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Observables suitable for restricting the fidelity to multipartite maximally entangled states
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We present a class of observables which are suitable for determining the fidelity of a state to the multipartite
Greenberger-Horne-Zeilinger~GHZ! state. Given an expectation value of an observable belonging to the class,
we give a simple formula that gives a lower bound and an upper bound for the fidelity. Applying the formula
to the GHZ-state preparation experiment by Panet al. @Nature~London! 403, 515 ~2000!#, we show that the
observed state lies outside of the class of biseparable mixed three-qubit states. We also show that for this class
of operators, adopting the principle of minimum variance@Phys. Rev. A60, 4338~1999!# in the state estimation
always results in the state with the minimum fidelity.

DOI: 10.1103/PhysRevA.65.042314 PACS number~s!: 03.67.2a, 03.65.Fd, 03.65.Ud, 03.65.Wj
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I. INTRODUCTION

Recently, the importance of entangled states of multip
tite systems has been realized not only as a fundame
concept of quantum mechanics@1# but also as an essentia
resource for quantum information processing@2#. Up to now,
there have already been several experimental reports
three- and four-particle entangled states@3–5#. One of the
important measures to analyze how close the produced q
tum state is to the desired maximally entangled state is
fidelity @6#, i.e., the overlap with the desired entangled sta
For bipartite systems and multipartite systems, the fidelit
used as a criterion for nonseparability and distillability of t
so-called Werner state or Werner-type state, i.e., a maxim
entangled state mixed with the completely depolarized s
@7#. In the classification of mixed three-qubit states@8#, it
was shown that one of tripartite witnesses can be use
detect a state that does not belong to the biseparable c
This witness is given by

W5
1

2
12PGHZ, ~1!

where PGHZ is the projector onto a Greenberger-Horn
Zeilinger ~GHZ! state. When Tr@Wr#,0, the stater lies
outside of the biseparable class and has genuinely tripa
entanglement. Since Tr@Wr# is written as 1/22 f using the
fidelity f to the GHZ state, the fidelity is useful to determin
to which class a state belongs@9#.

As can be seen from these examples, it is importan
determine the fidelityf of experimentally produced state
from the observed data. Systematic arguments about the
sible fidelity values allowed by experimental data for mu
partite systems will be helpful to the experimental realizat
of various applications in quantum information processi
The main purpose of this paper is to give a formula for
possible range of the fidelity value in the simplest case,
the case where an expectation value of a single operat
given as experimental data. We present a class of observa
which are suitable for determining the range of the fidelity
a state to then-partite GHZ stateuFn&. The class is deter
mined through the expansion of the projection opera
1050-2947/2002/65~4!/042314~5!/$20.00 65 0423
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uFn&^Fnu into the sum of direct products of Pauli operato
for each party. Given an expectation value of an observa
belonging to the class, the formula gives a lower bound a
an upper bound for the fidelity. As an example, we analy
the GHZ-state preparation experiment by Panet al. @4# and
show that the fidelity to the GHZ state is larger than 0.7
This indicates that the observed state does not belong to
biseparable class and has genuinely tripartite entanglem

In addition to the argument of what kind of states a
possible under the constraints of experimental data, th
also is a problem of determining which state is most like
under the constraints. Such problems of estimation for bip
tite systems has been discussed along the maximum ent
principle @10#. Application of only this principle sometime
leads to an estimated state that possesses stronger enta
ment than the minimum entanglement that is compati
with the measured data. Based on the additional assump
that the realization of a stronger entanglement is less re
tic, Horodeckiet al. introduced a constraint, i.e., minimiza
tion of entanglement@11# in applying the maximum entropy
principle. They thus obtained an estimated state that has
minimum entanglement. Rajagopal derived the same s
with a different assumption together with the maximum e
tropy principle, i.e., to minimize the variance of a Bell o
erator@12#. Since then, much attention has been paid@13# to
this problem. Here we will show that, in multipartite sy
tems, applying the minimum variance principle to the ope
tors belonging to the above class gives the states with
minimum fidelity that is allowed by the constraints. This is
generalization of Rajagopal’s results to multipartite system
and reveals why and in what cases the minimum varia
leads to small entanglement.

