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Characterization of distillable and activatable states using entanglement witnesses
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We introduce a formalism that connects entanglement witnesses and the distillation and activation properties
of a state. We apply this formalism to two cases: First, we rederive the results presented in Eggelinget al.
~e-print quant-ph/0104095!, namely, that one copy of any bipartite state with nonpositive partial transpose
~NPPT! is either distillable, or activatable. Second, we show that there exist three-partite NPPT states, with the
property that two copies can neither be distilled, nor activated.
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I. INTRODUCTION

Entanglement is one of the most fascinating features
quantum mechanics. It has been shown that maximally
tangled states of two parties can be used in many app
tions of quantum information@1#. For instance one can tele
port a state of a particle to another particle@2#, which is
spatially separated from it. It was also shown how to use
entangled state to send secret messages from one pla
another@3#. In most of those proposals one needs pure ma
mally entangled states. In reality, however, the states wh
are produced in the laboratories are, due to the interac
with the environment, mixed.

It was shown by Bennettet al. @4#, Deutschet al. @5#, and
by Gisin @6#, how to obtain, out of some copies of an e
tangled mixed state, pure maximally entangled states, u
only local operations and classical communication@7,8#.
This process is called distillation. Later on the Horode
family proved that any entangled state of two qubits~two-
level! systems can be distilled to a maximally entangled s
@9#. They also showed that a necessary condition for dis
ability is that the partial transpose~3! of the density operato
must be nonpositive semidefinite@10#. In higher dimensions
however, there exist states, fulfilling this necessary condi
for distillation, but it is not possible to transform some cop
of this state into a maximally entangled state@11,12#. Then
there is still the possibility to distill some entanglement,
one allows Alice and Bob to share, in addition to their stat
an entangled state, whose partial transpose is pos
~PPTES! @13#. This process is called activation, since t
entanglement contained in the copies of the original stat
activated by a PPTES.

Recently, it has been shown@14# that one copy of any
bipartite state can always be either distilled or activated b
PPTES@15#. We will show that this is not the case if w
consider systems composed of more than two subsyst
That is, we give an example of a three-partite state, wh
one copy~even two copies! of it can neither be distilled, no
activated. We will introduce a formalism, which allows us
connect the problem of entanglement witnesses~EW’s!,
which are observables that allow us to detect entang
states, to the problem of distillation and activation, for ar
trary states@16#.

This paper is divided into four sections. In Sec. II, w
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introduce our notation and summarize some known res
concerning separability. There, we will also generalize
notion of entanglement witnesses~EW’s! and some results
concerning EW’s @17,18# to more than two system
@17,19,20#. Then we review the results on distillation an
activation of entanglement@9#. The technical details, con
cerning EW’s, but also the notion of completely positiv
maps ~CPM’s! are written in an appendix. There we als
reformulate the problem of distillation and activation of e
tanglement in terms of CPM’s. The reason for that is that
main results of this paper can be understood without th
technical details, but we need them to prove our stateme
Section III is divided into two parts. In the first part w
consider a density operator,r which describes the state of
system composed of two subsystems. For an arbitrary n
ber, sayN, of copies of this state we define an opera
Wr ^ N. Then we show that thoseN copies of the state can b
distilled if and only if ~iff ! Wr ^ N is not an EW, the entangle
ment of thoseN copies can be activated via a PPTES
Wr ^ N is a special EW, namely, a nondecomposable E
~NDEW!. Furthermore, if the entanglement of a state can
distilled, then the introduced formalism gives us a distillati
protocol. If the entanglement can be activated, then we kn
which PPTES activates it. In the second part of Sec. III,
generalize those results to density operators describing m
than two parties, by concentrating on three systems. Sec
IV contains two applications of the formalism develope
First we rederive the above-explained result presented in@14#
in a simple manner. Second, we present an example
three-partite state, whose partial transpose is not pos
semidefinite, but, nevertheless one copy of the state can
ther be distilled, nor activated. We then show that even if
consider two copies of some of those states the entanglem
can neither be distilled, nor activated. Section V contain
summary of the results.

II. NOTATION AND REVIEW

The aim of this section is twofold. On the one hand w
introduce our notation and on the other hand we summa
some known facts which we use to prove the main results
this paper. In the first subsection we recall the notion
separability. Then we generalize the results concerning
tanglement witnesses@17,18# to more than two parties@20#.
©2002 The American Physical Society27-1
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In the last section we recall the notion of distillation a
activation of entanglement. As mentioned before, the tec
cal details concerning EW’s, the notion of CPM’s, and t
connection between CPM’s and the distillation and activat
problem can be found in the appendices.

Throughout this paper we denote by$u1&,...ud&% the com-
putational basis inCd. Whenever we consider two or mor
systems,A,B,..., we use thenotationu i &Au j &B5u i , j &AB and
if it is clear to which Hilbert spaces the states belong to th
we omit the subscripts. For instance we write the~unnormal-
ized! maximally entangled state inCd1^ Cd2 as

uFd&5 (
k51

d

uk,k&, ~1!

whered5min$d1,d2%. In the following, the superscriptT de-
notes the transposition in the computational basis. ByB~H!
we denote the Hilbert space of bounded operators acting
the Hilbert spaceH. Furthermore we denote by1n the iden-
tity matrix acting on an-dimensional Hilbert space. Most o
the paper will deal with composite systems. In this case
Hilbert spaces of the spatially separated systems will be
noted byHX , with dim(HX)5dX . We will only consider the
nontrivial situations whendX>2. Whenever we consider th
situation where Alice, Bob, Charly, . . . , have more than one
particle we will denote them byA1 ,A2 ,...,An ,B1 ,
B2 ,...,Bn ,C1 ,C2 ,...,Cn ,..., respectively. The correspond
ing total Hilbert space of each party is thenHX
5HX1

^¯HXn
, for XP$A,B,C,...,%. We will also use the

notationHi5HAi
^¯^ HXi

, for i P$1, . . . ,n%. Capital let-
ters as sub- or superscript will indicate on which system
operator acts on, e.g.,OA denotes an operator acting anHA .
For simplicity we will not normalize the states which w
consider.

