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Coding using quantum states in an angular-momentujr-(2-dimensional Hilbert spadd is considered
in this paper. A concatenated code is studied in two steps. In the first step the-Epaeonsidered and the
code is its subspadé, spanned by the direct productsfangular-momentum states with the samen the
second step the spabéf' is considered and the code is its subspidgespanned by the direct products Mif
angle states with the same It is shown that the code introduces redundancy with respect to any transforma-
tion.
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[. INTRODUCTION angular-momentum quantum phase-space. In this section we
introduce the notation and review briefly some of these ideas
A lot of the work on gquantum-information processing hasin the context of qudits, which are needed for quantum cod-
been based on qubits associated with quantum systems inirgg in later sections.
two-dimensional angular-momentum={1/2) Hilbert space Performing a finite Fourier transform on the usual angular
(reviewed in[1]). Most recently the use of-dimensional momentum stateéwhich we denote a$J;j,m)) we intro-
Hilbert spacegqudit9 has been considerd@]. The use of duce the angle statéwhich we denote akg;j,m)). Herem
infinite-dimensional Hilbert spaces associated with continutakes values inZ(2j+1) [the integers mod(2+1)]. Per-
ous variables has been studied 8. From a practical point forming the same Fourier transform on both sides of the
of view in many qubit realizations the “natural” Hilbert angular-momentum operatord (,J_,J,) we get the angle
space of the system is multidimensioriat infinite dimen-  operators §.,6_,6,) that form an su(2) algebra. Like the
siona) and only a two-dimensional subspace is utilized for|J;j,m) are eigenstates df,J,, the|6;j,m) are eigenstates
information processing while the rest is “wasted.” The useof 62, 6,. The quantum phase space for quditsF€2]
of a biggerd-dimensional subspace could be much more+1)Xx Z(2j+1). We consider displacement operators and

efficient. study the corresponding Heisenberg-Wey!l group.
The purpose of this paper is to generalize Shor’s coding SI(2,2(2j+1)) transformations in the angle-angular-
method[4] for the case of qudits. momentum quantum phase space, are the analog of the

Coding adds redundant information to a message so th&|(2R) squeezing transformations in the harmonic oscillator
in spite of partial corruption of the encoded message byontext. When 2+1 is the power of a prime, stronger re-
noise, it is possible to recover the original message. In quansults can be derived. The reason is that the formalism uses
tum coding the Hilbert spackl is embedded into a larger integers inZ(2j+1). This is in general a commutative ring
Hilbert space. The scheme considered here usegith a unity; and in the case that thg 21 is a power of a
(2j+1)-dimensional angular-momentum Hilbert spacesprime, a Galois field. The existence of inverses in the Galois
(Sec. I). It is the quantum version of a concatenated codecase, ensures that the squeezing concepts of dilation and con-
The idea is to construct a code in two steps by starting withraction in theJ, and 6, directions correspondingly, are well
a code which is a subspatg, in HN, spanned by angular- defined.
momentum states with the same(Sec. lll). Its words are We have explained if7] that the formulas in “Bose-
used as symbols of a new alphabet in the second(§&ep.  Hilbert spaces” with integey are slightly different from their
IV). Here the code is a subspakk; of HX', spanned by counterparts in “Fermi-Hilbert spaces” with half-integgr
angle states with the samne The code of Sec. Il is associ- For simplicity we limit our discussion to the former case
ated with “anisotropic redundancy” in thé direction. The (integerj).
code of Sec. IV introduces extra redundancy in thdirec-
tion and the combined effect is a general redundancy in any
direction. The proposed scheme will protect quantum infor-
mation against “small” errors that occur on some but not all  We denote afJ;j,m) the usual angular-momentum states.
the components. m belongs toZ(2j + 1). The state$J;j,m) span the Hilbert

spaceH. The finite Fourier transform is defined as

A. Displacements

II. DISPLACEMENTS AND SQUEEZING
IN FINITE SYSTEMS F=(2j+1)"Y23 w(mn)|J;j,m)(J;j.nl, (1)
m,n

Finite quantum systems have been studied originally by
Weyl and Schwingef5]. More recently this work has been
applied in various contexts by various auth@s In Ref.[7] w(a) =exr{' 27

