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Zero-energy solutions and vortices in Schrdinger equations
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Two-dimensional Schidinger equations with rotationally symmetric potentfas(p) = —a?g,p?@ 2 with
p= JXZ+yZ anda# 0] are shown to have zero-energy states. For the zero energy eigenvalue the equations for
all a are reduced to the same equation representing two-dimensional free motions in the constant potential
V.= —g, in terms of the conformal mappings 6f=z? with z=x+iy. Namely, the zero-energy eigenstates
are described by plane waves with the fixed wave numkegrs\2mag,/% in the mapped spaces. All the
zero-energy states are infinitely degenerate similar to the case of the parabolic potentia{P@Bishown by
Shimbori and Kobayaslji. Phys. A33, 7637(2000]. Following hydrodynamical arguments, we see that such
states describe stationary flows around the origin, which are represented by the complex velocity potentials
W,=+2g,/mZ, and their linear combinations create almost arbitrary vortex patterns. Examples of the vortex
patterns in constant potentials and PPB are presented. In the extension to three-dimensional problems with
potentials being separable into+t2A dimensions we show that the states in three dimensions have the same
structure as the two-dimensional states with the zero energy but they can generally have nonzero total energies.
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I. INTRODUCTION siong has zero energy eigenvalue, which is included in the
eigenvalues expressed byi(n,—ny)%y. We see that the
It is known that scattering states and unstable states likeero-energy states are obtained for zero and positive integers
resonances are generally described by states in conjugadetisfyingn,=n, and then they are infinitely degenerate. The
spaces of Gel'fand triplet¢GTs) [1]. In order to analyze zero-energy states are interpreted as stationary flows around
wider phenomena in quantum mechanics, investigations ithe center of the PPE8]. Furthermore, following hydrody-
terms of solutions of GT$GT solutions will be indispens-  namics, it has been also shown that some of such flows can
able. Phenomenological analyses in terms of the GT solube expressed by complex velocity potentials and various vor-
tions, however, have not yet been performed so much. Ongx structures appear in the linear combinations of the infi-
of the reasons is due to the difficulty of obtaining the GT nitely degenerate states. Considering that states in the conju-
solutions exactly. We, therefore, do not know their commongate spaces of GTs are generally not normalizable but
properties covering a wide range for potentials. The other igurrents of those states are observable in quantum mechan-
the fact that we do not yet understand what are good obseryes, the quantities observed in physical processes should be
ables in real physical phenomena described by the GT solusased on probability currents such as currents in hydrody-
tions. To understand how they can be observed in real phgramics. Hydrodynamical considerations will play a very im-
nomena is a fundamental problem for the development of thgortant role in the investigations of quantum physics in GT.
phenomenology in terms of the GT solutions. For that pur-The hydrodynamical approach of quantum mechanics was
pose we would like to start from the analysis of the GTvigorously investigated in the earlier stage of the develop-
solutions for an exactly solvable potential model and then tanent of quantum mechanid®—-16]. Vortices were exten-
study common properties for more general types of the posively examined by Hirschfelder and co-workeis7—2Q
tentials. A simple example of exactly solvable models is aand a review article was written by Ghosh and D). It
parabolic potential barrigiPPB). The eigenstates of the PPB should be noted that such a hydrodynamical idea is still use-
V(x)=—my?x?/2 in one dimension have been studied byful in present-day quantum physif8,22,23. Actually prob-
many authors[2-7]. It has been shown that the one- lems of vortices appear in many aspects of present-day phys-
dimensional PPB has pure imaginary energy eigenvalueigs such as vortex mattersortex lattice$ [24,25, vortices
+i(n+1/2)hy with n=0,1,2 ..., and theeigenfunctions in non-neutral plasmf26—-29, Bose-Einstein gas¢80-34
are generalized functions in the conjugate sp&¢®)* of  and so on. The vortex problems will hold a very important
GTs described byS(R)CL?(R)CS(R)™, whereS(R) and position in the hydrodynamical approach of quantum me-
L2(R), respectively, stand for a Schwartz space and a Leehanics. As noted in Ref8], the stationary flows in the
besgue spackb,6]. In general, the energy eigenvaluéof  two-dimensional PPB can create almost arbitrary patterns of
the conjugate spaces in GTs are expressed by pairs of comertices because of the infinite degeneracy. PPB potentials
plex conjugates such th&=e¢=iy with ¢,ye R, and the can be a good approximation to the repulsive forces that are
states with thex sign, respectively, represent resonance-very weak at the center of the forces such that harmonic
decay and resonance-formation processes. This pairing propscillators are a good approximation to the attractive forces,
erty of the energy eigenvalues indicates that states in highebeing very weak at the center. In fact PPB has been applied
dimensional PPB possibly have zero-energy eigenstates. in some chemical probleni85—-37. The PPB, however, is a
fact the PPB in two dimension@enerally in even dimen- very special potential and then it seems to be difficult that the
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results of PPB extend to more general potentials. a general property of Schidinger equations with rotational

