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Diffraction in time: Fraunhofer and Fresnel dispersion by a slit
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Moshinsky’s work on diffraction in time is recognized as a particular case of monoenergetic, quantum
dispersion process. Diffraction in time is extended to include new initial conditions, which under free evolution
exhibit temporal quantum interference patterns in close analogy to spatial diffraction patterns found in optics.
We show that free propagation of states, which initially are stationary states of infinite potential wells, diffract
in time similarly as a plane wave by a double slit. We introduce the concepts of mass transport by transient
Fraunhofer and Fresnel dispersion currents.
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I. DIFFRACTION IN TIME with one important distinction: the quantum transformation
is in time, not in space. It is not surprising then that some
Similarities between optics and quantum mechanics haveptical results in space coordinates are similarly obtained in
long been recognizeld]. In particular, time evolution of the quantum mechanics in tHéne domain
guantum wave functior)(r,t) may be written in an analo- One clear example of this symmetry was obtained a long
gous way to Huygens’ principle in optics. This approach,time ago by Moshinsky5], who addressed the following
called the Lagrangian formulation of quantum mechanicgjuantum one-dimensiong&lD) shutter problem: consider a
[2], proves that we can always find a Green’s functionmonoenergetic beam of free particles= p%/2m, moving
G(r,t;r',t") such that fot>t’, parallel to thex axis. For negative times, the beam is inter-
rupted atx=0 by a perfectly absorbing shutter perpendicular
, o . to the beam. Suddenly, at time=0, the shutter is opened,
‘/’(r’t):f dr'G(r,tr, ) ¢(r’,t). @ allowing for t>0 the free time evolution of the beam of
particles. What is the transient density observed at a distance
One example of this equation is the three-dimensi¢8B)  x from the shutter? The problem implies the following initial
time evolution of a free particlg3] condition:

3z W(x,0)=exp(ipx/h) for x=0

=0 for x>0. 4

p(r,t)=

2mih(t—t")

J dr’ exr{lm (r—r")? P(r' th). (2)  Moshinsky proved that the free propagation of the beam had
t—t’ an exact, analytic solution. For-0, the wave function be-
comesy(x,t)=M(x,t), where

On the other hand, in the theory of image formation in op-

tics, using the Fresnel-Kirchoff equation for light propagat- —iml4
ing in the direction of thetz axis, if we know the mono- M(X,t)=

chromatic electric fiel&E(x’,y’,z") in an arbitraryz’ plane,

considered to be the source of Huygens wavelets, then the

e(i/ﬁ)(pxat){ { C(g(x,t))‘F %

field in an arbitraryz plane is given by 4 S(g(x,t))+% (5)
7|k(z z")
E(x,y,z)— f f dx'dy’ C(¢) and S(¢) denote the real and imaginary parts of the
complex Fresnel integraIC(§)+iS(g)EfgequTrUZ/Z)du,
- w2 Y and the Fresnel integral's argumehis a function of posi-
Xe p{ 2|k [O=XD)™Hy=y') ]] tion and time
z—7'

XE(X',y',z"). () g(x,t)E\/%(%t—x). (6)

In optics Eq.(3) is called aFresnel transformatiorj4].
Comparing Egs(2) and (3) it is clear that quantum free The functionM(x,t) has been called Moshinsky’s function
propagation can also be considered a Fresnel transformatiolny Nussenzveigh6,7] and other authors, and it has had
many application$8—12].
For the beam in the shutter problem, the probability den-
*Email address: sgs@hp.fciencias.unam.mx sity is then
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FIG. 1. Moshinsky’s quantum diffraction in tim&X=x/\ and

T=tv are dimensionless quantities. Observation pXigt 2. ) ) o ]
FIG. 2. Fresnel dispersion by an infinite straight edge:xv

and T=t/N are dimensionless variables. Inset: shows how the
probabilty’s oscillations cause compression and expansion density
zones.
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1)? Il. FRESNEL CURRENTS BY A STRAIGHT EDGE

1
+3 S(§(X,t))+§ (7)

The free particle time-evolution propagat@(x,t;x’,t")
in Eq. (2) is dispersive. For any initial wave packet with

