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Diffraction in time: Fraunhofer and Fresnel dispersion by a slit

Salvador Godoy*
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~Received 22 August 2001; published 4 April 2002!

Moshinsky’s work on diffraction in time is recognized as a particular case of monoenergetic, quantum
dispersion process. Diffraction in time is extended to include new initial conditions, which under free evolution
exhibit temporal quantum interference patterns in close analogy to spatial diffraction patterns found in optics.
We show that free propagation of states, which initially are stationary states of infinite potential wells, diffract
in time similarly as a plane wave by a double slit. We introduce the concepts of mass transport by transient
Fraunhofer and Fresnel dispersion currents.
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I. DIFFRACTION IN TIME

Similarities between optics and quantum mechanics h
long been recognized@1#. In particular, time evolution of the
quantum wave functionc(r ,t) may be written in an analo
gous way to Huygens’ principle in optics. This approac
called the Lagrangian formulation of quantum mechan
@2#, proves that we can always find a Green’s functi
G(r ,t;r 8,t8) such that fort.t8,

c~r ,t !5E dr 8G~r ,t;r 8,t8!c~r 8,t8!. ~1!

One example of this equation is the three-dimensional~3D!
time evolution of a free particle@3#

c~r ,t !5F m

2p i\~ t2t8!
G 3/2

3E dr 8expF im

2\

~r2r 8!2

t2t8
Gc~r 8,t8!. ~2!

On the other hand, in the theory of image formation in o
tics, using the Fresnel-Kirchoff equation for light propag
ing in the direction of the1z axis, if we know the mono-
chromatic electric fieldE(x8,y8,z8) in an arbitraryz8 plane,
considered to be the source of Huygens wavelets, then
field in an arbitraryz plane is given by

E~x,y,z!5
ie2 ik(z2z8)

l~z2z8!
E E dx8dy8

3expH 2 ik

2

@~x2x8!21~y2y8!2#

z2z8
J

3E~x8,y8,z8!. ~3!

In optics Eq.~3! is called aFresnel transformation@4#.
Comparing Eqs.~2! and ~3! it is clear that quantum free
propagation can also be considered a Fresnel transforma
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with one important distinction: the quantum transformati
is in time, not in space. It is not surprising then that som
optical results in space coordinates are similarly obtained
quantum mechanics in thetime domain.

One clear example of this symmetry was obtained a lo
time ago by Moshinsky@5#, who addressed the following
quantum one-dimensional~1D! shutter problem: consider
monoenergetic beam of free particles,«5p2/2m, moving
parallel to thex axis. For negative times, the beam is inte
rupted atx50 by a perfectly absorbing shutter perpendicu
to the beam. Suddenly, at timet50, the shutter is opened
allowing for t.0 the free time evolution of the beam o
particles. What is the transient density observed at a dista
x from the shutter? The problem implies the following initi
condition:

c~x,0!5exp~ ipx/\! for x<0

50 for x.0. ~4!

Moshinsky proved that the free propagation of the beam
an exact, analytic solution. Fort.0, the wave function be-
comesc(x,t)[M (x,t), where

M ~x,t !5
e2 ip/4

A2
e( i /\)(px2«t)F H C„j~x,t !…1

1

2J
1 i H S„j~x,t !…1

1

2J G . ~5!

C(j) and S(j) denote the real and imaginary parts of t
complex Fresnel integral,C(j)1 iS(j)[*0

jexp(ipu2/2)du,
and the Fresnel integral’s argumentj is a function of posi-
tion and time

j~x,t ![A m

p\tS p

m
t2xD . ~6!

The functionM (x,t) has been called Moshinsky’s functio
by Nussenzveigh@6,7# and other authors, and it has ha
many applications@8–12#.

For the beam in the shutter problem, the probability de
sity is then
©2002 The American Physical Society11-1
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uM ~x,t !u25
1

2 H C„j~x,t !…1
1

2J 2

1
1

2 H S„j~x,t !…1
1

2J 2

. ~7!

