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Simulating physical phenomena by quantum networks
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Physical systems, characterized by an ensemble of interacting constituents, can be represented and studied
by different algebras of operators~observables!. For example, a fully polarized electronic system can be
studied by means of the algebra generated by the usual fermionic creation and annihilation operators or by the
algebra of Pauli~spin-1/2! operators. The Jordan-Wigner isomorphism gives the correspondence between the
two algebras. As we previously noted, similar isomorphisms enable one to represent any physical system in a
quantum computer. In this paper we evolve and exploit this fundamental observation to simulate generic
physical phenomena by quantum networks. We give quantum circuits useful for the efficient evaluation of the
physical properties~e.g., the spectrum of observables or relevant correlation functions! of an arbitrary system
with HamiltonianH.
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I. INTRODUCTION

A fundamental concept in quantum-information proce
ing is the connection of a quantum computational model t
physical system by transformations of closed-operator a
bras. The concept is a necessary one because in qua
mechanics each physical system is naturally associated
a language of operators~for example, quantum spin-1/2 op
erators! and thus to an algebra realizing this language~e.g.,
the Pauli spin algebra generated by a family of commut
quantum spin-1/2 operators!. Any quantum system define
by an algebra of operators generated by a set of ‘‘bas
operators can be considered as a possible model of qua
computation@1#. The remarkable fact is that an arbitra
physical system is simulatable by another physical sys
~or quantum computer! whenever isomorphic mappings~em-
beddings! between the two operator algebras exists. In e
such case, an important problem is to determine whether
simulation is efficient~polynomial resource overhead! in
terms of the ‘‘basic’’ generators. For example, a nuclear s
~nuclear magnetic resonance NMR! quantum computer is
modeled as a collection of quantum spin-1/2 objects and
scribed by the Pauli algebra. It can simulate a system of4He
atoms~with space discretized by a lattice! represented by the
hard-core bosonic algebra and vice versa@1#. In this case, the
simulation is efficient. Figure 1 summarizes this fundamen
concept by giving a variety of proposed physical models
quantum computers and associated usable operator alge
If one of these systems suffices as the universal mode
quantum computing, the mappings between the operato
gebras establish the equivalence of the other physical mo
to it. This is one’s intuitive expectation and it has a we
established mathematical basis@3#.

The mappings between algebras, between an algebra
a physical system, and between physical systems are ne
sary to simulate physical systems using a quantum comp
fabricated on the basis of another system. However, t
existence does not imply that the simulation is efficien
implementable. As we have previously discussed@1#, effi-
cient quantum computation involves more than having
ability to represent 2N different items of classical informa
tion so that the algebra ofN quantum bits~qubits! can be
1050-2947/2002/65~4!/042323~17!/$20.00 65 0423
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isomorphically represented and quantum parallelism can
exploited. It is also insufficient for the mapping between o
erator algebras to be easily and perhaps efficiently form
ized symbolically. For example, the physical system cons
ing of one boson in 2N modes is describable using th
language of ‘‘transition’’ operators, represented by Pauli m
trices on anN-qubit space, which move the boson from o
mode to the other; however, the one-boson system is no m
powerful than classical wave mechanics. This means
unless quantum computers are not as powerful as is belie
there is no efficient simulation of qubits by the one-bos
system.

A quantum computer does, however, allow for the e
cient simulation of some systems that are impractical o
classical computer. In our recent paper@1# we discussed how
to simulate a system of spinless fermions by the ‘‘stand
model’’ of a quantum computer, that is, the model expres
in the language and algebra of quantum spin-1/2 obje
~Pauli algebra!. We also discussed how to make certa
physically interesting measurements. We demonstrated
the mapping between algebras is a step of polynomial c
plexity and gave procedures for initial state preparation, e
lution, and certain measurements that scaled polynomi
with complexity. The main focus of the paper, however, w
to demonstrate that a particular problem for simulating f
mions on a classical computer, called the dynamical-s
problem, does not exist on a quantum computer@4#.

In this paper we continue to explore additional issues
sociated with efficient and effective simulations of physic
systems on a quantum computer, issues that are indepen
of the particular experimental realization of the quantu
computer. To be useful as a physics simulation device
quantum computer must answer questions about phys
properties associated with real physical systems. These q
tions are often concerned with the expectation values of s
cific measurements of a quantum state evolved from a s
cific initial state. Consequently, the initialization, evolutio
and measurement processes must all be implementable
polynomial scaling@1#. Often this is difficult to do. Further,
some classes of measurements, such as thermodynamic
still lack well-defined workable algorithms@6#.

We seek to construct quantum-network models of su
©2002 The American Physical Society23-1
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SOMMA, ORTIZ, GUBERNATIS, KNILL, AND LAFLAMME PHYSICAL REVIEW A 65 042323
FIG. 1. ~Color! Relationship between different models of computation~with their associated operator algebras! and different physical
systems. Question marks refer to the present lack of a quantum computer device using the corresponding elementary physical c
indicated in the box. Diamond-shaped arrows represent the natural connection between physical system and operator language, w
on the circle indicate the existence of isomorphisms of *-algebras, therefore, the corresponding simulation of one physical system b
A wave function view of this relationship is given in@2#.
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measurements. Such networks are sets of elementary q
tum gates to which we map our physical system. For s
plicity, we discuss these issues relative to simulating a s
tem of spin-1/2 fermions using the standard model
quantum computing@7#. Specifically we address issues di
covered in our attempt to implement a~classical! simulator
of a network-based quantum computer and to conduc
quantum computation on a physical system~NMR! with a
small number of qubits. On a classical computer the num
of qubits simulatable is limited by the exponential growth
the memory requirements. Physically, we can only proc
information experimentally with systems of a few qubi
Having the simulator permits a comparison between the
and experiments likely to be realizable in the near futu
Overall, the main problems we address are how to reduce
number of qubits and quantum logic gates needed for
simulation of a particular physical phenomena, and how
increase the amount of physical information measurable
designing efficient quantum algorithms.

We have organized the paper in the following manner:
Sec. II we summarize the quantum-network representatio
the standard model of quantum computation, discussing b
one qubit and multiqubit circuits. Then we summarize t
connection between the spin and fermion representation
Sec. III, we first discuss the initialization, evolution, an
measurement processes. In each case we define proce
simpler than those presented in our previous paper, gre
improving the efficiency with which they can be performe
Much expanded are the types of measurements now poss
For example, besides certain correlation functions, the s
trum of operators, including the energy operator, can now
obtained. Our application of this technology to a system
fermions on a lattice and the construction of a simulato
04232
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discussed in Sec. IV. The Hubbard model is used as an
ample. We conclude with a summary and a discussion
areas needing additional work. The appendixes contain te
nical points about the preparation of coherent and correla
states and the use of the discrete classical Fourier tran
mation.

II. QUANTUM-NETWORK REPRESENTATION OF
PHYSICAL PHENOMENA

It is the formal connection between models of compu
tion and physical systems described in the Introduction t
allows one to simulate quantum phenomena with a quan
computer. Simulation is realized through a quantum al
rithm that consists of unitary operations and measureme
One of the objectives is to accomplish simulation efficient
i.e., with polynomial complexity. The hope is that quantu
simulation is ‘‘more’’ efficient~less resources! than classical
simulation and there are examples that support such h
@1#. In the following sections we summarize the main co
cepts in the representation of physical phenomena by qu
tum networks.

