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Zero-energy solutions and vortices in Schro¨dinger equations

Tsunehiro Kobayashi1 and Toshiki Shimbori2

1Department of General Education for the Hearing Impaired, Tsukuba College of Technology, Ibaraki 305-0005, Japan
2Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan

~Received 27 August 2001; published 21 March 2002!

Two-dimensional Schro¨dinger equations with rotationally symmetric potentials@Va(r)52a2gar2(a21) with
r5Ax21y2 andaÞ0# are shown to have zero-energy states. For the zero energy eigenvalue the equations for
all a are reduced to the same equation representing two-dimensional free motions in the constant potential
Va52ga in terms of the conformal mappings ofza5za with z5x1 iy . Namely, the zero-energy eigenstates
are described by plane waves with the fixed wave numberska5A2mga/\ in the mapped spaces. All the
zero-energy states are infinitely degenerate similar to the case of the parabolic potential barrier~PPB! shown by
Shimbori and Kobayashi@J. Phys. A33, 7637~2000!#. Following hydrodynamical arguments, we see that such
states describe stationary flows around the origin, which are represented by the complex velocity potentials
Wa5A2ga /mza, and their linear combinations create almost arbitrary vortex patterns. Examples of the vortex
patterns in constant potentials and PPB are presented. In the extension to three-dimensional problems with
potentials being separable into 211 dimensions we show that the states in three dimensions have the same
structure as the two-dimensional states with the zero energy but they can generally have nonzero total energies.

DOI: 10.1103/PhysRevA.65.042108 PACS number~s!: 03.65.2w, 03.50.2z
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I. INTRODUCTION

It is known that scattering states and unstable states
resonances are generally described by states in conju
spaces of Gel’fand triplets~GTs! @1#. In order to analyze
wider phenomena in quantum mechanics, investigation
terms of solutions of GTs~GT solutions! will be indispens-
able. Phenomenological analyses in terms of the GT s
tions, however, have not yet been performed so much.
of the reasons is due to the difficulty of obtaining the G
solutions exactly. We, therefore, do not know their comm
properties covering a wide range for potentials. The othe
the fact that we do not yet understand what are good obs
ables in real physical phenomena described by the GT s
tions. To understand how they can be observed in real p
nomena is a fundamental problem for the development of
phenomenology in terms of the GT solutions. For that p
pose we would like to start from the analysis of the G
solutions for an exactly solvable potential model and then
study common properties for more general types of the
tentials. A simple example of exactly solvable models is
parabolic potential barrier~PPB!. The eigenstates of the PP
V(x)52mg2x2/2 in one dimension have been studied
many authors@2–7#. It has been shown that the on
dimensional PPB has pure imaginary energy eigenva
7 i (n11/2)\g with n50,1,2, . . . , and theeigenfunctions
are generalized functions in the conjugate spaceS(R)3 of
GTs described byS(R),L2(R),S(R)3, whereS(R) and
L2(R), respectively, stand for a Schwartz space and a
besgue space@5,6#. In general, the energy eigenvaluesE of
the conjugate spaces in GTs are expressed by pairs of c
plex conjugates such thatE5«7 ig with «,gPR, and the
states with the7 sign, respectively, represent resonan
decay and resonance-formation processes. This pairing p
erty of the energy eigenvalues indicates that states in hig
dimensional PPB possibly have zero-energy eigenstate
fact the PPB in two dimensions~generally in even dimen
1050-2947/2002/65~4!/042108~10!/$20.00 65 0421
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sions! has zero energy eigenvalue, which is included in
eigenvalues expressed by7 i (nx2ny)\g. We see that the
zero-energy states are obtained for zero and positive inte
satisfyingnx5ny and then they are infinitely degenerate. T
zero-energy states are interpreted as stationary flows aro
the center of the PPB@8#. Furthermore, following hydrody-
namics, it has been also shown that some of such flows
be expressed by complex velocity potentials and various v
tex structures appear in the linear combinations of the i
nitely degenerate states. Considering that states in the co
gate spaces of GTs are generally not normalizable
currents of those states are observable in quantum mec
ics, the quantities observed in physical processes shoul
based on probability currents such as currents in hydro
namics. Hydrodynamical considerations will play a very im
portant role in the investigations of quantum physics in G
The hydrodynamical approach of quantum mechanics
vigorously investigated in the earlier stage of the devel
ment of quantum mechanics@9–16#. Vortices were exten-
sively examined by Hirschfelder and co-workers@17–20#
and a review article was written by Ghosh and Deb@21#. It
should be noted that such a hydrodynamical idea is still u
ful in present-day quantum physics@8,22,23#. Actually prob-
lems of vortices appear in many aspects of present-day p
ics such as vortex matters~vortex lattices! @24,25#, vortices
in non-neutral plasma@26–29#, Bose-Einstein gases@30–34#
and so on. The vortex problems will hold a very importa
position in the hydrodynamical approach of quantum m
chanics. As noted in Ref.@8#, the stationary flows in the
two-dimensional PPB can create almost arbitrary pattern
vortices because of the infinite degeneracy. PPB poten
can be a good approximation to the repulsive forces that
very weak at the center of the forces such that harmo
oscillators are a good approximation to the attractive forc
being very weak at the center. In fact PPB has been app
in some chemical problems@35–37#. The PPB, however, is a
very special potential and then it seems to be difficult that
©2002 The American Physical Society08-1
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TSUNEHIRO KOBAYASHI AND TOSHIKI SHIMBORI PHYSICAL REVIEW A65 042108
results of PPB extend to more general potentials.
In this paper we shall investigate stationary flows in mo

