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Coding with finite quantum systems

A. Vourdas
Department of Computing, University of Bradford, Bradford BD7 1DP, United Kingdom

~Received 17 December 2001; published 5 April 2002!

Coding using quantum states in an angular-momentum (2j 11)-dimensional Hilbert spaceH is considered
in this paper. A concatenated code is studied in two steps. In the first step the spaceHN is considered and the
code is its subspaceHA spanned by the direct products ofN angular-momentum states with the samem. In the
second step the spaceHA

M is considered and the code is its subspaceHB spanned by the direct products ofM
angle states with the samem. It is shown that the code introduces redundancy with respect to any transforma-
tion.

DOI: 10.1103/PhysRevA.65.042321 PACS number~s!: 03.67.Lx
as
i

nu

t

fo
se
r

in

th
b
a
r
s
e
de
it

-

i-

an
or
al

b
n

gl

we
eas
od-

lar

the

e

nd

r-
the

tor
-
ses

g

lois
con-
ll

e

s.
I. INTRODUCTION

A lot of the work on quantum-information processing h
been based on qubits associated with quantum systems
two-dimensional angular-momentum (j 51/2) Hilbert space
~reviewed in @1#!. Most recently the use ofd-dimensional
Hilbert spaces~qudits! has been considered@2#. The use of
infinite-dimensional Hilbert spaces associated with conti
ous variables has been studied in@3#. From a practical point
of view in many qubit realizations the ‘‘natural’’ Hilber
space of the system is multidimensional~or infinite dimen-
sional! and only a two-dimensional subspace is utilized
information processing while the rest is ‘‘wasted.’’ The u
of a bigger d-dimensional subspace could be much mo
efficient.

The purpose of this paper is to generalize Shor’s cod
method@4# for the case of qudits.

Coding adds redundant information to a message so
in spite of partial corruption of the encoded message
noise, it is possible to recover the original message. In qu
tum coding the Hilbert spaceH is embedded into a large
Hilbert space. The scheme considered here u
(2 j 11)-dimensional angular-momentum Hilbert spac
~Sec. II!. It is the quantum version of a concatenated co
The idea is to construct a code in two steps by starting w
a code which is a subspaceHA in HN, spanned by angular
momentum states with the samem ~Sec. III!. Its words are
used as symbols of a new alphabet in the second step~Sec.
IV !. Here the code is a subspaceHB of HA

M , spanned by
angle states with the samem. The code of Sec. III is assoc
ated with ‘‘anisotropic redundancy’’ in theJ direction. The
code of Sec. IV introduces extra redundancy in theu direc-
tion and the combined effect is a general redundancy in
direction. The proposed scheme will protect quantum inf
mation against ‘‘small’’ errors that occur on some but not
the components.

II. DISPLACEMENTS AND SQUEEZING
IN FINITE SYSTEMS

Finite quantum systems have been studied originally
Weyl and Schwinger@5#. More recently this work has bee
applied in various contexts by various authors@6#. In Ref.@7#
we have applied these ideas in the context of the an
1050-2947/2002/65~4!/042321~6!/$20.00 65 0423
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angular-momentum quantum phase-space. In this section
introduce the notation and review briefly some of these id
in the context of qudits, which are needed for quantum c
ing in later sections.

Performing a finite Fourier transform on the usual angu
momentum states~which we denote asuJ; j ,m&) we intro-
duce the angle states~which we denote asuu; j ,m&). Herem
takes values inZ(2 j 11) @the integers mod(2j 11)#. Per-
forming the same Fourier transform on both sides of
angular-momentum operators (J1,J2,Jz) we get the angle
operators (u1,u2,uz) that form an su(2) algebra. Like th
uJ; j ,m& are eigenstates ofJ2,Jz, the uu; j ,m& are eigenstates
of u2, uz . The quantum phase space for qudits isZ(2 j
11)3Z(2 j 11). We consider displacement operators a
study the corresponding Heisenberg-Weyl group.

Sl„2,Z(2 j 11)… transformations in the angle-angula
momentum quantum phase space, are the analog of
Sl(2,R) squeezing transformations in the harmonic oscilla
context. When 2j 11 is the power of a prime, stronger re
sults can be derived. The reason is that the formalism u
integers inZ(2 j 11). This is in general a commutative rin
with a unity; and in the case that the 2j 11 is a power of a
prime, a Galois field. The existence of inverses in the Ga
case, ensures that the squeezing concepts of dilation and
traction in theJz anduz directions correspondingly, are we
defined.

