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Universal continuous-variable quantum computation: Requirement of optical nonlinearity
for photon counting
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Although universal continuous-variable quantum computation cannot be achieved via linear optics~includ-
ing squeezing!, homodyne detection, and feed-forward, inclusion of ideal photon-counting measurements
overcomes this obstacle. These measurements are sometimes described by arrays of beam splitters to distribute
the photons across several modes. We show that such a scheme cannot be used to implement ideal photon
counting and that such measurements necessarily involve nonlinear evolution. However, this requirement of
nonlinearity can be moved ‘‘off-line,’’ thereby permitting universal continuous-variable quantum computation
with linear optics.
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I. INTRODUCTION

The chief attraction of quantum computation is the pos
bility of solving certain problems exponentially faster th
any known method on a classical computer@1#, and a sig-
nificant effort is underway to realize a physical quantu
computer@2,3#. Optical realizations of a quantum comput
are particularly appealing because of the robust nature
quantum states of light against the effects of decoherenc
well as the advanced techniques for state preparation, ph
manipulation, and photodetection. Both discrete-varia
~qubit-based! @4–6# and continuous-variable~CV! @7#
schemes offer significant potential as optical quantum co
puters. However, the lack of a strong optical nonlinearity i
considerable hurdle for optical quantum computation@3#.

A proposal by Knill, Laflamme, and Milburn~KLM ! @5#
describes how the measurement of photons can be empl
to induce a nonlinear transformation in a qubit-based opt
quantum computer and how this procedure can be done
ciently in a nondeterministic way. These remarkable res
suggest that measurement in a CV system may be use
induce nonlinear evolution as well~although measurement
of CV observables may not be possible in the von Neum
sense; see@8#!. A scheme proposed by Gottesman, Kitae
and Preskill~GKP! @6# uses photon-number measurement
induce a nonlinear transformation. If photon counting ov
comes the obstacle of creating optical nonlinearities, t
CV quantum computation may be feasible, just as the qu
based linear optical quantum computer may be feasible@5#.
Here we present three key results:~1! universal quantum
computation over continuous variables can be achieved u
linear optics, homodyne measurement with feed-forwa
and photon counting;~2! the desired photon-counting proje
tive measurement cannot be performed using linear op
and existing photodetectors, and necessarily involves an
tical nonlinearity; and~3! the nonlinear transformations ca
be brought ‘‘off-line’’ to prepare quantum resources for
linear optical CV quantum computation to succeed in a
terministic way.
1050-2947/2002/65~4!/042304~5!/$20.00 65 0423
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This paper is outlined as follows. We first review the Cl
ford group for continuous variables, which consists of line
optics transformations~including squeezing!. The construc-
tion of a cubic phase state of GKP is outlined as a poss
means to implement a nonlinear transformation, neces
for universal CV quantum computation. This gate requi
photon-counting measurements, and we demonstrate tha
ear optics, homodyne measurement, and ideal photodete
are insufficient to implement such schemes. A nonlinear
teraction is shown to be a necessary component of
photon-counting measurement. An analysis of truncated
bert spaces is included, and the paper concludes with a
cussion on the use of photon-counting measurements~and
their associated nonlinear transformations! off-line in a CV
quantum computation.

II. CLIFFORD-GROUP TRANSFORMATIONS

The requirement of nonlinear transformations for univ
sal CV quantum computation@7# can be understood by con
sideringn harmonic oscillators, corresponding ton indepen-
dent optical field modes, with annihilation operators$âi ; i
51, . . . ,n%. Linear optical transformations of these mod
are described by unitary phase-space displacements~by mix-
ing with ‘‘classical fields’’ at beam splitters!

Di~a!5exp~aâi
†2a* âi !, ~1!

with aPC; these transformations comprise the Heisenbe
Weyl group HW(n). For a classical pump field, parametr
amplification invokes one-mode squeezing operations

Si~h!5exp@ 1
2 ~hâi

†22h* âi
2!# ~2!

and two-mode squeezing operations

Si j ~h!5exp@ 1
2 ~hâi

†â j
†2h* âi â j !# ~3!

for hPC @9#. ~Although squeezing utilizes an optical nonlin
earity of order two or higher, the transformation is regard
©2002 The American Physical Society04-1
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as being linear because the resultant Heisenberg ope
equations of motion are linear.! Squeezing operations~both
one and two mode! generate the symplectic group Sp(2n,R).

