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Universal continuous-variable quantum computation: Requirement of optical nonlinearity
for photon counting
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Although universal continuous-variable quantum computation cannot be achieved via linea(iophict
ing squeezing homodyne detection, and feed-forward, inclusion of ideal photon-counting measurements
overcomes this obstacle. These measurements are sometimes described by arrays of beam splitters to distribute
the photons across several modes. We show that such a scheme cannot be used to implement ideal photon
counting and that such measurements necessarily involve nonlinear evolution. However, this requirement of
nonlinearity can be moved “off-line,” thereby permitting universal continuous-variable quantum computation
with linear optics.
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[. INTRODUCTION This paper is outlined as follows. We first review the Clif-
ford group for continuous variables, which consists of linear
The chief attraction of quantum computation is the possi-optics transformationsincluding squeezing The construc-
bility of solving certain problems exponentially faster thantion of a cubic phase state of GKP is outlined as a possible
any known method on a classical compufg}, and a sig- Means to implement a nonlinear transformation, necessary
nificant effort is underway to realize a physical quantumfor universal CV quantum computation. This gate requires
computer[2,3]. Optical realizations of a quantum computer Photon-counting measurements, and we demonstrate that lin-
are particularly appealing because of the robust nature df&' Optics, homodyne measurement, and ideal photodetection
quantum states of light against the effects of decoherence 4&€ insufficient to implement such schemes. A nonlinear in-

well as the advanced techniques for state preparation, photdfraction is shown to be a necessary component of any

manipulation, and photodetection. Both discrete-variablsgeOton'Countmg measurement. An analysis of truncated Hil-

(qubit-basell [4—6] and continuous-variable(CV) [7] rt spaces is included, and the paper concludes with a dis-

schemes offer significant potential as optical quantum com_uission on the use of photon-counting measuremeand

X ) .. . their associated nonlinear transformatiooff-line in a CV

puters. However, the lack of a strong optical nonlinearity is :
. ) aquantum computation.
considerable hurdle for optical quantum computafidh
A proposal by Knill, Laflamme, and Milbur(KLM) [5]

describes how the measurement of photons can be employed
to induce a nonlinear transformation in a qubit-based optical The requirement of nonlinear transformations for univer-
quantum computer and how this procedure can be done effsal CV quantum computatidrY] can be understood by con-
ciently in a nondeterministic way. These remarkable resultsideringn harmonic oscillators, correspondingridandepen-

suggest that measurement in a CV system may be used #ent optical field modes, with annihilation operatdes ; i
induce nonlinear evolution as weflthough measurements =1, ... n}. Linear optical transformations of these modes
of CV observables may not be possible in the von Neumanare described by unitary phase-space displacenfeyntsix-
sense; se¢8]). A scheme proposed by Gottesman, Kitaev,ing with “classical fields” at beam splitteys

and Preskil(GKP) [6] uses photon-number measurement to

induce a nonlinear transformation. If photon counting over- Di(a)=explad —a*a), (1)
comes the obstacle of creating optical nonlinearities, then

CV guantum computation may be feasible, just as the qubitwith «a € C; these transformations comprise the Heisenberg-
based linear optical quantum computer may be feagtijle ~Weyl group HW). For a classical pump field, parametric
Here we present three key resultd) universal quantum amplification invokes one-mode squeezing operations
computation over continuous variables can be achieved using

linear optics, homodyne measurement with feed-forward, Si(n)=exd (nal?— y*a?)] 2
and photon counting?) the desired photon-counting projec-

tive measurement cannot be performed using linear opticand two-mode squeezing operations

and existing photodetectors, and necessarily involves an op- L o

tical nonlinearity; and3) the nonlinear transformations can $j(n)=exq%(77araf— n*a;a;)] (3

be brought “off-line” to prepare quantum resources for a

linear optical CV quantum computation to succeed in a defor e C [9]. (Although squeezing utilizes an optical nonlin-
terministic way. earity of order two or higher, the transformation is regarded

II. CLIFFORD-GROUP TRANSFORMATIONS
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as being linear because the resultant Heisenberg operator Ill. THE CUBIC-PHASE GATE
equations of motion are linearISqueezing operationdoth
one and two modegenerate the symplectic group Sp(R).