This paper is organized as follows. In Sec. II, we take
GHZ state as the state of interest and present the clas
operators by decomposing the projector into the sum of
erators forming a commutative group. In Sec. III, we deri
a simple formula that gives a lower bound and an up
bound for the fidelity. In Sec. IV, we apply the formula t
analyze the GHZ-state preparation experiment by Panet al.
@4#, and show that the fidelity to the GHZ state is larger th
0.71. Section V deals with the state estimation problem ba
on the minimum variance principle. Section VI conclud
this paper.
©2002 The American Physical Society14-1
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II. DECOMPOSITION OF PROJECTOR AND CLASS
OF OBSERVABLES

In order to discuss the fidelity, we have to specify o
state of interest. We have referred to the state as thedesired
state. We taken-partite GHZ stateuFn& as the desired state
which is defined as

uFn&ª
1

A2
~ u11 ;12 ;•••;1n&1u21 ;22 ;•••;2n&). ~2!

In the following discussion, we consider the fidelity of th
stater to uFn&, i.e., fªTr@ruFn&^Fnu#. The projection op-
eratoruFn&^Fnu can be expanded as

uFn&^Fnu5
1

2n11 S )j 51

n

~sx
j1 isy

j !1)
j 51

n

~sx
j2 isy

j !

1)
j 51

n

~ I j1sz
j !1)

j 51

n

~ I j2sz
j !D

5~1/2n!~O01O11•••1O2n21!, ~3!

whereOp is defined by

Opª)
j 51

n

~sx
j !b0~sz

j !bj , ~4!

where then-bit sequenceb0b1•••bn21 is the binary repre-
sentation ofp, bn5( j 51

n21bj , since the terms with odd parit
for b1•••bn vanish in the above expansion. The superscrij
of the Pauli operators denotes particlej. It is easy to see tha
OpOq5Op% q , where p% q is the bitwise XOR~exclusive
OR! of p andq. Hence, the set of 2n operators$Op% forms a
commutative group isomorphic to (Z2)n. We denote this
commuta-
tive group asLn . The operatorO0 is the identity operator
for the 2n-dimensional space, and the other operat
O1 , . . . ,O2n21 have two eigenvalues,61. All elements of
Ln take uFn& as an eigenstate with eigenvalue one.

For n52, the above expansion is explicitly written a
follows:

uF2&^F2u5~1/4!~ I 1I 21sz
1sz

21sx
1sx

21 isy
1isy

2!, ~5!

where I represents the identity operator for the tw
dimensional space. Forn53, it is written as

uF3&^F3u5~1/8!~OIII 1OIzz1OzIz1OzzI

1Oxxx1Oxyy1Oyxy1Oyyx!, ~6!

where we have used the simplified notations asOIII

ªI 1I 2I 3, OIzzªI 1sz
2sz

3 , OzIzªsz
1I 2sz

3 , OzzIªsz
1sz

2I 3,
Oxxxªsx

1sx
2sx

3 , Oxyyªsx
1isy

2isy
3 , Oyxyª isy

1sx
2isy

3 , and
Oyyxª isy

1isy
2sx

3 .
Now let us consider the problem of determining the fid

ity by measuring the expectation value of an observable.
most direct approach is, of course, to measure^uFn&^Fnu&,
which will be done by conducting 2n21 different correlation
04231
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measurements to determine^Oj& ( j 51,2, . . . ,2n21). Our
interest here is how we can deduce the information about
fidelity from observables that can be measured by a m
smaller number of correlation measurements. In what
lows, we give a formula to derive an inequality for the fide
ity from an expectation value of an observable belonging
the classCn defined as follows:

ClassCn : An observableA belongs toCn if and only if A
is a linear combination of operatorsQ1 ,Q2 , . . . ,QmPLn
with positive coefficients, and the set$Q1 ,Q2 , . . . ,Qm%
forms a system of generators forLn . The class is determined
throughLn , and hence determined by the desired stateuFn&.