Let us now recall some facts concerning separability,
tanglement witnesses, and distillation and activation prop
ties. Throughout this section we consider a density opera
r, describing the state of several, sayN, spatially separated
systems. The Hilbert space on whichr acts is H
5HA^¯^ HZ .

A. Separability

A stater is called fully separable if it can be prepare
using only local operations and classical communicat
~LOCC!, out of a product state, e.g.,u0, . . . ,0&. Equivalently,
a stater is fully separable iff it can be written as

r5(
i

pi uai&A^ai u ^¯^ uzi&Z^zi u, ~2!

wherepi>0 and theuxi& belong to the Hilbert space of pa
ticle X. If r cannot be written as Eq.~2!, it is inseparable
~entangled!. In what follows we simply call a state or a ma
separable if it is fully separable. It was shown by Peres@21#
and the Horodecki family@22# that a density matrixr which
describes the state of two qubits (H5C2

^ C2), or one qubit
and a three-level system (H5C2

^ C3) is separable iff its
partial transpose is positive semidefinite. Here, the pa
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transpose of an Hermitian operatorO with respect to system
Y in the computational basis@23# is defined as

OTY5 (
i , j 51

dY

y^ i uOu j &yu j &y^ i u. ~3!

From the condition~2! it can be easily seen that a stater is
separable iffrTY is separable, for any systemY. Thus, it is
clear that the partial transpose of a separable state is pos
semidefinite. In the following we call a stater, Y-PPT if its
partial transpose with respect to systemY is a positive
semidefinite operator. Otherwise we call itY-NPPT. If a state
has a positive~nonpositive! semidefinite partial transpos
with respect to all systems then we call it simply PP
~NPPT!. If we consider, for instance, only two systems, w
have rTB5(rTA)T and thereforer is A-NPPT iff it is
B-NPPT; we call such a state NPPT. Throughout the pa
we use the fact that tr(rXTA)5tr(rTAX).

Note that in higher dimensions (H5Cn
^ Cm), where n

1m.5, or if the state describes a system composed of m
than two parties, there exist entangled states whose pa
transposes are positive semidefinite operators~PPTES! @24#.
Thus, in this case the positivity of the partial transpose is
longer a sufficient, but only a necessary condition for se
rability. We will see later on that partial transposition al
plays an important role in establishing the distillation a
activation properties of a state.

B. Entanglement witnesses

We call an operator,W5W†, acting onH an N-partite
entanglement witness~EW! ~between theN parties! if the
following properties are fulfilled:

~i! ^a,...,zuWua,...,z&>0 ;ua&PHA ,...,uz&PHZ .
~ii ! W is not positive, i.e.,W has at least one negativ

eigenvalue.
It can be easily seen that condition~i! ensures that

tr(Wr)>0 for any r separable. Thus, if for some densi
operator,r, and an EW,W, tr(Wr),0, thenr must be en-
tangled. In this case we say thatW detectsr. The important
point concerning separability is that a state is entangled
there exists an EW which detects it@22#.

When talking about EW’s one has to distinguish two d
ferent kinds. On the one hand, there are the so-called dec
posable EW~DEW!, which can be written as

W5O01OI
TA1¯ON

TZ, ~4!

where the operatorsOi are positive semidefinite@25#. It can
be easily verified that those witnesses cannot detect
PPTES. On the other hand, nondecomposable EW~NDEW!
cannot be written as Eq.~4! @26#. In @17# we showed that a
two-partite EW,W, is a NDEW iff it detects a PPTES. Thi
result can be easily generalized to an arbitrary numbe
parties and so we have

Lemma 1. An N-partite EW,W, is a NDEW iff it detects a
PPTES.
7-2
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C. Distillation and activation of entanglement

We consider the situation where an arbitrary number
parties share an arbitrary number of copies of the statr.
Then, we callr fully distillable if the parties can, using
LOCC, produce a maximally entangled state, shared am
all the parties. Note that a PPT state can never be disti
which can be easily seen as follows. Ifr is PPT thenr ^ N is
PPT for all N, and so is,E@(r ^ N)TA# for all N andE sepa-
rable, as mentioned in Appendix B. Thus, by LOCC one c
never produce, out of a PPT state a maximally entang
state, which is NPPT. Note that, in the bipartite case w
dA52 anddB arbitrary, it has been shown@11# that all NPPT
states are distillable. However, for higher dimensions, th
is a strong conjecture@11,12# that this is no longer true, i.e.
that there exist undistillable NPPT states. In the case of m
than two parties, the argumentation above implies that a s
can only be distillable if all the partial transposes are n
positive semidefinite, i.e., if the state is NPPT.

If a state is not distillable, then it might be possible
activate its entanglement using a PPTES. That is, if the
ties share, in addition toN copies of a stater a PPTES, then
they might be able to produce a maximally entangled st
using LOCC. We call this process activation. Using the
gumentation above, one immediately sees that only NP
states are activatable.

Let us now, in order to be more specific, treat the case
two parties and the one of three independently. The next
of this section deals with the bipartite case. There we rev
the conditions which must be fulfilled for a state to be d
tillable or activatable. In the second part of this section
show how to generalize the results of two parties to thre

1. Two parties

In this scenario a state,rPB(HA^ HB), is called distill-
able if Alice and Bob can produce by LOCC a maxima
entangled state~1!, with d5min(dA ,dB).

