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Observables suitable for restricting the fidelity to multipartite maximally entangled states
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We present a class of observables which are suitable for determining the fidelity of a state to the multipartite
Greenberger-Horne-ZeilingéGHZ) state. Given an expectation value of an observable belonging to the class,
we give a simple formula that gives a lower bound and an upper bound for the fidelity. Applying the formula
to the GHZ-state preparation experiment by faml. [Nature(London 403 515(2000], we show that the
observed state lies outside of the class of biseparable mixed three-qubit states. We also show that for this class
of operators, adopting the principle of minimum variafiedys. Rev. 260, 4338(1999] in the state estimation
always results in the state with the minimum fidelity.
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I. INTRODUCTION | D) (P, into the sum of direct products of Pauli operators
for each party. Given an expectation value of an observable
Recently, the importance of entangled states of multiparbelonging to the class, the formula gives a lower bound and
tite systems has been realized not only as a fundamentan upper bound for the fidelity. As an example, we analyze
concept of quantum mechanifs] but also as an essential the GHZ-state preparation experiment by Raral. [4] and
resource for quantum information processj@g Up to now, shqw thf'it the fidelity to the GHZ state is larger than 0.71.
there have already been several experimental reports O'F_fns indicates that the observed_state (.:ioes. not belong to the
three- and four-particle entangled staf@s-5]. One of the blseparablge class and has genuinely tripartite entanglement.
important measures to analyze how close the produced quan- N addition to the argument of what kind of states are

tum state is to the desired maximally entangled state is thBOSSiPIe under the constraints of experimental data, there
also is a problem of determining which state is most likely

f'de“ty [6].’ I.e., the overlap with the desired entangled Stat.e'under the constraints. Such problems of estimation for bipar-
oI . AT Yite systems has been discussed along the maximum entropy
used as a criterion for nonseparability and distillability of the rinciple [10]. Application of only this principle sometimes

so-called Werner state or Wemner-type state, i.e., a maximallip4s'to an estimated state that possesses stronger entangle-
entangled state mixed with the completely depolarized statgyent than the minimum entanglement that is compatible
[7]. In the classification of mixed three-qubit sta{&, it \yith the measured data. Based on the additional assumption
was shown that one of tripartite witnesses can be used tfhat the realization of a stronger entanglement is less realis-
detect a state that does not belong to the biseparable clasg, Horodeckiet al introduced a constraint, i.e., minimiza-

This witness is given by tion of entanglemenft11] in applying the maximum entropy
principle. They thus obtained an estimated state that has the
W= EJI—P (1) minimum entanglement. Rajagopal derived the same state
2 GHz with a different assumption together with the maximum en-

tropy principle, i.e., to minimize the variance of a Bell op-

where Pgy; is the projector onto a Greenberger-Horne-erator[12]. Since then, much attention has been gai@l to
Zeilinger (GHZ) state. When TiVp]<O0, the statep lies  this problem. Here we will show that, in multipartite sys-
outside of the biseparable class and has genuinely tripartitems, applying the minimum variance principle to the opera-
entanglement. Since [IVp] is written as 1/2-f using the tors belonging to the above class gives the states with the
fidelity f to the GHZ state, the fidelity is useful to determine minimum fidelity that is allowed by the constraints. This is a
to which class a state belonf@. generalization of Rajagopal’s results to multipartite systems,