. f_ptp— 4_
we have applied these ideas in the context of the angle- I2j+1 ;. FRI=FIF=1, F'=1. (@2
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Using these Fourier transforms we have introduc8dhe 6 B. Galois qudits
basis of angle state®;j,m) as follows: In order to introduce squeezing transformations in the qu-
dit quantum phase spacg2j +1)x Z(2j+1) we need to
|9;j,m>:F|J;j,m>:(2j+1)*l/22 w(mn)|J;j,n). introduce the concept of dilation by a facter [in Z(2]
n +1)] in the J, direction; and dilation by a factax ! (i.e.,

(3 contraction by a factow) in the 6, direction. The question of
the existence of the “inverse” of an element &{(2j+1)
arises here.
When (2 +1) is not a power of a prime, the Z(2]
+1) is a commutative ring with a unity, and inverses do not
necessarilly exist. Only when the (2 1) is a power of a
prime p (2j+1=p"), the Z(p") is a field and all nonzero
elements have an inverse. This a famous result by Galois and
the corresponding fields are called Galois fields. In Réf.
20 we called the systems with a Hilbert space whose dimension
, Z:ex;{i .—Jz}, (5) is the power of a prime Galois quantum systems. Here we
2j+1 call the qudits associated with Hilbert spaces with dimension
p" Galois qudits. The phase spagép") X Z(p") of Galois
qudits is a finite geometrj@] and dilations, contractions, and
discrete rotations are well defined. In contrast, the phase
space of non-Galois qudits is a set of points with no geo-
metrical structure.
. . . . In [7] we have studied a factorization of a finite system
XA m)=3;1.m+B), - XF6:j,m)=w(=pmlejm), g subsystems. This is based on the Chinese remainder
(7)  theorem and is similar to the factorization used in “fast Fou-
) ) ) ) rier transforms” in order to reduce the computation time. In
Z°3;j,m=w(ma)|J;j,m), Z%6;j,m)=[6;j,m+a). order to present the result in the present context, we factorize
an arbitrary 2+1 in terms of powers of prime numbers,

We have also introduced the angle operatrsé _, 6,,
0,=FJ,F', 6,=FJ,F", 6_=FJ_FT, (4)

which obey the su(2) algebra. Tlfeoperators act on thé
states in an analogous way to theperators acting on thé
states. The displacement operators are defined as

v 2w
=ex —|2j—+10Z
XAtl=72%1=1  XBze=7XBw(—apP), (6)

wherea, B8 are integers inZ(2j+ 1), and perform displace-
ments along thd, and 6, axes, as follows:

It has been explained in Refi8] that the displacement op- 2j+1=(py)"™---(py)"™. (12
erators
We also introduce the integers
D(a,B)=Z%XPo(—-2"tap), 9
2j+1 n
where 21 is the inverse of 2 withinZ(2j+ 1), are genera- r=—sm— tri=1; (modp;"). (13
tors for the U(1)X SU(2j + 1) transformations in the Hilbert P;

spaceH. They are an alternative to the usual Cartan-Weyl

generators. Their commutator is If m belongs toZ(2j+1), we define its “remaindersin;

=m(modp;") and m;=mt(modp;") wherem; belongs to
[D(@1,B1),D(az,B2)]=D(a1,B1)D(az,B>) Z(p;"). We then have the one-to-one mappings

—D(a;,B2)D(ay,B1)

me(my, ....my), me(mg, ...,my), (14
2
=2i sir{z. +12*1(a1ﬁ2—a2,81) which we use to define an isomorphism between the Hilbert
J spaceH,; ; and the direct product of all the Hilbert spaces
XD(ayt+az,B1+ B2). (10 Hpnas
Therefore infinitesimal U(XSU(2j+1) transformations 19;j,my— N |3:3(phi—1)p" ,EO (15)
can be written as - 2 '
or equivalently as
g=1+ > A, zXZ", (11) _ _ _
oy 16:1,m)y— @ 1] 6:3(py —1)pymy). (16

where\ ;5 are infinitesimal coefficients. For later purposesThe proof of the above has been given[if]. Using these
we stress here that and Z should be seen not only as op- results we can factorize any qudit as a product of Galois
erators that perform shifts in thkand 6 directions(which is  qudits.

a very special case of transformatignbut throughXz?, We finally point out that Galois fields and finite geom-
also as generators of general UKI$U(2j + 1) transforma-  etries play an important role in classical-information process-
tions in the Hilbert spacél. ing. Although in this paper we use the Galois qudits only in
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the context of squeezing, we anticipate that they might play a

wider role in quantum-information processing.