It has been shown@10# that the problem of distillation of
a stater can be formulated in the following way:

Lemma 2@10#. A stater is distillable iff there exists a
positive integerN and a state of the form

uC&5uei , f 1&1ue2 , f 2&, ~5!

such that

^Cu~r ^ N!TAuC&,0, ~6!

where $e1 ,e2%($ f 1 , f 2%) are two unnormalized orthogona
vectors in (CdA) ^ N@(CdB) ^ N#.

This condition simply means that iff there exists
C2

^ C2 subspace, on which the projection ofr ^ N is NPPT,
then the state is distillable. This can be understood as
lows: if there exists such a subspace then Alice and Bob
distill a maximally entangled state inC2

^ C2. They can then
use some of those distilled states to convert them, by LO
into a maximally entangled state inCdA^ CdB. On the other
hand, a maximally entangled state inCdA^ CdB can be con-
verted into a maximally entangled state inC2

^ C2.
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We call a stateN-distillable if for this integerN condition
~6! is fulfilled. Otherwise we call itN-undistillable. If a state
is not distillable, then Alice and Bob might still be able
distill a maximally entangled state by LOCC, if they sha
in addition to their copies of the state, a PPTES. We call t
process activation.

We call am-undistillable stater activatable if there exists
a positive integerN<m and a PPTESs such thatr ^ N

^ s is
one-distillable. Given anN-undistillable stater, we call it
N-activatable if there exists a PPTESs such thatr ^ N

^ s is
one-distillable.

2. Three parties

A three-partite state,rPB(H)5B(HA^ HB^ HC) is
fully distillable if Alice, Bob, and Charly can produce, usin
LOCC, out of an arbitrary number of copies ofr a GHZ
state@27#. Note, that this is possible iff~up to permutations!
Alice and Bob can produce a state of the form~1! with d
5dAB5min(dA ,dB) and Bob and Charly can distill a state o
the form ~1! with d5dBC5min(dB ,dC). This can be easily
understood using that two maximally entangled state, on
A andB and the other inB andC can always, by LOCC be
combined to GHZ state,S i 51

min(dAB ,dBC)uiii &. The other direction
is also true, since, given two GHZ states one can, us
LOCC, transform them into a maximally entangled state inA
andB and one inB andC. Using this fact we only have to
answer the question: ‘‘Can Alice, Bob, and Charly distill
maximally entangled state inA,B and one inB,C?’’ There-
fore, from now on we will only deal with the problem o
bipartite entanglement distillation. We call a state,r, BC-
distillable if Alice, Bob, and Charly can produce, usin
LOCC, out of an arbitrary number of copies ofr in BC a
maximally entangled state, i.e., a state of the form~1! with
d5min(dB ,dC). Note that the best strategy for them to dist
a maximally entangled state inB andC is that Alice measure
a projector. The reason for this is that if they apply any oth
measurement, then they always reduce the entangleme
the outcoming state. We defineAB- and AC-distillability
analogously for the other cases.

If a state is undistillable we have, analogously to the
partite case, the possibility to activate its entanglement us
a PPTES. That is the parties share, in addition to some co
of their state a PPTES. Then they distill out of those state
maximally entangled state. If this is possible then we call
state activatable. Again, we have that it is activatable iff it
~up to permutations! AB-activatable andBC-activatable; that
is the entanglement among all parties can be activated iff
entanglement betweenA andB and the one betweenB andC
can be activated.

Let us now show under which conditions a state isXY-
distillable, whereX,YP$A,B,C%, on the example ofBC-
distillation.

Lemma28. A state r is BC-distillable iff there exists a
positive integerN and a state of the form

uC&5ue1 , f 1&1ue2 , f 2&, ~7!
7-3



l

ity
ha
e

io
ie
n

if
E

e-
ha
w

e
th
o

a
n
w
ac
te

n

n
be

de-

or-

to
har-
hat

or

en-

e
of
en

ol.
pa-

ed

ter-

ing
b-
IV,
tite

on-
he
ry
ded
us

are
ng

B. KRAUS, M. LEWENSTEIN, AND J. I. CIRAC PHYSICAL REVIEW A65 042327
where $e1 ,e2%($ f 1 , f 2%) are two unnormalized orthogona
vectors in (HB) ^ N@(HC) ^ N#, and a stateuh&P(HA) ^ N such
that

^Cu^hu~r ^ N!TCuh&uC&,0. ~8!

Note that condition~8! can only be fulfilled ifr is B-NPPT
as well asC-NPPT.

Analogous to Sec. II we call a stater, N-BC-distillable if
for the integerN, condition~8! is fulfilled. We callr N fully
distillable if it is ~up to permutations! N-AB-distillable and
N-BC-distillable.

If a state is not distillable then we still have the possibil
to activate its entanglement using a PPTES. Let us now c
acterize those states which areXYactivatable on the exampl
X5B, Y5C.

We call a stater, which is not m-BC-distillable, BC-
activatable if there exists an integerN<m and a PPTESs
such that r ^ N

^ s is 1-BC-distillable. Given an
N-BC-undistillable stater, we call it N-BC-activatable if
there exists a PPTES,s, such that r ^ N

^ s is
1-BC-distillable. We callr N fully activatable if it is~up to
permutations! N-AB-activatable andN-BC-activatable.

III. CHARACTERIZATION OF DISTILLABLE AND
ACTIVATABLE STATES USING ENTANGLEMENT

WITNESSES

In this section we show that there exists a connect
between EW’s and the distillation and activation propert
of states. We will define an operator which allows us to a
swer the questions, ifN copies of a state are distillable, or
not, if their entanglement can be activated using a PPT
Using this formalism it is easy to rederive the result@14# that
any bipartite NPPT is either one-distillable, or on
activatable. One the other hand, it allows us to prove t
there exists three-partite NPPT state which are neither t
distillable, nor two-activatable.