In this paper we shall investigate stationary flows in moresymmetric potentials is investigated in terms of conformal
general types of potentials from the hydrodynamical point ofmappings. In Sec. lll it is shown that for zero-energy solu-
view. Especially, we study stationary flows in two dimen- tions, all the equations in the mapped spaces can be reduced
sions discussed in the PRB] because interesting quantities t0 one equation describing free motion in a constant poten-
in hydrodynamics such as complex velocity potentials andial. This means that, as far as the zero-energy eigenstates are
vortices are definable in the dimensions. Furthermore, it i§oncerned, all the symmetric potentials have the same solu-
well known that in two-dimensional hydrodynamica' prob- tions W|th |nf|n|te degeneracy as those Obta|ned N the PPB
lems, conformal mappings can be a very strong tool to in{8]. Following the considerations of the PPB, hydrodynami-
vestigate velocities, complex velocity potentials, and vortices@l arguments are performed and velocities, complex veloc-
[38_4]} Some solutions solved in a Specia' aspect are pogty pOtentials, and vortices are inVeStigated in Sec. IV. In Sec.
sibly extendable to others in terms of conformal mappings!V C an extension of the argument to three-dimensional
Particularly, we will pay attention to the stationary flows thatProblems is also discussed. Non-plane-wave solutions for
are described by the zero-energy eigenstates in the[BPB ZEero energy are br|eﬂy discussed in Sec. V. Remarks on non-
Such zero-energy states can also play an interesting role #£r0 energy solutions are presented in Sec. VI. Some remarks
statistical mechanics in GTs, where a new type of entropyand comments on the present work are given in Sec. VII.
arises from the freedom with respect to the imaginary parts .
of energy eigenvaluef42—44. That is to say, even if a II. CONFORMAL MAPPINGS OF SCHRO DINGER
many-particle system is in the ground state with a fixed en- EQUATIONS WITH SYMMETRIC POTENTIALS
ergy and then it has no freedom arising from the real energy
eigenvalue, it can still have freedom with respect to the
imaginary parts. Remembering the fact that all the energf/3
eigenvalues in GTs are expressed in pairs of complex conju- P
gates, we can understand the situation very easily, because ih—=V(t,xy)=HW(t,X,Yy),
the imaginary part of every complex energy can be canceled Jt
out by adding the conjugate energy in many-particle system
An example was presented in Rg43] for the PPB, where
the burst of e”tTF’PY from the new e_ntropy was studied i alue problems with the energy eigenvalfi@re explicitly
thermal nonequilibrium. If we can find such Zero-energy, iven as
states in more general types of potentials, we can investigate
many-particle systems from a very new aspect where every [ 52

We shall investigate the general structure of Sdhnger
quations,

Svhere the Hamiltoniah is described by rotational symmet-
ric potentials in two-dimensional space,y). The eigen-

state with a fixed energy can still have huge variety arising - ﬁAJrVa(p) P(Xy)=EPY(X,y), 1)
from the degeneracy of zero-energy states. This paper has

two themes. One of the themes is to show the fact that rotggnereac R (a#0)
tional symmetric potentials of the typeV,(p)=

—a%g,p2@ Y with p=\Xx?+y? and a#0 have the same P 9
zero-energy solutions as those obtained in the PPB in two = W+(7_)/2’
dimensiong8]. We shall show that, as far as the zero-energy

solutions are concerned, ScHioger equations with the ro- Va(p)=—alg,p2@ D),

tational symmetric potentialg,(p) for all values ofa except

a=0 are reduced to the same equation by using conformalith p= \/x?>+y?, mandg, are, respectively, the mass of the
mappings and, therefore, the infinite degeneracy of the soliarticle and the coupling constant. Note here Matepre-
tions obtained in the PPB case appears in all the potentialgents repulsive potentials fog{>0,a>1) and @,<0.a
The other is to investigate vortex formation expected from<1) and attractive potentials forg{>0,a<1) and @,
the zero-energy solutions in the hydrodynamical approach<pa>1). Since we investigate the equations in the conju-
We shall see that the infinite degeneracy of the zero-energyate spaces of GT, the energy eigenvalfesf Eq. (1) are
solutions can be observed as various patterns of vortices i§enerally complex numbers.
real physical phenomena, and some simple vortex patterns Fojlowing the hydrodynamical argumef88—41], let us
are presented. In these discussions the conformal mappingssnsider the following conformal mappings:
which are known to be very powerful tools in two-
dimensional hydrodynamics, become powerful tools also in [,=7% with z=x+iy. (2
the hydrodynamical approach of quantum mechanics, and
vortex patterns for all the potentialé,(p) can be investi- Note that the conformal mappings are singular at the origin
gated by a very simple method. In this paper we would likeexcept in the cases afbeing positive integers, and the con-
to show that the solutions of GTs are not only objects offormal mapping fora=1 is trivial because nothing is
mathematical interest but are also very interesting objects fothanged by the mapping. We further notice that a complex
describing real physical processes, especially, those in vortéactor A can be multiplied in the mappings such &g
phenomena. =AZ, which will be discussed in the case far=e™'* with

We shall perform our considerations as follows. In Sec. Il,a e R. When we use the notation

