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How to share a continuous-variable quantum secret by optical interferometry

Tomáš Tyc* and Barry C. Sanders
Department of Physics, Macquarie University, Sydney, New South Wales 2109, Australia
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We develop the theory of continuous-variable quantum secret sharing and propose its interferometric real-
ization using passive and active optical elements. In the ideal case of infinite squeezing, a fidelityF of unity
can be achieved with respect to reconstructing the quantum secret. We quantify the reduction in fidelity for the
~2,3! threshold scheme due to finite squeezing and establish the condition for verifying that genuine quantum
secret sharing has occurred.
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I. INTRODUCTION

Classical secret sharing introduced by Shamir@1# is an
important primitive of protection of secret classical inform
tion. It involves a dealer who distributes a secret among
group ofn parties~players! in a way that prevents all unau
thorized subsets of players~referred to as the adversar
structure! from reconstructing this state and permits auth
rized subsets~referred to as the access structure! to success-
fully reconstruct the state.

In quantum information theory, where the quantum st
itself is a repository of information, protection of this state
of paramount importance. The quantum version of se
sharing~QSS! @2–4# will likely play a key role in protecting
secret quantum information, e.g., in secure operations of
tributed quantum computation, sharing difficult-to-constru
ancilla states and joint sharing of quantum money, as
amples of the versatility of QSS@3#. Other examples of
quantum security include quantum key distribution@5#, pro-
tection of a classical secret by quantum means in the p
ence of eavesdroppers@6,7#, and quantum bit commitmen
@8#.

Whereas quantum secret sharing has been develope
discrete variables@2–4#, here we develop continuous
variable~CV! quantum secret sharing and show how it c
be implemented using optical interferometry and squee
light sources@9#. Both the theory and the proposed expe
mental realization are quite different from their discrete va
able counterparts, yet serve the same goal: sharing s
quantum states. CV quantum information theory h
achieved enormous success in quantum teleportation@10#
and quantum computation@11#, and continuous-variable
quantum secret sharing can be expected to play a key ro
future integrated CV quantum information systems. The
cent explosion of work going into linear optical quantu
computation is an example of the importance of interfe
metric approaches to quantum information@12#, and our pro-
posal fits well with this rapidly growing subfield of quantu
information research.

We develop the (2,2) threshold quantum secret sha
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protocol for passive linear interferometry, and our protoc
for higher threshold QSS schemes require squeezed light
show that finite squeezing limits the fidelity of the reco
structed secret quantum state, and we establish a lo
bound on fidelity for the (2,3) threshold scheme. This low
bound is a criterion for establishing that genuine QSS~as
opposed to classical secret sharing! has been achieved. Fi
nally we discuss the extension of our protocol to nonthre
old QSS schemes.

In contrast to the case of discrete-variable QSS@2–4#,
continuous-variable QSS involves states in infini
dimensional Hilbert spaces. Quantum information theory
infinite-dimensional Hilbert spaces is a feature of worki
with continuous variables@10,11#. In the QSS scheme dis
cussed here, the secret statec from an infinite-dimensional
Hilbert spaceH is encoded into an entangled stateF
PH ^ n asn shares, one for each player. The entanglemen
designed so that entanglement swapping operations@13# by
authorized groups of players can recover the secret state
unauthorized groups recover no information whatsoe
about the secret state.

II. THRESHOLD SCHEMES

We will consider first the threshold quantum secret sh
ing scheme for CV. Whereas secret sharing is concerned
general adversary and access structures, threshold s
sharing considers a particular access structure. Forn players,
the access structure for (k,n) threshold secret sharing@2# is
the set consisting of all groupings ofk or more players, and
the adversary structure is the set of all groupings consis
of fewer thank players. We will discuss in detail the (k,2k
21) threshold scheme. The general (k,n) scheme, withn
<2k21, can be achieved from the (k,2k21) scheme by
having the dealer discard 2k2n21 shares prior to dealing
the stateF, and threshold schemes withn>2k are not pos-
sible due to the noncloning theorem@2,14#. In the (k,2k
21) threshold scheme, the dealer’s stateF may be operated
on by k collaborators to produce the output stateFout
PH ^ 2k21. Ideally, Fout is a product of the original secre
statec andk21 pairwise entangled states, each in the H
bert spaceHi ^ Hj , where thei th andj th player is a collabo-
rator and adversary~or noncollaborating player!, respec-
tively. This entanglement of states between collaborator

-
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adversary ensures that adversaries do not acquire any i
mation whatsoever aboutc.