This section is divided into two parts. In the first part w
show this connection for the bipartite case, whereas in
second part we extend those results to three parties. B
parts have the same structure; first we define the oper
which allows us to draw the connection between EW’s a
the distillation and activation properties of a state. Then
state our main results of the paper. In the last part of e
section we prove those results. The reader who is not in
ested in the proofs can skip Secs. III A 2 and III B 2.

A. Two parties

Let us denote byX an arbitrary positive operator acting o
H25HA2

^ HB2
. We define

WX5PA1 ,B1
^ X

A2 ,B2

TA2 ~9!

where PA1 ,B1
, acting onH15C2

^ C2 is the projector onto

the maximally entangled state~1!, with d52. Now, we will
show thatWr allows us to answer the questions, if the e
tanglement of this state can be distilled, or, if not, if it can
04232
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activated using a PPTES. In particular, we show that,
pending on whetherWr ^ N is not an EW, a NDEW, or a
DEW, the corresponding stater is N-distillable or
N-activatable, or neitherN-distillable norN-activatable, re-
spectively. This is stated by the following theorems and c
ollaries, which will be proven below.

1. Main results

Theorem 1. A stater is N-distillable iff Wr ^ N is not an
EW @it does not fulfill ~i!#.

Theorem 2. A state r which is N-undistillable, is
N-activatable iffWr ^ N is a NDEW.

Those theorems state that EW’s do not only allow us
determine whether a state is entangled or not, but also c
acterize the distillability properties of a state. We have t
Wr is not an EW iffr is one-distillable~Theorem 1!. Now,
iff r is one-undistillable it can be either one-activatable
not. In this caseWr is an EW ~Theorem 1!, which can be
either decomposable or nondecomposable. Then the
tanglement ofr can be activated via a PPTES iffWr is a
NDEW ~Theorem 2!. It is worth mentioning that using thes
results, it is not only possible to know if the entanglement
a state is distillable, or if it can be activated but it can be se
by the proofs that they provide us with a distillation protoc
That is, given a state which can be distilled, then the se
rable state, which is ‘‘detected’’ by the witness,Wr corre-
sponds to a LOCC, which distills a maximally entangl
state ~see Appendix B and@28#!. On the other hand, the
PPTES, which activates the entanglement is easily de
mined by the state, which is detected by the NDEW,Wr .
Those theorems also imply the following:

Corollary 1. A state r is is neither N-distillable nor
N-activatable iffWr ^ N is decomposable.

Note that the results above are not only a way of rewrit
the problems, but they really allow for insight into the pro
lems of distillation and activation. For instance in Sec.
we review in a simple manner the fact that every bipar
NPPT state is either one-distillable or one-activatable@14#.

2. Proofs

The reader who is not interested in the proofs can c
tinue reading in the next section. For simplicity we prove t
statements forN51, since the argument holds for arbitra
N. The technical details and the definitions, which are nee
to follow the proofs can be found in the appendices. Let
start out by determine the properties of the operatorWX.

~a! WX is not positive semidefinite iffXTA2 is not positive
semidefinite, i.e., iffX is NPPT.

~b! If WX fulfills condition ~i! then both,WX
TA andWX

TB are
optimal EW’s.

~c! WX is decomposable iffWX5R>0.
Proof. Property ~a! It is clear sincePA1B1

is positive.

Property~b! If WX fulfills condition ~i! then so doWX
TA and

WX
TB. On the other handP is NPPT, implying that bothWX

TA

andWX
TB are not positive semidefinite and therefore they

both EW’s. It remains to show that they are optimal. Usi
7-4
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CHARACTERIZATION OF DISTILLABLE AND . . . PHYSICAL REVIEW A 65 042327
that SPTA5$ue&ue'&;ue&PC2% ~Appendix A, Proof of
Lemma 4! we find that WX

TA vanishes on the se
$ue&A1

ue'&B1
uc&,;ue&PC2, uc&PH2% ~note that these are

not only product states!. This contains the setSW
X

TA

5$ue,g&Aue', f &B ;ue&PC2,;ug&PHA2
;u f &PHB2

%. Using

the fact that$ue&ue'&;ue&PC2% spansC2
^ C2, we have that

SW
X

TA spans the whole Hilbert space,H5C2
^ C2

^ H2 . Thus,

WX
TA is optimal. Now, using the fact thatW is an optimal EW

iff WT is an optimal EW, we also have thatWX
TB is optimal.

Property~c!: We only have to prove the only if part. Let u
assume thatWX is decomposable. Then we can write it
WX5R1QTA @25# and thereforeWX

TA5RTA1Q. Using
property~b! and the discussion concerning optimality in A
pendix A we find thatQ50, which proves the statement.j

Note, that property~a! tells us that since we only have t
consider NPPT states,Wr is not an EW iff it does not fulfill
~i!. With that we are now in the position to prove the resu
of the previous section.

Proof of Theorem 1. Using Corollary 2~Appendix C! we
have thatr is one-distillable iff there exists a separable CP
~Appendix B!, E:B(H2)→B(C2

^ C2) such that 0
.tr1@P1

TBE(r)#. Using Eq.~B4! we can write this inequality

as 0.tr1@P1
TB tr2(r2

TE1,2)#5tr1,2@P1
TB^ r2

TE1,2#. Taking now
the partial transpose with respect toB1 ,B2 within the trace
we have 0.tr1,2@P1^ r2

TAE1,2
TB#5tr(WrE1,2

TB). Thus, we have
thatr is one-distillable iffWr ‘‘detects’’ the stateETB. Now,
sinceE is separable iffE is separable@Appendix B (p1)#, we
have that the inequality above is true iffWr is not an EW
~since it detectsETB which is separable!. j

Note that this proof implies the following fact. Given
distillable stater, we determine the separable stateETB,
which is ‘‘detected’’ byWr . Then the stateE corresponds to
the CPM,E ~see Appendix B! which fulfills the property that
E~r! is a two-qubit entangled state. Thus, we found
LOCC, which distills the stater.