This result is similar to the expression for the intensity of!clnlte size, Bxo)*=(x)o—(x)o=finite, the free spreading

light in the Fresnel diffraction by an infinite straight edge in T (z?aaflem)%i (Z)Iu)gctg)f?erc;f stl:rf?iiielr?ﬂ;lnoivg;)lt?gg lezigz
. . . . ._ — 0 0 . il

opls(13) T ploL 4.7 e dene dimensiniess S becores as arge as desied: e e wave packetspreads
Fresnel argument in EG6) becomesi(X, T) = 2T — X/ T, space m_deflnltely, leading toward un|f9rm|ty. ThI.S dlgper3|on
For a fixed positionx,, the plot of the probability density mechamsm provides a means by which mass is microtrans-
IM(x,0)|2 as a functio(;n of time is shown in Fia. 1. For this ported in space. In fact, even if the center of the wave packet

0:41 . ) . 9. L. «pe 1S at rest(p)=0, dispersion induces a mass probability cur-
pecqllar time eVPIUF'O”‘ Moshmsky coined the hame dif- rent in spacg (x,t). And what is more important, under ap-
{;?t(i:;locr:]og:ji:ilgnnein Esiz;‘f?ag s%cutrrcl:z gﬁﬂ: a\:\;gc?g?v:i?ﬁ propriate initia] conditions, fche time ev.ollution of the packet
Fresnel diffraction by.a straight edge in optics. We stress thcan generate intense transient probability currents. One par-

. AN 2~ AN ficular example of this is the diffraction in time process given

fact that diffraction in time is only similar to the optical one,

for in optics the Fresnel integral’'s argument is linear in theIn Eq. (5). Its exact probability current is given by
distance to the edge, while in quantum theory the argument p

is nonlinear in time~ \t— 1/\t. Clearly, in Eq.(6) there is j(x,t)= E|M(X,t)|2+(
a singular point at=0, and for very short times the similar-

ity breaks down completely. Even worst, from Fig. 1 we see T
that for x,>0 quantum theory predicts a density different X [5(§(X,t))+%]005<§§2)
from zero for times &t<xqy/c, wherec is the speed of

light. Obviously this is an unphysical result. The nonrelativ- 1, (7,
istic character of the Schdinger’s equation is the cause of —| CEx D)+ 5]sin 5 &
this erroneous prediction. So for very short times, all time-

dependent Schdinger’s results have to be disregarded. ForThe total current becomes the superposition of a convective
Xo/C<t<Xp/v instead of a front wave, as in the classical and a dispersive currents.

ballistic motion, we have a monotonous increasing behavior The convective current

of the density. This is an expected consequence of the para-

bolic Schralinger’s equation. As for the Fresnel oscillations, . _ b 2

the consequences are far reaching. For instance, at an arbi- jcon(X,t)=E|M(X,t)| ' ©
trary fixed position Xo>0), quantum theory predicts that the

intensity of particles reaches its maximum value at a tshe  occurs only because the wave functibh(x,t) has a well-
later than the classical “flight timeXy/v. The delayAt is  defined momentum, and the cen{&) of the packet moves.

of the order of ¢rfixo/v3)Y? which for thermal neutrons For a fixed timet,, since&(x,to)~ —X, thenjqon(X,to) has
with v =2200 m/s an,=1 m is of the order of 10° sec. in space a similatbut inverted Fresnel diffraction pattern as
The difficult experimental evidence of this quantum predic-|M(x,,t)|? has in time. In Fig. 2 we show at different fixed
tion has been confirmed until very recently by Szriftigisertimes,tyv=(0,0.5,4), the quantum free evolution of density
et al. [14]. |M(x,t0)|? plotted against coordinates We call this par-

1/2
47Tmt)