A. Standard model of quantum computation

In the standard model of quantum computation, the qu
tum bit, or qubit, is the fundamental unit. A qubit’s stat
ua&5au0&1bu1&(uau21ubu251) is a linear combination of
the statesu0& and u1& ~e.g., a spin 1/2 withu0&5u↑&, u1&
5u↓&).

Assigned to each qubit are the identity matrix1 and the
Pauli matricessx , sy , and sz , or equivalently 1, s6

5 1
2 (sx6 isy), and sz @8#. For a system ofn qubits, the
3-2



SIMULATING PHYSICAL PHENOMENA BY QUANTUM NETWORKS PHYSICAL REVIEW A65 042323
FIG. 2. ~Color! Bloch-sphere representation of a one-qubit state parametrized asua&5cos(u/2)u0&1eiwsin(u/2)u1&. The curved arrows
indicate the sign of rotation ofei (t/2)sm5Rm(2t) about the particular axism. Our ~arrow! color convention isu0&→ blue, u1&→ red, other
linear combinations→ magenta.
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mathematical representation of the standard model of qu
tum computing is defined by a closed *-algebra~Pauli alge-
bra! generated by the operatorssm

j (m5x,y, or z) that act
on the j th qubit,

where^ represents a Kronecker product. The resulting co
mutation relations are

@sm
j ,sn

j #152dmn , ~2.1!

@sm
j ,sn

k#252id jkemnlsl
j , ~2.2!

where @A,B#65AB6BA and emnl is the totally antisym-
metric Levi-Civita symbol. The time evolution of ann-qubit
system is described by the unitary operatorÛ(t)5e2 iHt ,
whereH represents the time-independent Hamiltonian of
system. In turn,Û(t) is easily expressible in terms of th
Pauli matricessm

j since they and their products form an o
erator basis of the algebra.

B. Quantum network

In a quantum network, any unitary operatorU can be
decomposed~up to a phase! asU5) lUl , whereUl are ei-
04232
n-
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e

ther single-qubit rotationsRm(q)5e2 i (q/2)sm by an angleq
about them axis in then-qubit space or two-qubit interac

tionsRzj ,zk(v)5eivsz
j sz

k
in the same space (v is a real num-

ber! @9,10#. The one-qubit rotations@Fig. 3~a!# and two-qubit
interactions@Fig. 3~b!# constitute the elementary gates@11#
of the quantum computer in the network model. For instan
if the evolution Û(t)5e2 iHt is due to the typical Hamil-
tonian

H5Hx1Hy5ā sx
1sz

2
•••sz

j 21sx
j 1b̄ sy

1sz
2
•••sz

j 21sy
j ,
~2.3!

where ā and b̄ are real numbers, we writeÛ(t) as
e2 iH xte2 iH yt because@Hx ,Hy#250. To decompose this into
one- and two-qubit operations, we take the following ste
We first note that the unitary operator

U15ei (p/4)sy
1
5

1

A2
@11 isy

1# ~2.4!

takes sz
1→sx

1 , i.e., U1
†sz

1U15sx
1 , so U1

†ei āsz
1
U15ei āsx

1
.

Next we note that the operator

U25ei (p/4)sz
1sz

2
5

1

A2
@11 isz

1sz
2#

takessx
1→sy

1sz
2 , soU2

†ei āsx
1
U25ei āsy

1sz
2
. Then we note that

U35ei (p/4)sz
1sz

3

3-3
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FIG. 3. ~Color! ~a! Some one-qubit elementary gates@notice thateiusm5Rm(22u) and sm5 ie2 i (p/2)sm is an Rm(p) rotation up to a
phase# and ~b! a two-qubit elementary gate.
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2→2sx
1sz

2sz
3 . By successively similar steps w

easily build the required string of operators:sx
1sz

2

•••sz
j 21sx

j and also exp(iāsx
1sz

2
•••sz

j21sx
j ) ~up to a global

phase!,

Uk
†
•••U2

†U1
†ei āsz

1
U1U2•••Uk5exp~ i āsx

1sz
2
•••sz

j 21sx
j !,

~2.5!

where the integerk scales polynomially withj ~in this par-
ticular case the scaling is linear!. In a similar way, we de-
compose the evolutione2 iH yt. Multiplying both decomposi-
tions, we have the total decomposition of the evoluti
operatorÛ(t). See@12,13# for complete treatments of thes
techniques.

1. Single-qubit circuits

The most general unitary operatorU on a single qubit can
be written as

U5eiaRz~b!Ry~g!Rz~d!, ~2.6!

where a, b, g, and d are real numbers andRm(q) are
single-qubit rotations. In Fig. 3~a! we show examples of sev
eral elementary one-qubit gates. In terms of the Pauli ma
ces, for instance, the Hadamard gate is@H:u1(0)&→u1
(2)&5(u0&6u1&)/A2, see Fig. 4~a!#

H5
1

A2
@sx1sz#5 ie2 i (p/2)sxe2 i (p/4)sy. ~2.7!

In Fig. 4~b! we show the Bloch-sphere representation of
stateu1&5(u0&1u1&)/A2. The convention for quantum cir
04232
i-

e

cuits is that each horizontal line represents the time evolu
of a single qubit and the time axis of the evolution increa
from left to right.

2. Multiple-qubit circuits

We now give examples of multiqubit operations. Consid
the circuit shown in Fig. 5. This is a two-qubit controlled
NOT ~CNOT! gate, which acts as follows:

CNOT:H u00&→u00&,u01&→u01&

u10&→u11&,u11&→u10&

Here, the first qubit is the control qubit~the controlled op-
eration on its stateu1& is represented by a solid circle in Fig
5!. We see that if the state of the first qubit isu0& nothing
happens, but if the first qubit is inu1&, then the state of the
second qubit is flipped. The decomposition of the controlle
NOT operation into one- and two-qubits interaction is

CNOT:eip/4e2 i (p/4)sz
1
e2 i (p/4)sx

2
ei (p/4)sz

1sx
2

5eip/4e2 i (p/4)sz
1
e2 i (p/4)sx

2
ei (p/4)sy

2
e2 i (p/4)sz

1sz
2
e2 i (p/4)sy

2
.

~2.8!

From Eq.~2.8! we can see that a single controlled operati
becomes a greater number~in this case five! of one- and
two-qubits operations. In Fig. 5 we also show the circ
representing this decomposition, while in Fig. 6 we show
controlled-NOT gate applied to the stateu10& in the Bloch-
sphere representation.

A generalization of the controlled-NOT gate is the
controlled-U ~CU! gate, whereU is a unitary operator acting
on a multiqubit stateuCs&,
3-4
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FIG. 4. ~Color! ~a! Hadamard-gate decomposition and~b! Bloch-sphere representation of a Hadamard gate applied to the stateu1&.

FIG. 5. ~Color! Controlled-NOT gate decomposition and its matrix representation. The control qubit is 1. Note that the last circuit re
the controlled-NOT matrix operation up to a global phasee2 ip/4.
042323-5



SOMMA, ORTIZ, GUBERNATIS, KNILL, AND LAFLAMME PHYSICAL REVIEW A 65 042323
FIG. 6. ~Color! Bloch-sphere representation of the state obtained by the controlled-NOT gate applied to the ‘‘classical’’ stateu10&. The
sequence of elementary operations is the same as Fig. 5~time flows from left to right with the lower row continuing the upper one!. For each
Bloch-sphere the two arrows indicate the states of the two qubits, with the left representing qubit 1.
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CU:H u0&a^ uCs&→u0&a^ uCs&

u1&a^ uCs&→u1&a^ @UuCs&#.