This result is similar to the expression for the intensity
light in the Fresnel diffraction by an infinite straight edge
optics @13#. To plot Eq.~7! we define dimensionless quant
ties: X[x/l5xp/2p\ and T[tn5t«/2p\, such that the
Fresnel argument in Eq.~6! becomesj(X,T)52AT2X/AT.
For a fixed positionx0, the plot of the probability density
uM (x0 ,t)u2 as a function of time is shown in Fig. 1. For th
peculiar time evolution, Moshinsky coined the name ‘‘d
fraction in time.’’ Discontinuity of the plane wave in th
initial condition in Eq.~4! is the source of the analogy wit
Fresnel diffraction by a straight edge in optics. We stress
fact that diffraction in time is only similar to the optical on
for in optics the Fresnel integral’s argument is linear in t
distance to the edge, while in quantum theory the argum
is nonlinear in time:j;At21/At. Clearly, in Eq.~6! there is
a singular point att50, and for very short times the simila
ity breaks down completely. Even worst, from Fig. 1 we s
that for x0.0 quantum theory predicts a density differe
from zero for times 0,t<x0 /c, where c is the speed of
light. Obviously this is an unphysical result. The nonrelat
istic character of the Schro¨dinger’s equation is the cause o
this erroneous prediction. So for very short times, all tim
dependent Schro¨dinger’s results have to be disregarded. F
x0 /c,t,x0 /v instead of a front wave, as in the classic
ballistic motion, we have a monotonous increasing beha
of the density. This is an expected consequence of the p
bolic Schrödinger’s equation. As for the Fresnel oscillation
the consequences are far reaching. For instance, at an
trary fixed position (x0.0), quantum theory predicts that th
intensity of particles reaches its maximum value at a timeDt
later than the classical ‘‘flight time’’x0 /v. The delayDt is
of the order of (p\x0 /v3)1/2 which for thermal neutrons
with v52200 m/s andx051 m is of the order of 1026 sec.
The difficult experimental evidence of this quantum pred
tion has been confirmed until very recently by Szriftigis
et al. @14#.

FIG. 1. Moshinsky’s quantum diffraction in time.X[x/l and
T[tn are dimensionless quantities. Observation pointX052.
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II. FRESNEL CURRENTS BY A STRAIGHT EDGE

The free particle time-evolution propagatorG(x,t;x8,t8)
in Eq. ~2! is dispersive. For any initial wave packet wit
finite size, (Dx0)2[^x2&02^x&0

25finite, the free spreading
in space as a function of time is unavoidable, (Dx)2

5(Dp0t/m)21(Dx0)2. After a sufficiently long time, (Dx)2

becomes as large as desired; the free wave packet sprea
space indefinitely, leading toward uniformity. This dispersi
mechanism provides a means by which mass is microtra
ported in space. In fact, even if the center of the wave pac
is at rest̂ p&50, dispersion induces a mass probability cu
rent in spacej (x,t). And what is more important, under ap
propriate initial conditions, the time evolution of the pack
can generate intense transient probability currents. One
ticular example of this is the diffraction in time process giv
in Eq. ~5!. Its exact probability current is given by

j ~x,t !5
p

m
uM ~x,t !u21S \

4pmtD
1/2

3F @S„j~x,t !…1 1
2 #cosS p

2
j2D

2S C„j~x,t !…1
1

2D sinS p

2
j2D G . ~8!

The total current becomes the superposition of a convec
and a dispersive currents.

The convective current

j con~x,t ![
p

m
uM ~x,t !u2, ~9!

occurs only because the wave functionM (x,t) has a well-
defined momentum, and the center^x& of the packet moves
For a fixed timet0, sincej(x,t0);2x, then j con(x,t0) has
in space a similar~but inverted! Fresnel diffraction pattern a
uM (x0 ,t)u2 has in time. In Fig. 2 we show at different fixe
times,t0n5(0,0.5,4), the quantum free evolution of dens
uM (x,t0)u2 plotted against coordinatesx. We call this par-