The squeezing operationSi(h) with h real maps the ca
nonical position as

Si~h!:q̂i5A\/2~ âi1âi
†!→exp~2h!q̂i ; ~4!

thus, the infinitely squeezed displaced vacuum

lim
h→`

Si~h!Di~q/A2\!u0&, ~5!

with qPR, is the~unnormalizable! position eigenstateuq& i .
These position eigenstates are often employed as a com
tional basis for CV quantum computation, and are appro
mated in experiment by finite squeezing@7#. Two-mode
squeezingSi j (h) acts in a similar fashion on the normal an
antinormal modesâi6â j , and the infinitely squeezed two
mode vacuum

uQ& i j 5 lim
h→`

Si j ~h!u0&, ~6!

wherehPR is the EPR state satisfying

i j ^qq8uQ& i j 5d~q2q8!. ~7!

Two-mode squeezing also allows us to implement a unit
SUM gate@6,10#, defined as

~SUM! i j 5expS 2
i

\
q̂i p̂ j D5exp@ 1

2 ~ âi
†1âi !~ â j

†2â j !#.

~8!

This gate acts on the computational basis of position eig
states according to

~SUM! i j : uqi& i uqj& j→uqi& i uqi1qj& j . ~9!

The i th mode is referred to as the control and thej th mode as
the target.

Phase-space displacements and squeezing together
rise to a finite-dimensional group known as the Cliffo
group@6,10#. For n modes, the Clifford-group is the semid
rect product group@Sp(2n,R)#HW(n) generated by all
Hamiltonians that are inhomogeneous quadratics in the
nonical operators$âi ,âi

† ,i 5 1, . . . ,n%. The above unitary
representation of the Clifford group is a subgroup of all u
tary transformations onn modes. As such, they are insuffi
cient to generate arbitrary unitary transformations and t
cannot perform universal quantum computation. The ad
tion of a nonlinear operation such as that provided by
x (3), or optical Kerr, nonlinearity@11# suffices, in principle,
to perform universal CV quantum computation, but is n
feasible in quantum optical implementations due to the l
of sufficiently strong nonlinear materials with low absor
tion. However, as stressed by Lloyd and Braunstein@7#, any
nonlinear coupling on asingle modecould allow for univer-
sal CV quantum computation, as opposed to the qubit c
where a nonlinear coupling between qubits is required.
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III. THE CUBIC-PHASE GATE

One is led to ask whether measurements can be use
induce nonlinear evolution, following the related examp
for qubit-based linear-optics quantum computation@5#. First,
we consider Clifford-group transformations conditioned
the results of projective-valued measurements~PVMs! in the
computational basis~i.e., von Neumann measurements in t
basis$uq&, qPR%). As shown in@10#, such measurement
and feed-forward are efficiently simulatable on a classi
computer and thus~under the assumption that univers
quantum computation isnot efficiently simulatable classi-
cally! are also insufficient for universal quantum compu
tion. These results also include a more realistic compu
tional basis of finitely squeezed states and realis
homodyne measurement of quadratures. Thus, in the foll
ing, we will consider Clifford-group transformations cond
tioned on homodyne measurements to be part of ‘‘linear
tics.’’

Possibly, measurements in a different basis can be
ployed to induce a nonlinear transformation. Such a sche
has been proposed~in the context of quantum computatio
with finite-dimensional qudits rather than CVs! by GKP us-
ing measurements of photon number. Specifically, these m
surements are described by a PVM,

$Pn5un&^nu, n50,1,2, . . . %, ~10!

for a single oscillator, whereun& is the eigenstate of the
number operatorN̂5â†â with eigenvaluen. In what follows,
we refer to this PVM as thephoton-counting PVM. The
scheme of GKP is briefly outlined in the following, and relie
on the creation of a so-called ‘‘cubic-phase state’’ug&, which
is the ~unnormalizable! state defined as

ug&5E dq exp~ igq3!uq&. ~11!