Mathematically, forU(t)5e2 iQ̂t(Q̂ is Hermitian), the op-
erational representation of the controlled-U gate is

U(t/2)U(t/2)2sz
a

@U(t)2sz
a
5eiQ̂ ^ sz

at#, where a is the contro
qubit @Fig. 7~a!#. Similarly, one can useu0&a as the control
state to define the controlled-U8 gate illustrated in Fig. 7~b!.

C. Spin-fermion connection

To simulate fermionic systems with a quantum compu
that uses the Pauli algebra, we first map the fermionic sys

FIG. 7. ~a! Controlled-U operation with the state of the contro
qubit a beingu1&a and ~b! controlled-U8 operation controlled with
the stateu0&a. ~See text for notation.!
04232
r
m

into the standard model@1,14#. The commutation relations
for ~spinless! fermionic operatorsaj andaj

† ~the destruction
and creation operators for modej ) are

@aj
† ,ak#15d jk , @aj

† ,ak
†#150. ~2.9!

We map this set of operators to another set expresse
terms of thes m

j ’s in the following way:

aj→S )
l 51

j 21

2sz
l Ds2

j 5~21! j 21sz
1sz

2
•••sz

j 21s2
j ,

aj
†→S )

l 51

j 21

2sz
l Ds1

j 5~21! j 21sz
1sz

2
•••sz

j 21s1
j .

The mapping just described~it indeed induces an isomor
phism of *-algebras! is the famous Jordan-Wigner transfo
mation @15#. Using this transformation, we can describe a
fermionic unitary evolution in terms of spin operators an
therefore, simulate fermionic systems by a quantum co
puter. Although the mapping as given is for spinless fermio
and for one-dimensional systems, it extends to higher spa
dimensions and to spin-1/2 fermions by remapping e
‘‘mode’’ label into a new label corresponding to ‘‘modes’’ i
a one-dimensional chain. In other words, if we want to sim
late spin-1/2 fermions in a finiteNx3Ny two-dimensional
lattice, we map the label of the two-dimensional lattice to
integer numberS, running from 1 to 2(Nx3Ny). S identifies
a mode in the new chain,
3-6
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FIG. 8. Mapping used to con
nect the labels of a two-
dimensionalNx3Ny lattice to the
labels of a chain~i.e., a one-
dimensional array of integer num
bers!.
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a( j ,k);s→ãS→S )
l 51

S21

2sz
l Ds2

S 5~21!S21sz
1sz

2
•••sz

S21s2
S ,

a( j ,k);s
† →ãS

†→S )
l 51

S21

2sz
l Ds1

S 5~21!S21sz
1sz

2
•••sz

S21s1
S ,

~2.10!

where thea( j ,k);s anda( j ,k);s
† are the fermionic spin-1/2 op

erators in the two-dimensional lattice for the mode (j ,k) and
for the z component of the spins(s56 1

2 ), and ãS and ãS
†

are the spinless fermionic operators in the new chain. In
case, the modes are the sites and the label (j ,k) identifies the
X-Y position of this site (j ,kP@1,Nx,y#). The label (j ,k);s
maps into the labelS ~Fig. 8! via

S5 j 1~k21!Nx1S 1

2
2s DNxNy . ~2.11!

This is not the only possible mapping to a two-dimensio
lattice using Pauli matrices@3,16,17#, but it is very conve-
nient for our simulation purposes.

III. QUANTUM-NETWORK SIMULATION OF A
PHYSICAL SYSTEM

Like the simulation of a physical system on a classi
computer, the simulation of a physical system on a quan
computer has three basic steps: the preparation of an in
state, the evolution of the initial state, and the measurem
of the physical properties of the evolved state. We will co
sider each process in turn, but first we note that on a quan
computer there is another important consideration, nam
the relationship of the operator algebra natural to the ph
cal system to the algebra of the quantum network. Fo
nately, the mappings~i.e., isomorphisms! between arbitrary
representations of Lie algebras are now known@3#. Section
II C is just one example. To emphasize this point, the con
of our discussion of the three steps will be the simulation
04232
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a system of spinless fermions by the standard model, wh
is representable physically as a system of quantum spin
objects.

A. Preparation of the initial state

The preparation of the initial state is important becau
the properties we want to measure~correlation functions, en-
ergy spectra, etc.! depend on it. As previously discussed@1#,
there is a way to prepare a fermionic initial state of a syst
with Ne spinless fermions andn single-particle modesj, cre-
ated by the operatorsaj

† ~creation of a fermion in the mode
j ). In the most general case, the initial state is a linear co
bination of Slater determinants

uFa&5)
j 51

Ne

bj
†uv&, ~3.1!

described by the fermionic operatorsbj and bj
† , which are

related to the operatorsaj and aj
† via a canonical~unitary!

transformation. Hereuv& is the vacuum state~zero-particle
state!. To prepareuFa& one can look for unitary transforma
tions Um such that

uFa&5eig )
m51

Ne

Umuv&, ~3.2!

whereg is a phase factor. To perform these operations in
standard model we must express theUm in terms of Pauli
matrices using the Jordan-Wigner transformation.~We can
do the mapping between the Pauli operators and theaj op-
erators or between the Pauli operators and thebj operators.
In the following we will assume the first mapping since th
will simplify the evolution step.! One can chooseUm

5e2 iH mt such thatHm is linear in thebm andbm
† operators

@1#. We have to decompose theUm into single-qubit rotations
and two-qubit interactionsRm(q) and Rzj ,zk(v). To do this,
we first decompose theUm into a products of operators linea
3-7
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in bm or bm
† ; however, this decomposition does not conse

the number of particles. The situation appears complex.
Simplification occurs, however, by recalling the Tho

less’s theorem@18#, which says that if

uf&5)
j 51

Ne

aj
†uv& ~3.3!

andM is a n3n Hermitian matrix, then

uFa&5eiaW †MaW uf&, ~3.4!

whereaW †5(a1
† , . . . ,an

†) and

bW †5eiM aW †. ~3.5!

From Eq.~3.5! the operatoreiM ~formally acting on the vec-
tor of aj

†’s! realizes the canonical transformation betweenaj

andbj .
Thouless’s theorem generalizes to quantum-spin syst

via the Jordan-Wigner transformation. This theorem allo
the preparation of an initial state by simply applying t
unitary operatoreiaW †MaW to a ‘‘boot-up’’ state polarized with
each qubit being in the stateu0& or u1&. Indeed, for an arbi-
trary Lie operator algebra the general states prepared in
fashion are known as Perelomov-Gilmore coherent st
@19#.

The advantage of this theorem for preparing the ini
state instead of the method previously described@1# is that
the decomposition of the unitary operatoreiaW †MaW can be done
in steps, each using combinations of operatorsajak

† and,
therefore, conserving the number of particles. Once the
composition is done, we then write each operator in term
the Pauli operators to build a quantum circuit in the stand
model.~See Appendix A for a simple example.!