We have explained in@7# that the formulas in ‘‘Bose-
Hilbert spaces’’ with integerj are slightly different from their
counterparts in ‘‘Fermi-Hilbert spaces’’ with half-integerj.
For simplicity we limit our discussion to the former cas
~integer j ).

A. Displacements

We denote asuJ; j ,m& the usual angular-momentum state
m belongs toZ(2 j 11). The statesuJ; j ,m& span the Hilbert
spaceH. The finite Fourier transform is defined as

F5~2 j 11!21/2(
m,n

v~mn!uJ; j ,m&^J; j ,nu, ~1!

v~a!5expF i
2pa

2 j 11G ; FF†5F†F51, F451. ~2!
©2002 The American Physical Society21-1
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Using these Fourier transforms we have introduced@7# theu
basis of angle statesuu; j ,m& as follows:

uu; j ,m&5FuJ; j ,m&5~2 j 11!21/2(
n

v~mn!uJ; j ,n&.

~3!

We have also introduced the angle operatorsu1,u2,uz,

uz5FJzF
†, u15FJ1F†, u25FJ2F†, ~4!

which obey the su(2) algebra. Theu operators act on theu
states in an analogous way to theJ operators acting on theJ
states. The displacement operators are defined as

X5expF2 i
2p

2 j 11
uzG , Z5expF i

2p

2 j 11
JzG , ~5!

X2 j 115Z2 j 1151, XbZa5ZaXbv~2ab!, ~6!

wherea,b are integers inZ(2 j 11), and perform displace
ments along theJz anduz axes, as follows:

XbuJ; j ,m&5uJ; j ,m1b&, Xbuu; j ,m&5v~2bm!uu; j ,m&,
(7)

ZauJ; j ,m&5v~ma!uJ; j ,m&, Zauu; j ,m&5uu; j ,m1a&.
~8!

It has been explained in Ref.@8# that the displacement op
erators

D~a,b!5ZaXbv~2221ab!, ~9!

where 221 is the inverse of 2 withinZ(2 j 11), are genera-
tors for the U(1)3SU(2j 11) transformations in the Hilber
spaceH. They are an alternative to the usual Cartan-W
generators. Their commutator is

@D~a1 ,b1!,D~a2 ,b2!#[D~a1 ,b1!D~a2 ,b2!

2D~a2 ,b2!D~a1 ,b1!

52i sinF 2p

2 j 11
221~a1b22a2b1!G

3D~a11a2 ,b11b2!. ~10!

Therefore infinitesimal U(1)3SU(2j 11) transformations
can be written as

g511(
a,b

labXaZb, ~11!

wherelab are infinitesimal coefficients. For later purpos
we stress here thatX and Z should be seen not only as op
erators that perform shifts in theJ andu directions~which is
a very special case of transformations!, but throughXaZb,
also as generators of general U(1)3SU(2j 11) transforma-
tions in the Hilbert spaceH.
04232
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B. Galois qudits

In order to introduce squeezing transformations in the
dit quantum phase spaceZ(2 j 11)3Z(2 j 11) we need to
introduce the concept of dilation by a factora @in Z(2 j
11)# in the Jz direction; and dilation by a factora21 ~i.e.,
contraction by a factora) in theuz direction. The question of
the existence of the ‘‘inverse’’ of an element ofZ(2 j 11)
arises here.

When (2j 11) is not a power of a primep, the Z(2 j
11) is a commutative ring with a unity, and inverses do n
necessarilly exist. Only when the (2j 11) is a power of a
prime p (2 j 115pn), the Z(pn) is a field and all nonzero
elements have an inverse. This a famous result by Galois
the corresponding fields are called Galois fields. In Ref.@7#
we called the systems with a Hilbert space whose dimens
is the power of a prime Galois quantum systems. Here
call the qudits associated with Hilbert spaces with dimens
pn Galois qudits. The phase spaceZ(pn)3Z(pn) of Galois
qudits is a finite geometry@9# and dilations, contractions, an
discrete rotations are well defined. In contrast, the ph
space of non-Galois qudits is a set of points with no g
metrical structure.

In @7# we have studied a factorization of a finite syste
into subsystems. This is based on the Chinese remai
theorem and is similar to the factorization used in ‘‘fast Fo
rier transforms’’ in order to reduce the computation time.
order to present the result in the present context, we facto
an arbitrary 2j 11 in terms of powers of prime numbers,

2 j 115~p1!n1
•••~pN!nN. ~12!

