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Simulating physical phenomena by quantum networks
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Physical systems, characterized by an ensemble of interacting constituents, can be represented and studied
by different algebras of operatof®bservables For example, a fully polarized electronic system can be
studied by means of the algebra generated by the usual fermionic creation and annihilation operators or by the
algebra of Paul{spin-1/2 operators. The Jordan-Wigner isomorphism gives the correspondence between the
two algebras. As we previously noted, similar isomorphisms enable one to represent any physical system in a
quantum computer. In this paper we evolve and exploit this fundamental observation to simulate generic
physical phenomena by quantum networks. We give quantum circuits useful for the efficient evaluation of the
physical propertiege.g., the spectrum of observables or relevant correlation fungtairen arbitrary system
with HamiltonianH.
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[. INTRODUCTION isomorphically represented and quantum parallelism can be
exploited. It is also insufficient for the mapping between op-
A fundamental concept in quantum-information process-erator algebras to be easily and perhaps efficiently formal-
ing is the connection of a quantum computational model to azed symbolically. For example, the physical system consist-
physical system by transformations of closed-operator algeing of one boson in ® modes is describable using the
bras. The concept is a necessary one because in quantdamguage of “transition” operators, represented by Pauli ma-
mechanics each physical system is naturally associated witices on anN-qubit space, which move the boson from one
a language of operatoffor example, quantum spin-1/2 op- mode to the other; however, the one-boson system is no more
erator$ and thus to an algebra realizing this languégg., powerful than classical wave mechanics. This means that
the Pauli spin algebra generated by a family of commutingunless quantum computers are not as powerful as is believed,
quantum spin-1/2 operatgrsAny quantum system defined there is no efficient simulation of qubits by the one-boson
by an algebra of operators generated by a set of “basic’system.
operators can be considered as a possible model of quantum A quantum computer does, however, allow for the effi-
computation[1]. The remarkable fact is that an arbitrary cient simulation of some systems that are impractical on a
physical system is simulatable by another physical systerslassical computer. In our recent pap&lwe discussed how
(or quantum computgmhenever isomorphic mappingsm-  to simulate a system of spinless fermions by the “standard
bedding$ between the two operator algebras exists. In eaclmodel” of a quantum computer, that is, the model expressed
such case, an important problem is to determine whether thia the language and algebra of quantum spin-1/2 objects
simulation is efficient(polynomial resource overhegdn (Pauli algebra We also discussed how to make certain
terms of the “basic” generators. For example, a nuclear spirphysically interesting measurements. We demonstrated that
(nuclear magnetic resonance NMRuantum computer is the mapping between algebras is a step of polynomial com-
modeled as a collection of quantum spin-1/2 objects and deplexity and gave procedures for initial state preparation, evo-
scribed by the Pauli algebra. It can simulate a systeffHsf  lution, and certain measurements that scaled polynomially
atoms(with space discretized by a latticeepresented by the with complexity. The main focus of the paper, however, was
hard-core bosonic algebra and vice verBaIn this case, the to demonstrate that a particular problem for simulating fer-
simulation is efficient. Figure 1 summarizes this fundamentamions on a classical computer, called the dynamical-sign
concept by giving a variety of proposed physical models forproblem, does not exist on a quantum compier
guantum computers and associated usable operator algebras.In this paper we continue to explore additional issues as-
If one of these systems suffices as the universal model afociated with efficient and effective simulations of physical
guantum computing, the mappings between the operator asystems on a quantum computer, issues that are independent
gebras establish the equivalence of the other physical modets the particular experimental realization of the quantum
to it. This is one’s intuitive expectation and it has a well- computer. To be useful as a physics simulation device, a
established mathematical bags. quantum computer must answer questions about physical
The mappings between algebras, between an algebra apdoperties associated with real physical systems. These ques-
a physical system, and between physical systems are necdins are often concerned with the expectation values of spe-
sary to simulate physical systems using a quantum computeific measurements of a quantum state evolved from a spe-
fabricated on the basis of another system. However, theicific initial state. Consequently, the initialization, evolution,
existence does not imply that the simulation is efficientlyand measurement processes must all be implementable with
implementable. As we have previously discus$&f] effi-  polynomial scaling1]. Often this is difficult to do. Further,
cient quantum computation involves more than having thesome classes of measurements, such as thermodynamic ones,
ability to represent ¥ different items of classical informa- still lack well-defined workable algorithni$].
tion so that the algebra dff quantum bits(qubit9 can be We seek to construct quantum-network models of such
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FIG. 1. (Color) Relationship between different models of computatiaith their associated operator algebrasd different physical
systems. Question marks refer to the present lack of a quantum computer device using the corresponding elementary physical components
indicated in the box. Diamond-shaped arrows represent the natural connection between physical system and operator language, while arrows
on the circle indicate the existence of isomorphisms of *-algebras, therefore, the corresponding simulation of one physical system by another.
A wave function view of this relationship is given |&].

measurements. Such networks are sets of elementary quatiscussed in Sec. IV. The Hubbard model is used as an ex-
tum gates to which we map our physical system. For simample. We conclude with a summary and a discussion of
plicity, we discuss these issues relative to simulating a sysareas needing additional work. The appendixes contain tech-
tem of spin-1/2 fermions using the standard model ofnical points about the preparation of coherent and correlated
qguantum computing7]. Specifically we address issues dis- states and the use of the discrete classical Fourier transfor-
covered in our attempt to implement(elassical simulator ~ mation.
of a network-based quantum computer and to conduct a
guantum computation on a physical systéRMR) with a
small number of qubits. On a classical computer the number
of qubits simulatable is limited by the exponential growth of
the memory requirements. Physically, we can only process It is the formal connection between models of computa-
information experimentally with systems of a few qubits. tion and physical systems described in the Introduction that
Having the simulator permits a comparison between theorgllows one to simulate quantum phenomena with a quantum
and experiments likely to be realizable in the near futurecomputer. Simulation is realized through a quantum algo-
Overall, the main problems we address are how to reduce théthm that consists of unitary operations and measurements.
number of qubits and quantum logic gates needed for th@ne of the objectives is to accomplish simulation efficiently,
simulation of a particular physical phenomena, and how ta.e., with polynomial complexity. The hope is that quantum
increase the amount of physical information measurable bgimulation is “more” efficient(less resourceghan classical
designing efficient quantum algorithms. simulation and there are examples that support such hope
We have organized the paper in the following manner: In1]. In the following sections we summarize the main con-
Sec. Il we summarize the quantum-network representation afepts in the representation of physical phenomena by quan-
the standard model of quantum computation, discussing bottum networks.
one qubit and multiqubit circuits. Then we summarize the
connection between the spin and fermion representations. In
Sec. lll, we first discuss the initialization, evolution, and
measurement processes. In each case we define proceduredn the standard model of quantum computation, the quan-
simpler than those presented in our previous paper, great§dm bit, or qubit, is the fundamental unit. A qubit's state
improving the efficiency with which they can be performed. [@)=a|0)+b|1)(|a]?+|b|?=1) is a linear combination of
Much expanded are the types of measurements now possibke stateg0) and |1) (e.g., a spin 1/2 witj0)=|1), |1)
For example, besides certain correlation functions, the spec=|1)).
trum of operators, including the energy operator, can now be Assigned to each qubit are the identity matiband the
obtained. Our application of this technology to a system ofPauli matricesoy, o,, and o,, or equivalentlyl, o.
fermions on a lattice and the construction of a simulator is:%(crxiioy), and o, [8]. For a system oh qubits, the