042108-2



ZERO-ENERGY SOLUTIONS AND VORTICES IN . .. PHYSICAL REVIEW A5 042108

ga:ua'Hvaa Y
we see that
u,=pcosae, va=pisinae, (3)

whereu, v, R andp= \x?+y?, ¢=arctany/x). Using the
notations z

o

2 2 2
Pa:ua+va(:p2a) and ¢,=aep,

we have
U,=paC0Sp, and v,=p,Sine,. (4)
In the (U,,v,) plane Egs(1) are written down as FIG. 1. Corner flows foryg (u,) in the two-dimensional PPB.
B h? In the maps, the variables
apf @V = D Ao = Ga| (Ua0a) =EP(Ua.va), (5)
Uy(a)=p?cojap—a) and v,(a)=pisinfag—a)
where 9
P2 52 should be used. We also have the relations
Ba=502 32
a a Ug(a@)=uscosa+tuvsinae  and va(a)=v,C0Sa
We can rewrite the equations as —u,sine. (10)
72 -
——A,— 0. tlf(ua,va)=a’25p§(lfa)’a¢/f(ua,va). Of course, the relationsi(0)=u, and v,(0)=v, are
2m obvious.
(6) In the following, we comment on the meaning of the

Exchanging the second term on the left-hand side and th%ho!ce of the vaniablesi, and va given in Eq.(3). It is
term on the riaht-hand side. we obtain obvious thatu, andv, are not suitable variables for repre-

9 ' senting the states having definite properties with respect to
rotations, such as the states with definite angular momentum,
P(Uy,va)=0at(Uy,v,). in comparison with the polar coordinatgsand ¢. In the

) following discussions, however, we will be interested only in

the states describing stationary flows, which are basic ele-

It is quite interesting that we can read this equations as folMents in hydrodynamics. In general, stationary flows, such
lows: the eigenvalue problem for the potential(p) in the @S those. in scqtt_ermg problems, cannot be described by the
(x,y) plane given by Eq(1) is replaced by the eigenvalue States with definite ar_lgula_r momentum, becguse every sta-
problem for the potentiaVy,(p,) in the (u,,v,) plane, tionary flow has specific directions representing the incom-
where the roles of the eigenvaldeand the coupling constant N9 and outgoing flows(Examples of the stationary flows in
g, are exchanged. We may consider that this relation repré2PB Will be presented in Sec. IV. See Figs. 1 andStich
sents a kind of duality between the energy and the Cc,Lm"n&tatlonary flows, of course, have no definite rotational sym-
constant. From the relation we see that by solving the eigen-
values for fixedf in the (u,,v,) plane we can determine the
strength of the coupling constagy to reproduce the eigen-
value £ for the potentiaV,(p) in the (X,y) plane. We shall
return to the relations between the problems ¥qrin the
(x,y) plane andVq,(pa) in the (u,,v,) plane in Sec. VI,
because this theme is not the main subject of this section.
Here let us briefly comment on the conformal mappings
{,=7% We see that the transformation maps the part of the
(x,y) plane described by €p<«,0<¢</|a| in the up-
per half plane of they, ,v,) plane fora>0 and in the lower
half plane fora<<0. Note here that the maps in the part of the
(ua,v,) plane with the angler,= ¢ — a can be carried out
by using the conformal mappings

hZ

o

L(a)=2%', (8) FIG. 2. Corner flows fory, (Uy) in the two-dimensional PPB.
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metry except rotations with respect to some specific anglesvhere the angl# denotes the moving direction of the plane
We can understand such situations by considering the fagtave in the (,,v,) plane, Kky(6)=(y2m|g.//%)
that the directions of the incoming flows are chosen by hand<(cosé,siné) and p,=(u,,v,) are two-dimensional vec-
in scattering experiments. Actually it will be shown that the tors, andN, andM, are, in general, complex numbers. Com-
freedom of the phaser in the conformal mapping8) is  paring the equatiork,(6)- p,=k,(U,c0S6+v,Sin6) where
related to such choicdsee Sec. I)l. The choice of the vari- k.= \/W/ﬁ with u,(@) of Eq. (10), we see that the
ablesu, andv, is, therefore, important in the following hy- angle ¢ can be adjusted to the phaseintroduced in the
drodynamical approach, where the relations between the p@opnformal mapping$8). By using the phase and the vari-

tentials V,(p) with different values ofa are studied. An  gple u,(a), the solutiong12) and(13) are written by
explicit example of the difference between the choice of the

polar coordinates and that of, andv, has been shown in Wy (Ua(@))=N,e“kalal®)  for g,>0 (14
the case of the two-dimensional PPB in Sec. 3 of R&f.
and

Ill. ZERO-ENERGY SOLUTIONS OF THE SCHRO DINGER N shous(a)
EQUATIONS do (Ua(@)) =M, e~ " for g,<0. (15)

We shall here study the special solutions having zero enWe shall use the representations given in Edd) and(15)
ergy eigenvalue€=0. As noted in Sec. |, energy eigenval- in the following discussions. Note here that, taking account
ues in GTs are generally complex and all energy eigenvaluesf the relations
appear as pairs of complex-conjugate values suchzasy
(e,veR) [1]. This indicates that, provided a potential in Ua(Em/2)=Fvg, Ua(Em)=—Uy, (16)
one-dimensional space has pure imaginary eigenvalues, the )
potentials extended in two dimensions possibly have zero€ ¢an represent all the solutions of E(4) and (15) by
energy states. This situation really occurs in PPB, that is,
one-dimensional PPB has pure imaginary eigenvalfed] o (Ua(@))
and hence two-dimension&jjenerally in even dimensions (17)
PPB has zero-energy states that are described by the staticwe also notice that the solutiong (U («)) for g,>0 are

ary flows round the origin and are infinitely degeners&&g expressed by plane waves with fixed momentusg

\L/eEpL;s investigate zero-energy solutions for the potentials” Mg, wherease? (u,(a)) for g,<0 are expressed by
a(p).

exponential growing or dumping functions. This difference is
essential, because the plane-wave solutions can always be
the states contained in the conjugate spaces of GTs, the

We see that for the zero-energy=0 the Schrdinger nuclear space of which is given by Schwartz spatg
equations(6) obtained by the conformal mappings becomewhereas the exponential growing functions such as
very simple such that ex{d p®cosip— )] with 0<cos@p—a) cannot find a simple
nuclear space for arbitrary valuesafFrom now on we shall
mainly discuss the plane-wave solutions ¢r>0.