The squeezing operatidf(7) with z real maps the ca-
nonical position as

One is led to ask whether measurements can be used to
induce nonlinear evolution, following the related example
for qubit-based linear-optics quantum computafibh First,
we consider Clifford-group transformations conditioned on

o Aot - the results of projective-valued measuremé&Rtg¢MSs) in the

S(n):0i=Vhl2(@+a)) —exp —7);; “ computationarbeisié.e., von Neumann measurements in the

thus, the infinitely squeezed displaced vacuum basis{|q), qeR}). As shown in[10], such measurements
and feed-forward are efficiently simulatable on a classical

lim S(W)Di(q/\/ﬁ)m)a (5) computer and thugunder the assumption that universal

s quantum computation igot efficiently simulatable classi-

cally) are also insufficient for universal quantum computa-
with ge R, is the (unnormalizablg position eigenstatér); . tion. These results also include a more realistic computa-

These position eigenstates are often employed as a compuignal basis of finitely squeezed states and realistic

tional basis for CV quantum computation, and are approxihomodyne measurement of quadratures. Thus, in the follow-

mated in experiment by finite squeeziri@]. Two-mode ing, we will consider Clifford-group transformations condi-

squeezings;; () acts in a similar fashion on the normal and tioned on homodyne measurements to be part of “linear op-

antinormal modes; *a;, and the infinitely squeezed two- tics.”

mode vacuum Possibly, measurements in a different basis can be em-

ployed to induce a nonlinear transformation. Such a scheme
|®)i;= lim S;;(7)|0), (6)  has been proposeih the context of quantum computation
e with finite-dimensional qudits rather than CMsy GKP us-
ing measurements of photon number. Specifically, these mea-

wherene R is the EPR state satisfying surements are described by a PVM

i1(qq'|@);=68(9—q"). 7
i1(49'[®);;=3(q—q’) 7 ML=yl n=012...), 10
Two-mode squeezing also allows us to implement a unitary
SUM gate[6,10], defined as for a single oscillator, wher¢gn) is the eigenstate of the
i number operato =a'a with eigenvaluen. In what follows,
SUM): =exd — —a:b: | =exd L (af+a)(af—a)1. we refer to this PVM as thehoton-counting PVMThe
(SUM) F{ 7 WP Hz(ai+a)(3~a)] scheme of GKP is briefly outlined in the following, and relies

(8 on the creation of a so-called “cubic-phase stdtg}, which

. . . . . __is the(unnormalizablg state defined as
This gate acts on the computational basis of position eigen-

states according to

|7>=f dgexpiyg®)|q). (1D
(sum)ij = lapilap;—lapilaitay);. 9

Theith mode is referred to as the control and fliemode as The cubic-phase state/) can be prepared using squeez-
the target. ing, phase-space displacement, and photon counting. Con-

Phase-space displacements and squeezing together gisieler the two-mode squeezed vacuum stdig 7)|0), 7
rise to a finite-dimensional group known as the Clifford e R, and a large momentum displacement of the first mode,
group[6,10]. For n modes, the Clifford-group is the semidi- to obtain the two-mode state
rect product group[Sp(2n,R)]JHW(n) generated by all
Hamiltonians that are inhomogeneous quadratics in the ca- |w, 7)=D1(iw)S;( 7)|0), (12
nonical operatorga;,a’,i=1,...n}. The above unitary
representation of the Clifford group is a subgroup of all uni-with we R. By performing a measurement of the photon-
tary transformations on modes. As such, they are insuffi- humber(described by the photon-counting PYdn the first
cient to generate arbitrary unitary transformations and thughode, a measurement resultrophotons projects the second
cannot perform universal quantum computation. The addimode of the pair into a cubic-phase stat€) to a good
tion of a nonlinear operation such as that provided by thepproximation ifw is sufficiently large(details can be found
¥®), or optical Kerr, nonlinearitf11] suffices, in principle, in [6,9]), wherey’=n~"2 This state can be transformed into
to perform universal CV quantum computation, but is not|y) with y of order unity using one-mode squeezing.
feasible in quantum optical implementations due to the lack The cubic phase state can be used to implement a nonlin-
of sufficiently strong nonlinear materials with low absorp- ear transformation on an arbitrary stgig); of an optical
tion. However, as stressed by Lloyd and Braunsf@jpany =~ mode as follows6]. A (sum);; ! gate[see Eq.(8)] is ex-
nonlinear coupling on aingle modecould allow for univer-  ecuted with|); as the control andy)j as the target. A
sal CV quantum computation, as opposed to the qubit caseosition measurement is performed on the target, projecting
where a nonlinear coupling between qubits is required. the control into the state
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N =1\ (AN — Lon 3 , such a measurement to be performed, one requires photode-
={(q=al(sum); =exdi(g;+a
[#)i=(a=al(sumy; 1#)il )= exdi(Gi+a) ]|¢>'(13) tectors that can measure the number of photons in a mode,
i.e., distinguish the statgn) from |n’), n#n’. We refer to
for a measurement outconage Invoking the Clifford-group  such a photodetector akscriminating However, such dis-