Il. QUANTUM-NETWORK REPRESENTATION OF
PHYSICAL PHENOMENA

A. Standard model of quantum computation
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1)

FIG. 2. (Color) Bloch-sphere representation of a one-qubit state parametrizkal -as0s@/2)|0) + €'“sin(6/2)|1). The curved arrows
indicate the sign of rotation a#("?7x=R (—t) about the particular axig. Our (arrow) color convention i§0)— blue, |1)— red, other
linear combinations— magenta.

mathematical representation of the standard model of quarher single-qubit rotationR (%) =e ("2, py an angled
tum computing is defined by a closed *-algelfPauli alge- about thep axis in then-qubit space or two-qubit interac-

bra) generated by the operatosg,(4=x,y, or z) that act  tionsR,j x(w)= €/“72; in the same space(is a real num-

on thejth qubit, ben [9,10]. The one-qubit rotationgFig. 3(@)] and two-qubit
interactions[Fig. 3(b)] constitute the elementary gatgkl]

of the quantum computer in the network model. For instance,
if the evolution U(t)=e " is due to the typical Hamil-
=wlg-® o, @l tonian

—~—
Jjth factor

n factors

H=H,+ Hy=;o3l((r§- . -O'jz_lo'L-I—EO')l,O'? . -(sz_lo'i,,
where® represents a Kronecker product. The resulting com- (2.3

mutation relations are — — o
where « and B are real numbers, we writdJ(t) as

[ o], =25,,, 2. € 'Mde”'™ becausgH,,H,] =0. To decompose this into
ro # one- and two-qubit operations, we take the following steps.
["L 051 =2i 5jk€,wxffjw 2.2 We first note that the unitary operator
where[A,B].=AB=BA and¢,,, is the totally antisym- U :ei(wm)a;: i[MiUl] (2.4)
metric Levi-Civita symbol. The time evolution of anqubit ! 2 y
system is described by the unitary operatoft)=e~ "t L N . 1
whereH represents the time-independent Hamiltonian of thdakes o i—oy, ie, UlosUi=0%, so Ule MZU =e“%x.

system. In turn(t) is easily expressible in terms of the NExtwe note that the operator

Pauli matricess!, since they and their products form an op-
erator basis of the algebra. U,=el(mo,0; T[Hiaioi
2

B. Quantum network —~12
Q takesoy— oyo2 soUze"“’xU =¢€'*%y?2, Then we note that

In a quantum network, any unitary operatdr can be .
decomposedup to a phaseasU=1I,U,, whereU, are ei- U3=e'(”/4)<fz0z
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FIG. 3. (Colon (a) Some one-qubit elementary gafemtice thate'’”»=R ,(—-26) ando,=ie ("2 is anR () rotation up to a
phasé and (b) a two-qubit elementary gate.
takesoyos— — 00505 . By successively similar steps we cuits is that each horizontal line represents the time evolution
easily build the required string of operatorsrio2  Of a single qubit and the time axis of the evolution increases

- 0171 and also exp@olo? -0l Lol (up to a global from left to right.

phase, 2. Multiple-qubit circuits

Ul u;u{e@iuluz- ~U=expliacio? - ol o)), We now give examples of multiqubit operations. Consider
(2.5  the circuit shown in Fig. 5. This is a two-qubit controlled-
NOT (CNOT) gate, which acts as follows:
where the integek scales polynomially withj (in this par-
ticular case the scaling is lineain a similar way, we de- . |00)—00),/01)—01)
compose the evolutioa™ '™y Multiplying both decomposi- enot: |10)—[11),|11)—|10)
tions, we have the total decomposition of the evolution
operatorU(t). See[12,13 for complete treatments of these Here, the first qubit is the control quiithe controlled op-
techniques. eration on its statél) is represented by a solid circle in Fig.
5). We see that if the state of the first qubit|®) nothing
1. Single-qubit circuits happens, but if the first qubit is ifi), then the state of the
second qubit is flipped. The decomposition of the controlled-

The most general unitary operatdron a single qubit can o gneration into one- and two-qubits interaction is

be written as

. . 1 . 2 . 12

- CNO-I-:eI77'/4e—I(71'/4)0'Ze—I(77'/4)0')(el(71'/4)0'20'X

U=e""R,(B)Ry(7)R,(5), (2.6)
— i Tl i(mlA) 0l o~ i(mA) 02 ni (714) 02 n— i (mIA) ot o i ()0

where a, B, v, and § are real numbers an,(9) are €€ € € e € .

single-qubit rotations. In Fig.(8) we show examples of sev- (2.8

eral elementary one-qubit gates. In terms of the Pauli matri- ) )
ces, for instance, the Hadamard gate[fs:|1(0))—|+ From Eq.(2.8) we can see that a single controlled operation
(—)>=(|O>i|1))/\/§ see Fig. )] becomes a greater numbén this case five of one- and

two-qubits operations. In Fig. 5 we also show the circuit
1 representing this decomposition, while in Fig. 6 we show the
H=—[o+o,]=ie (Toxg=i(4)oy, (2.77  controllednoT gate applied to the sta{d0) in the Bloch-
\/5 sphere representation.
A generalization of the controlledoT gate is the
In Fig. 4b) we show the Bloch-sphere representation of thecontrolledy (cu) gate, wherel is a unitary operator acting
state| +)=(]0)+|1))/\2. The convention for quantum cir- on a multiqubit staté¥),
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FIG. 4. (Color (a) Hadamard-gate decomposition afti Bloch-sphere representation of a Hadamard gate applied to the state

: N .
1 0 0 0 ) D )
01 0 0
00 0 1
00 1 0

[

FIG. 5. (Color) ControllednoT gate decomposition and its matrix representation. The control qubit is 1. Note that the last circuit realizes
the controlledvoT matrix operation up to a global phase' ™.
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A= A< T

FIG. 6. (Color) Bloch-sphere representation of the state obtained by the contraffedrate applied to the “classical” stafd0). The
sequence of elementary operations is the same as Rigné flows from left to right with the lower row continuing the upper arféor each
Bloch-sphere the two arrows indicate the states of the two qubits, with the left representing qubit 1.

|0),®|¥e)—|0)®|¥s) into the standard modéll,14]. The commutation relations
for (spinless fermionic operators; and a}r (the destruction
Va2 [¥9)—|1as[U[V9)]. and creation operators for moglg are

Mathematically, forU(t)=e 1?(® is Hermitian), the op- [a &, =8k, [a.all,=0. (2.9
erational representation of the controlldd- gate is

a a A .
U(t/2)U(t/2)" 72 [U(t)_"z=6'Q®”§‘], where a is the control We map this set of operators to another set expressed in

qubit [Fig. 7(@)]. Similarly, one can us¢0), as the control terms of theo L’s in the following way:
state to define the controlldd’ gate illustrated in Fig. (b).