A single Slater determinant is a state of independent p
ticles. That is, from the particle perspective, it is une
tangled. Generically, solutions to interacting many-bo
problems are entangled~correlated! states, that is, a linea
combination of many Slater determinants not expressible
a single Slater determinant. In particular, this is the cas
the interactions are strong at short ranges. In quantum m
body physics, considerable experience and interest exis
developing simple approaches for generating several spe
classes of correlated wave functions@18#. In Appendix A we
illustrate procedures and recipes to prepare one such cla
correlated ~entangled! states, the so-called Jastrow sta
@18#.

B. Evolution of initial state

The evolution of a quantum state is the second step in
realization of a quantum circuit. The goal is to decompo
this evolution into the ‘‘elementary gates
Rm(q) and Rzj ,zk(v). To do this for a time-independen
Hamiltonian, we can write the evolution operator asÛ(t)
5e2 iHt , where H5( lHl is a sum of individual Hamilto-
niansHl . If the commutation relations@Hl ,Hl 8#250 hold
for all l and l 8, then
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Û~ t !5)
l

Ul~ t !5)
l

e2 iH l t. ~3.6!

In this way, we can then decompose eachUl(t) in terms of
one- and two-qubit interactions using the method descri
in Sec. II B.

In general, the HamiltoniansHl for different l do not com-
mute and the decomposition in Eq.~3.6! cannot be used
Although we can, in principle, exactly decompose the ope
tor Û(t) into one- and two-qubit interactions@9,10#, such a
decomposition is usually very difficult. To avoid this prob
lem, we decompose the evolutionÛ(t)5) j 51

M e2 iHDt using
the the first-order Trotter approximation (t5MDt),

Û~Dt !5e2 iHDt5expS 2 i(
l

HlDt D 5)
l

e2 iH lDt

1O„~Dt !2
…. ~3.7!

Then, forDt→0, we can approximate the short-time evol
tion by Û(Dt)') le

2 iH lDt. In general, each factor is easil
written as one- and two-qubit operations~Sec. II B!.

The disadvantage of this method is that approximating
operatorÛ(t) with high accuracy might requireDt to be
very small so that the number of stepse2 iH lDt and hence the
number of quantum gates required becomes very large
mitigate this problem, we can use a higher-order Trotter
composition. For example, ifH5K1V, we then use the
second-order Trotter approximation to decompose the ev
tion as Û(t)5) j 51

M e2 iHDt with ~second-order decompos
tion!

e2 iHDt5e2 iKDt/2e2 iVDte2 iKDt/21O„~Dt !3
… ~3.8!

5e2 iVDt/2e2 iKDte2 iVDt/21O„~Dt !3
….

~3.9!

Other higher-order decompositions are available@20#.

C. Measurement of physical quantities

1. One-ancilla qubit measurement processes

The last step is the measurement of the physical pro
ties of the system that we want to study. Often we are in
ested in measurements of the form^U†V&, whereU and V
are unitary operators@1#. Reference@1# gives a description of
the type of correlation functions that are related to these m
surements. Reference@21# gives an applications and varia
tions of these techniques. Here, we simply give a brief
scription of how to perform such measurements.

First, we prepare the system in the initial stateuC0& and
adjoin to it one-ancilla~auxiliary! qubit a in the stateu1&
5(u0&1u1&)/A2. This state is prepared by applying the un
tary Hadamard gate to the stateu0& ~Fig. 4!. Next, we make
two controlled unitary evolutions using theCU andCU8 gates
~Sec. II B 2!. The first operationṼ evolves the system byV if
the ancilla is in the state u1&: Ṽ5u0&^0u ^ 11u1&
3^1u ^ V. The second oneŨ evolves the system byU if the
3-8
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ancilla state isu0&: Ũ5u0&^0u ^ U1u1&^1u ^ 1. (Ṽ and Ũ
commute.! Once these evolutions are done, the expecta
value of 2s1

a 5sx
a1 isy

a gives the desired result^U†V&. This
quantum circuit is shown in Fig. 9. Note that the probabil
tic nature of quantum measurements implies that the des
expectation value is obtained with varianceO(1) for each
instance. Repetition can be used to reduce the variance
low what is required.

2. L-ancilla qubit measurement processes

Often, we want to compute the expectation value of
operatorO of the form

O5(
i 51

M

aiUi
†Vi , ~3.10!

whereUi and Vi are unitary operators,ai are real positive
numbers (ai>0), andM is an integer power of 2.~In the
case thatM is less than a power of 2, we can complete t
definition by settingaM11 , . . . ,aM850, whereM 8 is an in-
teger power of 2.! We can compute this expectation value
preparingM different circuits, each one with one-ancilla q
bit, and for each circuit measure^Ui

†Vi& ~see Sec. III C 1!.
Then, we multiply each result by the constantai and sum the
results. However, in most cases, the preparation of the in
state is very difficult. This difficulty, however, can be r
duced by using another way to measure this quantity
requires only one circuit.

We first write the operatorO as

O5N(
i 51

M

a i
2Ui

†Vi , ~3.11!

FIG. 9. Measurement of physical quantities using one extra~an-
cilla! qubit ua&. In this casê 2s1

a &5^C0uU†VuC0&.
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M ai and a i

25ai /N (( i 51
M a i

251). Then we
construct a quantum circuit with the following steps.

~1! Prepare the stateuC0& such that^C0uOC0& is the
expectation value to be computed.

~2! Adjoin L ancillas to the initial state, whereL5J11
and 2J5M . The first of these ancillas, a1, is prepared in the
state u1&5(u0&1u1&)/A2. This is done by applying the
Hadamard gate to the initial stateu0& @see Fig. 4~a!#. The
other ancillas$a2 ,a3 ,•••,aL% are kept in the stateu0&.

~3! Apply a unitary evolutionE(a1 ,a2 ,•••,aM) to the
ancillas$a2 ,a3 ,•••,aL% to obtain

uc&5a1u00•••0&1a2u00•••1&1•••1aMu11•••1&

5(
i 51

M

a i u i &,

whereu i & is a tensorial product of the states (u0& or u1&) of
each ancilla:u i &5uh&a2

^ •••^ uh&aL
, whereh can be 0 or 1.

The indexi orders the orthonormal basisu i &.
~4! Apply the controlled unitary operationsŨ i , which

evolve the system byUi if the state of the ancillas isu0&a1
u i &.

Then apply the controlled unitary operationsṼi , which
evolve the system byVi if the state of the ancillas isu1&a1

u i &.
Once these evolution steps are finished, the state of
whole system is

uC&5
1

A2
F u0&a1(i 51

M

a i u i &Ui1u1&a1(i 51

M

a i u i &Vi G ^ uC0&.

~5! Measure the expectation value of 2s
1

a15sx
a11 isy

a1

52u0&a1
^1u. It is easy to see that it corresponds to the e

pectation value of the operator( i 51
M a i

2Ui
†Vi .

~6! Obtain the expectation value ofO by multiplying
^2s

1

a1& by the constantN.

The quantum circuit for this procedure is given in Fig. 1
FIG. 10. ~Color! Measurement of physical quantities usingL-ancillas qubits $a1 , . . . ,aL%. In this case ^s1

a1&5(1/
2N )^C0u@( i 51

M aiUi
†Vi #uC0& ~see text!.
3-9
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3. Measurement of correlation functions

We now consider measuring correlation functions of
form CAB5^T†ATB&, whereT is a unitary operator andA
andB are operators that are expressible as a sum of un
operators,

A5(
i

ã iAi and B5(
j

b̃ jBj . ~3.12!