transformation criminating photodetectors do not yet exjde]. All photo-
g o 5 detectors in current use effectively measure whether there are
U(a)=exdig;—i(gi+a)’] no photons §=0), or at least one photom¢0) in a mode.

(Note that a discriminating photodetector, on the other hand,
must be able to count intrinsically indistinguishable photons,
(which can be implemented using linear optios the state that is, propagating photons in the same temporal, spatial,

|'); gives a net transformation equivalent to applying and polarization mod¢l13].) We refer to existing photode-
tectors aghreshold detectorand to a unit-efficiency detec-

V,= eXF(i)’ai?’) (15) ':;)_Balz anideal threshold detectofITD). The PVM for an

=exp(—ia’/4)exd —3ai(g;+a/2)?] (14

on |¢4); . We refer to the transformatiovi, , implemented in R

this manner, as theubic-phase gateThis nonlinear transfor- {I,=10)(0[, TII.o=1-1]0)(0l}, (16)
mation could be used in combination with Clifford-group

operations to perform universal quantum computation over

continuous variables. . . . wherel is the identity operator. The second projeckbr
What is fundamentally important about this result is thatygiects onto the infinitely large subspace of states with one

all transformations involved, including) the preparation of - mqre photons due to saturation of the threshold detector

the two-mode squeezed staf®) the transformations needed [14].

to prepard ), (3) the (sum) ~* gate, and4) the transforma- It is possible to use ITDs to distinguish up to a finite

tion U(a) (which is quadratic inj), are implementable using numberk of photons by using linear optics to couple the
Clifford-group (linear-optic$ transformations. The resulting jnput mode to multiple ITD modeEL5]. For example, one

cubic-phase gate is fully deterministic. The key componentqiq yse an array of beam splitters to distribute the photons

that allows for the nonlinear transfor_mation is the measureys he input state oveN modes such that it is highly unlikely
ment of photon number. In the following, we argue that suc

s ., . ; Nhat more than one photon is in any of tNemodes[5,15].
a measurement possesses “hidden” nonlinear evoldfien ITDs are then used at each mode, and the probability of
the equivalent of an optical Kerr or higher-order nonlinear- '

it d ke thi i it licit undercounting photons is at mdstk—1)/2N. For smallk
ity), and we can make this nonlinearity explicit. (as in KLM), the photon-counting PVM can be approximated

with high probability by using a sufficiently largd.
IV. PHOTON COUNTING In a related fashion, the visible-light photon counter
(VLPC) [16] has been constructed to discriminate between
one and two photons with a high degree of confidence, but
the measurement does not correspond to the photon-counting