FIG. 2. Fresnel dispersion by an infinite straight edge.X5xn
and T5t/l are dimensionless variables. Inset: shows how
probabilty’s oscillations cause compression and expansion den
zones.
1-2
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DIFFRACTION IN TIME: FRAUNHOFER AND . . . PHYSICAL REVIEW A65 042111
ticular probability current density a Fresnel convective c
rent by a straight edge. Notice from Fig. 2 that for sh
times, the Fresnel convective current has very strong t
sient fluctuations (;50 %) about the initial value. A good
measure of the ‘‘width’’ of this Fresnel convective current
position can be obtained from the difference between the
two positions at whichuM (x,t0)u2 takes the classical value 1
i.e., dx[x22x1, as shown in Fig. 2. The two positions
which the curveuM (x,t0)u2 of Fig. 2 intersects with the
straight line 1 correspond to the values ofj1 andj2 that can
be obtained from the Cornu spiral@15#, giving dj[j22j1
50.85. For fixed timet0 in Eq. ~6! we have for neutrons
(m51.67310224 g),

dx5~dj!2S p\ t0

m D 1/2

53.231022t0
1/2 cm s21/2, ~10!

which shows that the oscillations spread without bound
time. For neutrons, Fresnel convective current’s space o
lations, after 1 s, give a spread of;1022 cm. This is easier
to measure than the Fresnel oscillations in time (1026 s for
x051 m).

Notice that the Moshinsky’s wave function given in E
~5! is a valid solution for2`<x<1`. This is a remarkable
result because it implies that for any fixed positive timet0
.0 no matter how small, the very fact of a sudden remo
of an absorbing wall atx50, causes the initial constant prob
ability density in spaceueikxu251 to be replaced by Fresnel
oscillations uM (x,t0)u2 all the way fromx50 down to x
52` ~a violation of relativity theory!. Since the probability
density oscillates up and down about the initial const
value, the oscillations’s maxima and minima correspond
compressions and expansions of the initial density. In
sense, the whole negative space becomes interlaced
bunching and antibunching probability density zones. T
amplitude of these oscillations decrease monotonically as
move back into negativex’s. For big enough negativex’s,
bunching and antibunching zones become indistinguisha
giving eventually the appearance again of a uniform dens

Figure 2 shows how, as time develops, the density’s co
pressions and expansions regions disperse in the forwar
rection. An observer fixed in space, let say atx052l, de-
scribes the temporal changes of probability density pas
through his position asuM (x0 ,t)u2. This temporal change is
precisely the one plotted in Fig. 1 and recognized as Fre
diffraction in time by a straight edge. The observer descri
the successive regions of probability density’s compress
and expansion passing him by, as Fresnel diffraction in ti

The dispersive current

j disp~x,t ![S \

4pmtD
1/2F S S~j!1

1

2D cosS p

2
j2D

2S C~j!1
1

2D sinS p

2
j2D G , ~11!

which is independent of̂p& is a pure transient dispersiv
current~the current goes to zero ast21/2). For a fixed time,
for all negativex’s, the current oscillates about the ze
04211
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value, giving zones of positive and negative currents
space. The oscillating positive and negative currents are c
sequence of the interlaced compressions and expansion
sity zones in space. The current moves from any comp
sion zone toward the adjacent right and left expansion zo
This explains the dispersive current’s oscillations. For lo
times sincej disp(x,t)→0, the transport of mass, by diffrac
tion in time, is effective only as a convective transport pr
cessj con(x,t).

We obtained the optical Fresnel diffraction pattern on
because the initial wave function gives the same mathem
cal condition for diffraction by an infinite straight edge
optics, i.e., discontinuity of a monochromatic plane wav
However, it must be clear that other discontinuous, mono
ergetic wave functions with different boundaries can be c
sidered as initial conditions. If in free propagation we do
due to the discontinuity and monochromaticity, quantum m
chanics may have solutions with similar diffraction patter
as those found in optics.

The purpose of the present work is to search for n
quantum monoenergetic dispersive processes that show
responding diffraction patterns in optics. Next, we show
example of free time evolution leading to Fraunhofer a
Fresnel diffraction patterns by a slit.

III. DIFFRACTION IN TIME FOR INITIALLY
STATIONARY STATES

The previous 1D shutter problem had no restriction on
width of the initial wave function; consequently, the mome
tum ~and energy! could have any value. Most of the time
however, we want to consider free time evolution of m
noenergetic particles which, in agreement with the unc
tainty principle, have some initial finite width in space. Ne
we show how diffraction in time considers a time-evolutio
process of this kind.