Proof of Theorem 2. The proof is basically the same as th
one of Theorem 1, but now withE a PPT-preserving CPM
which implies thatE is PPT. ThenW, which must be an EW
~Theorem 1!, detects a PPTES and is therefore~Sec. II B! a
NDEW j.

Using the same arguments as before, if we determine
PPTES,ETB, which is detected by the NDEW,Wr , then we
know which PPTES activates the entanglement ofr, namely,
E.

Proof of Corollary Wr must either not be an EW, or be a
NDEW or a DEW. It is not an EW iffr is one-distillable. It
is an NDEW iff r is one-activatable. Therefore,r is neither
one-distillable nor one-activatable iffWr is a DEW.

B. Three parties

Let us now generalize the results obtained in the previ
section for the bipartite case to the case where we cons
more parties. Here we will show how to do it for three, b
one can generalize the methods introduced in the prev
section to any number of particles.
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Let us now denote byX an arbitrary positive semidefinite
operator acting onH25HA2

^ HB2
^ HC2

. We define

WX
a5PB1 ,C1

^ X
A2 ,B2 ,C2

TC2 , ~10!

WX
b5PA1 ,C1

^ X
A2 ,B2 ,C2

TA2 , ~11!

WX
c 5PA1 ,B1

^ X
A2 ,B2 ,C2

TB2 ,

where PY,ZPB(C2
^ C2) is defined in Eqs.~A1! for $Y,Z%

P$A1 ,B1 ,C1%.

1. Main results

We will now, analogously to Sec. III C, characterize th
distillation and activation properties of a state, by the ope
tors Wr

a , Wr
b , andWr

c . For the seek of clarity we state ou
results only for theBC-distillation andBC-activation. That is
we assume thatr is B-NPPT andC-NPPT~recall that other-
wise it is neither possible to distill, nor to activate the e
tanglement shared between Bob and Charly!. All the results
presented here can be formulated for the other partitions,AB
and AC too, using then the operatorsWX

c and Wr
b , respec-

tively.
Theorem 18. A stater, is N-BC-distillable iff Wr ^ N

a is not
an EW@does not fulfill ~i!#.

Theorem 28. A state r, which is N-BC-undistillable, is
N-BC-activatable iffWr ^ N

a is a NDEW.
Those theorems state that a state is, for instance, one

distillable iff at least two of the operatorsWr
a , Wr

b , or Wr
c

are not EW’s. If it is not fully distillable then at least two o
the operatorsWr

a , Wr
b , or Wr

c must be EW’s~Theorem 18!.
Then, its entanglement can be fully activated via a PPTES
at least two of the operatorsWr

a , Wr
b , or Wr

c ~the ones that
are EW’s! are NDEW’s. Note that, the states which are ‘‘d
tected’’ by Wr

a are the ones which allow us to derive a di
tillation protocol. That is, given a one-BC-distillable stater,
the separable state which is ‘‘detected’’ byWr

a corresponds to
a LOCC ~see Appendix B!, that distills r. If the state is
one-BC-undistillable, but it is one-BC-activatable, then the
PPTES, which activates its entanglement is easily de
mined by the one which is detected by the NDEWWr

a . On
the other hand, we have that a stater is neither one-fully
distillable nor one-fully activatable iff at least two of th
operatorsWr

a , Wr
b , andWr

c are decomposable. This can b
concerning the bipartite entanglement, stated as:

Corollary 18. A state r is neither N-BC-distillable nor
N-BC-activatable iff there exist positive semidefinite oper
tors R,Q such thatr ^ N5RTC1QTB.

Note that, as mentioned before a three-partite state is f
distillable ~activatable! iff it is ~up to permutations! AB-
distillable ~activatable! and BC-distillable ~activatable!.
Thus, Corollary 18 provides a necessary and sufficient co
dition for a state to be neitherN-fully distillable nor N-fully
activatable.

In the next section we show that using these theorems
are able to prove in a simple way that there exist three-pa
7-5
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NPPT states which are neither one-distillable nor o
activatable. This is in contrast to the bipartite case, where
NPPT states are either one-distillable or one-activatable.
methods even allow us to prove that some of those state
not even two-distillable nor two-activatable. We show that
proving that all the operatorsWr

a , Wr
b , andWr

c are decom-
posable.

2. Proofs

We prove the statements above for the caseN51 since all
the arguments remain the same for arbitraryN. Again, if a
reader is not that interested in the proofs he can skip this
of the paper and continue reading in the next section.

We start by showing the following properties of the o
eratorsWX

a :
~A! WX

a is not positive semidefinite iffXTC is not positive
semidefinite, i.e.,X is C-NPPT.

~B! If WX
a fulfills condition ~i! then (WX

a)TB and (WX
a)TC

are optimal EW’s.
~C! WX

a is decomposable iff there existsR,Q>0 such that
X5RTC1QTB.