C. Squeezing: S12,Z(2j+1)) transformations
We consider the transformations

X'=XZP 7'=X?Z° ad—By=1[mod2j+1)],

(17)

wherea, B,v, 6 are integers irZ(2j+1). These transforma-
tions preserve Eq6) and form the SR,Z(2j +1)) group.
They are the analog of the SIR), transformations in the
harmonic oscillator phase space, which lead to the Bogoliu
bov transformations. We note that for Galois qudits, for
given triplet a, 8,y (with a#0) there existé=a *(By
+1), which satisfies Eq.17).

The general operators that lead to the transformafibrs
have been given ifi7]. For later purposes we give here the
“dilation-contraction” operators that perform the transforma-
tions (17) with B=y=0 andé=a 1,

i i
S@= 2 [Ban)(@jnl= 2 (31003
i i
= 2 | a n)(Ginl= 2 [6;,m)(6;],en].

== =

(18

We can prove that

S()XSl(a)=X*, S()ZS(a)=2*". (19
They are the analogs of thé =ax andp’=\"1p in the x
—p plane(the phase space of the harmonic oscillatém-
deed the “dilation” n’=an provides a one-to-one map
Z(p™— Z(p™) in the “J, direction,” and the “contraction”
n"=a" !n provides a one-to-one ma@(p™ — Z(p™) in the

“ 6, direction.”

Ill. J REDUNDANCY

In classical coding we start with an alphalbedf several
distinct symbols and introduce redundancy by constructin
words of lengthN. The code is a subset &f". Noise can
change a letter into another letter. In quantum coding we sta
with a Hilbert spaceH (in our case the one considered in the
preceding section The code is a subspace Bf. Noise
performs transformations iHK.

PHYSICAL REVIEW A65 042321

A. Hilbert space and operators

We consider states in the direct produdtd™
=H®---®H (N times. In this (2j+1)N-dimensional

space we consider the |2 1)-dimensional subspace

spanned by the vectors

Ha={[3a;i,m=[3jme - ®|J;j,m), m=—j, ... j}
(20)

The Hilbert spacéH 5 is isomorphic to the Hilbert spadd
through the mappin@, ;j,m)«|J;j,m). Given some states
and operators i, we use the same notation for their coun-
terparts inH, with an additional indeXA. For example, the
operatorJ,, and its eigenstatgd,;j,m) in H, correspond

8o the operatod, and its eigenstatgd;j,m) in H.

We call Il the projection operators iH p,
Ma=2 31 my(3j.mle- - ©]3;j,m)(3;j.ml. (2D

We wuse the notation W=1® --9W®---®1 (i
=1, ... N) for operators acting ol", with the operatoW
acting on the Hilbert spaceH. It can be easily seen that

[MTa,d,]1=[14,Z;]=0, i=1,...N. (22
Using this we can show that
Jza=JillA,
(JZA)ZZJZiJzkHAv e r(JzA)N:lea ool (23
and also that
Zp=Z 11y,
(ZA)?=ZZd1p, ... (ZON=2Z1, ... ZNIA. (28)

We note, however, that analogous relationsJor andJ_;
are not true. For exampl@[pJ ,;I1,=11,J_;11,=0.
It is easily seen that
ZZ I my=13a30.m),  [ZiZ P10 (29

herefore theZiZk’1 are stabilizers of all states H,. They
orm an Abelian finite group withN—1 generators,
41Z2;4.2,23%, .. Zy_1Zyt. We call Gi(i=1,... N
1) the cyclic group of order 2+ 1, generated b)ZiZi‘+11.
The total Abelian finite group of the stabilizers is the direct
product

In this paper we generalize Shor’s coding method for qu-

dits. This is the quantum version of a concatenated cod
(e.g.,[10Q]). The idea is to construct a code in two steps. In

eG=G,X---XGy_1; G={12Z 1, ... [2Z 5%},

(26)

the first step considered in this section the code is the sub-

spaceH , of HN spanned by the direct productsifangular-
momentum states with the sanme We consider various

and is of order (2+1)N"1.
The Fourier operatdf, acting on the states of the Hilbert

transformations and show that this introduces “anisotropicspaceH, corresponds to the Fourier operafo acting on

redundancy” in theJ direction.