C. Spin-fermion connection ( H )a =(-1)" 1o . 'O'.Z o,
To simulate fermionic systems with a quantum computer
that uses the Pauli algebra, we first map the fermionic system

-1
T I j — j—1_1 2 =1 ]
(2) ajH(H _UZ)UJ-%—_(_:L)J O-ZO-Z"'O-JZ 0-J+'

+

The mapping just describdd indeed induces an isomor-
U(t/2)U(t/2)“’§ phis_m of *-alge_bra)s i_s the famous _Jordan-Wigner trgnsfor-
mation[15]. Using this transformation, we can describe any
fermionic unitary evolution in terms of spin operators and,
() therefore, simulate fermionic systems by a quantum com-
puter. Although the mapping as given is for spinless fermions
and for one-dimensional systems, it extends to higher spatial
dimensions and to spin-1/2 fermions by remapping each
U(t/2)U(t/2)"§ “mode” label into a new label corresponding to “modes” in
a one-dimensional chain. In other words, if we want to simu-
late spin-1/2 fermions in a finité&l, X N, two-dimensional
FIG. 7. () Controlledy operation with the state of the control lattice, we map the label of the two-dimensional lattice to an
qubit a being|1), and (b) controlledd’ operation controlled with  integer numbes, running from 1 to 2N, X N,). Sidentifies
the statd0),. (See text for notatio. a mode in the new chain,

S
=
=

1

u()
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FIG. 8. Mapping used to con-
N nect the labels of a two-
y dimensionalN, X N, lattice to the
(4,54 1);0 labels of a chain(i.e., a one-
© © © Q dimensional array of integer num-
bers.
O O O © oeF----ee----0e----0e
aqay — 1 T i)t~ B+ (i-1)N:] o AN, N,);t —* GN.N,
aiy = Gu4NN,) A5~ Q+(i-)NANN,] QNN )it —F G2N,N,
5 s-1 a system of spinless fermions by the standard model, which
agg;o—as—| | —oh oS =(—1)5elo?. . .0 16S, s representable physically as a system of quantum spin-1/2
=1 objects.
s-1
= Il .s_ -1_1 2 S-1_S A. Preparation of the initial stat
agi,k);trﬁag_’(ll _UZ)U+_(_1)S 1O-za-z"'a-z o, eparation o € al state

5 The preparation of the initial state is important because
(2.10 the properties we want to measyo®rrelation functions, en-
ergy spectra, etcdepend on it. As previously discussgd,
there is a way to prepare a fermionic initial state of a system
with N, spinless fermions and single-particle modeg cre-
ated by the operatora:jT (creation of a fermion in the mode
[). In the most general case, the initial state is a linear com-
bination of Slater determinants

where theaj y., and azrj'k);(, are the fermionic spin-1/2 op-
erators in the two-dimensional lattice for the modglgj and

for the z component of the spio-(o=+ 1), andag andal,

are the spinless fermionic operators in the new chain. In ou
case, the modes are the sites and the lahk) (dentifies the
X-Y position of this site {,ke[1,N,,]). The label {,k);o
maps into the labes (Fig. 8) via Ne

[®0)=11 bflo). (3.

S=j+(k—1)N,+

1
E—o) NyNy . (2.1
described by the fermionic operatdos and b!, which are

This is not the only possible mapping to a two-dimensionalelated to the operators; anda; via a canonicalunitary)

lattice using Pauli matricef3,16,17, but it is very conve- transformation. Hergv) is the vacuum statézero-particle
nient for our simulation purposes. statg. To prepard@c) one can look for unitary transforma-

tions U, such that

. QUANTUM-NETWORK SIMULATION OF A

Ne
PHYSICAL SYSTEM ;
@ y=€e7]] Unlv), 3.2
m=1

Like the simulation of a physical system on a classical
computer, the simulation of a physical system on a quantum
computer has three basic steps: the preparation of an initiyherey is a phase factor. To perform these operations in the
state, the evolution of the initial state, and the measuremerftandard model we must express g in terms of Pauli
of the physical properties of the evolved state. We will con-matrices using the Jordan-Wigner transformatiffe can
sider each process in turn, but first we note that on a quantusio the mapping between the Pauli operators andahep-
computer there is another important consideration, namelygrators or between the Pauli operators anditheperators.
the relationship of the operator algebra natural to the physiln the following we will assume the first mapping since this
cal system to the algebra of the quantum network. Fortuwill simplify the evolution step. One can chooseU,
nately, the mapping§.e., isomorphismsbetween arbitrary =e """ such thatH, is linear in theb,, and bl operators
representations of Lie algebras are now knd®h Section [1]. We have to decompose thk, into single-qubit rotations
Il C is just one example. To emphasize this point, the contexand two-qubit interactionR () and R, ,x(w). To do this,
of our discussion of the three steps will be the simulation ofwe first decompose the ,, into a products of operators linear
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in b, or b;; however, this decomposition does not conserve

the number of particles. The situation appears complex. U(t)=1_|[ Ul(t):H e it 3.6
Simplification occurs, however, by recalling the Thou-
less’s theoreni18], which says that if In this way, we can then decompose eatift) in terms of
N, one- and two-qubit interactions using the method described
_ t in Sec. Il B.
|$) Jﬂl ajlv) .3 In general, the Hamiltoniartd, for different! do not com-

_ N _ mute and the decomposition in E¢B.6) cannot be used.
andM is anXn Hermitian matrix, then Although we can, in principle, exactly decompose the opera-

_ atma tor U(t) into one- and two-qubit interactior9,10], such a
o) =e |6), (3.4 decomposition is usually very difficult. To avoid this prob-
wherea'=(al, ... al) and lem, we decompose the evolutic.bAh(t)':l'IJ-Aile*iHAt using
the the first-order Trotter approximation= MAt),
bf=eMa'. (3.5

From Eq.(3.5) the operatoe'™ (formally acting on the vec-

U(At)ze‘”“zexp{ —i> H,At) =[] e iHiat
[ [
g)nrdog.a}’s) realizes the canonical transformation between +O((AD?), 3.7
j -

_ Thouless's theorem generalizes to quantum-spin systeMg,a, forAt—0, we can approximate the short-time evolu-
via the Jordan-Wigner transformation. This theorem allows