Let us summarize the main results of the cgge 0.

(i) All the potentials written ad/,(p) have zero-energy
Note that the zero-energy solutions have no time depergigenstates in GTs.
dence. It is remarkable that the equation becomes same for (jj) All the solutions with zero energy can be expressed by
all a, that is, the potential is expressed by the consggrior 3 plane wave with fixed momentump,=+2mg, in the
all a. As far as the zero-energy solutions are concerned, thﬁjavva) plane.
equations transformed by the conformal mappings can be jjj) The zero-energy solutions have an infinite freedom
written in the same form for all the potential&,(p) with  aising from the arbitrary angle- #< a<ar, which corre-
a7 0. It should be noticed here that only in the case of thesponds to the freedom of the angle between the incoming
constant potentiaV/,= —g, for a=1, the energy eigenval- pariicle and thex axis, which is given by £ — «)/a.

and ¢g(ua(a)) with —w<as=w.

A. Zero-energy solutions

ﬁZ
- _Aa_ga

o W(Ug02) =0, (a

ues can take arbitrary values satisfying the condiieng, (iv) In the case of the constant potential corresponding to
>0, because the right-hand side of &6). does not have any 5—1, though we have the same solutions obtained in the
p dependence. above arguments, their energy eigenvalues need not equal

It is trivial that the solutions of Eq(11) are given by the  zero but the energies can take arbitrary values fulfilling the
two-dimensional plane waves with energy. The solutions  rejation £+ g,>0.

are, therefore, represented by

1//§(pa) _ Naeiika(0)~pa for g,>0 (12) B. Infinite degeneracy of the zero-energy states

Akind of degeneracy arising from the angle of the incom-
and ing particle with respect to theaxis has been pointed out in
. k. (0)- Sec. Il. We, however, see that the zero-energy states have
b0 (pa) =Mge™ 2% P2 for g,<O0, (13)  another type of infinite degeneracy that has been already
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solved in the two-dimensional PPBB]. In the PPB the de- Note that the eigenfunctions
generacy arises from the pairing property of the energy ei- . . .
genvalues given by i (n+1/2)% v, that is, the energy eigen- Pon(Ua(a))=f 1 (Ua(a);va(@)) g (Ua(a))

values of the type=i(n,—ny,)Ay appear in the two- ]

dimensional PPB and hence the infinitely degenerate zerdor n=1 do not describe plane waves and hence they cannot

energy states are derived for all the cases Satisfyi!ag be normalized in terms af functions. We essen“a”y have to

=n,. We see that the origin of the infinite degeneracy is dud'éal them as the eigenfunctions of the conjugate space

to the existence of an infinite number of resonances having(R°) ™ in GT, which is expressed by

decay widths (+1/2)%y in the one-dimensional PPB and 2 2,12 2\ %

the coexistence of the resonance-formation and resonance- S(RHCLARTH SR,

decay processes with equal probability in the tWO_WhereS(Hz) and L2(R?) are, respectively, Schwartz space

dimensional PPB. The zero-energy states are interpreted as o C A .
. . . and Lebesgue space in two dimensiofSor details, see

stationary flows expressed by the incoming flows corre- efs.[1,8]) We will see in the following section that this

sponding to the formation process and the outgoing flow§ B | . lei '9 o .

corresponding to the decay process, which will be shown in egeneracy piays an |mpolrtant role in mvgsﬂgatmg vortices.

Figs. 1 and 2 of Sec. IV. Let us see the degeneracy in Eq. the th%t We can obta!n the polynpmlgls for the wave

(11) where the two-dimensional PPB is included. As an ex- unctions ¢ (ua) by replacingk, with —ik, in the polyno-

amole we studv the freedom for the wave functivia(u m_ials d_erived from E_q(20). We also _easily see that in one
giVSn by Eq.}l(14). By putng the wave lf:g]rgc?i)on dimension the equation corresponding to EB) does not

+ - : - . bring any new freedom to the plane-wave solutions.
f=(ua;va) ¢ (Uy) into Eq.(11) wheref~(u,;v,) is a poly- g any P
nomial function ofu, andv,, we obtain the equation
IV. HYDRODYNAMICAL CONSIDERATIONS OF THE

. ZERO-ENERGY STATES
f=(ua;va)=0. (18)