general types of potentials from the hydrodynamical poin
view. Especially, we study stationary flows in two dime
sions discussed in the PPB@8# because interesting quantitie
in hydrodynamics such as complex velocity potentials a
vortices are definable in the dimensions. Furthermore, i
well known that in two-dimensional hydrodynamical pro
lems, conformal mappings can be a very strong tool to
vestigate velocities, complex velocity potentials, and vorti
@38–41#. Some solutions solved in a special aspect are p
sibly extendable to others in terms of conformal mappin
Particularly, we will pay attention to the stationary flows th
are described by the zero-energy eigenstates in the PPB@8#.
Such zero-energy states can also play an interesting ro
statistical mechanics in GTs, where a new type of entro
arises from the freedom with respect to the imaginary p
of energy eigenvalues@42–44#. That is to say, even if a
many-particle system is in the ground state with a fixed
ergy and then it has no freedom arising from the real ene
eigenvalue, it can still have freedom with respect to
imaginary parts. Remembering the fact that all the ene
eigenvalues in GTs are expressed in pairs of complex co
gates, we can understand the situation very easily, bec
the imaginary part of every complex energy can be cance
out by adding the conjugate energy in many-particle syste
An example was presented in Ref.@43# for the PPB, where
the burst of entropy from the new entropy was studied
thermal nonequilibrium. If we can find such zero-ener
states in more general types of potentials, we can investi
many-particle systems from a very new aspect where ev
state with a fixed energy can still have huge variety aris
from the degeneracy of zero-energy states. This paper
two themes. One of the themes is to show the fact that r
tional symmetric potentials of the typeVa(r)5
2a2gar2(a21) with r5Ax21y2 and aÞ0 have the same
zero-energy solutions as those obtained in the PPB in
dimensions@8#. We shall show that, as far as the zero-ene
solutions are concerned, Schro¨dinger equations with the ro
tational symmetric potentialsVa(r) for all values ofa except
a50 are reduced to the same equation by using confor
mappings and, therefore, the infinite degeneracy of the s
tions obtained in the PPB case appears in all the potent
The other is to investigate vortex formation expected fr
the zero-energy solutions in the hydrodynamical approa
We shall see that the infinite degeneracy of the zero-ene
solutions can be observed as various patterns of vortice
real physical phenomena, and some simple vortex patt
are presented. In these discussions the conformal mapp
which are known to be very powerful tools in two
dimensional hydrodynamics, become powerful tools also
the hydrodynamical approach of quantum mechanics,
vortex patterns for all the potentialsVa(r) can be investi-
gated by a very simple method. In this paper we would l
to show that the solutions of GTs are not only objects
mathematical interest but are also very interesting objects
describing real physical processes, especially, those in vo
phenomena.

