is

we de_note the Hilbert space of bounded operators_acting %B.NPPT: we call such a state NPPT. Throughout the paper
the Hilbert spacé{. Furthermore we denote By the iden- " < ih o0t that X TA) =tr(pTAX).

tity matrix acting on ar-dimensional Hilbert space. Most of Note that in higher dimensionsH(=C"® (™), wheren

the paper will deal with composite systems. In this case the+ m>5, or if the state describes a system composed of more

Hilbert spaces .Of the spatially separat_ed systemg will be dethan two parties, there exist entangled states whose partial
notetd_ t.)ylHXt’ V\{['th d'm(hH?&) :>d2X 'Vw:a will only conSId_zr thtf] transposes are positive semidefinite operatBRTES [24].

n_(;n rtl_vla s;]ua I(;\T'S W;‘ bXEh' | enﬁver we Cor;ﬁ' erihe Thus, in this case the positivity of the partial transpose is no
S| u? |Ion where .”'CZ’ Ot ’ thar,y. b ZveAmoreA ag one longer a sufficient, but only a necessary condition for sepa-
Ear |ceB V\c’:e CWI C;ano € them yl 1’Th2""’ n =l q rability. We will see later on that partial transposition also
B2,...Bn,C1,C2,....Cp ..., TeSPEClivRly. The correspond- plays an important role in establishing the distillation and
ing total Hilbert space of each party is thefiy activation properties of a state

=Hx,® "Hx . for Xe{A,B,C,....}. We will also use the '
notationHi=HAi®---®’HXi, forie{l,...n}. Capital let-

ters as sub- or superscript will indicate on which system an B. Entanglement witnesses

operator acts on, e.gQ”* denotes an operator acting &), . We call an operatonV=W", acting on® an N-partite
For simplicity we will not normalize the states which we entanglement witneséEW) (between theN parties if the
consider. following properties are fulfilled:

Let us now recall some facts concerning separability, en- (i) (a,...,zZ|W|a,...,z)=0V|a) e Ha,...,|]2) e Hz.
tanglement witnesses, and distillation and activation proper- (i) W is not positive, i.e.,W has at least one negative
ties. Throughout this section we consider a density operatogigenvalue.

p, describing the state of several, ddy spatially separated It can be easily seen that conditiof) ensures that
systems. The Hilbert space on which acts is H tr(Wp)=0 for any p separable. Thus, if for some density
=Hp® - ®@Hz. operator,p, and an EW\W, tr(Wp) <0, thenp must be en-
tangled. In this case we say thatdetectsp. The important
A. Separability point concerning separability is that a state is entangled iff

there exists an EW which detectq #2].

When talking about EW’s one has to distinguish two dif-
ent kinds. On the one hand, there are the so-called decom-
posable EWMDEW), which can be written as

A statep is called fully separable if it can be prepared,
using only local operations and classical communicationfer
(LOCCQ), out of a product state, e.dQ, . . . ,0. Equivalently,
a statep is fully separable iff it can be written as

At.-O, 4
P=§i: pilayalail @ ®|z)(zl, 2

where the operator®; are positive semidefinite25]. It can
wherep;=0 and the|x;) belong to the Hilbert space of par- be easily verified that those witnesses cannot detect any
ticle X. If p cannot be written as Eq2), it is inseparable PPTES. On the other hand, nondecomposable(EBEW)
(entanglegl In what follows we simply call a state or a map cannot be written as Edq4) [26]. In [17] we showed that a
separable if it is fully separable. It was shown by P¢&d  two-partite EW,W, is a NDEW iff it detects a PPTES. This
and the Horodecki family22] that a density matriy which  result can be easily generalized to an arbitrary number of
describes the state of two qubits( & C2®(?), or one qubit  parties and so we have
and a three-level systeni{(=C?®(3) is separable iff its Lemma 1An N-partite EW,W, is a NDEW iff it detects a
partial transpose is positive semidefinite. Here, the partiaPPTES.
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C. Distillation and activation of entanglement We call a stateN-distillable if for this integemN condition