The operatorT is fixed by the type of correlation functio
that we want to evaluate. In the case of dynamical correla
functions, T is e2 iHt , where H is the Hamiltonian of the
system. For spatial correlation functions,T is the space trans
lation operatore2 ip•x (p and x are configuration-space op
erators!. The method for measuring these correlation fun
tions is the same method described in Sec. III C 1 or S
III C 2. We can use either the one- or theL-ancilla measure-
ment process.

To minimize the number of controlled operations and a
the quantity of elementary gates involved, we chooseUi

†

5T†Ai andVj5TBj . Now, we have to computêUi
†Vj&. In

Fig. 11 we show the circuit for measuring this quanti
where the circuit has only one ancilla in the stateu1&
5(u0&1u1&)/A2. There, the controlled operations were r
duced by noting that the operation ofT controlled on the
stateu0& of the ancilla followed by the operation ofT con-
trolled on the stateu1& results in a no-controlledT operation.
This is a very useful algorithmic simplification.

4. Measurement of the spectrum of an Hermitian operator

Many times one is interested in determining the spectr
of an observable~Hermitian operator! Q̂, a particular case
being the HamiltonianH. Techniques for getting spectral in
formation can be based on the quantum Fourier transf
@22,23# and can be applied to physical problems@24#. For
our purposes, the methods of the previous sections y
much simpler measurements without loss of spectral in
mation. For a givenH, the most common type of measur
ment is the computation of its eigenvalues or at least
lowest eigenvalue~the ground-state energy!. To do this we
start from a stateuf& that has a nonzero overlap with th

FIG. 11. Circuit for the measurement of spatial and time cor
lation functions. In this casê2s1

a &5^T†AiTBj&. Notice the sim-
plification achieved by reducing two controlled-T operations into
only one uncontrolled-T operation.
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eigenstates ofH. ~For example, if we want to compute th
energy of the ground state, thenuf& has to have a nonzer
overlap with the ground state.! For finite systems,uf& can be
the solution of a mean-field theory~a Slater determinant in
the case of fermions or Perelomov-Gilmore coherent state
the general case!. Once we prepare this state~Sec. III A and
Appendix A!, we computê Û(t)&5^fuÛ(t)f&, whereÛ is
the evolution operatorÛ(t)5e2 iHt . We then note that

uf&5 (
n50

L
gnuCn&, ~3.13!

with uCn& eigenstates of the HamiltonianH. Consequently

^Û~ t !&5 (
n50

L
ugnu2e2 ilnt, ~3.14!

where ln are the eigenvalues ofH. The measurement o

^Û(t)& is easily done by the steps described in Sec. III C
~setting V5Û(t) and U51 in Fig. 9!. Once we have this
expectation value, we perform a classical fast Fourier tra
form @i.e., F̃(l)5*^Û(t)&eiltdt# and obtain the eigenvalue
ln ~see Appendix B!,

F̃~l!5 (
n50

L
2pugnu2d~l2ln!. ~3.15!

Although we explained the method for the eigenvalues ofH,
the extension to any observableQ̂ is straightforward, taking
Û(t)5e2 iQ̂t and proceeding in the same way.

Two comments are in order. The first refers to an algori
mic optimization and points to decreasing the number
controlled operations~i.e., the number of elementary gate
implemented!. If we set V5e2 iQ̂t,U†51 ~see Fig. 9! and
perform the type of measurement described in Sec. III
the network has total evolution~ancilla plus system!

e2 iQ̂t/2eiQ̂sz
at/2, while if we setV5U†5e2 iQ̂t/2 the total evo-

lution is eiQ̂sz
at/2. Thus, this last algorithm reduces the num

ber of gates by the number of gates it takes to represen
operatore2 iQ̂t/2. The circuit is shown in Fig. 12.

The second comment refers to the complexity of t
quantum algorithm as measured by system size. In gener
is difficult to find a state whose overlap scales polynomia
with system size. If one chooses a mean-field solution as
initial state, then the overlap decreases exponentially w
the system size; this is a ‘‘signal problem,’’ which also aris

-

FIG. 12. Circuit for the measurement of the spectrum of

Hermitian operatorQ̂. In this casê 2s1
a &5^fue2 iQ̂tf& ~see text!.
3-10
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in probabilistic classical simulations of quantum system
The argument goes as follows: Ifuf& is a mean-field state fo
an Nd ~5volume! system size whose~modulus of the! over-
lap with the true eigenstate isugu,1, and assuming that th
typical correlation length of the problemj is smaller than the
linear dimensionN, if we double N, the new overlap is
;e2d lnugu.

We would like to mention that a well-known alternativ
way of computing part of the spectrum of an Hermitian o
erator is using the adiabatic connection according to
Gell-Mann-Low theorem, an approach that has been
scribed in@1#.

5. Mixed and exact estimators

We have already explained how to compute differe
types of correlation functions. But in most cases, we do
know the state whose correlations we want to obtain. T
most common case is wanting the correlations in the gro
state uC0& of some HamiltonianH. Obtaining the ground
state is a very difficult task; however, there are some us
methods to approximate these correlation functions.

Suppose we are interested in the mean value of a un
operatorO(t). If we can prepare the initial stateuCT& in
such a way thatuC0&5uCT&1euF& (e is intended to be
small!, then after some algebraic manipulations@25#, we
have

^C0uO~ t !uCT&

^C0uCT&
5

1

2 F ^C0uO~ t !uC0&

^C0uC0&
1

^CTuO~ t !uCT&

^CTuCT& G
1O~e2!, ~3.16!

where the term on the left-hand side of Eq.~3.16! is known
as the ‘‘mixed estimator.’’ Also, we can calculate the seco
term on the right-hand side of Eq.~3.16! with an efficient
quantum algorithm, since we are able to prepare easilyuCT&.
Next, we show how to determine the mixed estimator usin
quantum algorithm.

If uC0& is the ground state, then it is an eigenstate of
evolution operatorÛ(t8)5e2 iHt 8, and we can obtain the
mixed estimator by measuring the mean value ofÛ(t8)O(t):
BecauseuCT&5(nanuCn&, where an5^CnuCT& and uCn&
are the eigenstates ofH @Û(t8)uCn&5e2 ilnt8uCn&] we can
measure~Sec. III C 3!

^CTuÛ~ t8!O~ t !uCT&5(
n

eilnt8^CTuCn&^CnuO~ t !uCT&.

~3.17!

By performing a Fourier transform in the variablet8
@ F̃(v)5*eivt8F(t8)dt8# in Eq. ~3.17! and making the rela-
tion between the expectation value for timet and the expec-
tation value forO(t)51, we obtain the value of the mixe
estimator. Then, by using Eq.~3.16!, we obtain
^C0uO(t)uC0&/^C0uC0& up to ordere2.