We shall perform our considerations as follows. In Sec.
04210
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a general property of Schro¨dinger equations with rotationa
symmetric potentials is investigated in terms of conform
mappings. In Sec. III it is shown that for zero-energy so
tions, all the equations in the mapped spaces can be red
to one equation describing free motion in a constant pot
tial. This means that, as far as the zero-energy eigenstate
concerned, all the symmetric potentials have the same s
tions with infinite degeneracy as those obtained in the P
@8#. Following the considerations of the PPB, hydrodynam
cal arguments are performed and velocities, complex ve
ity potentials, and vortices are investigated in Sec. IV. In S
IV C an extension of the argument to three-dimensio
problems is also discussed. Non-plane-wave solutions
zero energy are briefly discussed in Sec. V. Remarks on n
zero energy solutions are presented in Sec. VI. Some rem
and comments on the present work are given in Sec. VII

II. CONFORMAL MAPPINGS OF SCHRO¨ DINGER
EQUATIONS WITH SYMMETRIC POTENTIALS

We shall investigate the general structure of Schro¨dinger
equations,

i\
]

]t
C~ t,x,y!5HC~ t,x,y!,

where the HamiltonianH is described by rotational symme
ric potentials in two-dimensional space (x,y). The eigen-
value problems with the energy eigenvalueE are explicitly
written as

F2
\2

2m
n1Va~r!Gc~x,y!5Ec~x,y!, ~1!

whereaPR (aÞ0)

n5
]2

]x2 1
]2

]y2 ,

Va~r!52a2gar2(a21),

with r5Ax21y2, m andga are, respectively, the mass of th
particle and the coupling constant. Note here thatVa repre-
sents repulsive potentials for (ga.0,a.1) and (ga,0,a
,1) and attractive potentials for (ga.0,a,1) and (ga
,0,a.1). Since we investigate the equations in the con
gate spaces of GT, the energy eigenvaluesE of Eq. ~1! are
generally complex numbers.

Following the hydrodynamical argument@38–41#, let us
consider the following conformal mappings:

za5za with z5x1 iy . ~2!

Note that the conformal mappings are singular at the ori
except in the cases ofa being positive integers, and the con
formal mapping for a51 is trivial because nothing is
changed by the mapping. We further notice that a comp
factor A can be multiplied in the mappings such asza
5Aza, which will be discussed in the case forA5e2 ia with
aPR. When we use the notation
8-2
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ZERO-ENERGY SOLUTIONS AND VORTICES IN . . . PHYSICAL REVIEW A65 042108
za5ua1 iva ,

we see that

ua5racosaw, va5rasinaw, ~3!

whereua ,vaPR andr5Ax21y2,w5arctan(y/x). Using the
notations

ra
25ua

21va
2~5r2a! and wa5aw,

we have

ua5racoswa and va5rasinwa . ~4!

In the (ua ,va) plane Eqs.~1! are written down as

a2ra
2(a21)/aF2

\2

2m
na2gaGc~ua ,va!5Ec~ua ,va!, ~5!

where

na5
]2

]ua
21

]2

]va
2 .

We can rewrite the equations as

F2
\2

2m
na2gaGc~ua ,va!5a22Era

2(12a)/ac~ua ,va!.

~6!

Exchanging the second term on the left-hand side and
term on the right-hand side, we obtain

F2
\2

2m
na2a22Era

2(12a)/aGc~ua ,va!5gac~ua ,va!.

~7!

It is quite interesting that we can read this equations as
lows: the eigenvalue problem for the potentialVa(r) in the
(x,y) plane given by Eq.~1! is replaced by the eigenvalu
problem for the potentialV1/a(ra) in the (ua ,va) plane,
where the roles of the eigenvalueE and the coupling constan
ga are exchanged. We may consider that this relation re
sents a kind of duality between the energy and the coup
constant. From the relation we see that by solving the eig
values for fixedE in the (ua ,va) plane we can determine th
strength of the coupling constantga to reproduce the eigen
valueE for the potentialVa(r) in the (x,y) plane. We shall
return to the relations between the problems forVa in the
(x,y) plane andV1/a(ra) in the (ua ,va) plane in Sec. VI,
because this theme is not the main subject of this sectio

Here let us briefly comment on the conformal mappin
za5za. We see that the transformation maps the part of
(x,y) plane described by 0<r,`,0,w,p/uau in the up-
per half plane of the (ua ,va) plane fora.0 and in the lower
half plane fora,0. Note here that the maps in the part of t
(ua ,va) plane with the anglewa5w2a can be carried ou
by using the conformal mappings

za~a!5zae2 ia. ~8!
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In the maps, the variables

ua~a!5racos~aw2a! and va~a!5rasin~aw2a!
~9!

should be used. We also have the relations

ua~a!5uacosa1vasina and va~a!5vacosa

2uasina. ~10!

