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How to share a continuous-variable quantum secret by optical interferometry
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We develop the theory of continuous-variable quantum secret sharing and propose its interferometric real-
ization using passive and active optical elements. In the ideal case of infinite squeezing, afidéliyity
can be achieved with respect to reconstructing the quantum secret. We quantify the reduction in fidelity for the
(2,3 threshold scheme due to finite squeezing and establish the condition for verifying that genuine quantum
secret sharing has occurred.
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[. INTRODUCTION protocol for passive linear interferometry, and our protocols
for higher threshold QSS schemes require squeezed light. We

Classical secret sharing introduced by Shaftifis an  show that finite squeezing limits the fidelity of the recon-
important primitive of protection of secret classical informa- structed secret quantum state, and we establish a lower
tion. It involves a dealer who distributes a secret amongst &ound on fidelity for the (2,3) threshold scheme. This lower
group ofn parties(players in a way that prevents all unau- bound is a criterion for establishing that genuine Q&$
thorized subsets of playergeferred to as the adversary opposed to classical secret shajilgs been achieved. Fi-
structure from reconstructing this state and permits autho-nally we discuss the extension of our protocol to nonthresh-
rized subsetgreferred to as the access strucjuesuccess- old QSS schemes.
fully reconstruct the state. In contrast to the case of discrete-variable Q2S4,

In quantum information theory, where the quantum statecontinuous-variable QSS involves states in infinite-
itself is a repository of information, protection of this state is dimensional Hilbert spaces. Quantum information theory in
of paramount importance. The quantum version of secreinfinite-dimensional Hilbert spaces is a feature of working
sharing(QSS [2—4] will likely play a key role in protecting  with continuous variable§10,11. In the QSS scheme dis-
secret quantum information, e.g., in secure operations of dissussed here, the secret statdrom an infinite-dimensional
tributed quantum computation, sharing difficult-to-constructHilbert space? is encoded into an entangled stade
ancilla states and joint sharing of quantum money, as exe H ®" asn shares, one for each player. The entanglement is
amples of the versatility of QS$3]. Other examples of designed so that entanglement swapping operafib8sby
quantum security include quantum key distribut{&}, pro-  authorized groups of players can recover the secret state, and
tection of a classical secret by quantum means in the presmauthorized groups recover no information whatsoever
ence of eavesdroppef$§,7], and quantum bit commitment about the secret state.

[8].

Whereas quantum secret sharing has been developed for
discrete variables[2—4], here we develop continuous- Il. THRESHOLD SCHEMES
variable (CV) quantum secret sharing and show how it can
be implemented using optical interferometry and squeezed We will consider first the threshold quantum secret shar-
light sourceq9]. Both the theory and the proposed experi-ing scheme for CV. Whereas secret sharing is concerned with
mental realization are quite different from their discrete vari-general adversary and access structures, threshold secret
able counterparts, yet serve the same goal: sharing secrgftaring considers a particular access structurenftayers,
quantum states. CV quantum information theory haghe access structure fok,f) threshold secret sharif@] is
achieved enormous success in quantum teleportdtioh  the set consisting of all groupings kfor more players, and
and quantum computatiofll], and continuous-variable the adversary structure is the set of all groupings consisting
quantum secret sharing can be expected to play a key role @f fewer thank players. We will discuss in detail thek@k
future integrated CV quantum information systems. The re-—1) threshold scheme. The gener&lr() scheme, withn
cent explosion of work going into linear optical quantum <2k—1, can be achieved from theé,@gk—1) scheme by
computation is an example of the importance of interfero-having the dealer discardk2-n—1 shares prior to dealing
metric approaches to quantum informat[d2], and our pro- the stated, and threshold schemes witix 2k are not pos-
posal fits well with this rapidly growing subfield of quantum sible due to the noncloning theoref2,14]. In the (k,2k
information research. —1) threshold scheme, the dealer’s st@tenay be operated