As can be seen from these examples, it is important tand reveals why and in what cases the minimum variance
determine the fidelityf of experimentally produced states leads to small entanglement.
from the observed data. Systematic arguments about the pos- This paper is organized as follows. In Sec. Il, we take a
sible fidelity values allowed by experimental data for multi- GHZ state as the state of interest and present the class of
partite systems will be helpful to the experimental realizationoperators by decomposing the projector into the sum of op-
of various applications in quantum information processing.erators forming a commutative group. In Sec. Ill, we derive
The main purpose of this paper is to give a formula for thea simple formula that gives a lower bound and an upper
possible range of the fidelity value in the simplest case, i.e.hound for the fidelity. In Sec. IV, we apply the formula to
the case where an expectation value of a single operator #nalyze the GHZ-state preparation experiment by &taa.
given as experimental data. \We present a class of observablps, and show that the fidelity to the GHZ state is larger than
which are suitable for determining the range of the fidelity of0.71. Section V deals with the state estimation problem based
a state to then-partite GHZ statd®,). The class is deter- on the minimum variance principle. Section VI concludes
mined through the expansion of the projection operatothis paper.
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II. DECOMPOSITION OF PROJECTOR AND CLASS measurements to determh(]@j> (J =12, ... ,2—1)_ Our
OF OBSERVABLES interest here is how we can deduce the information about the
fidelity from observables that can be measured by a much
smaller number of correlation measurements. In what fol-
lows, we give a formula to derive an inequality for the fidel-
ity from an expectation value of an observable belonging to
the clas<,, defined as follows:
ClassC,,: An observabled belongs taC, if and only if A
Qpyi=—=(|+ 1+ i+ +|—1;—2;--+;—n). (2) is a linear combination of operato@;,Qz, ... .Qme A,
\/— with positive coefficients, and the s¢0Q;,Q,, ...,Qm}
) , ) ) L forms a system of generators far,. The class is determined
In the followmg discussion, we consider the f_|del_|ty of the throughA ,,, and hence determined by the desired std@g.
statep to |y), i.e., f:=Tr[p|®,)(Py|]. The projection op- The minimum cardinal number of systems of generators
erator|®,)(®,| can be expanded as for A, is n. To see this, suppose there are ol(ly:n) gen-
erators. In this case, however, they can generate at most

In order to discuss the fidelity, we have to specify one
state of interest. We have referred to the state asléséred
state We taken-partite GHZ staté®,)) as the desired state,
which is defined as

[ E— H (o) +io) +H (o) —i0)) 2i-11Ci=2'(<2") kinds of elements o, due to the prop-
2" erty of the Pauli matrices. An example of a system of gen-
n n erators forA,, is
. . . . n—1
+[] ai+oh+11 (i-a))
=1 ‘ =1 ‘ {Ox,x ..... x’OZ,[,[,...,Z’OI,Z,[,[,...,Z’ ""0[,[,...,2,2}’
= (1/2)(Og+ O+ -+ - +Oun_y), &) (7
_ i where OX'X’__.’X==0')%0'§~--0'Q, OZV|’|_._'Z:=0'§|2|3--~o’2,
whereO,, is defined by and so on[14]. This system of generators fdr,, indeed,
n generates all 2elements ofA , with the help of Eq(4).
H l)bo(o- (4) As for A2, examples of a system of generators are

= {olo?, ol0?), {olo?, olo? i Ia’z} {I,olo?,io Ia'y}
and so on. As for 5, examples of a system of generators are

where then-bit sequencéyb;- - -b,,_; is the binary repre- O O O O O O O O O
sentation Ofp, bn:EJn:— lbj , since the terms with odd parity EQ Xi}?“any(;(ys,o )gr;(}’ { Xyy 1 ~yxy: Izz}v { XXX 1 XYyy 1 ~yxy s
1% :

for by - - - b, vanish in the above expansion. The supersgript
of the Pauli operators denotes partigldt is easy to see that

. o . I1l. INEQUALITY FOR FIDELITY
0p04=0peq, Wherepeq is the bitwise XOR(exclusive Q

OR) of p andq. Hence, the set of 2operator§ O} forms a In this section, we derive an inequality under the condi-
commutative group isomorphic toZg)". We denote this tion that the expectation value of an operatb C,, is speci-
commuta- fied. First, we will show that if the given expectation value is

tive group asA,. The operatoiOy is the identity operator the maximum value, the state must|de,). For that, we use
for the 2'-dimensional space, and the other operatorghe following lemma:

04, ...,0on_1 have two eigenvalues: 1. All elements of Lemma.Let X,Y be operators taking eigenvalugsl, and
A, take|®,) as an eigenstate with eigenvalue one. [X,Y]=0. Then,

For n=2, the above expansion is explicitly written as
follows: 1= [(X)=(N=(XY)=(X)+(Y) - 1. tS)

| Do) D,| = (1) (1124 glo?+ okol tialio?), (5) Thisis directly proven by inequalities:

where | represents the identity operator for the two- (1=X)(1-Y))=0 and ((1=X)(1*Y))=0. (9

dimensional space. Faor=3, it is written as In the following, we considerd= a,Q;+ a,Qyt - - -

|q)3><q)3|:(l/8)(0|” + Oyt Oyt Oy +amQm (2“>m>n,ai>0_,v i). We ass.ume thaﬂecn..