; - , - tion by U(At)~II,e "Mt In general, each factor is easily
thg preparation icg‘waén |n|t|?l state ?y simply applymg theWritten as one- and two-qubit operatiof@ec. Il B,
unitary operatore™ ™ to a “boot-up” state polarized with The disadvantage of this method is that approximating the
each qubit being in the stat®) or |1). Indeed, for an arbi-

trary Lie operator algebra the general states prepared in th%oeratorU(t) with high accuracy might requirdt to be

oiH At
fashion are known as Perelomov-Gilmore coherent state%'Y small so that the number Of. steps™™ and hence the
[19] number of quantum gates required becomes very large. To

mitigate this problem, we can use a higher-order Trotter de-
composition. For example, iIH=K+V, we then use the
second-order Trotter approximation to decompose the evolu-

tion as U(t)=T1;" ;e "4t with (second-order decomposi-

The advantage of this theorem for preparing the initial
state instead of the method previously descrifigdis that
the decomposition of the unitary operaHS?TMa can be done
in steps, each using combinations of operatﬂfal and,

therefore, conserving the number of particles. Once the detlon)
composition is done, we then write each operator in terms of g HAl= g=IKAU2g-IVAtg-IKAL2ZL O((A1)3)  (3.8)
the Pauli operators to build a quantum circuit in the standard
model.(See Appendix A for a simple example. — g~ IVAUZg-iKAtg=IVAUZ | ) (A1)3).
A single Slater determinant is a state of independent par- (3.9

ticles. That is, from the particle perspective, it is unen-

tangled. Generically, solutions to interacting many-bodyOther higher-order decompositions are availd2i@.

problems are entangle@orrelated states, that is, a linear

combination of many Slater determinants not expressible as C. Measurement of physical quantities

a single Slater determinant. In particular, this is the case if

the interactions are strong at short ranges. In quantum many-

body physics, considerable experience and interest exists in The last step is the measurement of the physical proper-

developing simple approaches for generating several specififes of the system that we want to study. Often we are inter-

classes of correlated wave functidiis]. In Appendix Awe  ested in measurements of the fofid V), whereU andV

illustrate procedures and recipes to prepare one such class &fe unitary operatoffd]. Referencg1] gives a description of

correlated (entangled states, the so-called Jastrow statesthe type of correlation functions that are related to these mea-

[18]. surements. Referend@1] gives an applications and varia-
tions of these techniques. Here, we simply give a brief de-

B. Evolution of initial state scription of how to perform such measurements.

The evolution of a quantum state is the second step in the First, we prepare the system in the initial stafe;) and

realization of a quantum circuit. The goal is to decomposeadjOin to it O”e'a”‘?”'a(a“x‘!‘ary) qubit a in the ;tat¢+> .
this  evoluton into the “elementary  gates” =(0)+|1))/y2. This state is prepared by applying the uni-

R,(9) and R, x(w). To do this for a time-independent &Y Hadamard gate to the sta® (Fig. 4. Next, we make
o ’ . . - two controlled unitary evolutions using tloe) andcu’ gates
Hamiltonian, we can write the evolution operator @st)

—e M whereH=3H, is a sum of individual Hamilto- (Sec. Il B 2. The first operatiolV evolves the system by if

niansH, . If the commutation relationgH, ,H,]_=0 hold ~ the ancilla is in the state|1): V=[0)(0|®1+]1)
for all I andl’, then X {1|®V. The second on& evolves the system by if the

1. One-ancilla qubit measurement processes

042323-8



SIMULATING PHYSICAL PHENOMENA BY QUANTUM NETWORKS PHYSICAL REVIEW AG5 042323

. (20%) where V=M &, and e?=a;/N (=M ,a?=1). Then we
T T * construct a quantum circuit with the following steps.

(1) Prepare the statp¥,) such that(W¥,|OW,) is the
expectation value to be computed.

(2) Adjoin L ancillas to the initial state, whele=J+1
and 2=M. The first of these ancillas, ais prepared in the

_ FIG. 9_. Measure_ment of pr;ysical qua?tities using one gxtna state|+>=(|0>+|1))/\/§. This is done by applying the
cilla) qubit|&). In this casg20%)=(WolU'V|¥). Hadamard gate to the initial stal) [see Fig. 4a)]. The
other ancillaga,,as,- - -,3 } are kept in the statf0).

ancilla state is|0): U=[0)(0|@U+|1)(1|®1. (V and U (3) Apply a unitary evolutionE(ay,a,, - -,ay) to the
commute) Once these evolutions are done, the expectatio@ncillas{a,,as,- - -,a } to obtain
value of 203 = o3 +i 0} gives the desired result) V). This
guantum circuit is shown in Fig. 9. Note that the probabilis-
tic nature of quantum measurements implies that the desired |#)=@1|00- - -0)+a,[00- - - 1)+ - - - + apy[11- - - 1)
expectation value is obtained with varian€¥1) for each M
instance. Repetition can be used to reduce the variance be- :2 aili),
low what is required. i=1

[Wo) l

Vv U

2. L-ancilla qubit measurement processes

Often, we want to compute the expectation value of anWhere||> is a tensorial product of the state€ or |1)) of

operatorO of the form each ancillafi)=[7),,® - - - ®[7), , wherey can be 0 or 1.
The indexi orders the orthonormal badis.

M (4) Apply the controlled unitary operations;, which
0= aUlv,, (3.10  evolve the system by; if the state of the ancillas i9),|i).
=1

Then apply the controlled unitary operatios, which
evolve the system by, if the state of the ancillas i|i)a1|i).

whereU; andV; are unitary operatorsg; are real positive o th lut ; finished. the state of th
numbers §=0), andM is an integer power of 2(In the nce these evolution steps are tinished, the state ot the
whole system is

case thaiM is less than a power of 2, we can complete this
definition by settinggy; 41, - - . ,am' =0, whereM' is an in-
teger power of 2.We can compute this expectation value by 1 M M

preparingM different circuits, each one with one-ancilla qu- _ T . .

bit, and for each circuit measuf®)V,) (see Sec. Il C L ¥)= 2 |0>ali21 ai||>Ui+|1>ali:21 ai[i)Vi|®[W¥o).
Then, we multiply each result by the constapaind sum the
results. However, in most cases, the preparation of the initial
state is very difficult. This difficulty, however, can be re-

. ) _ (5) Measure the expectation value ob2=o +io
duced by using another way to measure this quantity that . , M
: o =2|0),(1]. It is easy to see that it corresponds to the ex-
requires only one circuit. 1

We first write the operato® as pectation value of the operata ; UV, .
(6) Obtain the expectation value @ by multiplying
(20%) by the constaniV.

M
0=N\2, a?U]v,, 3.1 o . T
izl e (319 The quantum circuit for this procedure is given in Fig. 10.

i a

| | :J|I J I fl * ? T (o3 )
0)=* ! P :: L i
? A

1

— p—— — — — — — f—
|l{ U =g Uy g v B2 Ve
FIG. 10. (Color Measurement of physical quantities using-ancillas qubits {a,...,a}. In this case (¢7)=(1/

2NN (Wol[=M 13U Vi][Wo) (see text

042323-9



SOMMA, ORTIZ, GUBERNATIS, KNILL, AND LAFLAMME PHYSICAL REVIEW A 65 042323

i T T T T a k) {(20%)

=3 T H T Al = (idoth
|4)
3
1

T FIG. 12. Circuit for the measurement of the spectrum of an
— A Hermitian operatof. In this casg(20? )=(¢|e '?¢p) (see text
= B 7 Al =

eigenstates oH. (For example, if we want to compute the

energy of the ground state, thé#) has to have a nonzero

FIG. 11. Circuit for the measurement of spatial and time corre- ; i
overlap with the ground stadd-or finite systems,¢) can be
lation functions. In this casé2¢%)=(T'A;TB;). Notice the sim- P g ) ¥ S¢)

lificati hieved by reducing. t rolldd i it the solution of a mean-field theofa Slater determinant in
pimication achieved by reducing wo controfledoperations Into 1o 456 of fermions or Perelomov-Gilmore coherent states in
only one uncontrolled operation.