By similar steps, we can obtain expectation values of
form ^CnuO(t)uCn8&/^CnuCn8& for all n and n8. The trick
04232
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consists of measuring~Sec. III C 3! the mean value of the
operatorÛ(t8)O(t)Û†(t9) in the stateuCT&,

^CTuÛ~ t8!O~ t !Û†~ t9!uCT&5 (
n,n8

eilnt8eiln8t9^CTuCn&

3^Cn8uCT&^CnuO~ t !uCn8&,

~3.18!

and then by performing a double Fourier transform in t
variables t8 and t9 @ F̃(l,l8)5*eilt8eil8t9F(t8,t9)dt8dt9#
we obtain the desired results. A particular case of this pro
dure is the direct computation of the exact estima
^CnuO(t)uCn&/^CnuCn&.

IV. APPLICATION TO FERMIONIC LATTICE SYSTEMS

In this section, we illustrate a procedure for simulati
fermionic systems on a quantum computer, showing a
particular example how to obtain the energy spectrum of
Hubbard Hamiltonian for a finite-sized system. We will o
tain this spectrum through a simulation of a quantum co
puter on a classical computer, that is, by a quantum simul
@26#.

We start by noting that the spin-fermion connection d
scribed in Eqs.~2.10! and ~2.11! implies that the number o
qubits involved in a two-dimensional lattice isL52(Nx
3Ny) if one uses the standard model to simulate spin-
fermions. Also, the number of states for anL-qubit system is
2L. From this mapping, the firstNx3Ny qubits represent the
states that have spin-up fermions, and the other qubits@(Nx
3Ny11) up to 2(Nx3Ny)], spin-down fermions. In other
words, if we have a system of four sites and have a stateuC&
with one electron with spin up at the first site and one el
tron with spin down at the third site, then this state in seco
quantization isuC&5a1;↑

† a3;↓
† uv&, where the fermionic opera

tor aj ;s
† creates a fermion in sitej with spins, anduv& is the

state with no particles~vacuum state!. In the standard model
this state corresponds to

uC&5s1
1 )

l 51

6

sz
l s1

7 uṽ&5u0& ^ u1& ^ u1& ^ u1& ^ u1& ^ u1& ^ u0&

^ u1&→u↑↓↓↓↓↓↑↓&, ~4.1!

whereuṽ& is the vacuum of the quantum spin 1/2, which w
have chosen to beu↓↓↓↓↓↓↓↓&.

To represent theL-qubit system on a classical compute
we can build a one-to-one mapping between the 2L possible
states and the bit representation of an integerI defined by

I 5(
i 51

L

@n~ i !32i 21#, ~4.2!

wheren( i ) ~occupancy! is 0 if the spin of thei th qubit is
u1& (↓), or 1 if the state isu0& (↑). In this way, the state
described in Eq.~4.1! maps toI 565. Because we are inter
ested in obtaining some of the eigenvalues of the Hubb
3-11
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model, we added an ancilla qubit~Fig. 12!. The ‘‘new’’ sys-
tem hasL52(Nx3Ny)11 qubits, and we can perform th
mapping in the same way described above.

To simulate the evolution operatorÛ(t)5e2 iHt on a clas-
sical computer using the above representation of quan
states, we programmed the ‘‘elementary’’ quantum gates
one- and two-qubit interactions. EachL-qubit state was rep
resented by a linear combination of the integersI @Eq. ~4.2!#.
In this way, each unitary operation applied to one or t
qubits modifiesI by changing a bit. For example, if we fli
the spin of the first qubit, the numberI changes by 1.

We want to evaluate some eigenvalues of the spin-
Hubbard model in two spatial dimensions. The model is
fined on a rectangle ofNx3Ny sites and is parametrized b
spin-preserving hoppingstx andty between nearest-neighbo
sites, and an interactionU on site between fermions of dif
ferentz components of spin~Fig. 13!. The Hamiltonian is

H52 (
( i , j );s

@ tx~a( i , j );s
† a( i 11,j );s1a( i 11,j );s

† a( i , j );s!

1ty~a( i , j );s
† a( i , j 11);s1a( i , j 11);s

† a( i , j );s!#

1U(
( i , j )

n( i , j );↑n( i , j );↓ , ~4.3!

wheren( i , j );s5a( i , j );s
† a( i , j );s is the number operator and th

label (i , j );s identifies the site (X-Y position! and thez com-
ponent of spin (s561/2). We assume that the fermion
operators satisfy strict periodic boundary conditions in b
directions:a( i , j );s5a( i 1Nx , j );s5a( i , j 1Ny);s .

To obtain the energy spectrum for this model, we use
method described in Sec. III C 3~See Fig. 12.! For this, we
represent the system in the standard model, using the Jor

FIG. 13. ~Color! Two-dimensional lattice in the Hubbard mode
Here, the green and blue arrows identify the even and odd bon
04232
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Wigner transformation, mapping a two-dimensional spin-1
system into a one-dimensional chain, with the use of E
~2.11! and ~2.10! ~Fig. 8!.

As explained in Sec. III C 4, we find it convenient to sta
from the mean-field ground-state solution of the model, r
resented byHMF ,

HMF52 (
( i , j );s

@ tx~a( i , j );s
† a( i 11,j );s1a( i 11,j );s

† a( i , j );s!

1ty~a( i , j );s
† a( i , j 11);s1a( i , j 11);s

† a( i , j );s!#

1U(
( i , j )

@^n( i , j );↑&n( i , j );↓1n( i , j );↑^n( i , j );↓&2^n( i , j );↑&

3^n( i , j );↓&#,

where the expressions in angular brackets are expecta
values in the mean-field representation. Without loss of g
erality, we take U .0 and select the antiferromagnet
ground-state mean-field solution. For this solution, we
quireNx andNy to be even numbers. If we were to simula
a one-dimensional lattice, we would, however, choose on
these numbers to be even and the other equal to 1. In
following we will only consider the half-filled case, whic
corresponds to having one fermion per site; i.e.,Ne5Nx
3Ny .

First, we prepare the initial state. As discussed in S
III A, we do this by exploiting Thouless’s theorem. We als
use the first-order Trotter approximation~Sec. III B! and then
decompose each term of the evolution into one- and tw
qubit interactions. Here, the matrixM now depends on the
parameters of the Hamiltonian, as does the ground-s
mean-field solution. After the decomposition, we then p
pare the desired initial state by applying the unitary evo
tions to a boot-up~polarized! state.~See Appendix A.!

Next, we execute the evolutionÛ(t)5e2 iHt . For the sake
of clarity we only present the first-order Trotter decompo
tion. To this end, we rewrote the Hubbard Hamiltonian as

H5K1V5K↑1K↓1V, ~4.4!

whereKs is the kinetic term~hopping elements with spins)
and V is the potential-energy term. Because@Ks ,V#2Þ0
and@K↑ ,K↓#250 we approximated the short-time evolutio
operatorÛ(Dt) by

Û~Dt !5e2 iHDt'e2 iKDte2 iVDt ~Dt→0!. ~4.5!

Because the termV5U( ( i , j )n( i , j );↑n( i , j );↓5( l 51
Nx3NyVl is a

sum of operators local to each lattice site, each of these te
commute so

e2 iVDt5)
l

e2 iVlDt. ~4.6!