Let us consider the 1D stationary states of a free part
that is restrained by impenetrable, reflecting walls at
pointsx50 andx5a. For simplicity, we consider an infinite
square-well potential such thatV(x)50 for (0,x,a) and
V(x)51` for (0,x andx.a). The stationary wave func
tions are given by

wn~x!5@exp~ iknx!2exp~2 iknx!#/A2ai2 for 0<x<a

50 for x,0 and a,x, ~12!

with kn[np/a, (n51,2,3, . . . ).
Now, following Moshinsky, we address the followin

problem: if at timet50 the above reflecting walls are sud
denly removed, allowing for positive times the free propag
tion of the particle initially described by the wave functio
wn(x). What is the transient density observed at a dista
x.a ~or x,0)?

Clearly from Eq.~12! the stationary wave functionwn(x)
is a superposition of two monochromatic, discontinuo
opposite-moving plane waves. Since each plane wave h
double discontinuity~at x50 andx5a), we expect that each
plane wave will contribute a double Fresnel diffraction
time. Indeed, next we will show that each individual disco
1-3
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SALVADOR GODOY PHYSICAL REVIEW A 65 042111
tinuous plane wave will have a free time evolution, giving
probability density equivalent to an optical diffraction pa
tern by a slit of widtha. After substituting the initial condi-
tion cn(x,0)5wn(x) into the 1D version of Eq.~2!, we get

cn~x,t !5F m

2p i\t G
1/2E

0

a

dx8expF im

2\

~x2x8!2

t Gwn~x8!.

~13!

The integral is straightforward, and we get for the exact f
time evolution a superposition of a right- and left-movin
diffracted in time plane waves

cn~x,t !5cn,1~x,t !1cn,2~x,t !. ~14!

Here, each functioncn,1(x,t) andcn,2(x,t) denotes a dif-
fraction in the time process

cn,1~x,t ![
1

~4i 3a!1/2
@Fn~ t,x2a!2Fn~ t,x!#

3e( i /\)(pnx2«nt), ~15!

cn,2~x,t ![
1

~4i 3a!1/2
@Fn~ t,a2x!2Fn~ t,2x!#

3e( i /\)(2pnx2«nt), ~16!

whereFn(t,x) is the complex Fresnel integral given by

Fn~ t,x![E
0

jn(x,t)

exp~ ipu2/2!du, ~17!

with the Fresnel’s upper limitjn(x,t), depending on the
quantum numbern, given by

jn~ t,x![A m

p\tS \kn

m
t2xD . ~18!

Hence, the total probability density becomes a coherent
perposition of two processes,

ucn~x,t !u25
1

4a
uexp~ iknx!@Fn~ t,x2a!2Fn~ t,x!#

1exp~2 iknx!@Fn~ t,a2x!2Fn~ t,2x!#u2.

~19!

To understand this total density, consider the right-mov
wave contributioncn,1(x,t) alone. We have

ucn,1~x,t !u25
1

4a
uFn~ t,x2a!2Fn~ t,x!u2, ~20!

which is identical in optics to the expression for the intens
of light in the Fresnel diffraction by a slit of widtha @13#. We
have in Eq.~20! the superposition of two Fresnel amplitud
generated by the corresponding edges of the slit. Two li
cases are important: diffraction by a narrow and by a w
slit.
04211
e
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~1! Diffraction in a narrow slit occurs whena;ln or n
;2. This happens for particles in the ground- and lo
energy excited states. Both Fresnel functionsFn(t,x2a) and
Fn(t,x) are separated in space by a distancea, and if a
;ln , then each Fresnel function superpose each other
only a few oscillations of low frequency in the same spa
interval a. In this case, the superposition of the two Fres
functions induce very strong interference effects. T
strong-interference limit gives a diffraction in time patte
which in optics is calledFraunhoferdiffraction by a slit. See
Fig. 3 for an exact quantum diffracting in time case.

