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Power of anisotropic exchange interactions: Universality and efficient codes
for quantum computing
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We study the quantum computational power of a generic class of anisotropic solid-state Hamiltonians. A
universal set of encoded logic operations are found, which do away with difficult-to-implement single-qubit
gates in a number of quantum-computer proposals, e.g., quantum dots and donor atom spins with anisotropic
exchange coupling, quantum Hall systems, and electrons floating on helium. We show how to make the
corresponding Hamiltonians universal by encoding one qubit into two physical qubits, and by controlling
nearest-neighbor interactions.
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[. INTRODUCTION sality” (EU): to study the quantum computational power of a
systemas embodied in its naturally available Hamiltonian
While decoherence is the most significant fundamentaby using encodingencoded gates—consisting of sequences
obstacle in the path towards the construction of a quantur@f physical gates—act on encodgdgical) qubits generating
computer(QC), in the realm of scalable QC proposfis-7]  SU(2"), whereM is the dimension of the code spacEar-
a pressing concern is the technological difficulty of imple-lier work [13—18 had implicitly studied EU constructions.
menting single-qubit operations together with two-qubit op-/n this paper we introduce a general formalism, discovered
erations. In general, these two types of operations may imPY & mapping of qubits to parafermions described elsewhere
pose very different constraints, or single-qubit operations 19 that allows us to quickly assess the quantum computa-
may be hard. E.g., in the proposals utilizing quantum dot§'0n‘."lI power of agiven Hamlltqnlan, af!d construct g:ncpded
[1], donor-atom nucleai?] or electron[3] spins, and quan- qubits and operations. Qur main result is the cIaSS|f|'cat|qn of
tum Hall systemg4], single-qubit operations require control the EU power of generic classes of solid-state Hamiltonians,

over a local magnetic field, are significantly slower than two_addressing in particular, the case afisotropic qubit-qubit

. mag . ' 9 Y3 . interactions pertinent to the quantum Hill, qguantum dots
qubit operationgmediated by an exchange interacfioand 5] and atom$6] in cavities, and the electrons-on-helii
require substantially greater materials and device complexit '

; - roposals. The proposals relying on purely isotrdpieisen-
In the quantum dots in cavities propo$a] each dot needs to berg exchange may also benefit from our analysis, in the

be illuminated with a .se_pargte Iasgr, and rc_aduction. in th%ase that some symmetry-breaking mechariem., surface
number of lasers by elimination of single-qubit operations iy interface effects, and/or spin-orbit couplii29]) intro-

a potentially significant technical simplification. In the gyces anisotropy. For all these cases we give explicit EU
electrons-on-helium proposfr] single-qubit operations re- constructions that avoid the use of the undesirable single-
quire slow microwave pulses, thereby limiting the number ofqubit gates. In particular, we show how to make the aniso-
logic operations executable before decoherence sets in. It igopic exchange Hamiltonian universal bpcoding one qu-
thus clear that quite generally a significant gain may be hadit into two physical qubitsin contrast to previous results for
by enabling quantum logic operations to be performedhe Heisenberg case where three physical qubits were re-
through two-qubit operations only. The need for single-qubitquired [12,17,18. Only nearest-neighbor couplings are
operations arises from the “standard paradigm” @bn- needed in this construction. Thus we suggest ways to sim-
fault-toleranj universal quantum computation, which pre- plify the operation of a variety of QC proposals, circumvent-
scribes the use of single-qubit Hamiltonians that can geneiing operations that appear to be dictated by the “standard
ate all one-qubit quantum gat¢SU(2)] together with a paradigm.”

two-body interaction that can generate an entangling two-

qubit gate, such as the controlledT gate[8]. The univer-

sality of this set essentially entails its ability to generate |I. GENERAL STRUCTURE OF QUBIT OPERATORS