We introduce a continuous-variable representation for
secret stateuc& asc(x)5^xuc& for ux& the eigenstate of the
canonical position operatorx̂, and the eigenvalue spectrum
xPR. The eigenstates ofx̂ are not normalizable but satisf
the orthogonality relation

^x8ux&5d~x2x8!. ~2.1!

In an optical system, this is the quadrature-phase represe
tion, which can be measured via optical homodyne detec
@15#.

For x[(x1 , . . . ,xk)
T a vector from thek-dimensional

vector spaceRk for the canonical positions ofk players, the
dealer implements a particular linear mapping

L:Rk→R2k:x °L~x!5@x1 ,L1~x!, . . . ,L2k21~x!#T.
~2.2!

The linear mappingL is constrained by the requireme
~which can always be satisfied@2#! that the components o
any k-element subset of$x1 ,L1 , . . . ,L2k21% are linearly in-
dependent. The mappingL is used by the dealer to encodec
into the entangled state

uF&5E
Rk

c~x1!uL1~x!&1•••uL2k21~x!&2k21dkx ~2.3!

~which is not normalizable for the same reason thatux& is not
normalizable!.

The encoding~2.3! enablesc to be reconstructed from
any k shares as follows. Let (r 1 , . . . ,r 2k21) be an arbitrary
permutation of indices (1,2, . . . ,2k21). As both sets
$Lr 1

,Lr 2
, . . . ,Lr k

% and $x1 ,L1 , . . . ,L2k21% are linearly in-

dependent, there exists a non-singulark3k matrix T such
that

TS Lr 1

Lr 2

A

Lr k

D 5S x1

Lr k11

A

Lr 2k21

D . ~2.4!

Given T, there exists a unitary operatorU(T) such that

FIG. 1. The reconstruction of the secret fork54 corresponding
to the permutation (r i)5(2136475). In order to reconstruct the s
cret c, the players 2, 1, 3, and 6 perform the unitary operationU
from Eq. ~2.5! on their shares. This results in the second share
in the statec, while the shares 1, 3, and 6 form EPR states with
shares 4, 7, and 5, respectively.
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U~T!uLr 1
& r 1

uLr 2
& r 2

•••uLr k
& r k

5uuTuu1/2 ux1& r 1
uLr k11

& r 2
•••

3uLr 2k21
& r k

~2.5!

with uuTuu5uudetTuu. The matrix elements ofU in the con-
tinuous basis

$ux8&[ux18& r 1
•••uxk8& r k

% ~2.6!

are

^x8uUux9&5uuTuu1/2)
i 51

k

dS (
j 51

k

Ti j xj92xi8D , ~2.7!

with $Ti j % the matrix elements ofT.
The collaborators with shares indexed byr 1 ,r 2 , . . . ,r k

reconstruct the secret by transforming their shares viaU,
which results in the total state of all shares

UuF&5JuuTuu1/2E
Rk

c~x1! ux1& r 1
uLr k11

& r 2
•••

3uLr 2k21
& r k

uLr k11
& r k11

•••uLr 2k21
& r 2k21

3dx1dLr k11
•••dLr 2k21

5JuuTuu1/2uc& r 1
uQ& r 2 ,r k11

uQ& r 3 ,r k12
•••uQ& r k ,r 2k21

,

~2.8!

with J the Jacobian for the transformation fromx to
(x1 ,Lr k11

, . . . ,Lr 2k21
) and

uQ& i j [E
R
ux& i ux& j dx. ~2.9!