the general cageOnce we prepare this stat8ec. 11l A and

3. Measurement of correlation functions Appendix A), we compute(U(t))=(¢|U(t) $), whereU is

H " _ a—iHt
We now consider measuring correlation functions of thethe evolution operatod(t)=e~"". We then note that

form C,g=(TTATB), whereT is a unitary operator and L
andB are operators that are expressible as a sum of unitary | )= > Yol P0), (3.13
operators, n=0

~ - with |} eigenstates of the Hamiltonidt. Consequently
A=2 @A and B=2, B;B;. (3.12
[ ]

L
U(t)= 2g Mt (3.14
The operatofT is fixed by the type of correlation function (U nZO 7l

that we want to evaluate. In the case of dynamical correlation )
functions, T is e "', whereH is the Hamiltonian of the Where\, are the eigenvalues dfi. The measurement of
system. For spatial correlation functiofisis the space trans- (U(t)) is easily done by the steps described in Sec. Il C 1

lation operatore™ " * (p andx are configuration-space op- (settingV=U(t) and U=1 in Fig. 9. Once we have this
eratorg. The method for measuring these correlation func-expectation value, we perform a classical fast Fourier trans-

tions is the same method described in Sec. I C 1 or SeGgyrm fi.e. I~:(>\)=f(0(t)>e”“dt] and obtain the eigenvalues
Il C 2. We can use either the one- or theancilla measure- A, (see Appendix B

ment process.

To minimize the number of controlled operations and also 5 £
the quantity of elementary gates involved, we choblsTe F(N)= 2 277|yn|25()\—7\n). (3.15
=T'A; andV;=TB;. Now, we have to computeU{V;). In n=0

Fig. 11 we show the circuit for measuring this quantity, ajthough we explained the method for the eigenvaluesi of

where the circuit has only one ancilla in the stdte) . A . .
= (|0)+|1))/ V2. There, the controlled operations were re-tAhe extension to any observalfleis straightforward, taking

. . —eiQt ing i
duced by noting that the operation ®f controlled on the Y(t)=€ ™" and proceeding in the same way. _
state|0) of the ancilla followed by the operation df con- _Two comments are in order. The first refers to an algorith-
trolled on the stat¢l) results in a no-controlled operation. mic optimization 'and' points to decreasing the number of
This is a very useful algorithmic simplification. controlled operationgi.e., the nymber of elementary gates
implementedl If we setV=e'?' UT=1 (see Fig. 9 and
4. Measurement of the spectrum of an Hermitian operator perform the type of measurement described in Sec. IlIC 1

Many times one is interested in determining the spectrun%he.A ge_tyvoatr/l; ha§ 'total evolut|or(anC|.IIAa/2 plus - systein
~IQU2giQaM2 \while if we setV=UT=e Q" the total evo-

of an observabléHermitian operatorQ, a particular case e ] )
being the Hamiltoniai. Techniques for getting spectral in- lution is 9722, Thus, this last algorithm reduces the num-
formation can be based on the quantum Fourier transforrRer of gates by the number of gates it takes to represent the
[22,23 and can be applied to physical problefi®sl]. For  operatore "2, The circuit is shown in Fig. 12.

our purposes, the methods of the previous sections yield The second comment refers to the complexity of the
much simpler measurements without loss of spectral inforquantum algorithm as measured by system size. In general, it
mation. For a giverH, the most common type of measure- is difficult to find a state whose overlap scales polynomially
ment is the computation of its eigenvalues or at least itsith system size. If one chooses a mean-field solution as the
lowest eigenvaludthe ground-state energyTo do this we initial state, then the overlap decreases exponentially with
start from a staté¢) that has a nonzero overlap with the the system size; this is a “signal problem,” which also arises
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in probabilistic classical simulations of quantum systemsconsists of measuringSec. 1ll C 3 the mean value of the
The argument goes as follows:| i) is a mean-field state for operatorU (t")O(t) UT(t”) in the statd W),
anN® (=volume system size whosémodulus of the over-
lap with the true eigenstate jg|<1, and assuming that the . b NN
typical correlation length of the problegnis smaller than the (¥ rlU(t)O(DHU(t )|‘I'T>:Z, et et (W[ W)
linear dimensionN, if we double N, the new overlap is nn
~e2d InfA, X<\Pn’|\pT><\Pn|O(t)|\Pn’>v
We would like to mention that a well-known alternative (3.18
way of computing part of the spectrum of an Hermitian op-
erator is using the adiabatic connection according to theind then by performing a double Fourier transform in the
Ge!I-Mann—Low theorem, an approach that has been dey4riaplest’ and t” [ﬁ()\,)\/):J'ei)\t’ei)\’t”F(t/,tn)dtrdtn]
scribed in[1]. we obtain the desired results. A particular case of this proce-
] ) dure is the direct computation of the exact estimator
5. Mixed and exact estimators <‘1'n|o(t)|‘l’n>/<‘l’n|‘l'n>-
We have already explained how to compute different
types of correlation functions. But in most cases, we do not |v, APPLICATION TO FERMIONIC LATTICE SYSTEMS
know the state whose correlations we want to obtain. The ) . . ] )
most common case is wanting the correlations in the ground N this section, we illustrate a procedure for simulating
state|W,) of some HamiltonianH. Obtaining the ground ferrmomc systems on a quantum computer, showing as a
state is a very difficult task; however, there are some usefuparticular example how to obtain the energy spectrum of the
methods to approximate these correlation functions. Hubbard Hamiltonian for a finite-sized system. We will ob-
Suppose we are interested in the mean value of a unitatin this spectrum through a simulation of a quantum com-
operatorO(t). If we can prepare the initial stafelr) in puter on a classical computer, that is, by a quantum simulator
such a way thatWy)=|¥)+¢€|®) (e is intended to be [26].

smal), then after some algebraic manipulatiof5], we We start by noting that the spin-fermion connection de-
have scribed in Eqs(2.10 and(2.11) implies that the number of
qubits involved in a two-dimensional lattice is=2(N,
(TOM|Tr)  1[(TOM)|[Tg) (T1]O(t)|¥r) X Ny) if one uses the standard model to simulate spin-1/2

= + fermions. Also, the number of states for lamgubit system is

(Wo|¥r) 21 (Yol Wo) (U] W) 2L, From this mapping, the first, x N, qubits represent the
+O(d), (3.16 states that have spin-up fermions, and the other q{ibNg