SuU(2V) with N qubits[9]. While it was recognized early on . ) ) ,
that a universal QC can be constructed using at most two- 10 Set the stage for our discussion of the universality
body interactiong10], the abstract theory hardly makes ref- properties of Harr_nltonlan_s, let us consider Fhe_ general struc-
erence to the “natural talents” of a given quantum system adureé of operators in the Hilbert spaceNfqubits in terms of
dictated by its intrinsic Hamiltonian. Indeed, most discus-the lowering and raising operatoss = (o7 +i07)/2, where
sions of universality, e.g., Ref11], rather than using the i=1,... N andg{" acts nontrivially only on theth qubit.
physical notion of Hamiltonians, are cast in the computer-Qubit stateg0;) and|1;) are, as usual, respectively, thel
science language of unitary gatésxponentiated Hamilto- and—1 eigenvectors of the Paulii matrix. Computational
niang. Based on these observations a new paradigm walsasis states are all lenghth-bitstrings. Define amccupation
recently proposed ifil2] and was termed “encoded univer- numberfor theith qubit as the eigenvalue of the operator
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ni=(1-0c?)/2, IlI. HAMILTONIANS AND UNIVERSAL SETS WITHOUT
I SINGLE-QUBIT OPERATIONS

(I is the identity operator This operator counts the number ~ Now consider the properties of Hamiltonians relevant to
of 1’s (up-sping in the ith position of the vectors of the scalable proposals for quantum computing. A generic time-
computational basis. Sinag can only take on the values 0 dependent Hamiltoniafl—7,9 has the form

or 1, the raising and lowering operators acting twice on the .

same qubit must annihilate a computational basis state. The H(t)=Ho+V+F
most general operator that does not annihilate computational 1

basis states is, therefore, a linear combination of =E Esi(t)UiZJrE 2 Jﬁﬁ(t)ai“af
i 1<] a,B=XY,2

Quyip = (1) - (1)U ay) AN - (o)1, (D) +S RO+ (Y], @

where «;,8; can be 0 or 1(see also Refl19]). There are

2N % 2N such operators that form a complete set of generato
of the group U(?) needed for universal quantum
computing! They can be rearranged into certain subsets o
operators with clear physical meaning, which we now detalil.

First, there is a subalgebra with conserved total occupa"zlt controllable timest. The third term is the(potentially

tion number This is formed by all operators commutin problemati¢ external field, often pulsed, used to manipulate
=& y P 9 single qubits. By turning the controllable parameters on/off

with the total number operatan=2;n;. Let k(l) be the — gne has access to a set of Hamiltonighis}, which can be
number ofoy (o ) factors inQyy g - Sa, consists of the  ysed to generate unitary logic gates through the following
operators for whichk=1, so the dimension ofsa, is  three processesi) Arbitrary phasesare obtained by switch-
Sh-o(n)?=(2N)!/NINI, ing anH; on for a fixed timejii) adding or (iii) commuting
Second, there is a subalgebra with conserved padly ~ Hamiltonianscan be approximated by using a finite number
i.e., the operators commuting with the parity operator, deo_f terms in the Lie sum and product formulas, e[§,10],
fined asp=(—1)", with eigenvalues 1 1) for even(odd) €' (A" AB)=lim__.(e'*~"e'#BM" implying that the Hamil-
total occupation numbes.a, consists of those operators hav- toniansA,B are switched on/off alternately. These operations
ing k—1 even, so its dimension is?Y/2. Clearly,sa,C sa,.  are experimentally implementable and suffice to cover the
Third, there are types of su(2) subalgebras generated byie group generated by the s@il;}. In practice it may be
the set{Qqyz 'an}{ﬁ}’[Q{a}{ﬁ}’Qaa}{B}]} in the subspace e€asier to use Euler angle _rotatiqns rather than infi_nitesimal
satisfying the conditionQy(s Q)= 1. for specific steps[18,21], as done routinely in nuclear magnetic reso-
choices of {al{B}. This results directly in encoding N@nce(NMR)[22]. . _
schemes. The following two types of bilinear operators for L€t Us now specialize to the cadf’=Jji 5, (denotingV

i+j: oo (which conserve the occupation numbemd by V') which amounts to limiting the Hamiltonian to

] _ . .
o o} 70'i+0'j+ (which conserve parity are important ex- exchar_lge type |ntera(?t|on+s that appear to be most relevant
for solid-state QC. Using; ,n; we find

amples that illustrate this case. Let=(ij), then

rThe first term is the sum of single-qubit energigsith ¢; /%
Being the frequency of th®);—|1); transition and is often
ontrollable using local potentials. The second term is the
wo-qubit interaction, which we assume can be turned on/off