We assume that the maximum expectation vglde=M is

+ Oxxxt Oxyyt Oyyyt Oy, (6)  given, whereM =3 | o; is the maximum eigenvalue of.

o ) Because all coe1‘f|C|ent9zI are positive,{A)=M implies

where we have used the simplified notations @ﬁ, (Q1)=(Q)=---=(Qn)=1. SinceQ?=1 for anyj and the
—1112,3 —11.2 3 12 3 3 m ) J

=17171°, O =1"0505, Oyp=03l07, Ozzl“’ il set{Q;,Q,, ... ,Qn forms a system of generators far,,

Oxxxi=030%0%, Oxyy=ayiafioy, Oyy=ioyoiioy, and any elementQ of A, can be written as
Oyyxi=i 0'>l,i a’f,a'i .

Now let us consider the problem of determining the fidel- Q:QﬁlQﬁz' . 'QB|’ (10
ity by measuring the expectation value of an observable. The
most direct approach is, of course, to measiife,)(P,|),  with 1<3,<8,<---<B;=m. We show thatQ)=1 for all
which will be done by conducting™2-1 different correlation | as follows. When =1, then(Q)=1 holds. SupposéQ)
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=1 holds when =k, i.e.,(Hf‘:lQBi)zl.Then with the help  When (A):=Tr[pA] is given, the fidelity f
of the lemma(I1}*{Q, ) =1 holds. LetX beIlf_,Q, andY =Tt p[Pn)(Py|] is bounded as

be Qp, . 1 respectively. The lemma leads that 1

<(II71Qg)<1. Hence (Q)=(Qz)=:--=(Qm)=1 (A1 ¢ AT 16

means the expectation values of all elementd pfare one. M-—r, M=rs

This means that the fidelity is 1 with the help of ES).

Therefore we obtain the following: _ IV. APPLICATION TO EXPERIMENTAL DATA
Proposition 1 Let M be the largest eigenvalue of

eC,. If Tr[pA]=M, thenp=|® W P,|. We analyze the experimental data by Raml. [4]. In this

This implies that the largest eigenvallreis not degener- experiment they obtained four expectation values of three-
ate. This is a crucial point in deriving an inequality for the photon polarization correlations
fidelity. Let us write the eigenvalues of asM,r,,r3, .. .,
and I’_S(S$ Zn), Whel’e M->r2>r3> ce >rS> —M. In th|S <ny>:<yxy>:<yyx>zo7oy
notation, when some eigenvalues. dfare degenerate, then
s<2" holds, and when all the eigenvalues.dfare not de-
generate, thes=2" holds. Since Proposition 1 implies that
|®,) is the only eigenstate for the largest eigenvaitiewe
can generally expandA):=Tr[p.A] as These experimental data are obtained by the post selection,
i.e., picking up only the events with each of the three detec-
S tors registering a photocount. If the detectors used in the
(Ay=Mf+ 22 aifi, (1D experiments were ideal ones, the post-selected state would be
o contained in a 2-dimensional subspace, which can be iden-
tified with a tripartite system of three qubits. Then the above-
observed values could be considered to give the expectation
values(Oyyy), (Oyxy)r (Oyyx, and(Oxy,o. In the real ex-
periment, however, the detectors are not ideal, namely, they
s cannot distinguish a single photon from more than one pho-
r2+2 qir; ton and they have a limited quantum efficiency and dark
=z counting. Due to these imperfections together with the non-
ideal photon source, the post-selected state also contains con-
tributions outside of the 2dimensional subspace, in which
two photons or no photons enter the same detector. However,
the superfluous contributions can be neglected as compared
We thus obtain to the statistical uncertaintfa few percentof the observed
values as followg3]. The contribution of no-photon events
(A)—r, are due to dark counting, but the rate of the dark counts is
M—r, =T (13 ow enough(3] to be able to neglect the effect. The contri-
bution of more than one photon entering a detector passes
The equality of the relation13) holds whenS?_,q;=0. the post selection only if another detector has a dark count,

We can also derive an inequality that gives an uppe! MOre than ‘two photon pairs are c_reated_in the parametric
bound of the fidelity by eliminatingjs, namely. downconversion. The former case is negligible due to the
S )

low dark count rate, and the latter is also negligible since the

s—1 probability per pulse to createphoton pairs is of the order

1—f— z qi) rs of about 10*". We can thus assume that the post-selected
=2 state is related to the polarization of three photons and ap-

(xxx)=0.74. (17

where f=Tr{p|®){(P,|] is the fidelity to |®,), and
q;(=0) satisfyf+=7_,q;=1. Using this relation to elimi-
nateq,, we have