Proof. The proofs of property~A! and property~B! are
similar to the ones of property~a! and property~b! in Sec.
III A 2 and will be omitted here. Property~C!: We denote by

Ỹ the total transpose of an operatorY. ~if !: If X5RTC

1QTB then WX
a5PB1 ,C1

^ XTC5PB1 ,C1
^ (R1Q̃TA)5O

1STA, with O5PB1 ,C1
^ R>0 and S5PB1 ,C1

^ Q̃>0 and

so it is decomposable.~only if! If WX
a is decomposable the

there exist operators~4! Q0 ,Q1 ,Q2 ,Q3>0 such thatWX
a

5Q01Q1
TA1Q2

TB1Q3
TC and so (WX

a)TB5Q0
TB1Q̃1

TC1Q2

1Q̃3
TA and (WX

a)TC5Q0
TC1Q̃1

TB1Q̃2
TA1Q3 . Since (WX

a)TB

and (WX
a)TC are both optimal EW’s, because of property~b!,

we have thatQ25Q350 and soWX
a5Q01Q1

TA. Let us now

use thatPBC
TC andPBC

TB are optimal decomposable EW’s~Ap-
pendix A, Lemma 4! and that the setsSPTCBC

5SPTBBC

5$ue&ue'&;ue&PC2% span C2
^ C2. This implies that

(WX
a)TC5Q0

TC1Q̃1
TB vanishes on

$ue&B1
ue'&C1

uf&A2
uc&B2

ux&C2
,;e ,f,c,x%. Thus, Q0

TC and

Q̃1
TB must vanish on those states. This implies thatQ0

TC

5PB1 ,C1

TC ^ RTC, Q̃1
TB5PB1 ,C1

TC ^ QTB and so Q05PB1 ,C1

^ R, andQ15PB1 ,C1
^ Q̃ whereR,Q>0. Thus, we have tha

WX
a5PB1 ,C1

^ XTC5PB1 ,C1
^ „R1(Q̃)TA

… and so X5RTC

1QTB. j
Property~A! implies that, since we only have to consid

C-NPPT states, the operatorWr
a is not positive semidefinite

Thus,Wr
a is not an EW iff it does not fulfill~i! @29#.

The proofs of the theorems are basically the sa
as the one in the previous section, but now w
E:B(H2

^ N)→B(C2
^ C2), where H25HA2

^ HB2
^ HC2

and the corresponding operatorE1,2[EA2 ,B1 ,B2 ,C1 ,C2

PB(H2
^ N

^ C2
^ C2).
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Proof of Theorem 18. Using the same arguments as in t
proof of Theorem 1 we find tr@PB1 ,C1

TB Ea(r)#

5tr@Wr
a(E1,2

T )TC#, whereE1,2 is the operator correspondin
to the CPMEa . Recall thatEa is separable iff (E1,2

T )TC is
separable. Now, the left-hand side of the last equation
negative, forEa separable, iffr is BC-distillable. And on the
other hand,~looking at the right-hand side of this equatio!
this is true iff Wr

a is not an EW, since it ‘‘detects’’ the sepa
rable state (E1,2

T )TC. j
Proof of Theorem 28. Same proof as for Theorem 18, but

now with E a PPTES andE a PPT-preserving CPM. Using
that the operatorWr

a must be an EW~Theorem 18!, we have
that the PPTES, (ET)TC is detected by the EW,Wr

a , implying
that it is an NDEW j

Proof of Corollary18. Same proof as for Corollary 1, bu
now Wr

a is a DEW iff there exist operatorsR, Q>0 such that
r5RTC1QTB @property~C!#. j

IV. APPLICATIONS

In this section we use the formalism introduced in t
previous section to show the following facts. On the o
hand, the entanglement of one copy of any bipartite NP
can either be distilled or activated@14#. On the other hand
this formalism allows us to show that this is not the case
multipartite states. That is, there exist states describing a
tem composed of more than two subsystems which are
ther one-distillable nor one-activatable. Indeed, in the f
lowing subsections we will show that, using the connect
between EW’s and the distillation and activation propert
of a state, there are NPPT states which are not even t
distillable nor two-activatable.

A. Two parties

Observation@14#. Any bipartite NPPT state,r is either
one-distillable or one-activatable. This can be easily s
using Corollary 1, which states thatr is neither one-
distillable nor one-activatable iffWr is a DEW. Using then
property ~c! we have thatWr is a DEW iff it is a positive
semidefinite operator, which is true iffr is PPT @property
~a!#.

B. Example of a one-undistillable and one-unactivatable three-
partite state

In this section we present a family of density operato
$ra%, which describe the state of a system composed of th
qubits. We show, using the formalism of the previous s
tion, that for a<1 one copy of these states can neither
distilled nor activated. Then we prove that fora<a0 , with
a0'0.8507 even two copies of the states can neither be
tilled, nor activated. Recall that in the bipartite case th
exists no such state. The states of interest are

ra5181auCW&^CWu, ~12!

where uCW&5u001&1u010&1u100&. Note first, thatra is
NPPT iff a.1/&, which implies that only in this region the
state might be distillable or activatable. Note further thatra
is symmetric under all the permutations of the three part
A,B,C. This symmetry implies that this state isN-AB-
7-6



itu
an
xi-

th
i-

o

ea
is
n

s

,

to
th
le

th

en
tio

e

the
-
.
ree-
or
e-
ess.

che
t

f
n
-
um

at
ch
oth-

it
ly
ll a

or

ble

e in

ily
ich

l

CHARACTERIZATION OF DISTILLABLE AND . . . PHYSICAL REVIEW A 65 042327
distillable iff it is N-AC-distillable iff it is N-BC-distillable.
Let us therefore, without loss of generality, consider the s
ation where Alice performs a measurement and Bob
Charly distill out of the remaining density operator a ma
mally entangled state. That is, we are interested in theN-BC-
distillation of the state and therefore in the properties of
operatorWr ^ N

a Eq. ~10!. Note that, according to our defin
tions the state is~because of the symmetry! N-BC-distillable
iff it is N-distillable. Then the theorems and the corollary
the previous section simplify to

Remark 18. ra is N-distillable iff Wr
a
^ N

a
is not an EW.

Remark 28. If ra is N-undistillable, it isN-activatable iff
Wr

a
^ N

a
is a NDEW.

Remark 38. ra is neitherN-distillable norN-activatable iff
there exist positive semidefinite operatorsRa ,Qa such that
(ra

^ N)TC5Ra1Qa
TA.