The minimum cardinal number of systems of generat
for Ln is n. To see this, suppose there are onlyl (,n) gen-
erators. In this case, however, they can generate at m
( i 51

l
lCi52l(,2n) kinds of elements ofLn due to the prop-

erty of the Pauli matrices. An example of a system of ge
erators forLn is

~7!

where Ox,x, . . . ,xªsx
1sx

2
•••sx

n , Oz,I ,I , . . . ,zªsz
1I 2I 3

•••sz
n,

and so on@14#. This system of generators forLn , indeed,
generates all 2n elements ofLn with the help of Eq.~4!.

As for L2, examples of a system of generators a
$sx

1sx
2 , sz

1sz
2%, $sx

1sx
2 , sz

1sz
2 , isy

1isy
2%, $I ,sx

1sx
2 , isy

1isy
2%

and so on. As forL3, examples of a system of generators a
$Oxyy ,Oyxy ,Oyyx%, $Oxyy ,Oyxy ,OIzz%, $Oxxx ,Oxyy ,Oyxy ,
Oyyx% and so on.

III. INEQUALITY FOR FIDELITY

In this section, we derive an inequality under the con
tion that the expectation value of an operatorAPCn is speci-
fied. First, we will show that if the given expectation value
the maximum value, the state must beuFn&. For that, we use
the following lemma:

Lemma.Let X,Y be operators taking eigenvalues61, and
@X,Y#50. Then,

12u^X&2^Y&u>^XY&>^X&1^Y&21. ~8!

This is directly proven by inequalities:

^~12X!~12Y!&>0 and ^~16X!~17Y!&>0. ~9!

In the following, we considerA5a1Q11a2Q21•••

1amQm (2n>m>n,a i.0,; i ). We assume thatAPCn .
We assume that the maximum expectation value^A&5M is
given, whereMª( i 51

m a i is the maximum eigenvalue ofA.
Because all coefficientsa i are positive,^A&5M implies
^Q1&5^Q2&5•••5^Qm&51. SinceQj

25I for any j and the
set$Q1 ,Q2 , . . . ,Qm% forms a system of generators forLn ,
any elementQ of Ln can be written as

Q5Qb1
Qb2

•••Qb l
, ~10!

with 1<b1,b2,•••,b l<m. We show that̂ Q&51 for all
l as follows. Whenl 51, then^Q&51 holds. SupposêQ&
4-2
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51 holds whenl 5k, i.e., ^) i 51
k Qb i

&51. Then with the help

of the lemma,̂ ) i 51
k11Qb i

&51 holds. LetX be) i 51
k Qb i

andY

be Qbk11
, respectively. The lemma leads that

<^) i 51
k11Qb i

&<1. Hence ^Q1&5^Q2&5•••5^Qm&51

means the expectation values of all elements ofLn are one.
This means that the fidelity is 1 with the help of Eq.~3!.
Therefore we obtain the following:

Proposition 1: Let M be the largest eigenvalue ofA
PCn . If Tr@rA#5M , thenr5uFn&^Fnu.

This implies that the largest eigenvalueM is not degener-
ate. This is a crucial point in deriving an inequality for th
fidelity. Let us write the eigenvalues ofA asM ,r 2 ,r 3 , . . . ,
and r s(s<2n), where M.r 2.r 3.•••.r s>2M . In this
notation, when some eigenvalues ofA are degenerate, the
s,2n holds, and when all the eigenvalues ofA are not de-
generate, thens52n holds. Since Proposition 1 implies tha
uFn& is the only eigenstate for the largest eigenvalueM, we
can generally expand̂A&ªTr@rA# as

^A&5M f 1(
i 52

s

qir i , ~11!

where f 5Tr@ruFn&^Fnu# is the fidelity to uFn&, and
qi(>0) satisfy f 1( i 52

s qi51. Using this relation to elimi-
nateq2, we have

^A&5M f 1S 12 f 2(
i 53

s

qi D r 21(
i 53

s

qir i

5~M2r 2! f 1r 22(
i 53

s

qi~r 22r i !. ~12!