XNy+1) up to 2(N,XNy)], spin-down fermions. In other
where the term on the left-hand side of E8.16) is known  WOrds, if we have a system of four sites and have a $taje
as the “mixed estimator.” Also, we can calculate the secondVith Onﬁ eIectcrjon with ip'nhu% at thehﬁrstsne and one elecé
it ; ; . tron with spin down at the third site, then this state in secon

term on the right-hand side of E¢3.16 with an efficient uantization i§¥)=al .al. |v), where the fermionic opera-

quantum algorithm, since we are able to prepare eggily). q " 1,793,117/, ¥ ! op

Next, we show how to determine the mixed estimator using 40' &, creates a fermion in sitewith spine, and|v) is the

quantum algorithm. state with no particleévacuum state In the standard model,

If |W,) is the ground state, then it is an eigenstate of thethis state corresponds to

evolution operatorlfl(t’)ze*‘H", and we can obtain the 6

mixed estimator by measuring the mean valu& ¢f') O(t): [Wy=c[] obo’ [v)=]0)e|1)|1)®]1)®]1)®]1)|0)

BecausgV)=32,a,|¥,), wherea,=(¥,|¥) and|¥,) =1

are the eigenstates &f [U(t')|W,)=e " |W¥ )] we can ®|1)—=|TLILLITL), (4.1)

measurgSec. IIIC 3

Where|5) is the vacuum of the quantum spin 1/2, which we
N _ it/ have chosentobg | || |]]]).
(WUt )O(t)mfﬁ_; et (W[ W) (W O(W)[¥). To represent thé-qubit sy;tem on a classical computer,
(3.17  we can build a one-to-one mapping between thep@ssible
states and the bit representation of an intdgaefined by
By performing a Fourier transform in the variablg L
[T:(w)=fei“"'F(t’)dt’] in Eqg. (3.17 and making the rela- _ ; i-1
tion between the expectation value for timand the expec- I 2’1 [n(>271, 4.2
tation value forO(t)=1, we obtain the value of the mixed
estimator. Then, by using Eq.(3.16, we obtain wheren(i) (occupancyis O if the spin of theith qubit is
(Wo|O(t) | W) {(Wo|Wo) up to ordere?. |1) (1), or 1 if the state i§0) (7). In this way, the state
By similar steps, we can obtain expectation values of thelescribed in Eq(4.1) maps tol =65. Because we are inter-
form (W, |O(t)| W, /(¥ ,|¥,) for all n andn’. The trick  ested in obtaining some of the eigenvalues of the Hubbard
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Wigner transformation, mapping a two-dimensional spin-1/2
system into a one-dimensional chain, with the use of Eqgs.

—® ® ® L] ; (2.11) and(2.10 (Fig. 8).
( L As explained in Sec. Il C 4, we find it convenient to start
from the mean-field ground-state solution of the model, rep-
resented byH g,
. s 4 ® ]
—> - _ T T
Hve= _(i%a [t j): 0B+ 1i):0T B+ 1);084);0)
T 1
ty Tty(a jy: 00 ,j + 1);0 T (1 j+1):08 j);0) ]
—® G F 0 < +UUED LG MG T NG = (Na i)
S WL
where the expressions in angular brackets are expectation
— ®-— - @ o — values in the mean-field representation. Without loss of gen-

erality, we takel/>0 and select the antiferromagnetic
ground-state mean-field solution. For this solution, we re-
. , o quireN, andN, to be even numbers. If we were to simulate
FIG. 13.(Color) Two-dlmen5|on_al Iat_tlce in the Hubbard model. a one-dimensional lattice, we would, however, choose one of
Here, the green and blue arrows identify the even and odd bondsthese numbers to be even and the other equal to 1. In the
. ] following we will only consider the half-filled case, which
model, we added an ancilla quigiig. 12. The “new” sys-  corresponds to having one fermion per site; iMe=N,
tem hasL=2(N,xN,)+1 qubits, and we can perform the XNy .
mapping in the same way described above. First, we prepare the initial state. As discussed in Sec.
To simulate the evolution operatbi(t)=e "M onaclas- Il A, we do this by exploiting Thouless’s theorem. We also
sical computer using the above representation of quanturose the first-order Trotter approximati¢®ec. 11l B) and then
states, we programmed the “elementary” quantum gates oflecompose each term of the evolution into one- and two-
one- and two-qubit interactions. Eathqubit state was rep- qubit interactions. Here, the matr®M now depends on the
resented by a linear combination of the integei&q. (4.2)]. parameters of the Hamiltonian, as does the ground-state
In this way, each unitary operation applied to one or twomean-field solution. After the decomposition, we then pre-
qubits modified by changing a bit. For example, if we flip pare the desired initial state by applying the unitary evolu-
the spin of the first qubit, the numbérchanges by 1. tions to a boot-ugpolarized state.(See Appendix A.
We want to evaluate some eigenvalues of the spin-1/2  Next, we execute the evolutidni(t) = e~ 'Ht. For the sake

Hubbard model in two spatial dimensions. The model is depf clarity we only present the first-order Trotter decomposi-

fined on a rectangle dfl, < N, sites and is parametrized by tjon. To this end, we rewrote the Hubbard Hamiltonian as
spin-preserving hoppings andt, between nearest-neighbor

sites, and an interactialf on site between fermions of dif- H=K+V=K;+K +V, (4.4

ferentz components of spifFig. 13. The Hamiltonian is ) o ) ] )
whereK, is the kinetic term(hopping elements with spie)

and V is the potential-energy term. Becaug€, ,V]_#0
H=— 2 [tx(agi,j);ga(i+1,j);a+ a(Ti+1,j);ga(i,j);a) and[K, ,Ifl], =0 we approximated the short-time evolution
(i) operatorU(At) by

T T
(@G0B0 i+ 10T A+ 1)108 1)) O(At)=e ot g iKAe=IVAL (At .0} (4.5

+Z/{(|E]) n(i:j)JTn(i:j);l' (43) Because the terrTV=L{Z(i’j)n(i’jmn(i'j);l=E|N:XTNVV| is a
sum of operators local to each lattice site, each of these terms
commute so

wheren(i'j);(,:a{i'j);ga(i,j);g is the number operator and the
label (i,]); o identifies the site X-Y position and thez com-

. . . —iVAt _ —iV|At
ponent of spin §=+1/2). We assume that the fermionic e —I_II e At (4.9
operators satisfy strict periodic boundary conditions in both
directions:aj);o=a(i+N,.j)ic = &(i,j+Ny):o - The kinetic term is a sum over the bonds in the lattice

To obtain the energy spectrum for this model, we use thé€Fig. 13: K,=2,nqKpon¢s- Each bond joins two nearest-
method described in Sec. Il C&ee Fig. 12.For this, we neighbor sites, either in the vertical or horizontal direction
represent the system in the standard model, using the Jordaffrig. 13. Because of the periodic boundary conditions, the
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sites at the boundary of the lattice are also connected b} . 14000 — T T T T T T
bonds. We note that the termsknthat share a lattice site do I ;%:232;5989) ]
not commute. For these terms we rewilite as 1ot Alozie) ]
10000 | -
Ko=K3. ot KG o K.+ K., 4.7 I 2500
8000 |- 20008
whereK®?) are the kinetic termsfor spin o) in the x di- I ol
rection that involve the evefe) and odd(o) bonds in this 6000 |- ol
direction(green and blue lines in Fig. 1L3Then we perform :
the first-order Trotter approximation 4000 |- wr
A . ' . . ]
e iKgAt L o= iKS Atg—iKG Ata—iKJ Atg—iKy At (4.8) 2000 |- JL” 7o ‘[.5 Energy °3
5 L