S
(A)=Mf+|1-f-> g
=3

:(M_fz)fJF"z_i:zs qi(ra—ry). (12)

s—1

<A>=Mf+22 giri+

s—1 proximately supports 2dimensional Hilbert space. Hence,
=(M=19f+ 2 qi(ri=rg+rs, (14 ~ We obtain
1=2
and <Oxyy>:<0yxy>:<0yyx>:0-70’
A)y—r Oyxx=0.74. 18
(A-rs_ s {Oud 18)
M—rg

The limited quality of the polarization optics just before the
The equality of the relatiofl5) holds WhenEiizlqizo. We  detectors, may make the visibility lower, which will make
therefore obtain the following proposition: the estimated fidelity smaller. Hence, we use these experi-
Proposition 2 Let M, r,, andr ¢ be the largest, the second- mental expectation values for restricting the fidelity from
largest, and the smallest eigenvalue & C,,, respectively. below.
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Clearly, each observable of E(L8) does not belong to The eight probabilities of observation of these GHZ states
C5. Therefore we take the summation of these expectatiofor the statep are defined as
values. We then obtain

= i i=12,....,8. (22
<.A>22.84, (19) Pi <¢||P|¢|> (

We can see thdty,) is equal to|®3). The fidelity f is then
identical top;.

Suppose that an expectation valué) is given, where we
consider

where A= Oyyy+ Oyyyt Oyyut Oyyi. Apparently, AeCs
holds, and eigenvalues of are 4, 0, and-4, where 0 is a
degenerate eigenvalue. With the help of ELf), where the
parameters are set M =4 andr,=0, we can state that the
observed state in this experiment has the fidelity to a GHZ
state larger than or equal to 0.715]. Because the value is
larger than 1/2, with the help of E¢l), these experimental
data, indeed, ensure the observed state does not belong to the Case 2: A=0yyyt Oyxyt Oy,
biseparable class and has genuinely tripartite entanglement.

Case 1: A=Oyyyt+Oyyy,

Case 3: A=Oyyyt Oyt Oyyy. (23
V. RELATION BETWEEN VARIANCE AND FIDELITY

Note that, for Cases 1 and 2, the operatodoes not belong

In this section, we show that if we apply the minimum
variance principle for estimating the states from an experi—t0 Cs, whereas, for Case 3, Fhe opera.ztmfoelongs tOC3
For Case 3, when the varian¢@\.4)“) is made minimal,

mentally obtained expectation value of an operator belongin later. that derive th - fidelity. F
to C,, the estimated fidelity becomes the minimum value tha%e See, later, that we can cerive the minimum fide 'W‘ —or
ases 1 and 2, however, the minimum variance principle

is allowed by the constraints. This is a generalization of Ra- .
jagopal’s result§12] to multipartite systems. does not work completely. In Cases 1 and 2, the giidi

Let us consider Rajagopal’s case, i.e., bipartite system irqeterm|_nes rangez@fs(<A>+2)/4 and OsfS((A>+1)/4‘.
which the variance of Bell operat@&= \/E(O')J('O')z('f' 0'%(73) is re'spe.ctlvely, f‘.’f the poss'b"‘j valuetofor Case 2, th.e. mini-
made minimal. mization condition for (A.A)%) puts no further condltlon2 on

Suppose that an expectation valud) is given, where this range[16]. For Case 1, the minimization di{A.A)<)

' makesf . Smaller, i.e., the allowed fidelity value is O for
Case 1° A=olo? —2<(A)<0 and O=f=<(A)/2 for 0<(A)<2. (Remember
xexe —2<(A)=<2 for Case L This means that, for Case 2, we
cannot derive the minimum fidelity.e., zerg from the mini-
mum variance principle and for Case 1, we cannot derive the
minimum fidelity for 0<(A)<2.

Now we calculate the fidelity for Case 3 from the mini-
mum variance principle. If we write operatgrin the matrix
form using the GHZ basis, the diagonal elements become 3,
-1,-1,-1,1,1, 1, and-3, and no off-diagonal element
appears. This means that the measured valueifoan take

Case 2: A= U;'O’i‘f‘ 0'%0'5 . (20

Note that, for Case 1, the operatdrdoes not belong t@,,
whereas, for Case 2, the operatdrbelongs toC,, and A
=B/\/2.