1. One copy

We show that one copy of the state,ra cannot be distilled
for a<1, i.e., ~Remark 1! Wra

a is an EW for 1/&,a<1.
Note that the remaining state, after Alice performs a m
surement is a state of two qubits, which is distillable iff it
NPPT~Sec. I!. And so we only have to find the measureme
in A, uc&^cu, which maximizes the region ofa, for which the
state^curauc& is NPPT. It can be easily shown that the be
measurement Alice can do is to measureu0&^0u. Then the
remaining state,̂0urau0&, is NPPT iff a.1, which implies
that the state,ra can be distilled,;a.1. On the other hand
using Remark 1 we have thatWra

a is an EW for 1/&,a
<1. Now we show thatWra

a is for 1/&,a<1 a DEW and
thereforer cannot be activated fora<1 ~Remark 2!. Using
Remark 3 we have to findRa ,Qa>such that ra

TC5Ra

1Qa
TA. It can be easily verified that the operatorsRa

5auC1&^C1uA,B^ u0&^0uC , whereuC1&5u01&1u10&, and
Qa5ra

TB2(Ra)TA are both positive semidefinite and lead
the desired decomposition. Thus, we have shown that
NPPT statera , is neither one-distillable nor one-activatab
;aP]1/&,1]. Note that the given decomposition ofra
proves this statement already.

2. Two copies

Using the same method as above one can also show
two copies ofra can neither be distilled, nor activated ifa
P]1/&,a0], with a0'0.8507. In this case Ra

5y(r1/&
TC ^ R11R1^ r1/&

TC ), with R15uC1&^C1uA,B^ u0&
3^0uC , where uC1&5u01&1u10&, and Qa5(ra

^ 2)TB2Ra
TA

are both positive semidefinite fory'0.4953 and fulfill
(ra

^ 2)TC5Ra1Qa
TA.

V. CONCLUSIONS

We have shown that on can connect the problem of
tanglement witnesses to the one of distillation and activa
of entanglement. We defined, depending on the stater and
on the number of copiesN of it, an operator which has th
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following properties: It is an entanglement witness iffr is
N-undistillable, i.e., thoseN copies cannot be distilled via
LOCC; it is a decomposable entanglement witness iff
state isN-unactivatable; i.e., thoseN copies cannot be dis
tilled via LOCC, even if we allow for a PPTES in addition
Using those methods we have shown that there exist th
partite NPPT states, which are neither two-distillable, n
two-activatable. We showed it by proving that the corr
sponding operator is a decomposable entanglement witn
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APPENDIX A: ENTANGLEMENT WITNESSES

In @17# we showed how to optimize two-partite EW’s; th
is how to construct a new EW out of a given one, whi
detects the same entangled states and in addition some
ers. There we also showed that an EW,W, is optimal iff
;R>0, e.0W85W2eR is not an EW, in the sense that
does not fulfill~i!. This method of optimization can be easi
generalized to the case of more parties. In order to reca
sufficient condition for an EW to be optimal, we define, f
an EW, W, the set SW5$ua,...,z&PH such that
^a,...,zuWua,...,z&50%. Then we have

Lemma 3. If SW spansH thenW is optimal.
Let us now give an example of an optimal decomposa

two-partite EW inB(C2
^ C2). This EW will allow us to draw

the connection between EW’s and the criterion that a stat
C2

^ C2 is entangled iff it is NPPT@21,22#.
We denote byPABPB(C2

^ C2) the projector onto the
maximally entangled state, that is

PAB5uF2&^F2u, ~A1!

with uF2& given in Eq.~1!. Then we have
Lemma 4. PAB

TA is an optimal DEW.
Proof. Using Lemma 3 it is sufficient to show thatSP

AB

TA

spans C2
^ C2. It can be easily verified thatSP

AB

TA

5$ue,e'&;ue&PC2%. On the other hand, one can eas
check that there exists no state orthogonal to this set, wh
implies thatSP

AB

TA spansC2
^ C2. j

Note that an EW,W, is optimal iff WT is optimal, imply-
ing that PAB

TB is optimal too. This EW detects, up to loca
operations, all NPPT states, which follows from:

Lemma 5. @9# A state rABPB(C2
^ C2) is NPPT iff

there exist some local operatorsA,B such that
tr(PAB

TB A^ BrA†
^ B†),0.
7-7
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APPENDIX B: COMPLETELY POSITIVE MAPS

Any physical action can be mathematically described b
completely positive map~CPM!, which is a linear, Hermitian
map, E: B(H)→B(H), that is positive, i.e.,;r>0 E(r)
>0, and fulfills that the extended map,E^ 1n is positive for
any n. Note that any CPM can be written as,E(r)
5SkOkrOk

† , whereOkPB(H). Note further that any sepa
rable CPM, that is any map that can be, up to a proporti
ality constant, implemented locally, can be written as

E~r!5 (
k51

l

~Ok
A

^ Ok
B
¯Ok

Z!r~Ok
A

^ Ok
B
¯Ok

Z!†, ~B1!

where l is some finite number. Thus, we can reformula
condition~2! as follows: A state,r, is separable if there exist
a separable mapE such thatr}E(u00̄ 0&^00̄ 0u).

A CPM E is calledY-PPT-preserving if for allr Y-PPT,
E~r! is Y-PPT. We call a CPM PPT-preserving, if it isY-PPT-
preserving for all systemsY.