1
_ _ _ - +
TZ=0'J-+(Ti_+0'i+a'j_ and TZ:(O'iZ—O'jZ)/Z (2 HO_Ei 8i(z ni)' F—Ei (ffoi +fio), (5
g(leg:rrstesq?(r;)seuéiz subalgebra, which we denotg(?s)u V’:i2<j [Aij(Ufo+Ui+<fj+)+3ij(01+0f+UTUF)
Th t
e operators +Jizj oZo?], ®)
R;:Ui_a'j_‘l‘()'ro’;— and RZ=(0i2+ O'J-Z)/Z 3 where

i flz(fl)(‘f'lfl)/), A”:Jlxl_\]lyj, \]”:JlXJ+J|yJ
generate another su(2) subalgebra, which we dengi@3$u
Clearly, Sl;IL(Z)esap. It is easy to show thafsu,(2), The above analysis of the subalgebras of ¥)(2ow helps
de(Z)]ZO. It can be shown tha{toi*aj’} (allowing i=j) us in drawing certain general conclusions.
generatessa,, and {o'iJraf o; 0] ,ai*gj*} generatesa, (i) By appendings; ,o;" to the set generatinga, it be-
[19]. comes possible to transform between states differing
by an odd occupation number. Thus the set
{00, ,0i 0 ,0{ 0] 07,0} suffices to generate
e use the convention that uppercélssvercase denotes a Lie SU(Z'{'). This establishes the well-known universality taf
group (algebra. of Eq. (4).

042318-2



POWER OF ANISOTROPIC EXCHANE . .. PHYSICAL REVIEW A 65042318

(i) When =0, we have thafHy+V’,p]=0, soH, IV. ELIMINATION OF SINGLE-QUBIT OPERATIONS
+ V' is in sa,. This implies that this Hamiltonian by itself is THROUGH ENCODING
not fully universal it operates on a2" *-dimensional invari- Our discussion of universality so far assumed that one is
ant subspace. seeking to employ the full®-dimensional Hilbert space of

(iii) Recalling that single-qubit operations are often diffi- 4 hits."However, it was apparent from this discussion that
cult, which two-qubit interactions are sufficient for univer- yhe symmetries of a given Hamiltonian determine an invari-
sality? Referenc¢10] established that two-body Hamilto- 5. subspace and that in physically generic circumstances
nians are “generically” universal. The generic condition wasip;g subspace has reduced dimensionality. A common solu-
stated in terms of abstract group-theoretic properties. Hergyp, is to introduce an external field that breaks the symme-
we are gble'to state the condition more explicitly for the classtry_ As discussed abovsee alsd18,21)), this often leads to
of Hamiltonians of Eq(4). _ significant engineering complications. However, as shown

We define theparity of an operatoraccording to whether st in [13] for the case of isotropic exchange, a Hamiltonian
the total number of raising and lowering operators is even Omay still becomputationally universal over a subspader
odd (e.g.,n; is even, buto; n; is odd). The necessary con- the price of using several physical qubits to encode a logical
dition for a Hamiltonian to be universal is that it contains anqubit_ Here we ana|yze this Concept for the anisotropic mem-
odd term, so that the system can lea,. If F=0 there  pers of the class of Hamiltoniart$,+V’. In each case we
does not exist an odd term ki(t). Hence the next step is to  assume that no external single-qubit operations are used, i.e.,
reconsider the most general interaction wifff arbitrary.H ~ F=0, and give an encoded universal set of gates. As distinct
of Eq. (4) is universal forF =0 if and only if there exists one from [12—-18 we explicitly takeH,, into account, as this is a
of the odd term3rfa}‘=(1—2ni)(aj++oj’) or oo} . Such  term that is generally difficult to turn offe.g., due to inho-
terms may arise due to perturbative spin-orbit coupling cormogeneous magnetic fields in quantum d@2s§]). Our
rections to the isotropic part);(t)ai-o; [where o;  analysis provides simple encoding procedures along with ex-
=(o¥,0Y,0%)] of Eq. (4). E.g., a recent estimate of the cou- Plicit recipes for universal computation in situations of ex-
pling strength of the antisymmetri®zyaloshinskii-Moriya ~ Perimental interest.
spin-exchange terrd;;(t) - (o X o;) shows|d;;|/J;; to be as _
large as 0.01 for coupled quantum dots in G428]. Unlike A. Axial symmetry
the isotropic exchange paramefg((t), d](t) is typically AssumeA;;=0. This axial symmetry is the case, e.g., for
not controllable. Nevertheless, its very presence allows fothe electrons floating on helium propodal]. The major
universal QC without the external fiell To see this, sup- handle there is the single-qubit energigs which allows to
pose for simplicity thataij is along thex axis [so that tune the qubits into and out of resonance with externally
aij ) (‘;iX‘;j):dijo'iyo'jZ_o'iZO'Jy)]r and that the terméi ) 51 ' ai)phefd ri(Z:hannd. ;hlsftugllng :55 us%d ;0 c;)'ntrol the _E)a_lram—
o} are controllable whiles} 0§ — oo} is small and not con- ctersti, Jij, andJ; 0 qs'.(h) an (I)I: O\r/]vevgr, : S
trollable. Then we can show that these operators generate tﬁgvantageous to do away W'F contro ng the single-qubit
group SU(4) on the qubit pair,j and therefore are univer- pa.trameteréi., as th.ey_ are manipulated via a global and slow