The kinetic term is a sum over the bonds in the latt
~Fig. 13!: Ks5(bondsKbond;s . Each bond joins two neares
neighbor sites, either in the vertical or horizontal directi
~Fig. 13!. Because of the periodic boundary conditions, t

s.
3-12
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sites at the boundary of the lattice are also connected
bonds. We note that the terms inK that share a lattice site d
not commute. For these terms we rewriteKs as

Ks5Kx;s
o 1Kx;s

e 1Ky;s
o 1Ky;s

e , ~4.7!

whereKm;s
e(o) are the kinetic terms~for spin s) in the m di-

rection that involve the even~e! and odd~o! bonds in this
direction~green and blue lines in Fig. 13!. Then we perform
the first-order Trotter approximation

e2 iK sDt'e2 iK x;s
o Dte2 iK x;s

e Dte2 iK y;s
o Dte2 iK y;s

e Dt. ~4.8!

Because the odd and even bonds are not connected,
term in Eq.~4.7! is a sum of terms that commute with ea

other, that is,Km;s
e(o)5(mKm;s

e(o);m , where@Km;s
e(o);m ,Km;s

e(o);m8#2

50, then

exp~2 iK m;s
e(o)Dt !5)

m
exp~2 iK m;s

e(o);mDt !. ~4.9!

In summary we approximated the short-time evoluti
Û(Dt) by

Û~Dt !'F )
m1 ,m2 ,m3 ,m4 ;s

exp~2 iK x;s
o;m1Dt !

3exp~2 iK x;s
e;m2Dt !exp~2 iK y;s

o;m3Dt !

3exp~2 iK y;s
e;m4Dt !GF)

l
e2 iVlDtG . ~4.10!

The total evolution operator is

Û~ t !5)
j

Û~Dt !. ~4.11!

Each unitary factor in the evolution is easily decompos
into one- and two-qubit interactions~Sec. II B!.

The final step is the measurement process. To obtain s
of the eigenvalues, we use the circuit described in Fig.

Thus we are interested in the operatorÛ(t8)2sz
a

instead of
Û(t8) so we actually performed the first two steps after a
ing an ancilla qubit a~Fig. 12!, and then started with a
‘‘new’’ Hamiltonian H̃52H ^ sz

a/2 ~and also a ‘‘new’’ evo-

lution Ũ(t)5e2 iH̃ t), and performed the same steps describ
above.

The results for the simulation of the Hubbard model a
shown in Fig. 14~the eigenvalues were obtained using t
correction of Appendix B!. There, we also show the param
etersDt1 andDt2 corresponding to the time steps we used
the initial state preparation and in the time evolution, wh
we used a first-order Trotter approximation.

In closing this section we emphasize that the simulat
of the Hubbard model by a quantum computer, which u
the standard model of quantum computing is just an
ample. If instead one wants to simulate the Anderson mo
@27# using the same model of a quantum computer, then s
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similar to those described above would be followed.~There
are two types of fermions but the isomorphism still applie!
Similarly, if one wants to use a different quantum comput
which has another natural ‘‘language’’~i.e., a different opera-
tor algebra, which therefore represents a different mode
computation!, the ideas developed above would be appl
after simply choosing the right isomorphism or ‘‘dictionary
@3#.

V. CONCLUDING REMARKS

We addressed several broad issues associated with
simulation of physical phenomena by quantum networks.
first noted that in quantum mechanics the physical syste
we want to simulate are expressed by operators satisf
certain algebras that may differ from the operators and
algebras associated with the physical system representin
quantum network used to do the simulation. We pointed
that rigorous mappings@3# between these two sets of oper
tors exist and are sufficient to establish the equivalence
the different physical models to a universal model of qua
tum computation and the equivalence of different physi
systems to that model.

We also remarked that these mappings are insufficient
establishing the fact that the quantum network can simu
any physical system efficiently even if the mappings betwe
the systems only involves a polynomial number of steps.
argued that one must also demonstrate the main step
initialization, evolution, and measurement, all of which sca
polynomially with complexity. More is needed than just ha
ing a large Hilbert space and inherent parallelism. Furth
we noted that some types of measurements important to
derstanding physical phenomena lack effective quantum
gorithms.

In this paper we mainly explored various issues associa
with efficient physical simulations by a quantum networ
focusing on the construction of quantum-network models

FIG. 14. Energy spectrum of the Hubbard model obtained fr
the quantum simulator. The lattice has 432 sites~which requires
16 qubits!, with tx51, ty51, andU54 and the time steps used i
the Trotter approximation~to prepare the initial state and apply th
evolution! areDt15Dt250.05. The numbers in parentheses are
sults obtained from the Lanczos diagonalization.
3-13
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such computations. The main questions we addressed
how do we reduce the number of qubits and quantum g
needed for the simulation and how do we increase
amount of measurable physical information. We first summ
rized the quantum-network representation of the stand
model of quantum computation, discussing both one-qu
and multiqubit circuits, and then recalled the connection
tween the spin and fermion representations. We next
cussed the initialization, evolution, and measurement p
cesses. In each case we defined procedures simpler
those presented in our previous paper@1#, greatly improving
the efficiency with which they can be done. We also ga
algorithms that greatly expanded the types of measurem
now possible. For example, besides certain correlation fu
tions, the spectrum of operators, including the energy op
tor, is now possible. Our application of this technology to
system of lattice fermions and the construction of a simula
was also discussed and used the Hubbard model as a
ample. This application gave an explicit example of how
mapping between the operator of the physical system of
terest and those of the standard model of quantum comp
tion work. We also gave details of how we implemented
initialization, evolution, and measurement steps of the qu
tum network on a classical computer, thereby creatin
quantum-network simulator.

Clearly, a number of challenges for the efficient simu
tion of physical systems on a quantum network remain.
are prioritizing our research on those issues associated
problems that are extremely difficult for quantum many-bo
scientists to solve on classical computers. There are
known efficient quantum algorithms for broad spectru
ground-state~zero-temperature! and thermodynamics~finite-
temperature! measurements of correlations in quantu
states. These measurements would help establish the p
of those states. Generating those states is itself a diffi
task.

Another issue that is important for both classical a
quantum simulations of physical phenomena concerns
discretization of continuous systems, that is, those that
characterized by an algebra of operators that admits
infinite-dimensional representation. On both classical a
quantum computers this requires approximate represe
tions on a finite-dimensional Hilbert space. The techniq
that have been developed and are described in the exte
literature on classical simulations of quantum mechanics
directly applicable to simulations on quantum computers
has been noted by several authors@24,28,29#. An example is
the simulation of interacting electrons in EuclideanRd space.
In such a case one can proceed similarly to the usual pra
in classical simulations, i.e., discretize the system in a c
venient fashion and simulate its lattice version. The type
discretization~single-particle basis! is system and observabl
dependent. For example, to simulate the homogeneous
tron gas~jellium model! using a discrete quantum compute
one should first write its Hamiltonian in second-quantiz
form in a plane-wave basis~momentum representation! @30#
and then study the convergence of the measured observ
as a function of the momentum cutoff. However, for som
densitiesr of the electron gas, it may be more convenie
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~from a convergence viewpoint! to use a different basis: for a
diluted gas~small r) it might be more convenient to use
localized basis set~Wannier functions@31#!. More esoteric
basis-set choices, such as wavelets@32#, are always possible

Finally, many problems in physics simulation, such as
challenging protein-folding problem, are considered to
well modeled by classical physics. Can quantum-netwo
be used to obtain significantly better~more efficient! algo-
rithms for such essentially classical-physics problems?
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APPENDIX A: DIFFERENT STATE PREPARATION

1. Coherent state preparation: An example

Here we illustrate by example the decomposition of
operator of the formeiaW †MaW to generate an initial state. Typi
cally M is generated by some mean-field solution to t
physical problem of interest. Considerable detail is given

We consider two spinless fermions in a one-dimensio
lattice of four sites (Ne52,n54). The operatorsaj and aj

†

annihilate and create a fermion in the sitej of the lattice. We
want to prepare an initial stateuf8&5c0

†cp/2
† uv& from the

stateuf&5a1
†a2

†uv&, where the operatorsck andck
† annihilate

and create a fermion in the state of wave vectork, that is,

ck
†5

1

2 (
j 51

4

eikxjaj
† , ~A1!

wherek50,p/2,p,3p/2 are all possible wave vectors of th
system andxj is the position in the lattice of the site~i.e.,
xj5 j 21).