We consider the situation where an arbitrary number of6) is fulfilled. Otherwise we call iN-undistillable. If a state
parties share an arbitrary number of copies of the state is not distillable, then Alice and Bob might still be able to
Then, we callp fully distillable if the parties can, using distill a maximally entangled state by LOCC, if they share,
LOCC, produce a maximally entangled state, shared amon.@ addition to their copies of the state, a PPTES. We call this
all the parties. Note that a PPT state can never be distilledrocess activation.
which can be easily seen as follows plis PPT therp®N is We call amrundistillable state activatable if there exists
PPT for allN, and so is&[ (p®N)TA] for all N and £ sepa-  a positive integeN<m and a PPTES such thap®*Ne o is
rable, as mentioned in Appendix B. Thus, by LOCC one carone-distillable. Given arN-undistillable statep, we call it
never produce, out of a PPT state a maximally entangletl-activatable if there exists a PPTESsuch thap®*Ne o is
state, which is NPPT. Note that, in the bipartite case withone-distillable.
d,=2 anddg arbitrary, it has been showa1] that all NPPT
states are distillable. However, for higher dimensions, there
is a strong conjecturfll,17 that this is no longer true, i.e.,
that there exist undistillable NPPT states. In the case of more A three-partite state,p e B(H)=B(HrQ@ Hg®Hc) is
than two parties, the argumentation above implies that a stafally distillable if Alice, Bob, and Charly can produce, using
can only be distillable if all the partial transposes are non{.OCC, out of an arbitrary number of copies pfa GHZ
positive semidefinite, i.e., if the state is NPPT. state[27]. Note, that this is possible ifup to permutations

If a state is not distillable, then it might be possible to Alice and Bob can produce a state of the fofh with d
activate its entanglement using a PPTES. That is, if the par= g, .= min(d,,dg) and Bob and Charly can distill a state of
ties shgre, in addition tbl copies of a s'Fatp a PPTES, then ine form (1) with d=dgc=min(dg,do). This can be easily
they might be able to produce a maximally entangled stat€nerstood using that two maximally entangled state, one in
using LQCC. We call thls.proces.s activation. Using the arA andB and the other irB andC can always, by LOCC be
gumentation above, one immediately sees that only NPPT ) in(dag dg)|::: o
states are activatable. combined to GHZ state},, _ | liii ). The other direction

Let us now, in order to be more specific, treat the case o also true, since, given two GHZ states one can, using
two parties and the one of three independently. The next pakOCC, transform them into a maximally entangled staté in
of this section deals with the bipartite case. There we revievand B and one inB and C. Using this fact we only have to
the conditions which must be fulfilled for a state to be dis-answer the question: “Can Alice, Bob, and Charly distill a
tillable or activatable. In the second part of this section wemaximally entangled state iA,B and one inB,C?” There-
show how to generalize the results of two parties to three. fore, from now on we will only deal with the problem of

bipartite entanglement distillation. We call a state,BC-

1. Two parties distillable if Alice, Bob, and Charly can produce, using
LOCC, out of an arbitrary number of copies pfin BC a
maximally entangled state, i.e., a state of the f@fmwith
d=min(dg,dc). Note that the best strategy for them to distill
a maximally entangled state BiandC is that Alice measure
a projector. The reason for this is that if they apply any other
measurement, then they always reduce the entanglement of
the outcoming state. We defindB- and AC-distillability
analogously for the other cases.

If a state is undistillable we have, analogously to the bi-

2. Three parties

In this scenario a state,e B(HA® Hg), is called distill-
able if Alice and Bob can produce by LOCC a maximally
entangled stat€l), with d=min(d,,dg).

It has been showfil0] that the problem of distillation of
a statep can be formulated in the following way:

Lemma 2[10]. A statep is distillable iff there exists a
positive integeN and a state of the form

) =lei.fa)+]es.fa), ©) partite case, the possibility to activate its entanglement using

a PPTES. That is the parties share, in addition to some copies

such that of their state a PPTES. Then they distill out of those states a
maximally entangled state. If this is possible then we call the
(P[(p=N)Ta|w)<0, (6)  state activatable. Again, we have that it is activatable iff it is

(up to permutationsAB-activatable andC-activatable; that
where {e;,e,}({f,,f,}) are two unnormalized orthogonal is the entanglement among all parties can be activated iff the

vectors in (%) ®N[ (C9e)®N], entanglement betweehandB and the one betweddandC
This condition simply means that iff there exists acan be activated.
(?®(? subspace, on which the projection gfN is NPPT, Let us now show under which conditions a stateXié

then the state is distillable. This can be understood as foldistillable, whereX,Y € {A,B,C}, on the example oBC-
lows: if there exists such a subspace then Alice and Bob cadistillation.

distill a maximally entangled state itf® C2. They can then Lemma?2’. A statep is BC-distillable iff there exists a
use some of those distilled states to convert them, by LOC(qositive integeN and a state of the form

into a maximally entangled state iifA@ C%. On the other

hand, a maximally entangled state((f*® (% can be con-

verted into a maximally entangled state(if® 2. |W)=|e.,f1)+]ep,fy), (7)
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where {e;,e,}({f1,f,}) are two unnormalized orthogonal activated using a PPTES. In particular, we show that, de-

vectors in (g)“N[ (Hc)®V], and a statgh) e (H,)®N such
that

(Wl¢hl(p®™)Telh)|w) <. (8)

Note that condition(8) can only be fulfilled ifp is B-NPPT
as well asC-NPPT.