We thus obtain

^A&2r 2

M2r 2
< f . ~13!

The equality of the relation~13! holds when( i 53
s qi50.

We can also derive an inequality that gives an up
bound of the fidelity by eliminatingqs , namely,

^A&5M f 1(
i 52

s21

qir i1S 12 f 2(
i 52

s21

qi D r s

5~M2r s! f 1(
i 52

s21

qi~r i2r s!1r s , ~14!

and

^A&2r s

M2r s
> f . ~15!

The equality of the relation~15! holds when( i 52
s21qi50. We

therefore obtain the following proposition:
Proposition 2: Let M, r 2, andr s be the largest, the second

largest, and the smallest eigenvalue ofAPCn , respectively.
04231
r

When ^A&ªTr@rA# is given, the fidelity f
ªTr@ruFn&^Fnu# is bounded as

^A&2r 2

M2r 2
< f <

^A&2r s

M2r s
. ~16!

IV. APPLICATION TO EXPERIMENTAL DATA

We analyze the experimental data by Panet al. @4#. In this
experiment they obtained four expectation values of thr
photon polarization correlations

^xyy&.^yxy&.^yyx&.0.70,

^xxx&.0.74. ~17!

These experimental data are obtained by the post selec
i.e., picking up only the events with each of the three det
tors registering a photocount. If the detectors used in
experiments were ideal ones, the post-selected state wou
contained in a 23-dimensional subspace, which can be ide
tified with a tripartite system of three qubits. Then the abo
observed values could be considered to give the expecta
values^Oxyy&, ^Oyxy&, ^Oyyx&, and ^Oxxx&. In the real ex-
periment, however, the detectors are not ideal, namely, t
cannot distinguish a single photon from more than one p
ton and they have a limited quantum efficiency and d
counting. Due to these imperfections together with the n
ideal photon source, the post-selected state also contains
tributions outside of the 23-dimensional subspace, in whic
two photons or no photons enter the same detector. Howe
the superfluous contributions can be neglected as comp
to the statistical uncertainty~a few percent! of the observed
values as follows@3#. The contribution of no-photon event
are due to dark counting, but the rate of the dark count
low enough@3# to be able to neglect the effect. The cont
bution of more than one photon entering a detector pas
the post selection only if another detector has a dark co
or more than two photon pairs are created in the parame
downconversion. The former case is negligible due to
low dark count rate, and the latter is also negligible since
probability per pulse to createn-photon pairs is of the orde
of about 1024n. We can thus assume that the post-selec
state is related to the polarization of three photons and
proximately supports 23-dimensional Hilbert space. Hence
we obtain

^Oxyy&.^Oyxy&.^Oyyx&.0.70,

^Oxxx&.0.74. ~18!

The limited quality of the polarization optics just before th
detectors, may make the visibility lower, which will mak
the estimated fidelity smaller. Hence, we use these exp
mental expectation values for restricting the fidelity fro
below.
4-3
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Clearly, each observable of Eq.~18! does not belong to
C3. Therefore we take the summation of these expecta
values. We then obtain

^A&.2.84, ~19!

where A5Oxyy1Oyxy1Oyyx1Oxxx . Apparently, APC3
holds, and eigenvalues ofA are 4, 0, and24, where 0 is a
degenerate eigenvalue. With the help of Eq.~16!, where the
parameters are set toM54 andr 250, we can state that th
observed state in this experiment has the fidelity to a G
state larger than or equal to 0.71@15#. Because the value i
larger than 1/2, with the help of Eq.~1!, these experimenta
data, indeed, ensure the observed state does not belong
biseparable class and has genuinely tripartite entanglem

V. RELATION BETWEEN VARIANCE AND FIDELITY

In this section, we show that if we apply the minimu
variance principle for estimating the states from an exp
mentally obtained expectation value of an operator belong
to Cn , the estimated fidelity becomes the minimum value t
is allowed by the constraints. This is a generalization of R
jagopal’s results@12# to multipartite systems.