AV 2ikai
Uy In hydrodynamics conformal mappings are very powerful
tools for understanding structures of currents. Actually the
important hydrodynamical ideas such as the property of
complex velocity potentials, circulations of currents,
strengths of vortices, strengths of sources and sinks, and so
forth do not change in the conformal mappin@3—41.
This fact means that we can simultaneously carry out the
investigation of the hydrodynamical properties of the zero-
energy solutions for all the potentials,(p) in the mapped
spaces, i.e., in theug,v,) plane. Results for all the poten-
tials with a#0 can be obtained by the inverse transforma-
Yions of the conformal mappings. In this section we shall
study the zero-energy states from a hydrodynamical view-
point for the g,>0 cases, because the eigenstatesgior
. . < <0, represented by exponential growing or damping func-
o (U2;02) =Hi (V2K Hy (V2Kay), (20 tions, do not describe any oscillating waves, which will be

wherex andy on the right-hand side should be considered oPriefly discussed in Sec. V. It should be remarked on the

be functions ofu, andwv, [8]. Since the form of Eqq18) is Z?Ilétr:?/gfu\ggh inc;]nie;o f gefrbgy ?#%?Jﬁ:ﬁs\i/gg h;sgergy
the same for alla, the solutions can be written using the wﬁich are wgll(e; reésed)inyterms of the ei enfunctions' of
same polynomial functions that are given in E2Q) for the P 9

PPB. That is to say, we can obtain the polynomials for arbi-the angular momenturh =—i%d/de. (See Ref[8]) The

. . : discussion of vortices of those states can be simply per-
trary a by replacingu and V2 with U, andu, in Eg. (20). formed by using the variables and ¢ and it has alrggd;
?lotz t?)at thel pplyno:{nlaIS{hn (5).W'th &= my./gi j\r_e.de- been done in the PPB caf&]. We shall devote this section
Ined Dy so utions or t € eigenstates wity, =+i(n to the investigation of vortices formed from zero-energy so-
+1/2)hy in a one-dimensional PPB of the typé(x)=

5 3 > ' " lutions, which are the stationary flows, which are not the
__m|7|_)|( /(2§)and they are written in terms of Hermite polyno- gigenstates df. We shall see that zero-energy solutions with
mialsH (&) as

infinite degeneracy can produce a wide variety of vortex pat-
terns.

As solved in Ref[8], a few examples of the functioris are
given by

fg(ua;va):]-r
f(Uyva)=4Kav,,
f5(Ua;va) =4(4K202+ 1+ 4ik,uy). (19

In the two-dimensional PPB, the functions are generall
written as multiples of polynomials of degree,
H, (V2k,x), such that

Hr::(g):eiinﬂ'/4Hn(eIifrr/4§). (21)

(For details, see Refd5,6].) It is remarkable that all the A. Currents and velocities

wave functions for arbitrarya can be represented by the  Though states in GTs are generally not normalizable, the
same functions of the PPB in thag,v,) plane. Forys (va)  probability currents are observable in physical processes
we should take the polynomialf, (v4;u,) in which the  such as in scattering processes. We shall, therefore, study the
variablesu, andv , are exchanged. currents and other quantities based on hydrodynamics. The
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probability density p(t,x,y) and the probability current
j(t,x,y) of a state¥(t,x,y) in nonrelativistic quantum me-
chanics are defined by

p(t,x,y) =¥ (t,x,y)|? (22)
X)) =R4gY(t,x,y)* (—iaV)¥(t,x,y)]/m. (23
They satisfy the equation of continuity
a—p+v.j=o. (24)
ot

Following the analog of the hydrodynamical appro§88—
41], the fluid can be represented by the dengitand fluid
velocity v. They satisfy Euler’s equation of continuity,

% V. (pp)=0 25
5t TV (pv)=0. (25)
Comparing this equation with ER4), we are thus led to the

following definition for the quantum velocity of a state
P (t,x,y):

J(t,x,y)

v=—————, (26)
[ (t,x,y)|2
in whichj(t,x,y) is given by Eq{(23). Notice thatp andj for
the zero-energy states do not depend on time
Let us discuss them in theif,v,) plane. All quantitieO

defined in the (,,v,) plane will be marked a® and can
easily be transformed into the quantities in thkgy( plane. It
is apparent that in theug ,v,) plane the currents of the plane
wavesysg (Ua(a)) are represented by the same form foraall

Ju, = Nl ?fika(cosa)/m,

]ua=|Na|2ﬁka(sina)/m. 27)
Note here the following relations:
Ua(@) =U,C08a+v,Sine, Uy (0)=U,, v4(0)=v,.

When we represent the momentum in terms of a vector of th

(ua,v,) plane as
P, = (fik,cosa,fik,sina)

for ¢ (ua(@)), the currents are generally written as

ja:|Na|2E)a/m- (28)
Hence the velocities are given by
v,=Pa/m. (29

Following the argument of hydrodynami¢or details, see
Appendix A of Ref.[8]), we can introduce the complex ve-
locity potentialW, as

PHYSICAL REVIEW A65 042108

Wa=(Py,~iP,,){a/m. (30

The velocity potentiafb , and the stream functio¥f , can be
introduced similarly to those in hydrodynamics as

W=D, +iV,,

where they satisfy the following relations in the,(v,)
plane:

. b,
Yua” U,

W, . ob,

Vva™ dvg

AN
duy

vy’ (31)

It is known that Cauchy-Riemann equations are satisfied by
the velocity potential and the stream function.

The velocities in theu, and v, directions in the X,y)
plane are given by

Vu, = havua Vv, = havvav (32

where the scale factorb,=a(ui+v2)@ Y2 Hydrody-
namics tells us thatV, describes corner flows with the angle
7r/a around the origin. For example, in the case of the PPB
with a=2 [8], the plane waves in theug,v,) plane,
o (Uy), are expressed in Figs. 1 and 2. Note that the states
multiplied by the polynomials, and f; of Eq. (19) also
represent the corner flows with the angiéa.