Analogous to Sec. Il we call a stateN-BC-distillable if
for the integem, condition(8) is fulfilled. We callp N fully
distillable if it is (up to permutationsN-AB-distillable and
N-BC-distillable.

pending on whethelW,«n is not an EW, a NDEW, or a
DEW, the -corresponding statep is N-distillable or
N-activatable, or neitheN-distillable nor N-activatable, re-
spectively. This is stated by the following theorems and cor-
ollaries, which will be proven below.

1. Main results

Theorem 1A statep is N-distillable iff W e~ is not an
EW [it does not fulfill (i)].
Theorem 2 A state p which is N-undistillable, is

If a state is not distillable then we still have the possibility N-activatable iffW on is a NDEW.
to activate its entanglement using a PPTES. Let us now char- Those theoremps state that EW’s do not only allow us to
acterize those states which a6¥ activatable on the example determine whether a state is entang'ed or not, but also char-
X=B, Y=C. o o acterize the distillability properties of a state. We have that

We call a statep, which is notm-BC-distillable, BC- w _is not an EW iffp is one-distillable(Theorem 1. Now,
activatable if there exists an integhi<m and a PPTESr  ff , is one-undistillable it can be either one-activatable or
such that p®Noo is 1-BC-distillable. Given an not. In this caseV, is an EW(Theorem 1, which can be
N-BC-undistillable statep, we call it N-BC-activatable if either decomposab|e or nondecomposab|e_ Then the en-
there exists a PPTES,0, such that p°“®o is  tanglement ofp can be activated via a PPTES Wff, is a
1-BC-distillable. We callp N fully activatable if it is(up to  NDEW (Theorem 2. It is worth mentioning that using these
permutations N-AB-activatable andN-B C-activatable. results, it is not only possible to know if the entanglement of
a state is distillable, or if it can be activated but it can be seen
by the proofs that they provide us with a distillation protocol.
That is, given a state which can be distilled, then the sepa-
rable state, which is “detected” by the witnesa/, corre-
) ) ] . sponds to a LOCC, which distills a maximally entangled

In this section we show that there exists a connectionate (see Appendix B and28]). On the other hand, the
between EW'’s and the distillation and activation propertiesppTES’ which activates the entanglement is easily deter-

of states. We will define an operator which allows us to an{pined by the state, which is detected by the NDEWY,.
swer the questions, M copies of a state are distillable, or if Those theorems aléo imply the following:

not, if their entanglement can be activated using a PPTES. Corollary 1 A state p is is neither N-distillable nor
Using this formalism it is easy to rederive the reg@M] that  \_gctivatable iffW o is decomposable
p .

any bipartite NPPT is either one-distillable, or one-  note that the results above are not only a way of rewriting
activatable. One the other hand, it allows us to prove thafne proplems, but they really allow for insight into the prob-
there exists three-partite NPPT state which are neither twQgms of distillation and activation. For instance in Sec. IV,
distillable, nor two-activatable. we review in a simple manner the fact that every bipartite

This section is divided into two parts. In the first part we NppT state is either one-distillable or one-activatdhi.
show this connection for the bipartite case, whereas in the

second part we extend those results to three parties. Both
parts have the same structure; first we define the operator
which allows us to draw the connection between EW’s and The reader who is not interested in the proofs can con-
the distillation and activation properties of a state. Then wainue reading in the next section. For simplicity we prove the
state our main results of the paper. In the last part of eacktatements foN=1, since the argument holds for arbitrary
section we prove those results. The reader who is not inteiN, The technical details and the definitions, which are needed
ested in the proofs can skip Secs. IllA2 and IlI B 2. to follow the proofs can be found in the appendices. Let us
start out by determine the properties of the opersiQr

(a) Wy is not positive semidefinite ifK"4; is not positive
semidefinite, i.e., iffiX is NPPT.

(b) If Wy fulfills condition (i) then both\W,A andW,® are
optimal EW'’s.

(c) Wy is decomposable iffVy=R=0.

Proof. Property (a) It is clear sincePAlBl is positive.