We develop the (2,2) threshold quantum secret sharingn by k collaborators to produce the output state,

e H®%*"1 |deally, ®,, is a product of the original secret
stateyy andk—1 pairwise entangled states, each in the Hil-
*On leave from Institute of Theoretical Physics, Masaryk Univer- bert spacé+;® H; , where the th andjth player is a collabo-
sity, Kotlalska2, 61137 Brno, Czech Republic; email address:rator and adversaryor noncollaborating playgr respec-
tomtyc@physics.muni.cz tively. This entanglement of states between collaborator and
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U(T)ll-rl>rl||-r2>r2' : '|er>rk:||T||l/2|xl>rl||-rk+l>r2' o

XL (2.5

r2k—1>rk

with ||T||=||detT||. The matrix elements of) in the con-
tinuous basis

167,

FIG. 1. The reconstruction of the secret for 4 corresponding
to the permutationr() =(2136475). In order to reconstruct the se-
cret ¢, the players 2, 1, 3, and 6 perform the unitary operation are
from Eq. (2.5 on their shares. This results in the second share left
in the statey, while the shares 1, 3, and 6 form EPR states with the
shares 4, 7, and 5, respectively.

{|X,>E|Xi>r1"'|xl,<>rk} (2-6)

k k
Ul =T)1 L] a( 3, Tijx;'—x(), @)

adversary ensures that adversaries do not acquire any inf
mation whatsoever about.

We introduce a continuous-variable representation for there
secret statéy) as (x) =(x|¢) for |x) the eigenstate of the
canonical position operat&r, and the eigenvalue spectrum is

x e R. The eigenstates of are not normalizable but satisfy
the orthogonality relation

With {Ti;} the matrix elements of.

The collaborators with shares indexed by,ro, ... g
construct the secret by transforming their sharesUjia
which results in the total state of all shares

OJ) =3l TII2 [ k) e L ey

<X/|X>:5(X_X’)- 2.1 X|Lr2k—1>'k||‘rk+1>'k+1”'|L'2k—1>r2k—1
In an optical system, this is the quadrature-phase representa- Xdxdby, ,o--dhp,
tion, which can be measured via optical homodyne detection "
[15]. =J|[T| |$>r1|>r2,rk+l|®>r3,rk+2' e |®>rk~r2k—1’
For x=(Xy, ... X' a vector from thek-dimensional

vector spac& for the canonical positions df players, the 28

dealer implements a particular linear mapping with J the Jacobian for the transformation from to

L:R* =R x> L(x)=[X1,L1(X), . .. Lo 1(¥)]". (1L o - - -k, ) @nd

(2.2

3= | hboy ax 29

The linear mappingL is constrained by the requirement
(which can always be satisfig@]) that the components of
any k-element subset dfx;,Lq, ... Lo} are linearly in-
dependent. The mappirlgis used by the dealer to encode
into the entangled state

Equation(2.8) shows that the ;th share is the secret state
and shares,, ... r, are maximally entangled with the
shares of the adversariésee Fig. 1 Thus the quantum se-
cret is reconstructed from arkyshares via a unitary transfor-
mation, and ank—1 shares produces no information about
¢ whatsoever as tracing over the remaininghares yields a
multiple of the identity operator.

Important components of the staf2.8) are the(unnor-

@)= fﬁk‘ﬂ(xl)“-l(x)h- Lok 100) 210 (2.3)