. (8
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ticular probability current density a Fresnel convective cur-value, giving zones of positive and negative currents in
rent by a straight edge. Notice from Fig. 2 that for shortspace. The oscillating positive and negative currents are con-
times, the Fresnel convective current has very strong trarsequence of the interlaced compressions and expansion den-
sient fluctuations 50 %) about the initial value. A good sity zones in space. The current moves from any compres-
measure of the “width” of this Fresnel convective current in sion zone toward the adjacent right and left expansion zones.
position can be obtained from the difference between the firsthis explains the dispersive current’s oscillations. For long
two positions at whichiM (x,t,)|? takes the classical value 1, times sincej gisp(X,t) —0, the transport of mass, by diffrac-
i.e., 5X=X,—X4, as shown in Fig. 2. The two positions at tion in time, is effective only as a convective transport pro-
which the curve|M(x,ty)|? of Fig. 2 intersects with the cesSjon(Xt).

straight line 1 correspond to the valueségfand &, that can We obtained the optical Fresnel diffraction pattern only
be obtained from the Cornu spirfl5], giving 6é=&,— €&,  because the initial wave function gives the same mathemati-
=0.85. For fixed timet, in Eq. (6) we have for neutrons cal condition for diffraction by an infinite straight edge in

(m=1.67x10 %* g), optics, i.e., discontinuity of a monochromatic plane wave.
However, it must be clear that other discontinuous, monoen-

B o[ Th 1o 1/2_ 12 _1p2 ergetic wave functions with different boundaries can be con-
ox=(6%) =3.2x10 "o cms (100 sidered as initial conditions. If in free propagation we do so,

due to the discontinuity and monochromaticity, quantum me-
which shows that the oscillations spread without bound inchanics may have solutions with similar diffraction patterns
time. For neutrons, Fresnel convective current’s space oscifs those found in optics.

lations, after 1 s, give a spread of10” 2 cm. This is easier The purpose of the present work is to search for new
to measure than the Fresnel oscillations in time €1 for ~ quantum monoenergetic dispersive processes that show cor-
Xo=1 m). responding diffraction patterns in optics. Next, we show an

Notice that the Moshinsky’s wave function given in Eq. €xample of free time evolution leading to Fraunhofer and
(5) is a valid solution for-w<x< +. This is a remarkable Fresnel diffraction patterns by a slit.
result because it implies that for any fixed positive titge
>0 no matter how small, the very fact of a sudden removal [ll. DIFFRACTION IN TIME FOR INITIALLY
of an absorbing wall at=0, causes the initial constant prob- STATIONARY STATES

ili ity i thx|2=1 I F I . -
ability density in spacge to be replaced by Fresnel's The previous 1D shutter problem had no restriction on the

oscillations|M(x,t,)|? all the way fromx=0 down to x . o .
IM(x,to)| y width of the initial wave function; consequently, the momen-

= —oo (a violation of relativity theory. Since the probability :
density oscillates up and down about the initial constan um (and energy could ha"? any valu_e. Most Of. the time,
owever, we want to consider free time evolution of mo-

value, the oscillations’s maxima and minima correspond t oenergetic particles which. in adreement with the uncer-
compressions and expansions of the initial density. In thi'{' 9 P ’ 9
i

sense, the whole negative space becomes interlaced w ﬁinty principle, have some initial finite width in space. Next

bunching and antibunching probability density zones. TheV® show hOVY dlffractlon in time considers a time-evolution
rocess of this kind.

amplitude of these oscillations decrease monotonically as we Let us consider the 1D stationary states of a free particle
move back into negativa’s. For big enough negatives, hat is restrained by im enetrabley reflecting walls pat the
bunching and antibunching zones become indistinguishablé y_Imp ’ 9

o : . - pointsx=0 andx=a. For simplicity, we consider an infinite
giving eventually the appearance again of a uniform denSItygquare-well potential such that(x) =0 for (0<x<a) and

Figure 2 shows how, as time develops, the density’s com — + o for (0< dx>a) The stati P
pressions and expansions regions disperse in the forward c{Y-(X)_ or (0<x andx>a). The stationary wave func-
lons are given by

rection. An observer fixed in space, let sayxgt 2\, de-
scribes the temporal changes of probability density passin _ ; _ . 522

through his position afM (x,,t)|?. This temporal change is Bo(x)=[exalikx) —expt ~ikpx)]/\2ai”  for 0=x<a
precisely the one plotted in Fig. 1 and recognized as Fresnel =0 for x<0 and a<x, (12
diffraction in time by a straight edge. The observer describes

the successive regions of probability density’'s compressiowith k,=n=/a, (n=1,2,3...).