. .. . T
where PAl'Bl' acting onH;=(2®(? is the projector onto Property(b) If Wy fulfills condition (i) then so dow,* and

T . . . T
the maximally entangled stat@), with d=2. Now, we will  Wx"- On the other han& is NPPT, implying that bottw,*

show thatW, allows us to answer the questions, if the en.andW)T<B are not positive semidefinite and therefore they are
tanglement of this state can be distilled, or, if not, if it can beboth EW'’s. It remains to show that they are optimal. Using

IIl. CHARACTERIZATION OF DISTILLABLE AND
ACTIVATABLE STATES USING ENTANGLEMENT
WITNESSES

2. Proofs

A. Two parties

Let us denote by an arbitrary positive operator acting on
Ho=Hap,®Hg,. We define

.
Wy=Pa, B,® XAQZ’BZ €)
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that Spr,={|e)|e*)V|e) ECZ} (Appendix A, Proof of Let us now denote b¥ an arbitrary positive semidefinite
Lemma 4 we find that W,* vanishes on the set OPeratoracting ofit,=%a,®Hg,®Hc,. We define

{le)a,l€")e,|¥).V]e)e (2, ) e My} (note that these are

a_ Tc
not only product stat¢s This contains the setSyTa Wx= PBl*c1®XA2?BZ,CZ’ (10
X
={le.g)ale".f)g V|e) e (?V|g) e Ha V|f) e Hp,}. Using Woe p WA "
the fact that{|e)|e")V|e) e C?} spansC?®(?, we have that x=FPac®X0 %, ¢, 1D

SwT» spans the whole Hilbert spack=(?® C(?®@H,. Thus,

W;A is optimal. Now, using the fact th&V is an optimal EW

ifft W' is an optimal EW, we also have thWI(B is optimal. here P B((2e(2) is defined in Eqs(AL) for {Y Z

Property(c): We only have to prove the only if part. Let us W{ifer,zCE} (("®C?) is defined in Eqs(Al) for {Y,Z}

assume thaW, is decomposable. Then we can write it as = /'1' P12~/

WX=R+(Q)TA [25] and thereforeW,*=R"A+Q. Using 1. Main results

property(b) and the discussion concerning optimality in Ap- . .

pendix A we find thaQ= 0, which proves the statementll We \.N'" now. ar_1alo_gously o $ec. lIC, characterize the
Note, that propertya) tells us that since we only have to dlst|lla£|on %nd activation properties of a st:?lte, by the opera-

consider NPPT state¥, is not an EW iff it does not fulfill 1S Wy, W,, andWj . For the seek of clarity we state our

(i). With that we are now in the position to prove the resultsresults only for theBC-distillation andBC-activation. That is

of the previous section. we assume that is B-NPPT andC-NPPT (recall that other-

Proof of Theorem 1Using Corollary 2(Appendix O we wise it is neither possible to distill, nor to activate the en-
have thap is one-distillable iff there exists a separable CPMt@nglement shared between Bob and Chaiy the results
(Appendix B, &B(H,)—B((2®(?) such that O presented here can be formulated for the other partitidBs,

, : oG . b
>try[ PIBE(p)]. Using Eq.(B4) we can write this inequality :\?SI?C too, using then the operatoWy and W, respec-
s T _ Tgo T . :
as 0>try[P,°try(p2E4 9 |=tr A P, *® 5By 5] Taking now Theorem 1 A statep, is N-BCddistillable iff Wy is not
the partial transpose \/Tv:\tthespecth,BBZ within the trace an EW[does not fulfill (i)].
we have 0-tr; { P1®p, E 5| =tr(W,E, 7). Thus, we have Theorem 2 A state p, which is N-BG-undistillable, is
that p is one-distillable iffW, “detects” the stateE™®. Now,  N_BGactivatable iffW?@N is a NDEW.

since€ is separable ifE is separablgAppendix B (p1)], we Those theorems state that a state is, for instance, one fully
ha_\ve that the meTquaIl'_[y a.bove is true W, is not an EW distillable iff at least two of the operatowép‘, Wg, or V\/f,
(since it detect& e which is separable are not EW's. If it is not fully distillable then at least two of

Note that this proof implies the following fact. Given a a \\/b ,
distillable statep, we determine the separable stdEés, the operatorsh, , W, or\N; must be EW'S(Theorem 1).

which is “detected” byW, . Then the staté corresponds to Then, its entanglement can be fully activated via a PPTES iff

a b
the CPM,¢ (see Appendix Bwhich fulfills the property that at least wo of the operatol/,, W, or W, (the ones that

£(p) is a two-qubit entangled state. Thus, we found thedr® EW'’'9 are NDEW's. Note that, the states which are “de-

LOCC, which distills the statg. tected” by Wf} are the ones which allow us to derive a dis-

Proof of Theorem ZThe proof is basically the same as the tillation protocol. That i.s, given a onBC-distillable statep,
one of Theorem 1, but now with a PPT-preserving CPM, the separable state which is “deteqted"WZ corresponds to
which implies thatE is PPT. ThenW, which must be an Ew @ LOCC (see Appendix B that distills p. If the state is
(Theorem 1, detects a PPTES and is therefégec. 1B a  oneBC-undistillable, but it is oné8C-activatable, then the
NDEW m_PPTES, which activates its entanglement is easily deter-