Due to the classical simulatability results[d0], any CV
guantum-information process that initiates with finitely or
infinitely squeezed vacua and employs only Clifford-group

transformations(phase-space displacements and one- anf YM: rather the VLPC is effective at distributing photons
two-mode squeezing homodyne detection, and classical roughout the photosensitive region, with localized regions

feed-forward can be simulated efficiently on a classical com@cting as threshold devicess with standard photodetectprs

puter. If the cubic-phase gate leads to universal quantur’ other WOde,ltheI.Single-mode.inphut fire1ld is distributedh
computation with continuous variables, then it must not sat2mongst many localized modes in the photodetector, eac

isfy the conditions of this theorem(Otherwise, quantum region operating as a threshold photodetector. Consequgntly
computation could be simulated efficiently on a classicaf'® YLPC has much in common with the proposed detection
computer, which is believed to be impossibiEhe key com- of photons via arrays of beam splitters to split the signal field

ponent of the cubic-phase gate that does not satisfy the cofi@S discussed aboyewith an ITD existing at each output
ditions of this theorem is the photon-counting PVM; thus, weP°'t: _ . .
conclude that the photon-counting PVM cannot be imple- Whereas the use of multiple ITDs and linear optics ap-

mented using only Clifford-group transformations and homoProximates a discriminating photodetector if the Hilbert
dyne measurement. space can be truncated as in qubit-based linear optical quan-

In the following, we show that this transformation cannot UM computation, this scheme breaks down for CV quantum

be implemented even with the addition of photodetectors. w&emputation. Without priori knowledge of the maximum
number of photons in a modéor CV, this number is infi-

demonstrate that the photon-counting PVM necessarily re-. : L .
quires nonlinear evolution. nite), one would require an_lnflnlte number_ of auxmary_
modes and ITDs(Below, we discuss resource issues even if
the Hilbert space is truncatedThus, the photon-counting
PVM cannot be performed using linear optic&Clifford-
The photon-counting PVM employed by GKP consists ofgroup transformationshomodyne measurement, and a finite

projections in the Fock-state bagim), n=0,1,...}. For  number of ITDs.

Photon counting using threshold detectors
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Photon counting with nonlinear evolution Truncation of photon number

In order to implement the photon-counting PVM, it is  Naturally, one should be suspicious of the periodicity in-
illustrative to employ a model of photodetection based orvolved in the first measurement schepeenploying the Kerr
homodyne measurement and nonlinear opties, by em- interaction of Eq(17)] and also of the unbounded nature of
ploying a Hamiltonian that is cubic or higher in the photonthe second schemjemploying Eq.(18)]. Any physical real-
creation and annihilation operatprsn this model, a mea- ization of a CV quantum-information process must have fi-
surement of the phase shift in a probe field allows for ahité energy, and thus the Hilbert space can effectively be
quantum nondemolition measurement of the photon numbdfuncated at some highest energy with photon nunmhgy.
in the signal field[17]. Consider the probe field to be a The issue of energy arises in the second scheme as well,

coherent state with large amplitude. We interact this probd/nere thetmbome(rjltljjm it?creasesbvxllithoué bourg)d fand .tr:f .ttan—
field with an arbitrary signal fielks) in a Kerr medium with €rgy 1S not bounded above or below. Lven betore Infinte

interaction Hamiltonian energy becom_es an issue, a relativistic descriptio_n_ must be
applied. Coupling to momentum instead of the position does
B = N 17) not eliminate these difficulties: the displacement itself must
int= "t XWsignat¥probes also be bounded by the physical boundaries of the laboratory.
Truncation of the Hilbert space is an option that, however,
presents challengegl9]; for example, the system is no

where is proportional to the third-order nonlinear Suscep'Ionger described by continuous variables but rather by large-