Let us consider Rajagopal’s case, i.e., bipartite system
which the variance of Bell operatorB5A2(sx

1sx
21sz

1sz
2) is

made minimal.
Suppose that an expectation value^A& is given, where

Case 1: A5sx
1sx

2 ,

Case 2: A5sx
1sx

21sz
1sz

2 . ~20!

Note that, for Case 1, the operatorA does not belong toC2,
whereas, for Case 2, the operatorA belongs toC2, and A
5B/A2.

For Case 2, combining the results by Refs.@11# and@12#,
it is shown that if variancê(DA)2& is made minimal, the
calculated fidelity touF2& takes minimal when the expecta
tion value ^A& (>0) is given. In this way, the minimum
entangled state was derived from Jaynes principle. For C
1, the given^A& determines a range 0< f <(^A&11)/2 for
the possible value off, and the minimization condition fo
^(DA)2& puts no further condition on this range. The a
lowed fidelity value is thus unsettled and can be any valu
the region, except for the case that^A&521 (→ f 50).
~Remember21<^A&<1 for Case 1!. This also means that
for Case 1, we cannot derive minimum fidelity~i.e., zero!
from the minimum variance principle.

Next we consider several examples for tripartite syste
There are eight GHZ states, which are written as

uc1(8)&ª~1/A2!~ u11 ;12 ;13&6u21 ;22 ;23&),

uc2(7)&ª~1/A2!~ u21 ;12 ;13&6u11 ;22 ;23&),

uc3(6)&ª~1/A2!~ u11 ;22 ;13&6u21 ;12 ;23&),

uc4(5)&ª~1/A2!~ u11 ;12 ;23&6u21 ;22 ;13&). ~21!
04231
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The eight probabilities of observation of these GHZ sta
for the stater are defined as

piª^c i uruc i& ~ i 51,2, . . . ,8!. ~22!

We can see thatuc1& is equal touF3&. The fidelity f is then
identical top1.

Suppose that an expectation value^A& is given, where we
consider

Case 1: A5Oxyy1Oyxy ,

Case 2: A5Oxyy1Oyxy1OzzI ,

Case 3: A5Oxyy1Oyxy1Oyyx . ~23!

Note that, for Cases 1 and 2, the operatorA does not belong
to C3, whereas, for Case 3, the operatorA belongs toC3.

For Case 3, when the variance^(DA)2& is made minimal,
we see, later, that we can derive the minimum fidelity. F
Cases 1 and 2, however, the minimum variance princ
does not work completely. In Cases 1 and 2, the given^A&
determines range 0< f <(^A&12)/4 and 0< f <(^A&11)/4,
respectively, for the possible value off. For Case 2, the mini-
mization condition for̂ (DA)2& puts no further condition on
this range@16#. For Case 1, the minimization of̂(DA)2&
makesf max smaller, i.e., the allowed fidelity value is 0 fo
22<^A&<0 and 0< f <^A&/2 for 0,^A&<2. ~Remember
22<^A&<2 for Case 1!. This means that, for Case 2, w
cannot derive the minimum fidelity~i.e., zero! from the mini-
mum variance principle and for Case 1, we cannot derive
minimum fidelity for 0,^A&<2.