The cubic-phase stateug& can be prepared using squee
ing, phase-space displacement, and photon counting. C
sider the two-mode squeezed vacuum stateS12(h)u0&, h
PR, and a large momentum displacement of the first mo
to obtain the two-mode state

uw,h&5D1~ iw !S12~h!u0&, ~12!

with wPR. By performing a measurement of the photo
number~described by the photon-counting PVM! on the first
mode, a measurement result ofn photons projects the secon
mode of the pair into a cubic-phase stateug8& to a good
approximation ifw is sufficiently large~details can be found
in @6,9#!, whereg8}n21/2. This state can be transformed in
ug& with g of order unity using one-mode squeezing.

The cubic phase state can be used to implement a no
ear transformation on an arbitrary stateuc& i of an optical
mode as follows@6#. A (SUM) i j

21 gate @see Eq.~8!# is ex-
ecuted with uc& i as the control andug& j as the target. A
position measurement is performed on the target, projec
the control into the state
4-2
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uc8& i5 j^q5au~SUM! i j
21uc& i ug& j5exp@ i ~ q̂i1a!3#uc& i

~13!

for a measurement outcomea. Invoking the Clifford-group
transformation

U~a!5exp@ i q̂ i
32 i ~ q̂i1a!3#

5exp~2 ia3/4!exp@23ai~ q̂i1a/2!2# ~14!

~which can be implemented using linear optics! on the state
uc8& i gives a net transformation equivalent to applying

Vg5exp~ igq̂i
3! ~15!

on uc& i . We refer to the transformationVg , implemented in
this manner, as thecubic-phase gate. This nonlinear transfor-
mation could be used in combination with Clifford-grou
operations to perform universal quantum computation o
continuous variables.

What is fundamentally important about this result is th
all transformations involved, including~1! the preparation of
the two-mode squeezed state,~2! the transformations neede
to prepareug&, ~3! the (SUM)21 gate, and~4! the transforma-
tion U(a) ~which is quadratic inq̂), are implementable using
Clifford-group ~linear-optics! transformations. The resultin
cubic-phase gate is fully deterministic. The key compon
that allows for the nonlinear transformation is the measu
ment of photon number. In the following, we argue that su
a measurement possesses ‘‘hidden’’ nonlinear evolution~i.e.,
the equivalent of an optical Kerr or higher-order nonline
ity!, and we can make this nonlinearity explicit.

IV. PHOTON COUNTING

Due to the classical simulatability results of@10#, any CV
quantum-information process that initiates with finitely
infinitely squeezed vacua and employs only Clifford-gro
transformations~phase-space displacements and one-
two-mode squeezing!, homodyne detection, and classic
feed-forward can be simulated efficiently on a classical co
puter. If the cubic-phase gate leads to universal quan
computation with continuous variables, then it must not s
isfy the conditions of this theorem.~Otherwise, quantum
computation could be simulated efficiently on a classi
computer, which is believed to be impossible.! The key com-
ponent of the cubic-phase gate that does not satisfy the
ditions of this theorem is the photon-counting PVM; thus,
conclude that the photon-counting PVM cannot be imp
mented using only Clifford-group transformations and hom
dyne measurement.

In the following, we show that this transformation cann
be implemented even with the addition of photodetectors.
demonstrate that the photon-counting PVM necessarily
quires nonlinear evolution.

Photon counting using threshold detectors

The photon-counting PVM employed by GKP consists
projections in the Fock-state basis$un&, n50,1, . . .%. For
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such a measurement to be performed, one requires phot
tectors that can measure the number of photons in a m
i.e., distinguish the stateun& from un8&, n5” n8. We refer to
such a photodetector asdiscriminating. However, such dis-
criminating photodetectors do not yet exist@12#. All photo-
detectors in current use effectively measure whether there
no photons (n50), or at least one photon (n.0) in a mode.
~Note that a discriminating photodetector, on the other ha
must be able to count intrinsically indistinguishable photo
that is, propagating photons in the same temporal, spa
and polarization mode@13#.! We refer to existing photode
tectors asthreshold detectorsand to a unit-efficiency detec
tor as anideal threshold detector~ITD!. The PVM for an
ITD is

$P05u0&^0u, P.05 Î 2u0&^0u%, ~16!

where Î is the identity operator. The second projectorP.0

projects onto the infinitely large subspace of states with
or more photons due to saturation of the threshold dete
@14#.