(which is not normalizable for the same reason tkats not

normalizable. malized and ideal Einstein-Podolski-RosefEPR states
The encoding(2.3) enablesy to be reconstructed_ from [16] |©);; [see Eq(2.9] such that;;(x X'|©);; = 8(x—X').
any k shares as follows. Letr(, ... Iy ) be an arbitrary  Thege states can be approximated by the strongly squeezed

permutation of indices (1,2..,%k—1). As both sets
{LeLey oo b and{xy Ly, ... Lok—q} are linearly in-
dependent, there exists a non-singtasrk matrix T such
that

r X1
L,
T 2= (2.4)
er L’zk—l

GivenT, there exists a unitary operatoi(T) such that

two-mode vacuum stat¢d7] | );; that have the representa-
tion

©

ij<xx’|n>uz<1—n2>l’2n§0 PU(X)UL(X')  (2.10

for —1< =<1 andu,(x)=(x|n) with |n) the Fock state. As

> Up(X)Up(x')=8(x—x"),

n=0

(2.11)

the relation
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lim (1— %)~ YAxx'| )= 8(x—x") (2.12 (@) W

-
n—1

share 1
) beam splitter
holds; hencd »—1)=|0). The shard of | 7);;, after trac-

ing over the sharg, behaves locally as a thermal staie ~ share 2
with temperaturd = — # w/(2kgIn|7]), wherekg denotes the 16>
Boltzmann constant; the limig— 1 corresponds t@ — .

share 3

IIl. EXPERIMENTAL REALIZATION (b)

S

Now we show how to implement the above reconstruction share 1 ) v>
procedure experimentally. Givehin Eq. (2.4), there exists bz Splitter
Se Sp(2,R) corresponding td mapping the canonical po-
sition and ") ~* mapping the corresponding canonical mo-
menta, for T the transpose. The symplectic transformeion
can be decomposed into a sequence of2@nd SU1,1)
transformation$18] that perform passive and activgqueez-
ing) operations on the shares. Physically, such transforma- ©
tions can be realized by the combined (8Jand SU1,1)
interferometry[19] that uses beam splitters, mirrors, phase shared
shifters, and squeezers. The secret and shares are then dis-
tinct spatial modes of light, and an interferometer can be
designed by any group & collaborators to yield the secret
at one output port when the shares are injected to the input
ports. pr—

The encoding of the secret by the dealer can also be per- down~—conversion crystal
formed via(active) interferometry(again a symplectic trans-
formation. For a chosen permutation of indices, the dealer g5 o Encoding and reconstruction procedures for a (2,3)

creates the StTat@'S)_ and employing a suitable interferom- yhreshold schemda) For the encoding process, the dealer creates
eter appliesU' to this state in order to obtaiP. In sum-  ihe statd /),|©),3 and combines modes 1 and 2 on a 50/50 &S;
mary, the dealer can encode the secret sfai@ a 2k—1  players 1 and 2 combine their shares on a 50/50 BS to olgtan
mode entangled state via interferometry which can be de- one output{c) players 1 and 3 combine their shares at a nondegen-
coded by any collaborators also by interferometry. As has erate parametric down converter which is pumped by a coherent
been mentioned at the start, the generaln] threshold beam of doubled frequency to obtajnat one output. In both cases
scheme can be achieved by having the dealer disckrd 2(a) and(b) the remaining output forms an EPR state with the share

share 2 =

6>

share 3

share 2

—1-n shares. of the adversary.
IV. EXAMPLE: (2,3 THRESHOLD SCHEME 1 (1 - 1) 3
12~ = ) .
We will give an example of the (2,3) threshold scheme. y2i1 1

The dealer chooses
the first share is left in the secret state Similarly by com-
Xo+ Xy Xo— X1 bining the first and third shares on a nondegenerate paramet-
L= 2 2:T1 L3=Xa, (4.1 ric down-conversion crystal, pumped by a coherent fis&b
Fig. 2(c)], that transforms the canonical positions via

and constructs the corresponding interferometer with a 50/50
beam splitteBS) as shown in Fig. @). This interferometer _ V2 -1
transforms the initial statgy),|®),5 to the three-mode en- Bl 2

tangled state
the first share is left in the secret stateA similar procedure
X2t Xy can be employed for shares 2 and 3 to reconstruct the secret.
\/5 L A surprisingly simple (2,2) quantum secret sharing
(4.2)  threshold scheme can be derived from the previous (2,3)
scheme by discarding the third share. Tlvanormalized
The secret can then be reconstructed from any two sharekduced density operator of the first two shares after tracing
By combining shares 1 and 2 on a 50/50 BSg. 2(b)],  over the last share is
thereby transforming the canonical positions of the two
shares via p12=UT(|h) (¥ ®1)U, (4.9