Because the odd and even bonds are not connected, ea —_—

. . . -10.50 -10.25 -10.00 -9.75 -9.50 -9.25 -9.00
term in Eq.(4.7) is a sum of terms that commute with each 0o Energy
H e(0) _ e(o);m e(o);m e(o);m’
citgert,ht:r?t 15K o = ZmK o™ Where[K#;g Ko 1- FIG. 14. Energy spectrum of the Hubbard model obtained from

the quantum simulator. The lattice hax 2 sites(which requires
16 qubitg, with t,=1, t,=1, andl/=4 and the time steps used in
exp( — 'Ki(?r)At): 1T eX[X—iKZ(.?,);mAt). (4.90  the Trotter approximatiofto prepare the initial state and apply the
m ' evolution areAt;=At,=0.05. The numbers in parentheses are re-
sults obtained from the Lanczos diagonalization.
In summary we approximated the short-time evolution
U(At) by similar to those described above would be follow€there
are two types of fermions but the isomorphism still applies.

~ _ _eomy Similarly, if one wants to use a different quantum computer,
vian~ m1'm2]r;'-[3vm4;‘7 XK, "AD which has another natural “languagé’e., a different opera-
. _ tor algebra, which therefore represents a different model of
X exp( —iK 3 T2At) exp —iK ] TeAL) computation, the ideas developed above would be applied
after simply choosing the right isomorphism or “dictionary”

X exp(—iK ] T#AL) 410 B

~iVjAt
1_|[ e .

. . V. CONCLUDING REMARKS
The total evolution operator is

We addressed several broad issues associated with the
simulation of physical phenomena by quantum networks. We
first noted that in quantum mechanics the physical systems
we want to simulate are expressed by operators satisfying
Each unitary factor in the evolution is easily decomposedtertain algebras that may differ from the operators and the
into one- and two-qubit interactioriSec. Il B). algebras associated with the physical system representing the

The final step is the measurement process. To obtain songuantum network used to do the simulation. We pointed out
of the eigenvalues, we use the circuit described in Fig. 12that rigorous mappingk3] between these two sets of opera-
Thus we are interested in the operafd;(t’)‘”f instead of tors exist and are sufficient to establish the equivalence of
the different physical models to a universal model of quan-
tum computation and the equivalence of different physical
systems to that model.

Ot)=I1 O(av). (4.11)
J

U(t') so we actually performed the first two steps after add-
ing an ancilla qubit a(Fig. 12, and then started with a

“new” Hamiltonian H=—H®¢7/2 (and also a “new” evo- We also remarked that these mappings are insufficient for
lution U(t)=e" 'Ht) and performed the same steps describedstablishing the fact that the quantum network can simulate
above. any physical system efficiently even if the mappings between

The results for the simulation of the Hubbard model arethe systems only involves a polynomial number of steps. We
shown in Fig. 14(the eigenvalues were obtained using theargued that one must also demonstrate the main steps of
correction of Appendix B There, we also show the param- initialization, evolution, and measurement, all of which scale
etersAt,; andAt, corresponding to the time steps we used inpolynomially with complexity. More is needed than just hav-
the initial state preparation and in the time evolution, wherang a large Hilbert space and inherent parallelism. Further,
we used a first-order Trotter approximation. we noted that some types of measurements important to un-

In closing this section we emphasize that the simulatiorderstanding physical phenomena lack effective quantum al-
of the Hubbard model by a quantum computer, which usegjorithms.
the standard model of quantum computing is just an ex- In this paper we mainly explored various issues associated
ample. If instead one wants to simulate the Anderson modakith efficient physical simulations by a quantum network,
[27] using the same model of a quantum computer, then steffscusing on the construction of quantum-network models for
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such computations. The main questions we addressed wetom a convergence viewpoirio use a different basis: for a

how do we reduce the number of qubits and quantum gatediluted gas(small p) it might be more convenient to use a

needed for the simulation and how do we increase théocalized basis setWannier functiond31]). More esoteric

amount of measurable physical information. We first summabasis-set choices, such as wavel83], are always possible.

rized the quantum-network representation of the standard Finally, many problems in physics simulation, such as the

model of quantum computation, discussing both one-qubi¢hallenging protein-folding problem, are considered to be

and multiqubit circuits, and then recalled the connection beWell modeled by classical physics. Can quantum-networks

tween the spin and fermion representations. We next dis2€ used to obtain significantly bettémore efficient algo-

cussed the initialization, evolution, and measurement protithms for such essentially classical-physics problems?

cesses. In each case we defined procedures simpler than

those presented in our previous papE greatly improving ACKNOWLEDGMENT

the efficiency with which they can be done. We also gave

a|gorithms that greaﬂy expanded the types of measurements We thank Ivar Martin for useful discussions on the clas-

now possible. For example, besides certain correlation funcsical Fourier transform.

tions, the spectrum of operators, including the energy opera-

tor, is now pOSSIble Qur application of thlS teChnOlqu to a APPENDIX A: DIFFERENT STATE PREPARATION

system of lattice fermions and the construction of a simulator

was also discussed and used the Hubbard model as an ex- 1. Coherent state preparation: An example

ample. This application gave an explicit example of how the - Here we illustrate by example the decomposition of an

mapping etween he operaor o he YSEA Sem o Moporto of e forne ™ 0 enerate a il st T
q pu %ally M is generated by some mean-field solution to the

tion work. We also gave details of how we implemented thephysical problem of interest. Considerable detall is given.

initialization, evolution, and measurement steps of the quan- We consider two spinless fermions in a one-dimensional
tum network on a classical computer, thereby creating ttice of four sites Ke=2n=4). The operators, and ajT

guantum-network simulator. o o ) .
Clearly, a number of challenges for the efficient simula-2"nihilate and create a fermion in the gitef the lattice. We

tion of physical systems on a quantum network remain. wavant to prqrp?re an initial statle;&’)zcgcj,,zlvg from .the
are prioritizing our research on those issues associated wifHatel¢)=a:a;|v), where the operatorg, andcy annihilate
problems that are extremely difficult for quantum many-body@nd create a fermion in the state of wave vedaihat is,
scientists to solve on classical computers. There are no a

known efficient quantum algorithms for broad spectrum CE:E > ekxial, (A1)
ground-staté€zero-temperatujeand thermodynamic€inite- 231 )

temperature measurements of correlations in quantum

states. These measurements would help establish the phas@serek=0,7/2,7,37/2 are all possible wave vectors of the
of those states. Generating those states is itself a difficulystem and; is the position in the lattice of the sitée.,
task. X, =j—1).