It is possible to use ITDs to distinguish up to a fini
numberk of photons by using linear optics to couple th
input mode to multiple ITD modes@15#. For example, one
could use an array of beam splitters to distribute the phot
of the input state overN modes such that it is highly unlikely
that more than one photon is in any of theN modes@5,15#.
ITDs are then used at each mode, and the probability
undercounting photons is at mostk(k21)/2N. For smallk
~as in KLM!, the photon-counting PVM can be approximat
with high probability by using a sufficiently largeN.

In a related fashion, the visible-light photon count
~VLPC! @16# has been constructed to discriminate betwe
one and two photons with a high degree of confidence,
the measurement does not correspond to the photon-cou
PVM; rather the VLPC is effective at distributing photon
throughout the photosensitive region, with localized regio
acting as threshold devices~as with standard photodetectors!.
In other words, the single-mode input field is distribut
amongst many localized modes in the photodetector, e
region operating as a threshold photodetector. Conseque
the VLPC has much in common with the proposed detect
of photons via arrays of beam splitters to split the signal fi
~as discussed above!, with an ITD existing at each outpu
port.

Whereas the use of multiple ITDs and linear optics a
proximates a discriminating photodetector if the Hilbe
space can be truncated as in qubit-based linear optical q
tum computation, this scheme breaks down for CV quant
computation. Withouta priori knowledge of the maximum
number of photons in a mode~for CV, this number is infi-
nite!, one would require an infinite number of auxiliar
modes and ITDs.~Below, we discuss resource issues even
the Hilbert space is truncated.! Thus, the photon-counting
PVM cannot be performed using linear optics~Clifford-
group transformations!, homodyne measurement, and a fin
number of ITDs.
4-3
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Photon counting with nonlinear evolution

In order to implement the photon-counting PVM, it
illustrative to employ a model of photodetection based
homodyne measurement and nonlinear optics~i.e., by em-
ploying a Hamiltonian that is cubic or higher in the phot
creation and annihilation operators!. In this model, a mea-
surement of the phase shift in a probe field allows fo
quantum nondemolition measurement of the photon num
in the signal field@17#. Consider the probe field to be
coherent state with large amplitude. We interact this pro
field with an arbitrary signal fielduc& in a Kerr medium with
interaction Hamiltonian

Ĥ int5\xN̂signalN̂probe, ~17!

wherex is proportional to the third-order nonlinear susce
tibility. After an interaction timet, homodyne measuremen
is then used to infer the phase shiftf in the probe field.
Although such a homodyne measurement does not pro
the probe field into a phase state, one can, in princi
project to a state with arbitrarily small uncertaintyDf in
phase. A particular value off can be used to infer the photo
numbern5f/(xt) to the nearest integer value, with corr
sponding uncertaintyDn5Df/(xt). However, the photon
number is only obtained moduloN52p/(xt); the periodic-
ity of the phase does not give a true photon-number meas
ment @11#. This measurement projects the signal fielduc&
into the subspace spanned by the number statesunj&, where
nj5(f12p j )/x.

To implement the photon-counting PVM without issues
periodicity, we can couple the signal field to a pointer w
an unbounded domain, such as the positionq or momentum
p of a probe. For example, the radiation pressure on a mi
is proportional to the flux of~monochromatic! photons that
strike it, and a suitable coupling Hamiltonian would be@18#

Ĥ int5lN̂signalq̂probe, ~18!

which is also nonlinear. For a probe field initially in th
momentum eigenstateup50&, after an interaction timet, a
measurement of momentump of the probe collapses th
probe field into a momentum eigenstateup& and thereby the
signal field into a number state withn5p/(lt) ~again to the
nearest integer value!.

The resulting photon-number measurement in eit
scheme will carry with it an error~related to measuremen
precision, and converting from continuous to discrete qu
tities!. GKP require thatDn!n1/3 for a functioning cubic
phase gate; this condition places limits on the accepta
measurement errors.