Using the same arguments as before, if we determine th@lined by the one which is detected by the NDEM]. On
PPTESE"®, which is detected by the NDEWY, , then we  the other hand, we have that a statés neither one-fully
know which PPTES activates the entanglemens,afamely, distillable nor one-fully activatable iff at least two of the
E. operatorsw?, Wg, andvvz are decomposable. This can be,

Proof of Corollary W, must either not be an EW, or be an concerning the bipartite entanglement, stated as:

NDEW or a DEW. It is not an EW iffp is one-distillable. It Corollary 1'. A state p is neither N-BC-distillable nor
is an NDEW iff p is one-activatable. Thereforp,is neither =~ N-BGactivatable iff there exist positive semidefinite opera-
one-distillable nor one-activatable ¥/, is a DEW. tors R,Q such thatp® =RTc+QTe.

Note that, as mentioned before a three-partite state is fully
distillable (activatable iff it is (up to permutations AB-
distillable (activatable and BC-distillable (activatable.

Let us now generalize the results obtained in the previou§hus, Corollary 1 provides a necessary and sufficient con-
section for the bipartite case to the case where we considelition for a state to be neithéd-fully distillable nor N-fully
more parties. Here we will show how to do it for three, but activatable.
one can generalize the methods introduced in the previous In the next section we show that using these theorems we
section to any number of particles. are able to prove in a simple way that there exist three-partite

Ts
= 2
Wi l:)"*1"31®XA2,BZ,C2 '

B. Three parties
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NPPT states which are neither one-distillable nor one-
activatable. This is in contrast to the bipartite case, where afproof  of
NPPT states are either one-distillable or one-activatable. The

PHYSICAL REVIEW A65 042327

Proof of Theorem ‘1 Using the same arguments as in the
Theorem 1 we find [tP;iClEa(p)]

[W§(EI2)TC], whereE, , is the operator corresponding

methods even allow us to prove that some of those states afg e 'cpME. . Recall thats. is separable iff E])Tc is
not even two-distillable nor two-activatable. We show that byseparable. Ngw the Ieft-har?d side of the Iastléquation is

: a b
proving that all the operatod/;, W, ,

posable.

and W,CJ are decom-

2. Proofs

We prove the statements above for the ddsel since all
the arguments remain the same for arbitrBkyAgain, if a

negative, for€, separable, ifpp is BC-distillable. And on the
other hand{looking at the right-hand side of this equation
this is true iff W2 is not an EW, since it “detects” the sepa-
rable state E!)c. n
Proof of Theorem 2 Same proof as for Theorem ,1but
now with E a PPTES and a PPT-preserving CPM. Using
that the operatow? must be an EWTheorem 1), we have

reader is not that interested in the proofs he can skip this pathat the ppTEs,E(TQ)Tc is detected by the va?, implying
[ |

of the paper and continue reading in the next section.

We start by showing the following properties of the op-

eratorswy:

(A) W5 is not positive semidefinite ifKTc is not positive
semidefinite, i.e.X is C-NPPT.

(B) If W fulfills condition (i) then W%)™® and (W) Tc
are optimal EW'’s.

(C) Wy is decomposable iff there exis&Q=0 such that
X=RTc+QTs,

Proof. The proofs of propertyfA) and property(B) are
similar to the ones of propert§g) and property(b) in Sec.
[11 A2 and will be omitted here. PropertC): We denote by
Y the total transpose of an operatdt (if): If X=R'c
+Q"s then W;=Pg ¢ @X'c=Pg ¢ ®(R+Q'4)=0
+8'A, with O=Pg ¢ ®R=0 andS=Pg ¢ ®Q=0 and
so it is decomposabléonly if) If W5 is decomposable then
there exist operator$4) Qq,Q1,Q,,Q5=0 such thatW
=Qo+ Q"+ Q;°+Q;° and so W5)'e=QyP+Q,°+Q;
+Q* and W3)Te=Q c+Q 5+ Q,4+ Q5. Since ()T
and W3) Tc are both optimal EW’s, because of propefty,
we have thaQ,=Q3;=0 and soNy=Q,+ QIA. Let us now
use thalP;% and P;E(‘: are optimal decomposable EWAp-
pendix A, Lemma 4 and that the Set§pTCBC:SpTBBC
={le)|e*)V|e)e(?} span C2®(C2 This implies that
(W) Te=Qc+Q;® vanishes on
{le)s,le")c, [D)nl¥) | X)c, Ve b . x). Thus, Qg° and
~IB must vanish on those states. This implies tkilag}c
=P o, @R, QiP=P°  ®Q"™ and 50 Qu=Ps, c,
@R, andQ;=Pg ¢ ®Q whereRQ=0. Thus, we have that
Wi=Pg, c,®XTc=Pg ¢ ®(R+(Q)™) and so X=R'c
+QTs. [ |

that it is an NDEW

Proof of Corollaryl’. Same proof as for Corollary 1, but
nowW‘;l is a DEW iff there exist operatoR, Q=0 such that
p=RT"c+QT'e [property(C)]. [ |