From Eq. ~A1!, we see that the stateuf8& is a linear
combination of states of the formai

†aj
†uv&. The change of

basiseiM ~Eq. 3.5! between the two sets of fermionic oper
tors is

S c0
†

cp/2
†

cp
†

c3p/2
†

D 5
1

2 S 1 1 1 1

1 i 21 2 i

1 21 1 21

1 2 i 21 i

D S a1
†

a2
†

a3
†

a4
†

D . ~A2!

If we calculate the eigenvalues and the eigenvectors of
matrix eiM , from Eq. ~A2! we obtain

eiM D5S 21 0 0 0

0 i 0 0

0 0 1 0

0 0 0 1

D , ~A3!

whereMD is M in its diagonal form. Then, we have
3-14
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MD52 i ln~eiM D!5S p 0 0 0

0 p/2 0 0

0 0 0 0

0 0 0 0

D . ~A4!

To obtain the matrixM5A†MDA, we need to know the uni
tary matrixA, which is constructed with the eigenvectors
the matrixeiM . In this case we have

A†5S 21/2 0 1/A2 1/A2

1/2 21/A2 1/A2 0

1/2 0 21/A2 1/A2

1/2 1/A2 1/A2 0

D , ~A5!

hence, the Hermitian matrixM is

M5
p

4 S 1 21 21 21

21 2 1 0

21 1 1 1

21 0 1 2

D . ~A6!

In order to obtainuf8& we prepare the stateuf& and then
apply the evolutionU5eiaW †MaW . If we want to simulate this
fermionic system in a quantum computer~standard model!,
we have to use the spin-fermion connection~Sec. II C! and
write the operatorU as a combination of single-qubit rota
tions and two-qubit interactions. Also, the initial stateuf&
must be written in the standard model,

uf&5a1
†a2

†uv&5s1
1 ~2sz

1s1
2 !uṽ&5s1

1 s1
2 uṽ& ~A7!

5u0&1^ u0&2^ u1&3^ u1&45u↑↑↓↓&, ~A8!

where the vacuum state in the standard model isuṽ&5u1&1

^ u1&2^ •••^ u1&n5u↓↓•••↓& @() l 51
j 212sz

l )s2
j uṽ&5aj uv&

50]. With this mapping, the stateuf8& is a linear combina-
tion of states of thez component of spin 0.

FIG. 15. Overlap between the exact initial state and the s
prepared with the Trotter decomposition for a system with two f
mions in a four-site lattice.
04232
As noted in Sec. III B, sometimes the decomposition
the operatorU in terms of one- and two-qubit operations
very difficult. To avoid this problem, we can use the Trott
decomposition~3.7!. In Fig. 15 we show the overlap~projec-
tion! between the stateuf8& and the state prepared using th
first-order Trotter decomposition ofU applied to the state
uf&.

2. Jastrow-type wave functions

A Jastrow-type wave function is often a better approxim
tion to the actual state of an interacting system, particula
when interactions are strong and short ranged. Often
varies the parameters in these functions to produce a s
that satisfies a variational principle for some physical qu
tity like the energy. Such states build in correlated man
body effects and are, in general, entangled states. The s
described in Sec. 1 of Appendix A! are unentangled.

The classic form of a Jastrow-type wave function for fe
mions is@18#

uC0&5eSuf8&, ~A9!

whereS5( i j a i j ci
†cj1( i jkl b i jkl ci

†cj
†ckcl1••• is an opera-

tor that creates particle and hole excitations, anduf8& is
typically a Slater determinant. TheN-body correlations em-
bodied inS take into account the short-range forces not
cluded inuf8&. We will assume thata i j andb i jkl have been
determined by some suitable means~for example, by a
coupled-cluster calculation!. If we decomposeeS into a lin-
ear combination of unitary operators, we can then deco
poseuC0& into a linear combination of Slater determinan
and thus prepareuC0& as explained in@1#. Also, if the coef-
ficientsa i j andb i jkl are small, we can approximateeS by the
first few terms in its Taylor expansion. Again, the stateuC0&
will be a linear combination of Slater determinants.

Obviously, it is more natural for a quantum computer
generate a correlated state of the form

uC0&5eiSuf8&, ~A10!

where eiS is a unitary operator. In order to determine th
N-body correlation coefficientsa i j and b i jkl , one could, in
principle, use the technique of unitary transformations int
duced by Villars@33#.

APPENDIX B: DISCRETE FOURIER TRANSFORMS

In practice, to evaluate the discrete fast Fourier transfo
~DFFT! one uses discrete samples, therefore Eq.~3.15! must
be modified accordingly. In Fig. 14 we see that instead
havingd functions~Dirac’s functions!, we have finite peaks
in some range of energies, close to the eigenvalues of
Hamiltonian. Accordingly, one cannot determine the eige
values with the same accuracy as other numerical calc
tions. However, there are some methods that give the res
more accurately than the DFFT.

As a function of the frequencyVm , the DFFT@ F̃(Vm)#
is given by

te
-
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F̃~Vm!5Dt (
j 50

N21

F~ t j !e
iVmt j , ~B1!

wheret j5 j Dt are the different times at which the functionF

is sampled@in the case of Sec. III C 4,F(t j )5^Û(t j )&#,
Vm52pm/NDt are the possible frequencies to evaluate
FFT of F(t) andN is the number of samples. (N must be an
integer power of 2.!

Since we are interested inF(t)5(n50
L ugnu2e2 ilnt ~Eq.

3.14!,

F̃~Vm!5Dt (
n50

L
ugnu2 (

j 50

N21

ei [Vm2ln] t j , ~B2!

and then

F̃~Vm!5Dt (
n50

L
ugnu2

ei (Vm2ln)DtN21

ei (Vm2ln)Dt21
. ~B3!
ys

.G
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If Vm is close to one of the eigenvaluesln and theln are
sufficiently far apart to be well resolved, we can neglect
terms in the sum other thann. If we take Vm and Vm11
5Vm12p/NDt, both close toln in such a way that
uF̃(Vm)u,uF̃(Vm11)u@0, then from Eq.~B3! we find that

F̃~Vm11!

F̃~Vm!
'

ei (Vm2ln)Dt21

ei (Vm112ln)Dt21
. ~B4!

After simple algebraic manipulations@and approximating
ei (Vm2ln)Dt'11 i (Vm2ln)Dt and the same for the de
nominator in Eq.~B4!# we obtain the correction to the energ
ln ,

ln5Vm1Dln ~B5!

with

Dln'2
2p

NDt
ReF F̃~Vm11!

F̃~Vm!2F̃~Vm11!
G . ~B6!
d
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