Equation~2.8! shows that ther 1th share is the secret statec
and sharesr 2 , . . . ,r k are maximally entangled with the
shares of the adversaries~see Fig. 1!. Thus the quantum se
cret is reconstructed from anyk shares via a unitary transfor
mation, and anyk21 shares produces no information abo
c whatsoever as tracing over the remainingk shares yields a
multiple of the identity operator.

Important components of the state~2.8! are the~unnor-
malized and ideal! Einstein-Podolski-Rosen~EPR! states
@16# uQ& i j @see Eq.~2.9!# such thati j ^x x8uQ& i j 5d(x2x8).
These states can be approximated by the strongly sque
two-mode vacuum states@17# uh& i j that have the representa
tion

i j ^x x8uh& i j [~12h2!1/2(
n50

`

hnun~x!un~x8! ~2.10!

for 21<h<1 andun(x)[^xun& with un& the Fock state. As

(
n50

`

un~x!un~x8!5d~x2x8!, ~2.11!

the relation
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e
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lim
h→1

~12h2!21/2^xx8uh&5d~x2x8! ~2.12!

holds; henceuh→1&5uQ&. The sharei of uh& i j , after trac-
ing over the sharej, behaves locally as a thermal state%T
with temperatureT52\v/(2kBlnuhu), wherekB denotes the
Boltzmann constant; the limith→1 corresponds toT→`.

III. EXPERIMENTAL REALIZATION

Now we show how to implement the above reconstruct
procedure experimentally. GivenT in Eq. ~2.4!, there exists
SPSp(2k,R) corresponding toT mapping the canonical po
sition and (TT)21 mapping the corresponding canonical m
menta, for T the transpose. The symplectic transformatioS
can be decomposed into a sequence of SU~2! and SU~1,1!
transformations@18# that perform passive and active~squeez-
ing! operations on the shares. Physically, such transfor
tions can be realized by the combined SU~2! and SU~1,1!
interferometry@19# that uses beam splitters, mirrors, pha
shifters, and squeezers. The secret and shares are the
tinct spatial modes of light, and an interferometer can
designed by any group ofk collaborators to yield the secre
at one output port when the shares are injected to the in
ports.

The encoding of the secret by the dealer can also be
formed via~active! interferometry~again a symplectic trans
formation!. For a chosen permutation of indices, the dea
creates the state~2.8! and employing a suitable interferom
eter appliesU† to this state in order to obtainF. In sum-
mary, the dealer can encode the secret statec in a 2k21
mode entangled stateF via interferometry which can be de
coded by anyk collaborators also by interferometry. As ha
been mentioned at the start, the general (k,n) threshold
scheme can be achieved by having the dealer discardk
212n shares.

IV. EXAMPLE: „2,3… THRESHOLD SCHEME

We will give an example of the (2,3) threshold schem
The dealer chooses

L15
x21x1

A2
, L25

x22x1

A2
, L35x2 , ~4.1!

and constructs the corresponding interferometer with a 50
beam splitter~BS! as shown in Fig. 2~a!. This interferometer
transforms the initial stateuc&1uQ&23 to the three-mode en
tangled state

uF&5E
R2

c~x1!Ux21x1

A2
L

1

Ux22x1

A2
L

2

ux2&3 dx1 dx2 .

~4.2!

The secret can then be reconstructed from any two sha
By combining shares 1 and 2 on a 50/50 BS@Fig. 2~b!#,
thereby transforming the canonical positions of the t
shares via
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T125
1

A2
S 1 21

1 1D , ~4.3!

the first share is left in the secret statec. Similarly by com-
bining the first and third shares on a nondegenerate para
ric down-conversion crystal, pumped by a coherent field@see
Fig. 2~c!#, that transforms the canonical positions via

T135S A2 21

21 A2
D , ~4.4!

the first share is left in the secret statec. A similar procedure
can be employed for shares 2 and 3 to reconstruct the se

A surprisingly simple (2,2) quantum secret shari
threshold scheme can be derived from the previous (2
scheme by discarding the third share. The~unnormalized!
reduced density operator of the first two shares after trac
over the last share is

r125U†~ uc&1^cu ^ 12!U, ~4.5!