IV. APPLICATIONS

In this section we use the formalism introduced in the
previous section to show the following facts. On the one
hand, the entanglement of one copy of any bipartite NPPT
can either be distilled or activatgd4]. On the other hand,
this formalism allows us to show that this is not the case for
multipartite states. That is, there exist states describing a sys-
tem composed of more than two subsystems which are nei-
ther one-distillable nor one-activatable. Indeed, in the fol-
lowing subsections we will show that, using the connection
between EW'’s and the distillation and activation properties
of a state, there are NPPT states which are not even two-
distillable nor two-activatable.

A. Two parties

Observation[14]. Any bipartite NPPT statep is either
one-distillable or one-activatable. This can be easily seen
using Corollary 1, which states thai is neither one-
distillable nor one-activatable iV, is a DEW. Using then
property (c) we have thatW, is a DEW iff it is a positive
semidefinite operator, which is true iff is PPT[property

@]

B. Example of a one-undistillable and one-unactivatable three-
partite state

In this section we present a family of density operators,
{p.}, Which describe the state of a system composed of three
qubits. We show, using the formalism of the previous sec-
tion, that fora<1 one copy of these states can neither be
distilled nor activated. Then we prove that fer «g, with
a~0.8507 even two copies of the states can neither be dis-
tilled, nor activated. Recall that in the bipartite case there

Property(A) implies that, since we only have to consider exists no such state. The states of interest are

C-NPPT states, the operatwﬁ is not positive semidefinite.
Thus,WZ‘ is not an EW iff it does not fulfill(i) [29].

The proofs of the theorems are basically the same
but now with

as the one in the previous section,
EB(H;N)—B(C*©(?),  where Hpy=Ha ©Hg,®He,
and the corresponding operatoE; ,=Ea, 8, 8, .c,.c,
e B(H3Ne (2 (?).

pa=lgt a| Py ( ¥y, (12

where |¥,)=|001)+|010)+|100). Note first, thatp,, is
NPPT iff «> 12, which implies that only in this region the
state might be distillable or activatable. Note further that

is symmetric under all the permutations of the three parties,
AB,C. This symmetry implies that this state N-AB-
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distillable iff it is N-AC-distillable iff it is N-BC-distillable.

PHYSICAL REVIEW A 65 042327

following properties: It is an entanglement witness fffis

Let us therefore, without loss of generality, consider the situN-undistillable, i.e., thoseN copies cannot be distilled via
ation where Alice performs a measurement and Bob andOCC; it is a decomposable entanglement witness iff the

Charly distill out of the remaining density operator a maxi-
mally entangled state. That is, we are interested irNH&G

state isN-unactivatable; i.e., thosH copies cannot be dis-
tilled via LOCC, even if we allow for a PPTES in addition.

distillation of the state and therefore in the properties of theJsing those methods we have shown that there exist three-

operatorVV‘ZM Eqg. (10). Note that, according to our defini-
tions the state isbecause of the symmeijriN-BC-distillable

iff it is N-distillable. Then the theorems and the corollary of
the previous section simplify to

Remark 1. p, is N-distillable iff W?@N is not an EW.

Remark 2. If p, is N-undistillable, it isN-activatable iff
Woen is a NDEW.

Remark 3. p, is neitherN-distillable norN-activatable iff
there exist positive semidefinite operatéts,Q, such that
(pe™)Te=R,+ QA

1. One copy

We show that one copy of the state, cannot be distilled
for a<1, i.e., (Remark 1 me is an EW for W2<a=<1.
Note that the remaining state, after Alice performs a mea
surement is a state of two qubits, which is distillable iff it is
NPPT(Sec. ). And so we only have to find the measurement
in A, |, which maximizes the region ef, for which the
state{ /| p,|#) is NPPT. It can be easily shown that the best
measurement Alice can do is to measl®g0|. Then the
remaining state(0|p,|0), is NPPT iff «>1, which implies
that the statep,, can be distilledY a«>1. On the other hand,
using Remark 1 we have th&lY?, is an EW for 1/2<«
<1. Now we show thaW7, is for 1/2<a<1 a DEW and
thereforep cannot be activated far<1 (Remark 2. Using
Remark 3 we have to findR,,Q,=such thathCZ R,

+QZA. It can be easily verified that the operatoRs,
=a|VT WP T|,s®|0)(0|c, where|¥*)=|01)+|10), and
Qa:p}‘—(Ra)TA are both positive semidefinite and lead to
the desired decomposition. Thus, we have shown that th
NPPT statep,, is neither one-distillable nor one-activatable
Vae]1V2,1]. Note that the given decomposition @f,
proves this statement already.