We also introduce the integers

r i5
2 j 11

pi
ni

, t i r i51; ~modpi
ni !. ~13!

If m belongs toZ(2 j 11), we define its ‘‘remainders’’mi

5m(modpi
ni) and m̄i5mti(modpi

ni) where mi belongs to

Z(pi
ni). We then have the one-to-one mappings

m↔~m1 , . . . ,mN!, m↔~m̄1 , . . . ,m̄N!, ~14!

which we use to define an isomorphism between the Hilb
spaceH2 j 11 and the direct product of all the Hilbert spac
Hp

i

mi as

uJ; j ,m&↔ ^ i 51
N uJ; 1

2 ~p2
ni21!pi

ni ,m̄i& ~15!

or equivalently as

uu; j ,m&↔ ^ i 51
N uu; 1

2 ~p2
ni21!p2

ni ,mi&. ~16!

The proof of the above has been given in@7#. Using these
results we can factorize any qudit as a product of Ga
qudits.

We finally point out that Galois fields and finite geom
etries play an important role in classical-information proce
ing. Although in this paper we use the Galois qudits only
1-2
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the context of squeezing, we anticipate that they might pla
wider role in quantum-information processing.

C. Squeezing: Sl„2,Z„2j¿1…… transformations

We consider the transformations

X85XaZb, Z85XgZd, ad2bg51@mod~2 j 11!#,
(17)

wherea,b,g,d are integers inZ(2 j 11). These transforma
tions preserve Eq.~6! and form the Sl„2,Z(2 j 11)… group.
They are the analog of the Sl(2,R) transformations in the
harmonic oscillator phase space, which lead to the Bogo
bov transformations. We note that for Galois qudits, fo
given triplet a,b,g ~with aÞ0) there existd5a21(bg
11), which satisfies Eq.~17!.

The general operators that lead to the transformations~17!
have been given in@7#. For later purposes we give here th
‘‘dilation-contraction’’ operators that perform the transform
tions ~17! with b5g50 andd5a21,

S~a!5 (
n52 j

j

uJ; j ,an&^J; j ,nu5 (
n52 j

j

uJ; j ,n&^J; j ,a21nu

5 (
n52 j

j

uu; j ,a21n&^u; j ,nu5 (
n52 j

j

uu; j ,n&^u; j ,anu.

~18!

We can prove that

S~a!XS†~a!5Xa, S~a!ZS†~a!5Za21
. ~19!

They are the analogs of thex85ax andp85l21p in the x
2p plane ~the phase space of the harmonic oscillator!. In-
deed the ‘‘dilation’’ n85an provides a one-to-one ma
Z(pm)→Z(pm) in the ‘‘Jz direction,’’ and the ‘‘contraction’’
n95a21n provides a one-to-one mapZ(pm)→Z(pm) in the
‘‘ uz direction.’’

III. J REDUNDANCY

In classical coding we start with an alphabeth of several
distinct symbols and introduce redundancy by construc
words of lengthN. The code is a subset ofhN. Noise can
change a letter into another letter. In quantum coding we s
with a Hilbert spaceH ~in our case the one considered in t
preceding section!. The code is a subspace ofHK. Noise
performs transformations inHK.

In this paper we generalize Shor’s coding method for
dits. This is the quantum version of a concatenated c
~e.g., @10#!. The idea is to construct a code in two steps.
the first step considered in this section the code is the s
spaceHA of HN spanned by the direct products ofN angular-
momentum states with the samem. We consider various
transformations and show that this introduces ‘‘anisotro
redundancy’’ in theJ direction.
04232
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A. Hilbert space and operators

We consider states in the direct productHN

[H ^ •••^ H (N times!. In this (2j 11)N-dimensional
space we consider the (2j 11)-dimensional subspac
spanned by the vectors

HA5$uJA ; j ,m&[uJ; j ,m& ^ •••^ uJ; j ,m&, m52 j , . . . ,j %.
(20)

The Hilbert spaceHA is isomorphic to the Hilbert spaceH
through the mappinguJA ; j ,m&↔uJ; j ,m&. Given some states
and operators inH, we use the same notation for their cou
terparts inHA with an additional indexA. For example, the
operatorJzA and its eigenstatesuJA ; j ,m& in HA correspond
to the operatorJz and its eigenstatesuJ; j ,m& in H.