(4.9

Xo—

|X5)5 dxq dX,.

|®)= JR2¢(X1)
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FIG. 3. The (2,2) threshold scheme: the dealer encodes the se- 0.25
cret by combining it with a thermal state of an infinite temperature
on a 50/50 BS. The two players can then reconstruct the secret by

combining their beams on another 50/50 BS. 9 ) 0 2 4

for U the unitary operator mduced bly,, according to Eqs. FIG. 4. The fidelityF=(4|p| ) for the scheme in Figs.(@),(c)
(2.5 and(2.7), and1 the unit operator. As the thermal state i, squeezing parameterused by the dealer and the secet
071 . is a multiple of the unit operator, the state of the two cgnerent state.
shares can be also obtained by mixing the segratith a
thermal state of infinite temperature on a 50/50 B&e Fig. (see Fig. 4 If r=0 (no squeezing the players can still
3). The encoding of the secret is thus performed by simpbﬁChievef: 1/2. This fidelity threshold can be used to Verify
mixing it with a thermal state on a BS, whereas the reconWhether a genuine quantum secret sharing has taken place in
struction is accomplished via recombining the two shares oflis particular (2,3) threshold scheme.
another 50/50 BS. As a result, the players obtain the secret
state as well as the thermal state from the two BS output
ports. To conclude, we have developed a theory of quantum se-
cret sharing using CV and shown how encoding and recon-
V. THE CASE OF FINITE SQUEEZING struction processes could be achieved(aietive multimode
interferometry for theK,n) threshold scheme. The (2,3) and
Whereas infinite temperature is necessary for ideal (2,2]2 2) schemes have been presented in detail, including an
quantum secret sharing threshold scheme, .. contains on  allowance for finite squeezing and a minimum fidelity nec-
average an infinite number of photons so any finite error inessary to demonstrate that genuine secret sharing has been
the encoding or reconstruction process will produce infinitelyperformed. The (2,2) threshold scheme is achievable with
many photons from output port 1 of the BS and therebycurrent technology.
destroy the secret completely. Therefore a finite-temperature The (k,n) threshold scheme is readily generalized to an
o1 must be employed instead, and in the general case of thgbitrary adversary structuté by analogy with the discrete-
(k,n) threshold scheme, finitely squeezed two-mode vacuumjariable schemes based on monotone span progmior
states must replace EPR states for the same reason. This Wilhy adversary structurd, there exists a self-dual structure
generally compromise the secret sharing fidelity, i.e., theq’ (4’ is self-dual if, for any division of the set of all
overlap of the reconstructed state and the original secret Staggayers into two disjoint groups, exactly one group is able to
reconstruct the secpetfrom which A can be obtained by
F=(lpl), (5.1)  discarding some sharg4]. For the self-dual adversary struc-
ture A, the encoding procedure of the dealer and decoding
wherep is the (generally mixedl state obtained as the result procedures of the collaborating players can again be realized
of reconstruction. Consider a dealer using an interferometesy linear mappings of the canonical positions by employing
as in Fig. Za) for the encoding process, where a two-modea suitable interferometer. For a total mfplayers, the initial
squeezed vacuum stgte=tanhr) replaces the EPR state at state of the dealer consists of the seafeindn—1 single-
the two inputs. Clearly, players 1 and 2 can still reconstrucinode infinitely squeezed vacuum stafe$
the secret perfectly while players 1 and 3 or players 2 and 3
cannot. If the secret is a coherent state, the fidelity for play- ACKNOWLEDGMENTS
ers1and 3 is
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