2. Two copies

Using the same method as above one can also show th
two copies ofp, can neither be distilled, nor activateddf
e|IV2,ag], with «y=~0.8507. In this case R,
=Y(p15 @R+ R1®p15), with Ry=[W " )(¥ "], 5®(0)
X(0|c, where|®*)=|01)+|10), and Q,=(pZ?)Te—RA
are both positive semidefinite foy~0.4953 and fulfill
(p2?)Te=R,+Q".

V. CONCLUSIONS

We have shown that on can connect the problem of en

partite NPPT states, which are neither two-distillable, nor
two-activatable. We showed it by proving that the corre-
sponding operator is a decomposable entanglement witness.
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APPENDIX A: ENTANGLEMENT WITNESSES

In [17] we showed how to optimize two-partite EW'’s; that
is how to construct a new EW out of a given one, which
detects the same entangled states and in addition some oth-
ers. There we also showed that an EW, is optimal iff
VR=0, e>0W'=W-€R is not an EW, in the sense that it
does not fulfill(i). This method of optimization can be easily
generalized to the case of more parties. In order to recall a
sufficient condition for an EW to be optimal, we define, for
an EW, W, the set Sy={|a,...,z)e’H such that
(a,...,zZ]W|a,...,zy=0}. Then we have

Lemma 3If Sy, spansH thenW is optimal.

Let us now give an example of an optimal decomposable
two-partite EW inB(C2® (?). This EW will allow us to draw
the connection between EW'’s and the criterion that a state in
(?®(? is entangled iff it is NPPT21,22.
€ We denote byP,ge B(C2®(2) the projector onto the
maximally entangled state, that is

Pas=|®2)(P,], (A1)
with |®,) given in Eq.(1). Then we have

Lemma 4P1‘|\3 is an optimal DEW.

Proof. Using Lemma 3 it is sufficient to show thSﬁI\AB

spans C?®@C2?, It can be easily verified thatSpTa
AB

={le,e")V|e)eC?}. On the other hand, one can easily

check that there exists no state orthogonal to this set, which

implies thatSpI\/:3 spansC2@ (2. [ |
Note that an EWW, is optimal iff W' is optimal, imply-

ing that PI\BB is optimal too. This EW detects, up to local

operations, all NPPT states, which follows from:

tanglement witnesses to the one of distillation and activation Lemma 5 [9] A state ppge B(C*°®(?) is NPPT iff

of entanglement. We defined, depending on the siaaied
on the number of copiel of it, an operator which has the

there exist some local such that

tr(P2A®BpAT@BT)<0.

operatorsA,B
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APPENDIX B: COMPLETELY POSITIVE MAPS We can generalize this isomorphism for CPM’s of the

Any physical action can be mathematically described by 40rm €: B(H) — B(H). Then the corresponding operaéis
completely positive mapCPM), which is a linear, Hermitian an element o3(H®H).
map, & B(H)— B(H), that is positive, i.e.¥p=0 &(p) Note that (R)—(P3) imply the following facts: First, we
=0, and fulfills that the extended mafg 1, is positive for ~ can implement a separable/-PPT-preserving CPM, &
any n. Note that any CPM can be written ag(p) B(H)—B(H), on a state if we allow the parties to apply

=3,0,p0y, whereO, e B(H). Note further that any sepa- | OCC on the state®E, whereE e B(H®H) is separable
rable CPM, that is any map that can be, up to a proportion¢y-ppT). Second, the scenario, where the parties are allowed
ality constant, implemented locally, can be written as to apply LOCC on the statp®E, whereE is separable
(Y-PPT), is equivalent to the one where the parties are al-

| - .
&p)= 2 (OkA®OE---Of)p(O{j@OE---Of)T, (B1) lowed to implement a separabl¥-PPT-preservingCPM.
k=1

APPENDIX C: DISTILLATION AND ACTIVATION

where | is some finite number. Thus, we can reformulate
OF ENTANGLEMENT IN TERMS OF CPM'’'S

condition(2) as follows: A statep, is separable if there exists
a separable mag such thatp=£(|00 --0)(00 --0]). Here we use the notion of CPM'’s to characterize distill-

A CPM €& is calledY-PPT-preserving if for alp Y-PPT,  aple and activatable states.

E(p) is Y-PPT. We call a CPM PPT-preserving, if itYsPPT-
preserving for all systems.