We call PA the projection operators inHA,

PA5(
m

uJ; j ,m&^J; j ,mu ^ •••^ uJ; j ,m&^J; j ,mu. ~21!

We use the notation Wi[1^ •••^ W^ •••^ 1 (i
51, . . . ,N) for operators acting onHN, with the operatorW
acting on thei Hilbert spaceH. It can be easily seen that

@PA ,Jzi#5@PA ,Zi #50, i 51, . . . ,N. ~22!

Using this we can show that

JzA5JziPA ,

~JzA!25JziJzkPA , . . . ,~JzA!N5Jz1 , . . . ,JzNPA, ~23!

and also that

ZA5ZiPA ,

~ZA!25ZiZkPA , . . . ,~ZA!N5Z1 , . . . ,ZNPA . ~24!

We note, however, that analogous relations forJ1 i andJ2 i
are not true. For example,PAJ1 iPA5PAJ2 iPA50.

It is easily seen that

ZiZk
21uJA ; j ,m&5uJA ; j ,m&, @ZiZk

21#2 j 1151. ~25!

Therefore theZiZk
21 are stabilizers of all states inHA . They

form an Abelian finite group with N21 generators,
Z1Z2

21 ,Z2Z3
21 , . . . ,ZN21ZN

21 . We call Gi ( i 51, . . . ,N
21) the cyclic group of order 2j 11, generated byZiZi 11

21 .
The total Abelian finite group of the stabilizers is the dire
product

G5G13•••3GN21 ; Gi5$1,ZiZi 11
21 , . . . ,@ZiZi 11

21 #2 j%,
(26)

and is of order (2j 11)N21.
The Fourier operatorF, acting on the states of the Hilbe

spaceH, corresponds to the Fourier operatorFA acting on
the states of the Hilbert spaceHA , given by
1-3
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FA5~2 j 11!21/2(
m,n

v~mn!uJ; j ,m&^J; j ,nu ^ •••^ uJ; j ,m&

3^J; j ,nu. ~27!

We call N̄ the remainder of N divided over 2j 11

@N̄5N„mod(2j 11)…#. Using Eq.~18! we can show that

FA5~2 j 11!(N21)/2S~N̄!PAF1 , . . . ,FNPA . ~28!

The states uu; j ,m& in H correspond to the state
uuA ; j ,m&[FAuJA ; j ,m&, which form an orthonormal basis i
HA . It is easily seen that

PAuu; j ,m& ^ •••^ uu; j ,m&5~2 j 11!(12N)/2uuA ; j ,Nm&,
(29)

whereNm is defined mod(2j 11). We can also prove

PAuziPA5PAXiPA50. ~30!

More generally the above equation is true ifuzi is replaced
by a product of several butnot all uzi ; and also ifXi is
replaced by a product of several butnot all Xi . For the
productX1 , . . . ,XN we can show that

@PA ,X1 , . . . ,XN#50; XA5X1 , . . . ,XNPA . ~31!

We can interpret the equations of this section as a ‘‘d
tion’’ in the J direction of the Hilbert spaceHA within the
Hilbert spaceHN. The statesuJA ; j ,m& are far from each
other in the sense that the operatorXA , which performs
shifts among them, is equal to the product of allXi @Eq.
~31!#. Therefore, it is unlikely that noise will perform suc
transformations causing errors. In contrast there is no d
tion in theu direction. The operatorZA that performs shifts
between the variousuuA , j ,m& states requires the action o
oneZi @Eq. ~24!#. This dilution in theJ direction is also seen
in the appearance of the ‘‘dilation-contraction’’ operat
S(N̄) in the Fourier operator of Eq.~28!.

The shifts in theJ andu directions are, of course, a ver
special case of transformations, and in Sec. III B we disc
more general transformations.

B. Transformations

We consider general unitary@U(1)3SU(2j 11)#N trans-
formations on the states in the Hilbert spaceHN. Infinitesi-
mal action of these transformations can be written as@Eq.
~11!#

g511 (
i ,a,b

l iabXi
aZi

b , ~32!

wherel iab are infinitesimal coefficients.
A subgroup of these transformations is t

U(1)3SU(2j 11) transformation on the states in the Hilbe
spaceHA . In fact since the groupG of Eq. ~26! are stabili-
04232
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zers for the states inHA we can consider the quotient grou
@U(1)3SU(2j 11)#/G. Infinitesimal action of these trans
formations can be written as

gA511(
a,b

labXA
aZA

b , ~33!

where 1 is here the unit element in U(1)3SU(2j 11). Using
Eqs.~19! and ~26! we rewrite them as

gA5PAF11(
a,b

lab~X1
a , . . . ,XN

a !Zi
bG . ~34!