Of course, the relationsua(0)5ua and va(0)5va are
obvious.

In the following, we comment on the meaning of th
choice of the variablesua and va given in Eq. ~3!. It is
obvious thatua and va are not suitable variables for repre
senting the states having definite properties with respec
rotations, such as the states with definite angular momen
in comparison with the polar coordinatesr and w. In the
following discussions, however, we will be interested only
the states describing stationary flows, which are basic
ments in hydrodynamics. In general, stationary flows, su
as those in scattering problems, cannot be described by
states with definite angular momentum, because every
tionary flow has specific directions representing the inco
ing and outgoing flows.~Examples of the stationary flows i
PPB will be presented in Sec. IV. See Figs. 1 and 2.! Such
stationary flows, of course, have no definite rotational sy

FIG. 1. Corner flows forc0
1(ua) in the two-dimensional PPB

FIG. 2. Corner flows forc0
2(ua) in the two-dimensional PPB
8-3
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TSUNEHIRO KOBAYASHI AND TOSHIKI SHIMBORI PHYSICAL REVIEW A65 042108
metry except rotations with respect to some specific ang
We can understand such situations by considering the
that the directions of the incoming flows are chosen by h
in scattering experiments. Actually it will be shown that t
freedom of the phasea in the conformal mapping~8! is
related to such choices~see Sec. III!. The choice of the vari-
ablesua andva is, therefore, important in the following hy
drodynamical approach, where the relations between the
tentials Va(r) with different values ofa are studied. An
explicit example of the difference between the choice of
polar coordinates and that ofu2 and v2 has been shown in
the case of the two-dimensional PPB in Sec. 3 of Ref.@8#.

III. ZERO-ENERGY SOLUTIONS OF THE SCHRO¨ DINGER
EQUATIONS

We shall here study the special solutions having zero
ergy eigenvalue,E50. As noted in Sec. I, energy eigenva
ues in GTs are generally complex and all energy eigenva
appear as pairs of complex-conjugate values such as«7 ig
(«,gPR) @1#. This indicates that, provided a potential
one-dimensional space has pure imaginary eigenvalues
potentials extended in two dimensions possibly have ze
energy states. This situation really occurs in PPB, that
one-dimensional PPB has pure imaginary eigenvalues@2–7#
and hence two-dimensional~generally in even dimensions!
PPB has zero-energy states that are described by the sta
ary flows round the origin and are infinitely degenerate@8#.
Let us investigate zero-energy solutions for the potent
Va(r).

A. Zero-energy solutions

We see that for the zero-energyE50 the Schro¨dinger
equations~6! obtained by the conformal mappings becom
very simple such that

F2
\2

2m
na2gaGc~ua ,va!50. ~11!

Note that the zero-energy solutions have no time dep
dence. It is remarkable that the equation becomes sam
all a, that is, the potential is expressed by the constantga for
all a. As far as the zero-energy solutions are concerned,
equations transformed by the conformal mappings can
written in the same form for all the potentialsVa(r) with
aÞ0. It should be noticed here that only in the case of
constant potentialV152g1 for a51, the energy eigenval
ues can take arbitrary values satisfying the conditionE1g1
.0, because the right-hand side of Eq.~6! does not have any
r dependence.

It is trivial that the solutions of Eq.~11! are given by the
two-dimensional plane waves with energyga . The solutions
are, therefore, represented by

c0
6~ra!5Nae6 ika(u)•ra for ga.0 ~12!

and

f0
6~ra!5Mae6ka(u)•ra for ga,0, ~13!
04210
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where the angleu denotes the moving direction of the plan
wave in the (ua ,va) plane, ka(u)5(A2mugau/\)
3(cosu,sinu) and ra5(ua ,va) are two-dimensional vec-
tors, andNa andMa are, in general, complex numbers. Com
paring the equationka(u)•ra5ka(uacosu1vasinu) where
ka5A2mugau/\ with ua(a) of Eq. ~10!, we see that the
angle u can be adjusted to the phasea introduced in the
conformal mappings~8!. By using the phasea and the vari-
ableua(a), the solutions~12! and ~13! are written by

c0
6
„ua~a!…5Nae6 ikaua(a) for ga.0 ~14!

and

f0
6
„ua~a!…5Mae6kaua(a) for ga,0. ~15!