the states of the Hilbert spa¢€,, given by
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) 4 _ _ ) zers for the states ikl , we can consider the quotient group
Fa=(2j+1) %1 o(mn)|J;j,mKJ;j.n[® - ®[J;j,m)  [U(1)xSU(2j+1)]/G. Infinitesimal action of these trans-
’ formations can be written as
x{J;j,n|. (27)

_ =1+ >, N, zX4Z8, 33
We call N the remainder ofN divided over 4+1 9n ;ﬁ PEATA 33

[ﬁzN(mod(Zj +1))]. Using Eq.(18) we can show that ) ) _ ) )
where 1 is here the unit element in U@ BU(2j +1). Using
Fa=(2] +1)(N‘1)’ZS(N)HAF1, L FM.. (29 Eqgs.(19) and (26) we rewrite them as

The states|#;j,m) in H correspond to the states ga=11, 1+ > A S(XE Xg)ZP|. (34)
. " . . . o 1 ki |
[0a;],my=Fa|Ja;j,m), which form an orthonormal basis in ap
Ha. It is easily seen that ) ) o

It is seen here that we have an “anisotropic dilution” of the

I, 6;),m®- - ®|6;j,my=(2j+ 1) N2 g,:j,Nm, Hilbert spaceH 4 within the Hilbert spaceéd", and transfor-
(29) mations that contaiX, are performed with th&{, ... X§
while transformations that contaif are performed with the
whereNm is defined mod(2+1). We can also prove Z# . So we have redundancy in tdedirection only.
The above are unitary transfomations. A rather general
A0, 1 ,=T1,X;I1,=0. (30) class of noise transformations describing the interaction of a

quantum system with density matrixwith the environment
More generally the above equation is truedif is replaced can be written as
by a product of several butot all 6,;; and also ifX; is
replaced by a product of several bobt all X;. For the 'IZ E oE
productX,, ... Xy we can show that P = BEPEL

[HA,Xl, ,XN]:O, XA:X]_, ...,XNHA. (31) @1 f ana B

E =2 Niagpy (X120 (XWNZRM). (39)

We can interpret the equations of this section as a “dilu-
tion” in the J direction of the Hilbert spaceél, within the

X N X Here we have written the general expression where noise
Hilbert spaceH". The state§J,;j,m) are far from each

; _ acts on all qudits, but in the case of “small noise” we can
other in the sense that the operatdx, which performs 455 me that noise acts only on some of the qudits. Our cod-
shifts among them, is equal to the product of ¥l [Ed. g 5o far provides protection against noise in drdirection
(3D)]. Therefore, it is unlikely that noise will perform such on)y i the following section we introduce redundancy in the

transformations causing errors. In contrast there is no diluy girection and show that the combined effect is redundancy
tion in the 6 direction. The operataZ, that performs shifts any direction.

between the varioufd,,j,m) states requires the action of
oneZ; [Eq. (24)]. This dilution in theJ direction is also seen
in the appearance of the “dilation-contraction” operator
S(N) in the Fourier operator of Eq28). In this section we consider the second step of the quantum
The shifts in thel and ¢ directions are, of course, a very concatenated code. Here the code is the subspgaef H'Y
special case of transformations, and in Sec. lll B we discusspanned by the direct products bf angle states with the
more general transformations. samem. We consider various transformations and show that
the combined effect is general redundancy in any direction.

IV. GENERAL REDUNDANCY

B. Transformations

We consider general unitaffJ(1)x SU(2j +1)]N trans- A. Hilbert space and operators
formations on the states in the Hilbert spad®. Infinitesi- We consider the spacéi)M=H,®---®H, (M times,
mal action of these transformations can be writte{[Bg.  which is clearly a (2+1)M-dimensional subspace of the
(11)] spaceHNM. The operatorP,=11,® - - -®1II, projects the
spaceH"M to the space Hi,)™. We use the notatiokV,),
g=1+ 2 )\iaﬁxiaziﬁl (32) EUA® . ~®WAM® . ~_-®HA (u=1,... M) for operators
i\a.p acting on {H,)", with the operatorW, acting on theu

Hilbert spaceH . ClearlyIl,,= P4 for any u. For a prod-
where\; ¢ are infinitesimal coefficients. uct of two operatordV,V, it is easily seen thatWnV,),
A subgroup of these transformations is the =W,,V,,. Most of the equations of Sec. Il A can be gen-
U(1)x SU(2j + 1) transformation on the states in the Hilbert eralized in the spaceH,)™. For example, Eq(24) will be-
spaceH, . In fact since the grougs of Eq. (26) are stabili- comeZ,,=(Z114),=Z;,Pa. In Z;, the indicesi and u
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refer to the positions in the words considered at the first andlet M~ be an integer inZ(2j+1) such thatM M

second step of the concatenated code, respectively.