~2! On the other hand, diffraction in a wide slit occu
when a@ln or n@2. This happens for particles in high
energy excited states. Now, in the space intervala, both
Fresnel functions superpose each other with many h
frequency oscillations. Approximately, each Fresnel funct
is interfered by the asymptotic contribution, (11 i )/2, from
the other. We have here a weak interference pattern, whic
optics is calledFresnel diffraction by a slit; in this case a
fixed observer detects diffraction in time of two, approx
mately independent, straight-edge Fresnel patterns, tha
two Moshinsky solutions. See Fig. 4 for the exact quant
case.

Clearly, as the quantum numbern goes from 1 tò , the
diffraction pattern by a slit evolves continuously from Frau
hofer to Fresnel, with all possible intermediate cases in
tween.

IV. YOUNG DISPERSION

For an arbitrary sizea of the potential well, the exac
quantum monoenergetic free time evolution of any init

FIG. 3. Fraunhofer diffraction in time by a narrow slit for sta
n56. Observation pointx52a.

FIG. 4. Fresnel diffraction in time by a wide slit for staten
5500. Observation pointx52a.
1-4
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DIFFRACTION IN TIME: FRAUNHOFER AND . . . PHYSICAL REVIEW A65 042111
stationary wave functionwn(x) is, according to Eq.~19!, a
coherent superposition of two opposite moving single-s
diffraction amplitudes. The equivalent optical diffraction pa
tern corresponds, approximately, to having two identical s
facing each other and having a light detector in the midd
In this sense, since we have the interference of two slits,
quantum dispersion pattern resembles roughly a Young in
ference experiment. We call the diffraction in time patte
given by Eq.~19! a Young dispersion process. In Fig. 5 w
show the time evolution of this dispersive process forn54.
Since the present process has zero momentum,^p&50, the
mass transport is not convective but a pure dispersive
cess, just what we wanted to show.

V. CONCLUSION

Finally, let us consider an initial wave packetc(x,0) such
that ~i! it has an arbitrary shape for 0,x,a, ~ii ! c(x,0)
50 for x<0 andx>a, and~iii ! it has an initial zero mean
momentum,^p&050. Under free time evolution, since th
wave packetc(x,t) has its center̂x& at rest, we expect from
c(x,t) to have a pure dispersive mass transport. Inde
since the stationary wave functionswn(x) given in Eq.~12!
form a complete set of orthonormal eigenfunctions in
range (0<x<a), and they also have a zero mean mome

FIG. 5. Young dispersion for staten54. x/a andtn1 are dimen-
sionless variables.n15p\/(4ma2) is the zero point frequency.
,

h

s

s.
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tum, we can expand the initial wave packet in terms of
eigenfunctions

c~x,0!5 (
n50

`

anwn~x!, ~21!

wherean5*0
awn* (x)c(x,0)dx. Now, we have already prove

that under free time evolution, the eigenfunctionswn(x) de-
velop in time into a pure dispersive process; therefo
c(x,0) will also develop into a pure dispersive mass tra
port process. In fact, according to Eq.~21!, the free time
evolution ofc(x,0) is obtained from the corresponding tim
evolution ofwn(x), already given in Eq.~14!

c~x,t !5 (
n50

`

ancn~x,t !

5 (
n50

`

an@cn,1~x,t !1cn,2~x,t !#. ~22!

Here, we see how the arbitrary wave packet develops in t
according to a coherent superposition of diffraction in tim
functionscn,6(x,t). The time-dependent probability densi
uc(x,t)u2 is a complicated linear combination of Fresnel
Fraunhofer dispersions by a slitucn,6u2, and the correspond
ing interferences amplitudescn,6cn8,6

* . The final density
usually has no resemblance at all with any optical diffract
pattern. It becomes clear that diffraction in time functio
cn,6(x,t) may play an important role in the description
some dispersive mass transport processes.

The classical transport theory~Boltzmann equation!,
which explains the mass transport at incoherent ballistic
gimes~classical mesoscopic!, misses completely the descrip
tion of transport having microscopic times and quantum
terference. Since diffraction in time describes a microsco
mass transport, with fast transient density currents and str
quantum interference, this quantum transport phenome
should be added, as a theoretical complement, to the clas
transport theory@16#.
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