We shall use the representations given in Eqs.~14! and ~15!
in the following discussions. Note here that, taking acco
of the relations

ua~6p/2!56va , ua~6p!52ua , ~16!

we can represent all the solutions of Eqs.~14! and ~15! by

c0
1
„ua~a!… and f0

1
„ua~a!… with 2p,a<p.

~17!

We also notice that the solutionsc0
6
„ua(a)… for ga.0 are

expressed by plane waves with fixed momentumpa

5A2mga, whereasf0
6
„ua(a)… for ga,0 are expressed by

exponential growing or dumping functions. This difference
essential, because the plane-wave solutions can alway
the states contained in the conjugate spaces of GTs,
nuclear space of which is given by Schwartz space@1#,
whereas the exponential growing functions such
exp@racos(aw2a)# with 0,cos(aw2a) cannot find a simple
nuclear space for arbitrary values ofa. From now on we shall
mainly discuss the plane-wave solutions forga.0.

Let us summarize the main results of the casega.0.
~i! All the potentials written asVa(r) have zero-energy

eigenstates in GTs.
~ii ! All the solutions with zero energy can be expressed

a plane wave with fixed momentumpa5A2mga in the
(ua ,va) plane.

~iii ! The zero-energy solutions have an infinite freedo
arising from the arbitrary angle2p,a<p, which corre-
sponds to the freedom of the angle between the incom
particle and thex axis, which is given by (p2a)/a.

~iv! In the case of the constant potential corresponding
a51, though we have the same solutions obtained in
above arguments, their energy eigenvalues need not e
zero but the energies can take arbitrary values fulfilling
relationE1g1.0.

B. Infinite degeneracy of the zero-energy states

A kind of degeneracy arising from the angle of the inco
ing particle with respect to thex axis has been pointed out i
Sec. II. We, however, see that the zero-energy states h
another type of infinite degeneracy that has been alre
8-4
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ZERO-ENERGY SOLUTIONS AND VORTICES IN . . . PHYSICAL REVIEW A65 042108
solved in the two-dimensional PPB@8#. In the PPB the de-
generacy arises from the pairing property of the energy
genvalues given by7 i (n11/2)\g, that is, the energy eigen
values of the type7 i (nx2ny)\g appear in the two-
dimensional PPB and hence the infinitely degenerate z
energy states are derived for all the cases satisfyingnx
5ny . We see that the origin of the infinite degeneracy is d
to the existence of an infinite number of resonances hav
decay widths (n11/2)\g in the one-dimensional PPB an
the coexistence of the resonance-formation and resona
decay processes with equal probability in the tw
dimensional PPB. The zero-energy states are interprete
stationary flows expressed by the incoming flows cor
sponding to the formation process and the outgoing flo
corresponding to the decay process, which will be shown
Figs. 1 and 2 of Sec. IV. Let us see the degeneracy in
~11! where the two-dimensional PPB is included. As an e
ample we study the freedom for the wave functionc0

6(ua)
given by Eq. ~14!. By putting the wave function
f 6(ua ;va)c0

6(ua) into Eq. ~11! wheref 6(ua ;va) is a poly-
nomial function ofua andva , we obtain the equation

Fna62ika

]

]ua
G f 6~ua ;va!50. ~18!

As solved in Ref.@8#, a few examples of the functionsf 6 are
given by

f 0
6~ua ;va!51,

f 1
6~ua ;va!54kava ,

f 2
6~ua ;va!54~4ka

2va
21164ikaua!. ~19!