Now we calculate the fidelity for Case 3 from the min
mum variance principle. If we write operatorA in the matrix
form using the GHZ basis, the diagonal elements becom
21, 21, 21, 1, 1, 1, and23, and no off-diagonal elemen
appears. This means that the measured value forA can take
four values 3,21, 1, and23, where21 and 1 are degen
erate eigenvalues. Using notationspaªp21p31p4 , pb
ªp51p61p7, and the relationf 5p1, the probability that
the measured value forA takes 3, 1,21, or23 is expressed
as $ f ,pb ,pa ,p8%. We can calculate this for the three cas
corresponding to 3>^A&.1, 1>^A&.21, and21>^A&
>23, as follows. When̂A& lies between 3 and 1, the mea
sured value forA can take only 3 or 1 but not21 or 23 to
attain the minimum variance of its distribution. The minim
zation of ^(DA)2& thus leads to the distribution
$ f ,pb ,pa ,p8% to be $(^A&21)/2,(32^A&)/2,0,0%. Simi-
larly, for 1>^A&.21 case, the distribution is calculated
be $0,(11^A&)/2,(12^A&)/2,0%, and for 21>^A&>23
case to be$0,0,(31^A&)/2,(212^A&)/2%. The derived fi-
delity in Case 3, by the minimum variance principle, is th
summarized as

f 5H ^A&21

2
, 3>^A&.1,

0, 1>^A&>23.

~24!
4-4



he

,

fi

-

s

t

es

al-
gle
ired
t is

ired
y to
alue
can
per
he
ve

rable
we

um

ur
for
rtly

o-

OBSERVABLES SUITABLE FOR RESTRICTING THE . . . PHYSICAL REVIEW A 65 042314
It is easy to show that this is equal to the minimum of t
fidelity values with the help of Eq.~16!, where the param-
eters are set to beM53 andr 251. It is thus concluded that
for Case 3, the derived fidelity touF3& by the minimum
variance principle leads to the minimum of the possible
delity values allowed by the expectation value.

We generalize the argument forn-partite system. We con
siderA5a1Q11a2Q21•••1amQmPCn . Suppose that an
expectation valuêA& is given. In the following we calculate
the fidelity f from the minimum variance principle in thi
case. We write the eigenvalues ofA as M ,r 2 ,r 3 , . . . , and
r s , whereM.r 2.r 3.•••.r s>2M . The probabilities for
observing these eigenvalues,M ,r 2 ,r 3 , . . . , andr s are de-
noted asf ,q2 ,q3 , . . . , andqs , respectively. Similarly to the
discussion as to Case 3 for tripartite system, if^A& lies be-
tween M and r 2, the minimization of ^(DA)2& leads to
( i 53

s qi50, which means $ f ,q2 ,q3 , . . . ,qs%5$(^A&
2r 2)/(M2r 2),(M2^A&)/(M2r 2),0, . . . ,0%. The derived
fidelity is then summarized as

f 5H ^A&2r 2

M2r 2
, M>^A&.r 2,

0, r 2>^A&>r s .

~25!

Equation~24! is a special case of Eq.~25! where the param-
eters are set to beM53, r 251, andr s523. We can see tha
Eq. ~25! gives the minimum fidelity with the help of Eq.~16!
@17#. Hence, we have the following result:

Proposition 3: When ^A&ªTr@rA# is given, whereA
PCn , the derived fidelity touFn& from the minimum vari-
rs

s.

A

ifi

04231
-

ance principle is the minimum of the possible fidelity valu
allowed by the expectation value.

VI. CONCLUSION

In conclusion, we have analyzed the possible fidelity v
ues that are compatible with an expectation value of a sin
operator as experimental data. We have defined the des
maximally entangled state and formulated one class tha
related to a decomposition of the projector onto the des
state. We have made use of the commutative group theor
formulate a class of observables. When an expectation v
of an operator that belongs to the class is given, we
derive an inequality that gives a lower bound and an up
bound of the fidelity values that are compatible with t
expectation value. With the help of the inequality, we ha
analyzed the experimental data by Panet al. @4#. The data
ensure the observed state does not belong to the bisepa
class and has genuinely tripartite entanglement. Finally,
have also analyzed the calculated fidelity from the minim
variance principle.
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