Thus, measurement of photon number can be describe
a nonlinear interaction plus homodyne measurement. T
result gives insight into the reason why such measurem
can induce a nonlinear transformation. Specifically, t
model of photon-number measurement is excluded from
conditions for efficient classical simulation@10#.
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Truncation of photon number

Naturally, one should be suspicious of the periodicity
volved in the first measurement scheme@employing the Kerr
interaction of Eq.~17!# and also of the unbounded nature
the second scheme@employing Eq.~18!#. Any physical real-
ization of a CV quantum-information process must have
nite energy, and thus the Hilbert space can effectively
truncated at some highest energy with photon numbernmax.
The issue of energy arises in the second scheme as
where the momentum increases without bound and the
ergy is not bounded above or below. Even before infin
energy becomes an issue, a relativistic description mus
applied. Coupling to momentum instead of the position do
not eliminate these difficulties: the displacement itself m
also be bounded by the physical boundaries of the labora
Truncation of the Hilbert space is an option that, howev
presents challenges@19#; for example, the system is n
longer described by continuous variables but rather by lar
dimensional qudits~the generalization of qubits to highe
dimensions!.

An advantage of a truncated Hilbert space is that
linear-optics scheme involving finite-N ITD modes becomes
well defined. Implementing these photon-countin
measurement schemes thus becomes a matter of resou
Consider the linear-optics measurement scheme for m
mum photon numbernmax. The probability of undercounting
k photons is at mostk(k21)/2N, for N the number of ITD
modes. Thus, for a fixed probability of undercounting, t
required number of ITD modes scales asN}nmax

2 , although
detector inefficiencies somewhat complicate the issue.
the ~nonlinear! photon-number-measurement scheme invo
ing the Kerr interaction of Eq.~17!, however, one does no
require additional modes or detectors, so this quadratic s
ing does not apply. All that is needed for the Kerr interacti
scheme is an increase in phase resolution that behave
Df}nmax

21 . Similar resolution arguments apply to th
position-pointer scheme. Thus, even if one were to cons
a truncated Hilbert space, it may be more practical to emp
a nonlinear measurement scheme rather than a multim
ITD scheme; this result may be true for the KLM and GK
schemes as well. For true CV quantum computation, ho
ever, multiple ITD arrays cannot suffice, and nonlinear e
lution is anecessarycomponent of photon-number measur
ment.

V. CONCLUSIONS

Despite the need for nonlinear evolution for photon cou
ing, the cubic-phase gate has a considerable advantage
the use of nonlinear interactions directly. Specifically, th
gate can be used to remove the use of nonlinear mate
from the computation and utilize them only in the prepa
tion of cubic-phase states. In other words, the phot
number measurement can be performed ‘‘off-line,’’ and t
cubic-phase states can be viewed as a quantum resource
prepared prior to the computation. This way, the states u
in the the computation need not pass through any opt
Kerr nonlinearities with their high absorption, thus avoidin
the loss associated with using such materials. Also, if
procedure for producing cubic-phase states possesses
4-4
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or other sources of error, imperfect cubic-phase states ca
purified to produce a smaller number of states with hig
fidelity @6#. Again, an advantage is that this purification c
be done off-line and is not part of the computation. Th
concept is similar to the KLM scheme, where the ‘‘difficul
gates are implemented off-line on suitable ancilla states
then quantum teleported onto the encoded states w
needed. In our scheme, one simply prepares a sufficient n
ber of cubic-phase states prior to the computation, and
entire process may then occur using only linear optics
homodyne measurement. A key advantage of this schem
that the teleportation can be performed deterministically.

In summary, we have shown that universal CV quant
computation can be obtained using linear optics~phase-space
displacements and squeezing!, homodyne measurement wit
classical feed-forward, and a realization of the photo
counting PVM. We describe the PVM for current~ideal!
photodetectors, and demonstrate that such detectors ca
be used to implement the photon-counting PVM with line
optics alone. This photon-counting PVM carries with it im
,

-

d
.

ys
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plicit nonlinear evolution, and we discuss how it can
implemented in a CV system using a Kerr interaction~or
another nonlinear Hamiltonian! and homodyne measure
ment. The resource requirements of this measurem
scheme compared with using linear optics and current p
todetectors are outlined. Finally, an advantage of this sch
is its use in the nonlinear gate of GKP, which removes
nonlinear operations from the computation and reduces th
to ‘‘off-line’’ preparation of ancilla states. These results pla
the implementation of strong nonlinear CV quantum gat
and thus universal CV quantum computation, in the realm
experimental accessibility.
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