and expansion passing him by, as Fresnel diffraction in time. Now, following Moshinsky, we address the following

The dispersive current problem: if at timet=0 the above reflecting walls are sud-
denly removed, allowing for positive times the free propaga-

. V2 1 T tion of the particle initially described by the wave function
Jaisg X D=| 7% S(§)+5|cog 5 ¢ @n(X). What is the transient density observed at a distance

x>a (or x<0)?
sin( z 52) Clearly from Eq.(12) the stationary wave functiog,(x)
2 is a superposition of two monochromatic, discontinuous,
opposite-moving plane waves. Since each plane wave has a
which is independent ofp) is a pure transient dispersive double discontinuitfatx=0 andx=a), we expect that each
current(the current goes to zero &s?). For a fixed time, plane wave will contribute a double Fresnel diffraction in
for all negativex’s, the current oscillates about the zero time. Indeed, next we will show that each individual discon-

: (11)

( 1
-|co+3
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tinuous plane wave will have a free time evolution, giving a

probability density equivalent to an optical diffraction pat- 2| Mo (22,00
tern by a slit of widtha. After substituting the initial condi-
tion #,(x,0)= ¢,(X) into the 1D version of Eq(2), we get 15
m |Y2ra  Tim (x—x')? / 1 e
Un(X D) =| 5= Jo dx’'exp 5 ———| en(X"). s
(13 ' _
, ) time

The integral is straightforward, and we get for the exact free t=(x-a)% t=x/vq
time evolution a superposition of a right- and left-moving
diffracted in time plane waves FIG. 3. Fraunhofer diffraction in time by a narrow slit for state

n=6. Observation poink=2a.

‘/’n(xat):(//n,+(xvt)+an,—(xat)- (14)

Here, each function, . (x,t) and, _(x,t) denotes a dif-
fraction in the time process

(1) Diffraction in a narrow slit occurs whea~X\, or n
~2. This happens for particles in the ground- and low-
energy excited states. Both Fresnel functibpét,x—a) and
F,(t,x) are separated in space by a distaaceand if a
: [F(t,x—a)—F(t,X)] ~N\n, then eac.h F.resnel function superpose each other with
(4i%a)'? only a few oscillations of low frequency in the same space
(18) (prx—e ) interval a. In this case, the superposition of the two Fresnel
xe R (159 functions induce very strong interference effects. This
strong-interference limit gives a diffraction in time pattern
which in optics is calledrraunhoferdiffraction by a slit. See
Fig. 3 for an exact quantum diffracting in time case.
(2) On the other hand, diffraction in a wide slit occurs
x e(I/M)(=pnx—ent) (16)  whena>\, or n>2. This happens for particles in high-
) ) ) energy excited states. Now, in the space intemaboth
whereF(t,x) is the complex Fresnel integral given by Fresnel functions superpose each other with many high-
£ (xt) fre_quency oscillations. Appro>_<imately_, ea_ch Fresnel function
Fn(t'X)Ef ! exp(i wu?/2)du, (17) s interfered by the asymptotic contribution, €1)/2, from
0 the other. We have here a weak interference pattern, which in
_ o ) optics is calledFresneldiffraction by a slit; in this case a
with the Fresnel's upper limi€,(x,t), depending on the fixed observer detects diffraction in time of two, approxi-

’ﬁn,+(x1t)5

any,(x,t) [Fn(t,a—X)—Fn(t,—X)]

= (4| 33.) 1/2

quantum numben, given by mately independent, straight-edge Fresnel patterns, that is,
two Moshinsky solutions. See Fig. 4 for the exact quantum
m (#ky case
E(tX)=\/—=| —t—X]. (19 '
mht\ m Clearly, as the quantum numbergoes from 1 too, the