B. Vortices in the zero-energy states

In hydrodynamics vortices are very important objects. In
quantum mechanics, since the velocity defined by @6)
diverges at the zero points of the wave functions, the vortices
generally appear at such nodal points of the wave functions
[17-20. The situation is, however, not so simple to deter-
mine the positions of vortices, because the vortices do not
always appear at the points where the wave functions vanish,
when the currents also vanish at the same points. Since the
zero-energy states have an infinite degeneracy and also the
freedom of the angleyr, we will be able to create vortex
patterns having an arbitrary number of vortices at arbitrary
positions. A general study of quantized vortices is carried out
j?n Ref. [20]. We shall here discuss the vortex patterns in a
ew simple cases of the linear combinations in terms of the
infinite degeneracy. It should be noted that the search for the
nodal points of the wave functions, where the currents do not
vanish, is not enough to determine the positions of vortices.
We have one more criterion on the circulation that character-
izes the strength of the vortex. That is to say, a vortex must
have a nonzero circulatiohl defined by the integral round a
closed contouC encircling the vortex such that

fﬁv-ds.
c

Even at the nodal points with nonvanishing currents the cir-
culations can be zero, for instance, at the positions of sources
or sinks of currents, vortex dipoles, vortex quadrupoles, and

r= (33
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so forth [38—41,49. For the confirmation of vortices we . 3
have to evaluate the circulatidh. Note also that the circu- Vu=5—

ve t . 5| (|Aulcoséa+[B,|cosdg) +(|A,|sin s
lation is quantized as

siné

I'=2xlh/m, (34) —|B’u|5in¢3)m

. (43

where the circulation numbéris an integef18,20,23.

Let us study the vortex structures appearing in the linea e see that the second term in the brackets diverges by

S : "Ho pital’s theorem, when the second condition for the angle,
combinations of two eigenstates constructed from &g cosf=—1, is fulfilled. Thus we can obtain the condition for

and (19). The following discussions are carried out in thethe diveraence of the velocit

(uy,v,) plane, because the singularities of the velocity do 9 Y
not change in the conformal mappings except the singularity A lsind.—IB |sinda0 a4
of the mappings at the origin, fa taking nonpositive inte- | "| 2 “| $e#0. (44)
geral values. The general form of the linear combination o

, frhis equation means that the functiohs andB, must not
two states can be written as

be real and also the imaginary partsAf andB, must not
be equal at least for one of the components
Y=+ s, 35
Vit 39 =u, and v,.
where, since the two states are not normalized, the complex NOW we can summarize the conditions for the determina-
coefficients appearing in the linear combination are includedion of the vortex positions in the linear comblnat!orl of two
in the two wave functionss, and,. The absolute square of Wave functionsy,; and ¢, as follows(i) |i|=|ys|; (ii) 6

V¥ is evaluated as =(2l-1)m, | is an integer ¢ is the phase betweep, and
); (iii) |A,|singa—|B,|singg#0 [A, andB, are defined
|W|2= )%+ | o] >+ 2R ). (36) in Eqg. (39)]. Let us investigate the above conditions with a
few simple examples.
In general, a component of the current®fis written as Example (i) It is trivial that any linear combination com-

posed of the wave functions with the lowest polynontiz)

.~ . has no vortex, because the conditiGi) is not fulfilled
JM:ERG[\P (Au1+Buia)l, (37) whereas nodal points satisfying the conditidins and (ii)
appear in the linear combinations.
where u=u, or v, andA, andB, are complex functions Example (ii) The combination of the lowest polynomial
defined by and the second one such that
d d W=y (Ua(@))— CFy (Ua(0);v4(0))thg (Uy(O
AM:_iai/; Il’ BM:_iO”ijwz—l. (38) 'ﬂo( al@)) 1( a(0);v4a( ))‘/’0( a(0))

has vortices at positions fulfilling the following conditions
Let us study the nodal points ¢f|?, where the vortices derived from(i) and (ii):
appear. We have

va(0)=(—1)"4|ClK,,
[0 [2= [y *+ [ 92>+ 2| ] | 42| cOS, (39

where 6 denotes the phase betwegn and . It is trivial 6+ 6c=nm (n Isaninteger, (45
thatfnlc;_(illaldpoints appear when the following two conditions,ynere 0. is the phase of and
are fulfilled:

B=Ka[ Ua(0) — Uy( @) ]=Ka[ Us(0)(1— cosa) —v,(0)sinal.

|n|=|, and co¥=-1. (40 (46)

We put the first relation into E¢39) and thus obtain Let us examine the relatior{g5) in two cases foa=1 and

[P |2=2|4,|2(1+ cosé). (41) 2, whereC is taken _to be a real number, i.@z=0.
Case a&=1. In this case we have,(0)=x and v,(0)

Taking account of the same relatipfy| =| .|, the currentis =Y and then the relations are reduced to

written as
y=(—1)"4|Clkq,
. h
JM:E|¢1|2[(|A,¢|COS¢A+|BM|COS¢B)(1+COS‘9) X(1—cosa)—ysina=nm/k,. (47)
+(|A,|singa—|B,|sin¢g)sinb], (42)  All vortices appear on the two lings= = 1/4/C|k, parallel

to thex axis and they are at the cross points of the two lines
where ¢, and ¢ are, respectively, the phases &f, and  and the linesx=[nm+ (—1)"sina/4/C|]/k;(1—cosa) for
B, - The velocity is evaluated as a#0. The positions of vortices fon=0,+1,£2,+=3 are
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y #0, which are not described by the plane waves in the
(ua,v,) plane, play essential roles in creating vortices.