tibility. After an interaction timet, homodyne measurement ; ; ot ; ;
is then used to infer the phase shiftin the probe field. g:mgzz:gggl quditsthe generalization of qubits to_ higher
Although such a homodyne measurement does not project ap advantage of a truncated Hilbert space is that the
the probe field into a phase state, one can, in principlejinear-optics scheme involving finits-ITD modes becomes
project to a state with arbitrarily small uncertaintyy in \well defined. Implementing these photon-counting-
phase. A particular value @f can be used to infer the photon measurement schemes thus becomes a matter of resources.
numbern= ¢/(xt) to the nearest integer value, with corre- Consider the linear-optics measurement scheme for maxi-
sponding uncertaintAn=A¢/(xt). However, the photon mum photon numben,,.,. The probability of undercounting
number is only obtained modul=2m/(xt); the periodic-  k photons is at most(k—1)/2N, for N the number of ITD
ity of the phase does not give a true photon-number measurenodes. Thus, for a fixed probability of undercounting, the
ment[11]. This measurement projects the signal figdd  required number of ITD modes scalesMsnZ,_,, although
into the subspace spanned by the number staigswhere  getector inefficiencies somewhat complicate the issue. For
nj=(¢+2mj)lx. the (nonlineay photon-number-measurement scheme involv-
To implement the photon-counting PVM without issues ofing the Kerr interaction of Eq(17), however, one does not
periodicity, we can couple the signal field to a pointer with require additional modes or detectors, so this quadratic scal-
an unbounded domain, such as the positiar momentum  ing does not apply. All that is needed for the Kerr interaction
p of a probe. For example, the radiation pressure on a mirrogcheme is an increase in phase resolution that behaves as
is proportional to _the flux o(monochrqma’gi):photons that Agxn, L. Similar resolution arguments apply to the
strike it, and a suitable coupling Hamiltonian would 48] 5 osition-pointer scheme. Thus, even if one were to consider
a truncated Hilbert space, it may be more practical to employ
. . . a nonlinear measurement scheme rather than a multimode
Hint= A Nsignaflprobes (18)  |TD scheme; this result may be true for the KLM and GKP
schemes as well. For true CV quantum computation, how-
ever, multiple ITD arrays cannot suffice, and nonlinear evo-

which is also_ nonlinear. For a probg field i_nitiallly in the lution is anecessargomponent of photon-number measure-
momentum eigenstatg=0), after an interaction tim¢, a ment.

measurement of momentuim of the probe collapses the
probe field into a momentum eigenstapy and thereby the
signal field into a number state with=p/(\t) (again to the
nearest integer valjie Despite the need for nonlinear evolution for photon count-
The resulting photon-number measurement in eitheing, the cubic-phase gate has a considerable advantage over
scheme will carry with it an errofrelated to measurement the use of nonlinear interactions directly. Specifically, this
precision, and converting from continuous to discrete quangate can be used to remove the use of nonlinear materials
tities). GKP require thatAn<n'” for a functioning cubic  from the computation and utilize them only in the prepara-
phase gate; this condition places limits on the acceptabldon of cubic-phase states. In other words, the photon-
measurement errors. number measurement can be performed “off-line,” and the
Thus, measurement of photon number can be described asbic-phase states can be viewed as a quantum resource to be
a nonlinear interaction plus homodyne measurement. Thiprepared prior to the computation. This way, the states used
result gives insight into the reason why such measuremenia the the computation need not pass through any optical
can induce a nonlinear transformation. Specifically, thisKerr nonlinearities with their high absorption, thus avoiding
model of photon-number measurement is excluded from théhe loss associated with using such materials. Also, if the
conditions for efficient classical simulatigf0]. procedure for producing cubic-phase states possesses noise

V. CONCLUSIONS
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or other sources of error, imperfect cubic-phase states can Ipdicit nonlinear evolution, and we discuss how it can be
purified to produce a smaller number of states with higheimplemented in a CV system using a Kerr interactian
fidelity [6]. Again, an advantage is that this purification cananother nonlinear Hamiltonianand homodyne measure-
be done off-line and is not part of the computation. Thisment. The resource requirements of this measurement
concept is similar to the KLM scheme, where the “difficult” scheme compared with using linear optics and current pho-
gates are implemented off-line on suitable ancilla states anghgetectors are outlined. Finally, an advantage of this scheme
then quantum teleported onto the encoded states wheg jts use in the nonlinear gate of GKP, which removes the
needed. In our scheme, one simply prepares a sufficient nufpnlinear operations from the computation and reduces them
ber of cubic-phase states prior to the computation, and thg “off-line” preparation of ancilla states. These results place
entire process may then occur using only linear optics anghe implementation of strong nonlinear CV quantum gates,

homodyne measurement. A key advantage of this scheme g thus universal CV quantum computation, in the realm of
that the teleportation can be performed deterministically.  experimental accessibility.

In summary, we have shown that universal CV quantum
computation can be obtained using linear optisase-space
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