Another issue that is important for both classical and ' From Eq. (A1), we see that the states’) is a linear
quantum simulations of physical phenomena concerns thgympination of states of the form?a}lv). The change of

discretization of continuous systems, that is, those that arg,gjgeiM (Eq. 3.5 between the two sets of fermionic opera-
characterized by an algebra of operators that admits

Jo : . X rs is
infinite-dimensional representation. On both classical and

guantum computers this requires approximate representa- 1 1
tions on a finite-dimensional Hilbert space. The techniques Co 11 1 1 a
that have been developed and are described in the extensive ¢l 11 i -1 —i|la}
literature on classical simulations of quantum mechanics are o172l 21 o1 il arl (A2)
directly applicable to simulations on quantum computers as & 3
has been noted by several authi@4,28,29. An example is Chop 1 —i =1 i ay

the simulation of interacting electrons in Eucliddathspace.
In such a case one can proceed similarly to the usual practiqe \ve calculate the eigenvalues and the eigenvectors of the
in classical simulations, i.e., discretize the system in a conmairix ™ from Eq.(A2) we obtain

venient fashion and simulate its lattice version. The type of
discretization(single-particle basjss system and observable

dependent. For example, to simulate the homogeneous elec- -1 000

tron gas(jellium mode) using a discrete quantum computer, - 0O i 00

one should first write its Hamiltonian in second-quantized em=l 5 o0 1 ol (A3)
form in a plane-wave basisnomentum representatipf30]

and then study the convergence of the measured observable 0 0 0 1

as a function of the momentum cutoff. However, for some
densitiesp of the electron gas, it may be more convenientwhereMyp is M in its diagonal form. Then, we have

042323-14



SIMULATING PHYSICAL PHENOMENA BY QUANTUM NETWORKS PHYSICAL REVIEW AG5 042323

1 As noted in Sec. Ill B, sometimes the decomposition of
Overlap the operatoiJ in terms of one- and two-qubit operations is
very difficult. To avoid this problem, we can use the Trotter

0.998 decomposition(3.7). In Fig. 15 we show the overlajprojec-

tion) between the statiep’) and the state prepared using the
first-order Trotter decomposition df applied to the state

0.996 | d’ > )

0.994 2. Jastrow-type wave functions

A Jastrow-type wave function is often a better approxima-
tion to the actual state of an interacting system, particularly
0 0.02 0.04 0.06 0.08 01 when interactions are strong and short ranged. Often one
At varies the parameters in these functions to produce a state
that satisfies a variational principle for some physical quan-
FIG. 15. Overlap between the exact initial state and the statqity like the energy. Such states build in correlated many-
prepared with the Trotter decomposition for a system with two fer-qqy effects and are, in general, entangled states. The states
mions in a four-site lattice. described in Sec. 1 of Appendix)Are unentangled.
The classic form of a Jastrow-type wave function for fer-

0.992

= 0 00 mions is[18]
_ 0 w2 0 0 ,
Mp=—iln(eMp)= o o ol (A4) [Wo)=e%a"), (A9)
0 0 0 O where S=3; e ¢/ ¢+ Sij BijuiCl ¢l e+ - - - is an opera-

) _ : ~ tor that creates particle and hole excitations, &d) is
To obtain the matriM =A'MpA, we need to know the uni- typically a Slater determinant. THe-body correlations em-
tary matrixA, which is constructed with the eigenvectors of hodied inS take into account the short-range forces not in-

the matrixe™. In this case we have cluded in|¢’). We will assume thaty;; and B;j,, have been
determined by some suitable meaffer example, by a
—12 0 N2 1n2 coupled-cluster calculationlf we decompose® into a lin-
12 —12 1n2 0 ear combination of unitary operators, we can then decom-
At= , (A5) pose|¥,) into a linear combination of Slater determinants
1/2 0 —1N2 1K2 and thus prepargV,) as explained ifnl]. Also, if the coef-
12 12  1n2 0 ficientsa;; andB;jx are small, we can approximaé by the
first few terms in its Taylor expansion. Again, the stgtg)
hence, the Hermitian matrid is will be a linear combination of Slater determinants.
Obviously, it is more natural for a quantum computer to
1 -1 -1 -1 generate a correlated state of the form
| -1 2 1 0 _
M=7 -1 1 1 1/ (AB) [Woy=€'%|¢"), (A10)

-1 0 1 2 where €S is a unitary operator. In order to determine the
N-body correlation coefficients;; and g;;; , one could, in

In order to obtaidq&’)‘y\{e prepare the staies) and then principle, use the technique of unitary transformations intro-
apply the evolutionU =e'2 M2 If we want to simulate this guced by Villars[33].

fermionic system in a quantum compuistandard model
we have to use the spin-fermion connecti@ec. Il Q and
write the operatotJ as a combination of single-qubit rota-
tions and two-qubit interactions. Also, the initial stdi) In practice, to evaluate the discrete fast Fourier transform
must be written in the standard model, (DFFT) one uses discrete samples, therefore(Bd.5 must
- - be modified accordingly. In Fig. 14 we see that instead of
|¢y=alallv)=ci(—070%)[v)=00%[v) (A7)  having s functions(Dirac’s functions, we have finite peaks
in some range of energies, close to the eigenvalues of the
=10)1®[0),®[1)3®|1)4=|1111), (A8)  Hamiltonian. Accordingly, one cannot determine the eigen-
_ values with the same accuracy as other numerical calcula-
where the vacuum state in the standard modéb)js=|1), tions. However, there are some methods that give the results
®|1),@- - ®[1),=[l]---1) [(|Z{—oy)a’ [v)=a;lv)  more accurately than the DFFT.
=0]. With this mapping, the stafe’) is a linear combina- As a function of the frequenc{),,, the DFFT[F(Q,,)]
tion of states of the component of spin 0. is given by

APPENDIX B: DISCRETE FOURIER TRANSFORMS
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5 N-1 _ If Q. is close to one of the eigenvaluag and the\,, are

F(Q,)=At E F(tj)e'ﬂmtj, (B1) sufficiently far apart to be well resolved, we can neglect all
=0 terms in the sum other tham If we take Q),, and Q,,,

=Q0,,+27/NAt, both close toA, in such a way that

wheret;=jAt are the different times at which the functién ~ _ — )
IF(Q)|,|F(Qms1)|>0, then from Eq(B3) we find that

is sampled[in the case of Sec. IIIC4F(tj)=<0(tj)>],

Q,=27mm/NAt are the possible frequencies to evaluate the ~ o
. F(Q ) e|(Qm )\n)At_l
FFT of F(t) andN is the number of samplesN(must be an m+1) . (B4)
integer power of 2. _ FQ,) el (Qmi1-AAt_q
Since we are interested iR(t)=35_;|y,/%e ™t (Eq.
3.14), After simple algebraic manipulationgand approximating

e @m= M)At~ 1 +i(Q,,—\,)At and the same for the de-

- nominator in Eq(B4)] we obtain the correction to the energy

c
~ . )\ ]
FQm=AtD |y [2 > elmalt, ®2)
nmo om0 A=+ AN, (B5)
and then with
L Q=N AN _ 2 F(Qmi1)
_ e 1 ™ m+1
— Y — AN~ — Re = — . B6
F(m) At;0|7n| gl (@mAAt_q B3 ! NAt E{F(Qm)—F(Qmﬂ)] (59
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