Let us also recall the isomorphism between CPM'’s and
positive semidefinite operatof28]. We consider a CPM, We consider a bipartite stajeacting onHa, ©Hg,. Us-
acting on theN systemsA;,B;---Z; and define the operator jng Lemma 2 and Lemma 5 we have the following:

Corollary 2. A state,p is distillable iff there exists a posi-
tive integer N and a separable CPMS: B(HPV)
— B(C2®(?) such that

1. Two parties

1
By ay.2y.2,= g EPa a,® Pz, 7)), (B2)

where Px, ., is the projector onto the maximally entangled tr{ PT8&(p®N)]<0, (C1
state (1). Ea a,...z,.z, is acting onHa®---®@Hz, with

Hy="Hx,®Hx, and dim(Hxi)zdim(HYi)zd, for i=1,2 yvhereP= PAg is given in Eq.(A1). Note that conditior{C1)
andX,Y e {A,....Z}. In Eq.(B2) the map€ is understood to IS equivalent to {P™A£(p“")]<0. Note further that the op-
act as the identity on the operators/*,). The interpre- eratorE corresponding to the CPilis separable and acts on
tation of Eq.(B2) is the following: Each of theN parties the Hilbert spaceH,&@Hg, WhereHA=Hf§1N®CZ and Hp
prepares his system in a maximally entangled Staizally) =H§1N®C2.

with an auxiliary system, e.gh, andA, are in a maximally Using the isomorphism between density operators and
entangled state. Then the_operatlﬁra(_:ts on the Systems  cpm's (Appendix B, we know that the possibility for Alice
A1,B1,...,Z,. The state which the parties share then is pro-;nq Bob to use a PPTES and then apply LOCC equals the

portional toE. On the other hand one can show that possibility for them to use a PPT-preserving CPM. And so
c )=tr E we have
(Pny..2)=Wnyg...2,.2(Eas s Z1.Z5PAg 25 Lemma 6A statep which ism-undistillable, is activatable
X P, a® P2 2), (B3) iff there exists a positive integ&t<m and a PPT-preserving

CPM & B(HSN)— B(C?®(?) such that fiPTe&(p®N)]<0,
or, equivalently frPTAg(p*N)]<0.

Note that the operatdg corresponding to the CPM is
PPT and acts on the Hilbert spa@é,® Hg, where Hp
=M '®C? and Hg="Hg,'® (*. An N-undistillable statep,

Equation(B3) has a simple physical interpretation too. If is N-activatable if for this integeN, condition(C1) is ful-
we have the statg at our disposal we can locally implement filled, for a PPT-preserving CPM.
the operationt on a state of the systens,...,.Z; (with
certain probability. For that the parties perform a joint mea-
surement locally such that the systends (A3),...,(Z>,Z53)

which can be also written as

2. Three parties

are projected onto a maximally entangled stdte Let us now consider a density operajgrdescribing the
The importance of this isomorphism is tH&8] state of a system composed of three subsystems. The Hilbert
(PD £ is a separable CPM ifE is separable with respect Spacep is acting on isHs @ Hg ® Hc,. Analogous to the

to the systemsA;,As),...,(Z1,Z5). previous section we reformulate the problem of distillation
(P2 £ can create entanglement iff is entangled with and activation in terms of CPM's. In the following we will,

respect to the systema\(,A,),...,(Z1,Z,). without loss of generality concentrate on the distillation and

(P3 & represents &-PPT-preserving CPM ifE is Y-PPT.  activation of the entanglement between Bob and Charly.
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Corollary 2'. A statep is BC-distillable iff there exists a Lemma 6. A state,p, which is notm-BC-distillable, is
positive integerN and a separable CPM,: B(H}") BC-activatable iff there exists an integhi<m and a PPT-
— B(C2®(?) such that preserving CPMe, : B(H;™)— B(C?2®(?) such that condi-

tion (C2) is fulfilled.
tr[P;?CSa(p®N)]<O, (C2 An N-BC-undistillable statep, is N-B C-activatable if for

the integem condition(C2) is fulfilled, for a PPT-preserving
where Pg ¢ is defined in Eq.(Al) and the small lettea  CPM, &,.
indicates that, maps a density operator describing the state Let us summarize this section: A stateNs(XY) distill-
of the particles AB,C to a density operator describing the able (activatable iff there exists a separablgPPT-
state of two qubits, one held by Bob and the other one byreserving CPM, which transform#l copies of the state into

Charly. an entangled state acting 6A® (2. This automatically im-
Thenp is N-BC-distillable if for the integemN condition  plies that all PPTES are bound entangled, in the sense that
(C2) is fulfilled, for &, separable. their entanglement cannot be distilled nor activated.
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