o microwave field. Limitations related to other QC proposals
sal. The Hamiltonian is : . LR
were discussed above. Motivated by these difficulties a solu-
tion involving control of only theoj o+ oo} term was
Hij :dij(giyajz_ giZUJY)+ %(8i0i2+gjgjz) +Jijoi- 7j. proposed |_r[12], encoding a qutrit into th_ree physical qubits.
Here we give a more economical solution: we show how to
compute universally on a logical qubit encoded into only two
When turning off the parameters, ¢; and J;;, the gate  physical qubits.
generated by the antisymmetric terafo?—ofo) is ob- Our solution makes use of the naturally availalbig
tained. Since this term is very small compared)fo, to @  term, and assumes that th§ and J;; parameters can be
good approximation we can neglect its effect when we turnuned separately. In fact not all of these parameters need to

on other terms, e.gHiijij(t)EiEj when turning onJ;; . be independently controllable, as is discussed below. Since in
We can then show that SU(4) can be generated by commiuhe axial symmetry cas¥’ preserves occupation number,
tation. E.g., the encoding is simply

|OL>m: |0>2m—1| 1>2my

|1L>m: | 1>2m—1|0>2mv

and similarly, we can generate . Therefore, we have the for themth logical qubit. To implement single-encoded-qubit
gate set generated b\]o'iy,o']y,o'iz,o'jz,&i-&j} which is  operations, assume we can selectively turn on nearest-
known to be universgl9]. It is interesting to note that the neighbor interactions,m,_ 1 oy andJ3;, _; o, in pairs encod-
approximation assuming a small antisymmetric term is noing a qubit(i.e., Jom om+1=J5m 2m+1=0). Using the defini-
necessary23,24. If control overg; is unavailable, one may tions(2) and(3) with w=m wheni=2m—1 andj=2m, we

eliminated;; to first order by pulse shapir@5]. can rewrite the Hamiltoniafd) as

Z_

al=[[a)o{= {0 0 0i],0{]/2,
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N/2 N
€
HAszézl(E?T;+JmTﬁ)+hl+ho, (7) Hi=2, of®BY,
where whereB{ are bath operators. If pairs of qubits are sufficiently
close compared to the bath wavelength, so tBaf,_,
€m=Eom_1—Eom. =B3%,=B2 (“block-collective phase damping’[27,29)
then
In=Jom-12m, N/2 ~
H—HP=2> RZ@BZ.
®Om=E€om-11 €2m, m=t
" But R(|0L)m+ B|1.)m) =0 so that the interactioi “FP
1 , leaves the encoded states invariant and therefore does not
hlEm§=:l 5 @mRm, cause decoherence. Furthermd#§”® commutes withH »g
and with T;TZ.;, so it follows from a general theorem
N/2 [13,30,3] that with the methods provided above, universal
encoded logic can be implemented without ever leaving the
ho= 3 Fn-1.anl (RE)* = (TH)?]. Dpe ool P J
The termh, is an energy shift that commutes with all other C. Axially asymmetric interaction
operators, and will thus be omitted. It is then clear tHat Assume that one can control the axial asymmetry param-

is a sum over independent modesso that the Hilbert space eter A;j=J%—JY in Eq. (6). Further assume only nearest-
decomposes into a tensor-product structure. The operatofgigpor intJeract]ions in pairs are on, and 2&t=A,_1 .