In the two-dimensional PPB, the functions are genera
written as multiples of polynomials of degreen,
Hn

6(A2k2x), such that

f n
6~u2 ;v2!5Hn

6~A2k2x!Hn
7~A2k2y!, ~20!

wherex andy on the right-hand side should be considered
be functions ofu2 andv2 @8#. Since the form of Eqs.~18! is
the same for alla, the solutions can be written using th
same polynomial functions that are given in Eq.~20! for the
PPB. That is to say, we can obtain the polynomials for a
trary a by replacingu2 and v2 with ua and va in Eq. ~20!.
Note that the polynomialsHn

6(j) with j5Amg/\x are de-
fined by solutions for the eigenstates withE n

657 i (n
11/2)\g in a one-dimensional PPB of the typeV(x)5
2mg2x2/2 and they are written in terms of Hermite polyn
mials Hn(j) as

Hn
6~j!5e6 inp/4Hn~e7 ip/4j!. ~21!

~For details, see Refs.@5,6#.! It is remarkable that all the
wave functions for arbitrarya can be represented by th
same functions of the PPB in the (ua ,va) plane. Forc0

6(va)
we should take the polynomialsf n

6(va ;ua) in which the
variablesua andva are exchanged.
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Note that the eigenfunctions

c0n
6
„ua~a!…5 f n

6
„ua~a!;va~a!…c0

6
„ua~a!…

for n>1 do not describe plane waves and hence they can
be normalized in terms ofd functions. We essentially have t
treat them as the eigenfunctions of the conjugate sp
S(R2)3 in GT, which is expressed by

S~R2!,L2~R2!,S~R2!3,

whereS(R2) and L2(R2) are, respectively, Schwartz spac
and Lebesgue space in two dimensions.~For details, see
Refs. @1,8#.! We will see in the following section that thi
degeneracy plays an important role in investigating vortic

Note that we can obtain the polynomials for the wa
functionsf0

6(ua) by replacingka with 2 ika in the polyno-
mials derived from Eq.~20!. We also easily see that in on
dimension the equation corresponding to Eq.~18! does not
bring any new freedom to the plane-wave solutions.

IV. HYDRODYNAMICAL CONSIDERATIONS OF THE
ZERO-ENERGY STATES

In hydrodynamics conformal mappings are very power
tools for understanding structures of currents. Actually
important hydrodynamical ideas such as the property
complex velocity potentials, circulations of current
strengths of vortices, strengths of sources and sinks, an
forth do not change in the conformal mappings@38–41#.
This fact means that we can simultaneously carry out
investigation of the hydrodynamical properties of the ze
energy solutions for all the potentialsVa(r) in the mapped
spaces, i.e., in the (ua ,va) plane. Results for all the poten
tials with aÞ0 can be obtained by the inverse transform
tions of the conformal mappings. In this section we sh
study the zero-energy states from a hydrodynamical vie
point for the ga.0 cases, because the eigenstates forga
,0, represented by exponential growing or damping fu
tions, do not describe any oscillating waves, which will
briefly discussed in Sec. V. It should be remarked on
solutions with nonzero energy such as those with the ene
eigenvalues7 i (nx1ny11)\g in two-dimensional PPB,
which are well expressed in terms of the eigenfunctions
the angular momentumL52 i\]/]w. ~See Ref.@8#.! The
discussion of vortices of those states can be simply p
formed by using the variablesr and w and it has already
been done in the PPB case@8#. We shall devote this section
to the investigation of vortices formed from zero-energy s
lutions, which are the stationary flows, which are not t
eigenstates ofL. We shall see that zero-energy solutions w
infinite degeneracy can produce a wide variety of vortex p
terns.

A. Currents and velocities

Though states in GTs are generally not normalizable,
probability currents are observable in physical proces
such as in scattering processes. We shall, therefore, stud
currents and other quantities based on hydrodynamics.
8-5
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probability density r(t,x,y) and the probability curren
j(t,x,y) of a stateC(t,x,y) in nonrelativistic quantum me
chanics are defined by

r~ t,x,y!5uC~ t,x,y!u2, ~22!

j~ t,x,y!5Re@C~ t,x,y!* ~2 i\“ !C~ t,x,y!#/m. ~23!

They satisfy the equation of continuity

]r

]t
1“• j50. ~24!

Following the analog of the hydrodynamical approach@38–
41#, the fluid can be represented by the densityr and fluid
velocity v. They satisfy Euler’s equation of continuity,

]r

]t
1“•~rv !50. ~25!

Comparing this equation with Eq.~24!, we are thus led to the
following definition for the quantum velocity of a stat
C(t,x,y):

v5
j~ t,x,y!

uC~ t,x,y!u2
, ~26!

in which j(t,x,y) is given by Eq.~23!. Notice thatr andj for
the zero-energy states do not depend on timet.