=1[mod(2j +1)]. As we explained above in the Galois

We consider the (P+1)-dimensional subspace spannedcase, provided tha¥l is not O[integer multiple of (2+1)],

by the vectors
Hg={[0g:],m)=|0a:j.me - ®|6a;],m),
it

m=—j, .. (36)

the M~ exists. Using Eq(18), it can be shown that

Fe=(2j+1) M V25M " Y)PgF Ay, ... FauPs.

(44)

For the states and operatorsHig , we use the same notation The stateqJ;j,m) in H correspond to the statédg;j,m)

as for their counterparts id with an additional inde)B. The
Hilbert spaceH, is isomorphic to the Hilbert spad¢, and
also to the Hilbert spaceH, through the mapping
|0g;j,m)«|60a;j,m)<|6;j,m). We call Pg the projection
operator inHg,

Pe=2> 60a;),m)(6a;], Mm@ ®|6a;],m)(6a;],ml.

m
(37
It iS Cleal’ thatPAPB: PBPA: PB .
It can be easily seejusing Eq.(31)] that
[PB!XAM]:OY XA,u:xlp,! P !XN,uPA' (38)
Using this we can show that
XBZXA#PB:X]_#, . 1XN,LLPB' (39)

We have explained in the preceding section thatZl'iIZq{l
are stabilizers of all states i, . Therefore, theZiMZk’Ml are
stabilizers of the statefg;j,m). In addition to that it is
easily seen that

XauXarl 0515, m) =05 ;j,m). (40
Using Eq.(38) we conclude that the
(X1, X1,) -+ (XnpXg,) (41

are also stabilizers of the stati ;j,m). All these stabiliz-

=Fg|0g;j,m), which form an orthonormal basis kg . It is
easily seen that

Pg|Jasi,m®- - ®[Jasj,m=(2j+1)*""?Jg;j,Mm).
(45)

For the produc,,, . .. ,Zam We show that

[PB'ZAll ...,ZAM]:O, ZB:Zil’ ...,ZiMPB. (46)

Herei can take any value from 1 tN. Equation(19) has
been used in the proof of the second of these equations.

In Sec. lll we have introduced redundancy in thdirec-
tion. In this section we have introduced further redundancy
in the 6 direction. The operatoiXg that performs shifts
among the stateégg ;j,m) is equal to the product of ak;,
[Eq.(39), all i, fixed i ]. The operatoZg that performs shifts
among the statg®g ;j,m), is equal to the product of all;,
[Eq. (46), all u, fixedi]. Therefore, it is unlikely that small
noise will perform such transformations causing errors. In
the following section we discuss more general transforma-
tions.

B. Transformations

We first consider general unitafyJ(1)x SU(2j +1)]"M
transformations on the states in the Hilbert spaidé”. In-
finitesimal action of these transformations can be written as

ers commute with each other and they form an Abelian finite

group with theNM—1 generators

-1 -1 -1
21,250 ZoyZ3l, o Zin- g

[(X1:X12) - (XnaXn) s -+

[(Xem-1)Xm) - Knem—1) X 1, (42)

g=1+ Eﬂxwﬁ.xi‘;zfﬂ. (47)

i a,

A subgroup of these transformations is frg(1)x SU(2j
+1)]M transformations on the states in the Hilbert space
(HA)M. Infinitesimal action of these transformations can be
written as

where u=1,... M. Each of these generators generates a

cyclic group of order 2+ 1, and the full Abelian finite group
G’ of the stabilizers is the direct product of all of them and

is of order (g +1)"M-1,

The Fourier operatoF acting on the states of the Hilbert

spaceH corresponds to the Fourier operakyy acting on the
states of the Hilbert spadég and is given by

Fe=(2j+1)" Y22 w(mn)|6a;j,m)
m,n

X(Op:j.n[®---®[0a;),m)(0a:),0]. (43

ga=1+ Eﬁ N papXi,Zh (48)

where 1 is here the unit element[i)(1)xX SU(2j +1)]™.