For the confirmation of the vortices let us calculate the
circulation I' defined by Eq.(33). After some elementary

n=-3 n=-1| n=1 n=23

n_=even calculations we obtain thdt= —1 for the vortices withn=
even and =1 for the vortices witm= odd.
5 z Before closing this section we point out the fact that we
can realize almost all of the vortex patterns because of the
7 =odd infinite degeneracy of the zero-energy solutions. The study of

the vortex patterns will be carried out by determining the
parametera (the type of potentialand by finding the best
n=-2 n=2 linear combination in terms of the infinitely degenerate zero-
energy states to describe the vortex patterns.

FIG. 3. Positions of vortices fon=0, =1, =2, =3 in the
constant potentialg=1), denoted by®. C. Vortices in three dimensions
presented in Fig. 3, where= r is taken. This situation is ~ Let us briefly study vortices in three dimensions. It is
quite similar to the vortices called parallel vortex lines ob-0bvious that the conformal mappings given in E2).cannot

tained in hydrodynamics. apply in three dimensions. Scliiager equations in three
Case &2 (PPB). Since the inverse transformation of dimensions are generally written as
the conformal mapping is described by the equatios(®) 52 P
kjx2_y2 andv,(0)=2xy in PPB[8], the relations are given [_ ﬁ( A+ -2 +Va(X,Y,2) | (X,y,2) = EP(X,Y,2),
g (50)
2xy=(—1)"4[Clk,
where A= 3%/ 9x?>+ 9%/ 9y?. The equations, however, can be
(x2—y?)(1—cosa)—2xysina=nm/k,. (48 reduced to two-dimensional ones in cases where potentials

are separable into 21 dimensions such tha¥,(x,y,z)

\Vortices appear at the cross points &f—y?=(nm+ =Va(p)+V,2). In general, in three-dimensional models

(—1)"sina/4|C|)/ky(1—cosa) and xy=(—1)"8|C|k,.  where the vortex planex(y) and the other axi$z) perpen-

The positions of the two vortices for=0 and the other four dicular to the vortex plane are completely separable, the

for n==1 are shown in Fig. 4, where= 7 is taken. wave functions are written by in multiplicative forms such as
The vortices appear at symmetric positions with respect tas(x,y) #(z) and then the zero-energy solutiogg,, (U ,v )

the origin, which are described by the cross points of the twdor V,(p) are applicable. Provided that the eigenstates

equations szZ(z) for the eigenvalueg, are obtained in the direction,

the states written ag,(Ua,v,) z,/;EZ(z) are the eigenstates
having the energy eigenvalugs. In these cases all vortices

We can make a large variety of vortex patterns by changin re described by the axial type g_nd the toroidal _vortiges do
the parametera and C and the zero-energy states in terms ot appeaf20], because the positions of the vortices in the
of the polynomialg19). Here we stress that, as shown in the (X:Y) plane do not depend an

above discussions, the higher polynomial solutions waith Here we would like to note the construction of vortices in
' the case withV,(x,y,z)=0. Let us put the plane-wave solu-

2

x2—y2=nml2k,, xy=(—1)"/8|C|k,. (49

tion
y
wo(x,y,z) — Naei(kxx+ kyy)eikzz (51)
into Eq. (50), where V4(x,y,z)=0 is taken. Taking
#2k212m=E—%2k%/2m, the equation has solutions same as
Z T those for the constant potentidl,= — g, in two dimensions,

whereg,=72%k?/2m and thenk?+ k2=k?. This fact implies
that the parallel vortices obtained in Sec. IV B are producible
from  o(Xx,y,z2) and the polynomial solution
1 (X,y) ¥o(X,y,2) with the nonzero energ§ in three dimen-
sions.

Real vortex phenomend24-34 appear in three-
FIG. 4. Positions of vortices fon=0,+1 in the PPB §=2),  dimensional spaces. Some of the vortex phenomena will be

which are denoted b® for n=0, ¢ for n=1, and® for n= understood in the cases discussed above.
-1.
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V. SHORT NOTES ON ZERO-ENERGY SOLUTIONS spring constantk=8|&|. The eigenvalues of the two-
FOR g,<0 dimensional harmonic oscillator are well known as

As noted in Sec. Il A, we have the zero-energy solutions
b0 (Ua(@))=M e k(@ of Eq. (15). In general, they are
unnormalizable in thex,y) plane. In some special cases, o
however, they can be normalizable. For example, provided/here n, and n, are zero or positive integers and
that the parametera and « are taken so as to fulfill the =2v2|&l/m. Thus we have the relation

relation
912= Enxny- (55

Enxny:(nxvL ny+ho, (54)