Let us discuss them in the (ua ,va) plane. All quantitiesO
defined in the (ua ,va) plane will be marked asÔ and can
easily be transformed into the quantities in the (x,y) plane. It
is apparent that in the (ua ,va) plane the currents of the plan
wavesc0

1
„ua(a)… are represented by the same form for alla,

ĵ ua
5uNau2\ka~cosa!/m,

ĵ va
5uNau2\ka~sina!/m. ~27!

Note here the following relations:

ua~a!5uacosa1vasina, ua~0!5ua , va~0!5va .

When we represent the momentum in terms of a vector of
(ua ,va) plane as

p̂a5~\kacosa,\kasina!

for c0
1
„ua(a)…, the currents are generally written as

ĵa5uNau2p̂a /m. ~28!

Hence the velocities are given by

v̂a5p̂a /m. ~29!

Following the argument of hydrodynamics~for details, see
Appendix A of Ref.@8#!, we can introduce the complex ve
locity potentialWa as
04210
e

Wa5~ p̂ua
2 i p̂va

!za /m. ~30!

The velocity potentialFa and the stream functionCa can be
introduced similarly to those in hydrodynamics as

Wa5Fa1 iCa ,

where they satisfy the following relations in the (ua ,va)
plane:

v̂ua
5

]Fa

]ua
5

]Ca

]va
, v̂va

5
]Fa

]va
52

]Ca

]ua
. ~31!

It is known that Cauchy-Riemann equations are satisfied
the velocity potential and the stream function.

The velocities in theua and va directions in the (x,y)
plane are given by

vua
5hav̂ua

vva
5hav̂va

, ~32!

where the scale factorsha5a(ua
21va

2)(a21)/2a. Hydrody-
namics tells us thatWa describes corner flows with the ang
p/a around the origin. For example, in the case of the P
with a52 @8#, the plane waves in the (u2 ,v2) plane,
c0

6(u2), are expressed in Figs. 1 and 2. Note that the sta
multiplied by the polynomialsf 0

6 and f 1
6 of Eq. ~19! also

represent the corner flows with the anglep/a.

B. Vortices in the zero-energy states

In hydrodynamics vortices are very important objects.
quantum mechanics, since the velocity defined by Eq.~26!
diverges at the zero points of the wave functions, the vorti
generally appear at such nodal points of the wave functi
@17–20#. The situation is, however, not so simple to det
mine the positions of vortices, because the vortices do
always appear at the points where the wave functions van
when the currents also vanish at the same points. Since
zero-energy states have an infinite degeneracy and also
freedom of the anglea, we will be able to create vortex
patterns having an arbitrary number of vortices at arbitr
positions. A general study of quantized vortices is carried
in Ref. @20#. We shall here discuss the vortex patterns in
few simple cases of the linear combinations in terms of
infinite degeneracy. It should be noted that the search for
nodal points of the wave functions, where the currents do
vanish, is not enough to determine the positions of vortic
We have one more criterion on the circulation that charac
izes the strength of the vortex. That is to say, a vortex m
have a nonzero circulationG defined by the integral round
closed contourC encircling the vortex such that

G5 R
C
v•ds. ~33!

Even at the nodal points with nonvanishing currents the
culations can be zero, for instance, at the positions of sou
or sinks of currents, vortex dipoles, vortex quadrupoles, a
8-6
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so forth @38–41,45#. For the confirmation of vortices we
have to evaluate the circulationG. Note also that the circu
lation is quantized as

G52p l\/m, ~34!

where the circulation numberl is an integer@18,20,23#.
Let us study the vortex structures appearing in the lin

combinations of two eigenstates constructed from Eqs.~14!
and ~19!. The following discussions are carried out in th
(ua ,va) plane, because the singularities of the velocity
not change in the conformal mappings except the singula
of the mappings at the origin, fora taking nonpositive inte-
geral values. The general form of the linear combination
two states can be written as

C5c11c2 , ~35!

where, since the two states are not normalized, the com
coefficients appearing in the linear combination are includ
in the two wave functionsc1 andc2. The absolute square o
C is evaluated as

uCu25uc1u21uc2u212Re~c1* c2!. ~36!