It is seen here that we have an ‘‘anisotropic dilution’’ of th
Hilbert spaceHA within the Hilbert spaceHN, and transfor-
mations that containXA

a are performed with theX1
a , . . . ,XN

a

while transformations that containZA
b are performed with the

Zi
b . So we have redundancy in theJ direction only.

The above are unitary transfomations. A rather gene
class of noise transformations describing the interaction o
quantum system with density matrixr with the environment
can be written as

r85(
i

El rEl
† ,

El 5( l l ;a1b1 , . . . ,aNbN
~X1

a1Z1
b1!•••~XN

aNZN
bN!. ~35!

Here we have written the general expression where n
acts on all qudits, but in the case of ‘‘small noise’’ we ca
assume that noise acts only on some of the qudits. Our c
ing so far provides protection against noise in theJ direction
only. In the following section we introduce redundancy in t
u direction and show that the combined effect is redunda
in any direction.

IV. GENERAL REDUNDANCY

In this section we consider the second step of the quan
concatenated code. Here the code is the subspaceHB of HA

M

spanned by the direct products ofM angle states with the
samem. We consider various transformations and show t
the combined effect is general redundancy in any directi

A. Hilbert space and operators

We consider the space (HA)M[HA^ •••^ HA (M times!,
which is clearly a (2j 11)M-dimensional subspace of th
spaceHNM. The operatorPA5PA^ •••^ PA projects the
spaceHNM to the space (HA)M. We use the notationWAm
[PA^ •••^ WA^ •••^ PA (m51, . . . ,M ) for operators
acting on (HA)M, with the operatorWA acting on them
Hilbert spaceHA . ClearlyPAm5PA for any m. For a prod-
uct of two operatorsWAVA it is easily seen that (WAVA)m
5WAmVAm . Most of the equations of Sec. III A can be ge
eralized in the space (HA)M. For example, Eq.~24! will be-
come ZAm5(ZiPA)m5ZimPA . In Zim the indicesi and m
1-4
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refer to the positions in the words considered at the first
second step of the concatenated code, respectively.

We consider the (2j 11)-dimensional subspace spann
by the vectors

HB5$uuB ; j ,m&[uuA ; j ,m& ^ •••^ uuA ; j ,m&,

m52 j , . . . ,j %. ~36!

For the states and operators inHB , we use the same notatio
as for their counterparts inH with an additional indexB. The
Hilbert spaceHB , is isomorphic to the Hilbert spaceHA and
also to the Hilbert spaceH, through the mapping
uuB ; j ,m&↔uuA ; j ,m&↔uu; j ,m&. We call PB the projection
operator inHB,

PB5(
m

uuA ; j ,m&^uA ; j ,mu ^ •••^ uuA ; j ,m&^uA ; j ,mu.

~37!

It is clear thatPAPB5PBPA5PB .
It can be easily seen@using Eq.~31!# that

@PB ,XAm#50, XAm5X1m , . . . ,XNmPA . ~38!

Using this we can show that

XB5XAmPB5X1m , . . . ,XNmPB . ~39!

We have explained in the preceding section that theZiZk
21

are stabilizers of all states inHA . Therefore, theZimZkm
21 are

stabilizers of the statesuuB ; j ,m&. In addition to that it is
easily seen that

XAmXAn
21uuB ; j ,m&5uuB ; j ,m&. ~40!

Using Eq.~38! we conclude that the

~X1mX1n
21!•••~XNmXNn

21! ~41!

are also stabilizers of the statesuuB ; j ,m&. All these stabiliz-
ers commute with each other and they form an Abelian fin
group with theNM21 generators

Z1mZ2m
21 , Z2mZ3m

21 , . . . ,Z(N21)mZNm
21 ,

@~X11X12
21!•••~XN1XN2

21!#, . . . ,

@~X1(M21)X1M
21!•••~XN(M21)XNM

21 !#, ~42!

where m51, . . . ,M . Each of these generators generate
cyclic group of order 2j 11, and the full Abelian finite group
G8 of the stabilizers is the direct product of all of them a
is of order (2j 11)NM21.