cofap—a)>0 for O0<e<2m, (52
_ ) ) . From this relation we obtain the eigenvalfi@s
¢q (Ua(a)) can be normalizable. The relation can be fulfilled
by suitable choices of the parameters such thaia€:1/2 m
and — (1/2—2a)m<a<m/2. There are, of course, different f=— M2 (56)
choices, when we take the different solutions from 8(2N+1)%42
¢o (Ua(@)). It is very hard to answer the question whether
the choice of the solutions is physically meaningful or not.with N=(n,+n,)/2. We can directly confirm the eigenval-
Such solutions, however, possibly have some meanings iies by solving the original equation for the solutions
phenomena limited to very special regions, provided that the#(x,y) =R(p)e"# (I is an integey, which correspond to the
solutions are used only in the limited regions and smoothlysymmetric solutions of the harmonic oscillator described by
connected to other functions defined outside the regions. Iny,=n,. We see that, provided that one of the eigenvalue
fact the solutions are used for constructing the vortices fronproblems can be solved, we can also obtain the eigenvalues
the plane-wave solutions in three-dimensional spaBee of the other equation. It is interesting that harmonic-
the argument of Sec. IV C. oscillator (p?) and Coulomb-type 1) potentials are
Note also here that the solutionsp, (u,(e))  mMapped to each other by conformal mapping and that there is
=M e % have no current because they can be taken a8 relation between the energy eigenvalues of the two poten-
real. The higher polynomial solutions witt=2 of Eq.(19) tials in two dimensions.
or Eqg. (200 can, however, have currents because they are

generally complex. This means that we have a possibility for VII. CONCLUDING REMARKS
producing vortices from these solutions even if they will .
appear only in very limited regions. We have shown that all Schitimger equations with sym-
metric potentials of the typ¥,(p) in two dimensions can be
VI. REMARKS ON NONZERO-ENERGY SOLUTIONS reduced to the same equation with a constant potential for

the zero-energy eigenstates in terms of conformal mappings,
We shall briefly discuss the equation for nonzero-energyand the states with the zero-energy are in the infinite degen-
given by Eq.(7), eracy. The degeneracy becomes not only the origin of the
huge variety of vortex patterns but it will possibly be an
interesting tool to investigate complicated problems of sur-
face physics including boundaries as well. And the idea can
be extended to phenomena in three dimensions. Particularly
As noted in Sec. I, this equation can be read as the equatiaihis scheme will become a powerful tool for studying vortex
for determining the strength of the coupling constggtof ~ phenomena. Actually a vortex-lattice solution has been found
the original potentialV4(p)=—a?g,p?@ Y for the given in this schemd45]. We may expect that the hydrodynamical
energy&. We shall, however, discuss it from a slightly dif- approach in quantum mechanics presented here will open
ferent standpoint. If we can solve the eigenvalue problem fomany interesting aspects in physics such as the investigation

h2

- ﬁAa_ afzfpg(lfa)/a YUy 1Ua) =0ga(Uy ,Ua)-

the potential of—a 2£p2(*~@/2 e can obtain the eigen- of vortex pattern§24—34. We have to note here that many
values of the original equation vortex phenomena are discussed in nonlinear prob[dils
5 whereas our scheme is based on the linear equation. In real-
h istic phenomena we have to solve vortex problems in the
— —A—2a2q.p2@-1) = i . . .
ZmA a“gap P(X,y)=EP(X,y). cases with many potential sources. In such cases interactions

among vortices, which are known in hydrodynamj&8—
Let us show one example faa=1/2, where the original 41], must be taken into account. We have also to consider
potential is written as effects from boundaries of systems. In order to complete
vortex dynamics in quantum mechanics and to analyze real
vortex phenomena, the introduction of such interactions and
Vialp)=— 792, for g1>0. (53 effects must be performed in the present scheme. At present,
however, the relation between the nonlinear approach and the
For real and negative eigenvalue§<(0) Eq. (7) can be present one is still an open question.
understood as a two-dimensional harmonic oscillator with We briefly note here that in order to represent the whole
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(uy,v,) plane, the double sheets of the,y) plane (Rie-
mann surfaceare needed for the choice af= + 1/2. In gen-
eral, for the choice o=+ 1/p, the p sheets of thex,y)

PHYSICAL REVIEW A65 042108

massm. This means that the conformal mappin@ are
applicable to hydrodynamical problems in two dimensions
and infinite degeneracy can also take place. The analysis in

plane, such ap spiral sheets, are required to cover the wholeterms of the functions obtained in this paper will also be-

(ua,vy) plane. We may consider that the case far
=0[Vo(p)xp 2] can be examined in the limit gb— oo,
where the infinite spiral sheets are needed in 1g)(plane.

come an interesting approach in many aspects of hydrody-
namical problems.
Finally we would like to note that the infinite degeneracy

From this fact we can understand that the zero-energy solwf the zero-energy solutions brings infinite variety to many-

tions for thep 2
p'9, which are expressed by logarithmic exponeelfs" .
Actually we obtaing= =+ +2mg,/%°—1? for the potential

Vo(p)=—dop 2
valuel of the angular momentum.

potential behave as power types such ashody systems with a fixed energy, which possibly becomes
the origin of an entropy different from the Boltzmann en-

tropy [42—44]. This entropy has nothing to do with the de-

, Wherel is an integer defined by the eigen- termination of usual temperatures in thermal equilibrium but

the freedom stored in the entropy can be released in thermal

It should be noticed that some kinds of equations in hy-nonequilibrium[43]. These considerations will also give rise
drodynamicg38—41] are obtainable from the original eigen- to a different aspect in statistical mechanics extended from

value equation1) by changing parameters such #asand

Hilbert spaces to Gel'fand triplefgl2,44].
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