Tr T generate an encoded J(2) group, while the term  The HamiltonianH o+ V' now becomes
h,esy,(2) acts as a constafsince[su,(2),sU,(2)]=0).

N/2

As a wholeH g acts as22,SU. (2), meaning that experi- B %:/2 ( €m ®m
AA= _m _m

ThtdnTn| +| 5

mental control over the coefficients, and J,, enables the 2 +

implementation of independent and arbitrary encoded-single-
qubit operations. where we have again omitted tlng term. The appropriate
Next we need to show how to implement an encodedencoding for the R>* terms is  |0)m
controlled operation. This can be done very simply by using=|0),.,._1/0)om,  |1.0m=|1)2m-1/1)2m for themth logical
nearest-neighbor interactions only. All that is required is toqubit, since the axially asymmetric component of the Hamil-
turn on the couplingd3 .. 1, Since as is easily checked tonian preserves parity but not occupation number. To imple-
T5mT5mi1=— TmIms+1 IN the encoded subspace. The time ment a controlled operation on tieth® (m-+1)th encoded-
evolution of this interaction yields a controlled-phase gatequbits’ Hilbert space it suffices again to turn on the nearest-
wherein the phase of on@ncodedl qubit is flipped condi-  neighbor coupling ;, om+ 1, SINCET5MTom+ 1= ReaRo.1 IN
tional upon the state of the oth@ncoded qubit[9]. the encoded subspace. In analogy to the above analysis, the
It may appear from the discussion so far that all the pasubspace acted on by @) operators is furthermore
rametersey, Jy, andJ3n, o1 should be controllable. How-  gecoherence-free if the system-bath interactigr SN, 7
ever, in analogy to NMR, we can further show tiradepen- ®B? has the symmetr3,_,=—BZ.. The two subspaces
dent control over the coefficients,Jsuffices to generate 4teq upon by the axially symmetric and antisymmetric

arbitrary single-encoded qubit operations and an encodederms are independent. They can be regarded as two indepen-
controlled operation Suppose thaty, and J5,, 5,1 are not  dent guantum computers.

directly controllable, as is the case for the analogous param-

RZ + AmR,Xn) ,

m=1

eters in front of the terms and oo in a typical liquid- V. STATE PREPARATION AND MEASUREMENT

state NMR Hamiltoniah22]. Recouplingn terms ofT}, then _

plays the same role as recoupling usia in NMR [9], For our two-qubit code to be useful we must show how to
allowing control overey, and 35, . 1. This “encoded re- Prepare and measure encoded states. The st@i® (
coupling” method has been treated in detail #1]. —|10))/v2=(]0,)—|1.))/V2 is the ground state of the axi-

ally symmetric Hamiltonian o*a*+aYoY, while (|00)
—|12))/y2=(]0,)—|1,))/\2 is the ground state of the axi-
ally antisymmetric Hamiltoniaw™c*— o¥oY. Thus by low-

The connection between encoding and immunity to decoering the temperature to below and A (the respective
herence is known from the theory of decoherence-free substrengths of the interactiopsthe system will relax into the
spaces (DFS9 [27-30. The present encoding is corresponding subspaces and computation can begin. The
decoherence-free under the following conditions. Assumeneasurement can be done in the axially symmetric case by
that the system-bath interaction is first applying an encoded Hadamard ghtdich maps|0, )

B. Decoherence avoidance
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—(0)+A N2, 1)—(|0)—|1.))/V2], and then us- tions are needed for this implementation of encoded univer-
ing, e.g., Kane’s ac capacitance schef@g which distin-  sal quantum logic. These results can be generalized to pro-
guishes a singlet from a triplet state. In the axially antisym-vide codes with higher ratelsl9]. The methods presented
metric case Kane’s scheme will distinguish the stat@g)(  here have the potential to offer significant simplifications in

¢|11>)/\/§, so the same procedure applies. the construction of QCs based on quantum dots, donor-atom
nuclear or electron spins, quantum Hall systems, and elec-
VI. CONCLUSIONS trons floating on helium.
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