FIG. 2. Encoding and reconstruction procedures for a (2
threshold scheme.~a! For the encoding process, the dealer crea
the stateuc&1uQ&23 and combines modes 1 and 2 on a 50/50 BS;~b!
players 1 and 2 combine their shares on a 50/50 BS to obtainc at
one output;~c! players 1 and 3 combine their shares at a nondeg
erate parametric down converter which is pumped by a cohe
beam of doubled frequency to obtainc at one output. In both case
~a! and~b! the remaining output forms an EPR state with the sh
of the adversary.
0-3
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TOMÁŠ TYC AND BARRY C. SANDERS PHYSICAL REVIEW A65 042310
for U the unitary operator induced byT12 according to Eqs.
~2.5! and ~2.7!, and1 the unit operator. As the thermal sta
%T→` is a multiple of the unit operator, the state of the tw
shares can be also obtained by mixing the secretc with a
thermal state of infinite temperature on a 50/50 BS~see Fig.
3!. The encoding of the secret is thus performed by sim
mixing it with a thermal state on a BS, whereas the rec
struction is accomplished via recombining the two shares
another 50/50 BS. As a result, the players obtain the se
state as well as the thermal state from the two BS ou
ports.

V. THE CASE OF FINITE SQUEEZING

Whereas infinite temperature is necessary for ideal (2
quantum secret sharing threshold scheme,%T→` contains on
average an infinite number of photons so any finite erro
the encoding or reconstruction process will produce infinit
many photons from output port 1 of the BS and there
destroy the secret completely. Therefore a finite-tempera
%T must be employed instead, and in the general case o
(k,n) threshold scheme, finitely squeezed two-mode vacu
states must replace EPR states for the same reason. Thi
generally compromise the secret sharing fidelity, i.e.,
overlap of the reconstructed state and the original secret

F5^curuc&, ~5.1!

wherer is the ~generally mixed! state obtained as the resu
of reconstruction. Consider a dealer using an interferom
as in Fig. 2~a! for the encoding process, where a two-mo
squeezed vacuum stateuh5tanhr& replaces the EPR state
the two inputs. Clearly, players 1 and 2 can still reconstr
the secret perfectly while players 1 and 3 or players 2 an
cannot. If the secret is a coherent state, the fidelity for pl
ers 1 and 3 is

F5
1

11e22r
5

11h

2
~5.2!

FIG. 3. The (2,2) threshold scheme: the dealer encodes the
cret by combining it with a thermal state of an infinite temperat
on a 50/50 BS. The two players can then reconstruct the secre
combining their beams on another 50/50 BS.
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~see Fig. 4!. If r 50 ~no squeezing!, the players can still
achieveF51/2. This fidelity threshold can be used to veri
whether a genuine quantum secret sharing has taken pla
this particular (2,3) threshold scheme.

VI. CONCLUSION

To conclude, we have developed a theory of quantum
cret sharing using CV and shown how encoding and rec
struction processes could be achieved via~active! multimode
interferometry for the (k,n) threshold scheme. The (2,3) an
(2,2) schemes have been presented in detail, including
allowance for finite squeezing and a minimum fidelity ne
essary to demonstrate that genuine secret sharing has
performed. The (2,2) threshold scheme is achievable w
current technology.

The (k,n) threshold scheme is readily generalized to
arbitrary adversary structureA by analogy with the discrete
variable schemes based on monotone span programs@4#. For
any adversary structureA, there exists a self-dual structur
A8 (A8 is self-dual if, for any division of the set of al
players into two disjoint groups, exactly one group is able
reconstruct the secret!, from which A can be obtained by
discarding some shares@4#. For the self-dual adversary struc
ture A8, the encoding procedure of the dealer and decod
procedures of the collaborating players can again be real
by linear mappings of the canonical positions by employ
a suitable interferometer. For a total ofn players, the initial
state of the dealer consists of the secretc andn21 single-
mode infinitely squeezed vacuum states@9#.
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FIG. 4. The fidelityF5^curuc& for the scheme in Figs. 2~a!,~c!
with squeezing parameterr used by the dealer and the secretc a
coherent state.
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