The Fourier operatorF acting on the states of the Hilbe
spaceH corresponds to the Fourier operatorFB acting on the
states of the Hilbert spaceHB and is given by

FB5~2 j 11!21/2(
m,n

v~mn!uuA ; j ,m&

3^uA ; j ,nu ^ •••^ uuA ; j ,m&^uA ; j ,nu. ~43!
04232
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Let M 21 be an integer inZ(2 j 11) such thatM 21M
51@mod(2j 11)#. As we explained above in the Galo
case, provided thatM is not 0 @integer multiple of (2j 11)#,
the M 21 exists. Using Eq.~18!, it can be shown that

FB5~2 j 11!(M21)/2S~M 21!PBFA1 , . . . ,FAMPB .
~44!

The statesuJ; j ,m& in H correspond to the statesuJB ; j ,m&
[FBuuB ; j ,m&, which form an orthonormal basis inHB . It is
easily seen that

PBuJA ; j ,m& ^ •••^ uJA ; j ,m&5~2 j 11!(12M )/2uJB ; j ,Mm&.
(45)

For the productZA1 , . . . ,ZAM we show that

@PB ,ZA1 , . . . ,ZAM#50, ZB5Zi1 , . . . ,ZiM PB . ~46!

Here i can take any value from 1 toN. Equation~19! has
been used in the proof of the second of these equations

In Sec. III we have introduced redundancy in theJ direc-
tion. In this section we have introduced further redundan
in the u direction. The operatorXB that performs shifts
among the statesuJB ; j ,m& is equal to the product of allXim
@Eq. ~39!, all i, fixedm#. The operatorZB that performs shifts
among the statesuuB ; j ,m&, is equal to the product of allZim
@Eq. ~46!, all m, fixed i #. Therefore, it is unlikely that smal
noise will perform such transformations causing errors.
the following section we discuss more general transform
tions.

B. Transformations

We first consider general unitary@U(1)3SU(2j 11)#NM

transformations on the states in the Hilbert spaceHNM. In-
finitesimal action of these transformations can be written

g511 (
i ,m,a,b

l imab .Xim
a Zim

b . ~47!

A subgroup of these transformations is the@U(1)3SU(2j
11)#M transformations on the states in the Hilbert spa
(HA)M. Infinitesimal action of these transformations can
written as

gA511 (
m,a,b

lmabXAm
a ZAm

b , ~48!

where 1 is here the unit element in@U(1)3SU(2j 11)#M.
A subgroup of these transformations is th

U(1)3SU(2j 11) transformations on the states in the H
bert spaceHB . In fact we can consider the quotient grou
@U(1)3SU(2j 11)#/G8, whereG8 is the group of stabiliz-
ers for the states inHB , discussed in Sec. IV A. Infinitesima
action of these transformations can be written as
1-5
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gB511(
a,b

labXB
aZB

b , ~49!

where 1 is here the unit element in U(1)3SU(2j 11). Us-
ing Eqs.~39! and ~46! we rewrite them as

gB5PBF11(
a,b

lab~X1m
a , . . . ,XNm

a !~Zi1
b , . . . ,ZiM

b !G .
(50)

It is seen that we have redundancy in all directions.
Noise transformations can be written as
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Our coding provides protection against noise in any direct
provided that we have ‘‘small noise’’ that acts only on som
qudits.
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V. DISCUSSION

A lot of the work on quantum computers uses qubits
building blocks. We have considered qudits associated w
states ind52 j 11 angular-momentum Hilbert spaces. Pra
tical implementation of qubits in many cases uses a tw
dimensional subspace of a bigger Hilbert space. In s
cases, the use of a biggerd-dimensional subspace could b
much more efficient.

We have considered a concatenated code that invo
two steps. In the first one the spaceHN is considered and the
code is the subspaceHA spanned by the direct products ofN
angular-momentum states with the samem. We have shown
that this introduces ‘‘anisotropic redundancy’’ in theJ direc-
tion. In the second step, words of the first step, are use
letters. The spaceHA

M is considered and the code is the su
spaceHB spanned by the direct products ofM angle states
with the samem. We have shown that this introduces gene
redundancy in any direction. The proposed scheme will p
tect quantum information against ‘‘small’’ errors that occ
on some the components.

The work provides the theoretical background for qu
quantum computation.
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