A subgroup of these transformations is the
U(1)xXSU(2j +1) transformations on the states in the Hil-
bert spaceHg. In fact we can consider the quotient group
[U(1)XSU(2j+1)]/G’, whereG' is the group of stabiliz-
ers for the states inlg, discussed in Sec. IV A. Infinitesimal
action of these transformations can be written as
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ge=1+ 2> A, pX3ZE, (49)
a,B

where 1 is here the unit element in U BU(2j +1). Us-
ing Egs.(39) and (46) we rewrite them as

gs=Ps 1+;ﬁ Nag(X$y o oo XRD(ZE, . ZBy |
(50)

It is seen that we have redundancy in all directions.
Noise transformations can be written as

p’=2i E, pE},

— a11-B a B
E =20 Mgty oy KTEZE) - (XRMMZRNM)
(51)
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V. DISCUSSION

A lot of the work on quantum computers uses qubits as
building blocks. We have considered qudits associated with
states ind=2j +1 angular-momentum Hilbert spaces. Prac-
tical implementation of qubits in many cases uses a two-
dimensional subspace of a bigger Hilbert space. In such
cases, the use of a biggétdimensional subspace could be
much more efficient.

We have considered a concatenated code that involves
two steps. In the first one the spad# is considered and the
code is the subspad¢, spanned by the direct products éf
angular-momentum states with the sameWe have shown
that this introduces “anisotropic redundancy” in tAelirec-
tion. In the second step, words of the first step, are used as
letters. The spackl is considered and the code is the sub-
spaceHg spanned by the direct products ®If angle states
with the samam. We have shown that this introduces general
redundancy in any direction. The proposed scheme will pro-
tect quantum information against “small” errors that occur

Our coding provides protection against noise in any directioron some the components.

provided that we have “small noise” that acts only on some

qudits.

The work provides the theoretical background for qudit
guantum computation.

[1] M.A. Nielsen and I.L. ChuangQuantum Information and
Quantum Computing(Cambridge University Press, Cam-
bridge, 200Q; D. Bouwmeester, A. Ekert, and A. Zeilinger,

The Physics of Quantum Informati@8pringer, Berlin, 2000
[2] D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev6A

[6] L. Auslander and R. Tolimieri, Bull. Am. Math. Sod, 847
(1979; R. Balian and C. Itzykson, C. R. Acad. Sci., PaB83
773(1986; W.K. Wootters and B.D. Fields, Ann. Phy@\.Y.)
191, 363(1989; M.L. Mehta, J. Math. Phys28, 781 (1987;
V.S. Varadarajan, Lett. Math. Phy34, 319 (1995.

012310(2002); S.D. Bartlett, H. de Guise, and B.C. Sanders, [7] A. Vourdas, Phys. Rev. Al, 1653(1990); 43, 1564(1991); A.

e-print quant-phys/0109066; D. Gottesman, Lect. Notes Com-

put. Sci.1509 302(1999.

[3] S. Braunstein, Phys. Rev. Le80, 4084(1998; S. Lloyd and
J.E. Slotinejbid. 80, 4088(1998; S. Lloyd and S. Braunstein,

ibid. 82, 1784(1999.
[4] P. Shor, Phys. Rev. A2, R2493(1995.
[5] H. Weyl, Theory of Groups and Quantum Mechani{&over,

Vourdas and C. Bendjaballatnid. 47, 3523(1993; A. Vour-
das, J. Phys. &9, 4275(1996.

[8] D.B. Fairlie, P. Fletcher, and C.K. Zachos, J. Math. PI3fs.
1088(1990.

[9] R.D. CarmichaelGroups of Finite OrderDover, New York,
1956; J.W.P. Hirschfeld,Projective Geometries Over Finite
Fields (Oxford University Press, Oxford, 1979

New York, 1950; J. Schwinger, Proc. Natl. Acad. Sci. U.S.A. [10] G.D. Forney Concatenated Code&MIT Press, Cambridge,

46, 570 (1960; Quantum Kinematics and Dynami¢Ben-
jamin, New York, 1970.

MA, 1966); J.H. van Lint Introduction to Coding Theory
(Springer, Berlin, 1992

042321-6