. ) diffraction pattern by a slit evolves continuously from Fraun-
Hence, the total probability density becomes a coherent suyypfer to Fresnel, with all possible intermediate cases in be-

perposition of two processes, tween.
2 1 i
| (6 D[*= 7 [eXpikX)[Fr(tx—a) = Fr(t,x)] IV. YOUNG DISPERSION
+exp(— ik X)[Fn(t,a—x)—F(t,—x)]|2. For an arbitrary size_a of the_ potential _\NeII, the exact
19 quantum monoenergetic free time evolution of any initial
To understand this total density, consider the right-moving e (28,0
wave contributiony, . (x,t) alone. We have st
2 1 2

|0, + (X, 1) =E|Fn(t,x—a)—Fn(t,X)| , (20 L
which is identical in optics to the expression for the intensity 0-5¢
of light in the Fresnel diffraction by a slit of width[13]. We 025 \_ fime
have in Eq.(20) the superposition of two Fresnel amplitudes pr—. rp

generated by the corresponding edges of the slit. Two limit
cases are important: diffraction by a narrow and by a wide FIG. 4. Fresnel diffraction in time by a wide slit for state
slit. =500. Observation point=_2a.
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tum, we can expand the initial wave packet in terms of the

w0 | t/vi=0 eigenfunctions
3 AN ’
O veon 0= 2, anen(X), (21)

/ wherea,= [§¢ (x) #(x,0)dx. Now, we have already proved
that under free time evolution, the eigenfunctigngx) de-
- .. velop in time into a pure dispersive process; therefore,
0 1 3 #(x,0) will also develop into a pure dispersive mass trans-
port process. In fact, according to E@1), the free time

FIG. 5. Young dispersion for state=4. x/a andtv, are dimen-  €volution of(x,0) is obtained from the corresponding time

sionless variables:; = w4 /(4ma?) is the zero point frequency. evolution of p,(x), already given in Eq(14)
stationary wave fur)qt|0|¢n(x) is, acco_rdmg to Eq(19), a (X, t)= 2 andn(x,t)
coherent superposition of two opposite moving single-slits n=0

diffraction amplitudes. The equivalent optical diffraction pat-
tern corresponds, approximately, to having two identical slits
facing each other and having a light detector in the middle.
In this sense, since we have the interference of two slits, the ) o
quantum dispersion pattern resembles roughly a Young intefH€re, we see how the arbitrary wave packet develops in time
ference experiment. We call the diffraction in time pattern@ccording to a coherent superposition of diffraction in time
given by Eq.(19) a Young dispersion process. In Fig. 5 we functlonSf//nyi(x,t). '_rhe tlmg-dependent pr_obablllty density
show the time evolution of this dispersive processrfer4.  |#(x.t)|? is a complicated linear combination of Fresnel or
Since the present process has zero momen¢pin=0, the ~ Fraunhofer dispersions by a dli, -2, and the correspond-
mass transport is not convective but a pure dispersive prdng interferences amplitudeg, ¢, . . The final density

=n§0an[wn,+<x,t)+wn,_(x.t>]. (22)

cess, just what we wanted to show. usually has no resemblance at all with any optical diffraction
pattern. It becomes clear that diffraction in time functions
V. CONCLUSION ¥n +(X,t) may play an important role in the description of
some dispersive mass transport processes.
Finally, let us consider an initial wave packgtx,0) such The classical transport theoryBoltzmann equation

that (i) it has an arbitrary shape for<Ox<a, (i) #(x,0)  which explains the mass transport at incoherent ballistic re-
=0 for x<0 andx=a, and(iii) it has an initial zero mean gimes(classical mesoscopicmisses completely the descrip-
momentum,(p)o=0. Under free time evolution, since the tion of transport having microscopic times and quantum in-
wave packet)(x,t) has its centefx) at rest, we expect from terference. Since diffraction in time describes a microscopic
Y(x,t) to have a pure dispersive mass transport. Indeednass transport, with fast transient density currents and strong
since the stationary wave functiogs(x) given in Eq.(12) guantum interference, this quantum transport phenomenon
form a complete set of orthonormal eigenfunctions in theshould be added, as a theoretical complement, to the classical
range (Gsx=a), and they also have a zero mean momen-transport theory16].
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