Let us also recall the isomorphism between CPM’s a
positive semidefinite operators@28#. We consider a CPM,E,
acting on theN systemsA1 ,B1¯Z1 and define the operato

EA1 ,A2 ,...,Z1 ,Z2
5

1

d2N E~PA1 ,A2
^¯PZ1 ,Z2

!, ~B2!

wherePX1 ,X2
is the projector onto the maximally entangle

state ~1!. EA1 ,A2 ,...,Z1 ,Z2
is acting onHA^¯^ HZ , with

HX5HX1
^ HX2

and dim(HXi
)5dim(HYi

)5d, for i 51,2

andX,YP$A,...,Z%. In Eq. ~B2! the mapE is understood to
act as the identity on the operators inB(H2). The interpre-
tation of Eq. ~B2! is the following: Each of theN parties
prepares his system in a maximally entangled state~locally!
with an auxiliary system, e.g.,A1 andA2 are in a maximally
entangled state. Then the operationE acts on the system
A1 ,B1 ,...,Z1 . The state which the parties share then is p
portional toE. On the other hand one can show that

E~rA2 ,...Z1
!5trA2 ,A3 ,...Z1 ,Z3

~EA1 ,A2 ,...,Z1 ,Z2PA3, ,...,Z3

3PA2 ,A3
^¯PZ2 ,Z2

!, ~B3!

which can be also written as

E~rA1 ,...,Z1
!5trA2 ,...,Z2

~EA1 ,A2 ,...,Z2 ,Z2
rA2 ,...Z2

T !. ~B4!

Equation~B3! has a simple physical interpretation too.
we have the stateE at our disposal we can locally impleme
the operationE on a state of the systemsA3 ,...,Z3 ~with
certain probability!. For that the parties perform a joint me
surement locally such that the systems (A2 ,A3),...,(Z2 ,Z3)
are projected onto a maximally entangled state~1!.

The importance of this isomorphism is that@28#
~P1! E is a separable CPM iffE is separable with respec

to the systems (A1 ,A2),...,(Z1 ,Z2).
~P2! E can create entanglement iffE is entangled with

respect to the systems (A1 ,A2),...,(Z1 ,Z2).
~P3! E represents aY-PPT-preserving CPM iffE is Y-PPT.
04232
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We can generalize this isomorphism for CPM’s of t
form E: B(H)→B(H̄). Then the corresponding operatorE is
an element ofB(H^ H̄).

Note that (P1!–~P3) imply the following facts: First, we
can implement a separable~Y-PPT-preserving! CPM, E:
B(H)→B(H̄), on a stater if we allow the parties to apply
LOCC on the stater ^ E, whereEPB(H^ H̄) is separable
~Y-PPT!. Second, the scenario, where the parties are allow
to apply LOCC on the stater ^ E, where E is separable
~Y-PPT!, is equivalent to the one where the parties are
lowed to implement a separable~Y-PPT-preserving! CPM.

APPENDIX C: DISTILLATION AND ACTIVATION
OF ENTANGLEMENT IN TERMS OF CPM’S

Here we use the notion of CPM’s to characterize dist
able and activatable states.

1. Two parties

We consider a bipartite stater acting onHA1
^ HB1

. Us-
ing Lemma 2 and Lemma 5 we have the following:

Corollary 2. A state,r is distillable iff there exists a posi
tive integer N and a separable CPME: B(H1

^ N)
→B(C2

^ C2) such that

tr@PTBE~r ^ N!#,0, ~C1!

whereP5PAB is given in Eq.~A1!. Note that condition~C1!
is equivalent to tr@PTAE(r ^ N)#,0. Note further that the op-
eratorE corresponding to the CPME is separable and acts o
the Hilbert spaceHA^ HB , whereHA5HA1

^ N
^ C2 and HB

5HB1

^ N
^ C2.

Using the isomorphism between density operators
CPM’s ~Appendix B!, we know that the possibility for Alice
and Bob to use a PPTES and then apply LOCC equals
possibility for them to use a PPT-preserving CPM. And
we have

Lemma 6. A stater which ism-undistillable, is activatable
iff there exists a positive integerN<m and a PPT-preserving
CPM E: B(H1

^ N)→B(C2
^ C2) such that tr@PTBE(r ^ N)#,0,

or, equivalently tr@PTAE(r ^ N)#,0.
Note that the operatorE corresponding to the CPME is

PPT and acts on the Hilbert spaceHA^ HB , where HA

5HA1

^ N
^ C2 and HB5HB1

^ N
^ C2. An N-undistillable stater,

is N-activatable if for this integerN, condition ~C1! is ful-
filled, for a PPT-preserving CPM,E.

2. Three parties

Let us now consider a density operatorr, describing the
state of a system composed of three subsystems. The Hi
Spacer is acting on isHA1

^ HB1
^ HC1

. Analogous to the
previous section we reformulate the problem of distillati
and activation in terms of CPM’s. In the following we wil
without loss of generality concentrate on the distillation a
activation of the entanglement between Bob and Charly.
7-8
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Corollary 28. A stater is BC-distillable iff there exists a
positive integer N and a separable CPMEa : B(H1

^ N)
→B(C2

^ C2) such that

tr@PB,C
TC Ea~r ^ N!#,0, ~C2!

where PB,C is defined in Eq.~A1! and the small lettera
indicates thatEa maps a density operator describing the st
of the particles A,B,C to a density operator describing th
state of two qubits, one held by Bob and the other one
Charly.

Thenr is N-BC-distillable if for the integerN condition
~C2! is fulfilled, for Ea separable.
s

d

J.

c

ev

ev

. A

d

ev

.

m
e-

04232
e

y

Lemma 68. A state,r, which is notm-BC-distillable, is
BC-activatable iff there exists an integerN<m and a PPT-
preserving CPMEa : B(H1

^ N)→B(C2
^ C2) such that condi-

tion ~C2! is fulfilled.
An N-BC-undistillable state,r, is N-BC-activatable if for

the integerN condition~C2! is fulfilled, for a PPT-preserving
CPM, Ea .

Let us summarize this section: A state isN-(XY) distill-
able ~activatable! iff there exists a separable~PPT-
preserving! CPM, which transformsN copies of the state into
an entangled state acting onC2

^ C2. This automatically im-
plies that all PPTES are bound entangled, in the sense
their entanglement cannot be distilled nor activated.
ys.
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