For Case 2, combining the results by Refsl] and[12],
it is shown that if variancé(A.A4)?) is made minimal, the

calculated fidelity td®,) takes minimal when the expecta- four values 3,-1, 1, and—3, where—1 and 1 are degen-

tion value(A) (=0) is given. In this way, the minimum erate eigenvalues. USing NOtations .-+ bat

entangled state was derived from Jaynes principle. For Casé 9 d. h ? orf — m%-;pz pg bﬁf"’ F;]ﬁ

1, the given(4) determines a range=0f =((A)+ 1)i2 for B2 2o By BE Sl B3 Py B8 PSR e
the possible value of, and the minimization condition for f W | I ' h for th hp

{((AA)?) puts no further condition on this range. The al- asif.pg.Pa.Pg}. We can calculate this for the three cases

S, . .corresponding to 3(A)>1, 1=(A)>—1, and—1=(A)
Lﬁgegg%?'tyexigj; 'fotrh‘:rfe“';zesg'iﬂ&gdfq b(ej?i\(/)?lue 'i —3, as follows. Wher A) lies between 3 and 1, the mea-

(Remember-1<(A)=<1 for Case L This also means that, surgd value'fo_m can ta!<e only sorl bl.Jt notlor—=3to
for Case 1, we cannot derive minimum fidelitye., zero attain the minimum variance of its distribution. The minimi-

from the minimum variance principle zation of ((AA)? thus leads to the distribution
Next we consider several examples for tripartite systemgr’lsﬁ f’gra 1&32 At>°> Eel{((:gég_tﬁc)a/ (zj}g?rTb<uJ:‘i>o)r< Zi,soé:%l.cu?;tnelt-j o
There are eight GHZ states, which are written as be {0,(1+(AN/2,(1—(A))/2,0}, and for —1=(A)=—3
=(AN2) (|41 04— 10— ), case to be{0,0,(3+(A))/2,(—1—(.A))/2}. The derived fi-
|l’bl(8)> ( \/—)(| 1 b2 e 12 ma) delity in Case 3, by the minimum variance principle, is then

ized
|¢2(7)>’=(1/\/§)(|_1§+2i+3>i|+1;—2§—3>), summarized as

(AH-1
. 5 3=(A)>1, (24

|'J/4(5)>’=(1/\/§)(|+1§+2;—3>i|_1§_2§+3>)- (21 0, 1=(A)=-3.

|¢3(6)>’=(1/\/§)(|+13—2;+3>i|_1;+2§—3>),
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It is easy to show that this is equal to the minimum of theance principle is the minimum of the possible fidelity values
fidelity values with the help of Eq(16), where the param- allowed by the expectation value.
eters are set to b =3 andr,=1. It is thus concluded that,
for Case 3, the derived fidelity tgb3) by the minimum
variance principle leads to the minimum of the possible fi-
delity values allowed by the expectation value. In conclusion, we have analyzed the possible fidelity val-
We generalize the argument foipartite system. We con- yes that are compatible with an expectation value of a single
sider A= a1Q;+ a;Qx+ - - - + anQme Cy . Suppose that an  operator as experimental data. We have defined the desired
expectation valugA) is given. In the following we calculate  maximally entangled state and formulated one class that is
the fidelity f from the minimum variance principle in this related to a decomposition of the projector onto the desired

VI. CONCLUSION

case. We write the eigenvalues dfasM,r,,r3, ..., and  state. We have made use of the commutative group theory to
rs, whereM>r,>rz>...>r=—M. The probabilities for formulate a class of observables. When an expectation value
observing these eigenvalued,r,,r;, ..., andrg are de- of an operator that belongs to the class is given, we can
noted asf,q,,q3, . . ., andqgs, respectively. Similarly to the derive an inequality that gives a lower bound and an upper

discussion as to Case 3 for tripartite system(.4f) lies be-  bound of the fidelity values that are compatible with the
tween M and r,, the minimization of((A.A)?) leads to expectation value. With the help of the inequality, we have
3% ,0i=0, which means {f,q,,0s,...,0ss={((A)  analyzed the experimental data by Ranal [4]. The data
—r1)[(M=r3,),(M—{A))/(M—r,),0,...,G. The derived ensure the observed state does not belong to the biseparable
fidelity is then summarized as class and has genuinely tripartite entanglement. Finally, we
have also analyzed the calculated fidelity from the minimum

./4 —-r . . .
(A) 2, M=(A)>1,, variance principle.
f={ M-r; (25)
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