In general, a component of the current ofC is written as

ĵ m5
\

m
Re@C* ~Amc11Bmc2!#, ~37!

wherem5ua or va and Am and Bm are complex functions
defined by

Am52 i
]c1

]m
c1

21 , Bm52 i
]c2

]m
c2

21 . ~38!

Let us study the nodal points ofuCu2, where the vortices
appear. We have

uCu25uc1u21uc2u212uc1uuc2ucosu, ~39!

whereu denotes the phase betweenc1 and c2. It is trivial
that nodal points appear when the following two conditio
are fulfilled:

uc1u5uc2u and cosu521. ~40!

We put the first relation into Eq.~39! and thus obtain

uCu252uc1u2~11cosu!. ~41!

Taking account of the same relationuc1u5uc2u, the current is
written as

ĵ m5
\

m
uc1u2@~ uAmucosfA1uBmucosfB!~11cosu!

1~ uAmusinfA2uBmusinfB!sinu#, ~42!

where fA and fB are, respectively, the phases ofAm and
Bm . The velocity is evaluated as
04210
r

o
ty

f

ex
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s

v̂m5
\

2m F ~ uAmucosfA1uBmucosfB!1~ uAmusinfA

2uBmusinfB!
sinu

11cosuG . ~43!

We see that the second term in the brackets diverges
l’Hôpital’s theorem, when the second condition for the ang
cosu521, is fulfilled. Thus we can obtain the condition fo
the divergence of the velocity,

uAmusinfA2uBmusinfBÞ0. ~44!

This equation means that the functionsAm andBm must not
be real and also the imaginary parts ofAm andBm must not
be equal at least for one of the componentsm
5ua and va .

Now we can summarize the conditions for the determi
tion of the vortex positions in the linear combination of tw
wave functionsc1 and c2 as follows:~i! uc1u5uc2u; ~ii ! u
5(2l 21)p, l is an integer (u is the phase betweenc1 and
c2); ~iii ! uAmusinfA2uBmusinfBÞ0 @Am and Bm are defined
in Eq. ~38!#. Let us investigate the above conditions with
few simple examples.

Example (i). It is trivial that any linear combination com
posed of the wave functions with the lowest polynomial~19!
has no vortex, because the condition~iii ! is not fulfilled
whereas nodal points satisfying the conditions~i! and ~ii !
appear in the linear combinations.

Example (ii). The combination of the lowest polynomia
and the second one such that

C5c0
1
„ua~a!…2C f1

1
„ua~0!;va~0!…c0

1
„ua~0!…

has vortices at positions fulfilling the following condition
derived from~i! and ~ii !:

va~0!5~21!n/4uCuka ,

û1uC5np ~n is an integer!, ~45!

whereuC is the phase ofC and

û5ka@ua~0!2ua~a!#5ka@ua~0!~12cosa!2va~0!sina#.
~46!

Let us examine the relations~45! in two cases fora51 and
2, whereC is taken to be a real number, i.e.,uC50.

Case a51. In this case we haveu1(0)5x and v1(0)
5y and then the relations are reduced to

y5~21!n/4uCuk1 ,

x~12cosa!2y sina5np/k1 . ~47!

All vortices appear on the two linesy561/4uCuk1 parallel
to thex axis and they are at the cross points of the two lin
and the linesx5@np1(21)nsina/4uCu#/k1(12cosa) for
aÞ0. The positions of vortices forn50,61,62,63 are
8-7
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presented in Fig. 3, wherea5p is taken. This situation is
quite similar to the vortices called parallel vortex lines o
tained in hydrodynamics.

Case a52 (PPB). Since the inverse transformation o
the conformal mapping is described by the equationsu2(0)
5x22y2 andv2(0)52xy in PPB@8#, the relations are given
by

2xy5~21!n/4uCuk2 ,

~x22y2!~12cosa!22xy sina5np/k2 . ~48!

Vortices appear at the cross points ofx22y25(np1
(21)nsina/4uCu)/k2(12cosa) and xy5(21)n/8uCuk2.
The positions of the two vortices forn50 and the other four
for n561 are shown in Fig. 4, wherea5p is taken.

The vortices appear at symmetric positions with respec
the origin, which are described by the cross points of the
equations

x22y25np/2k2 , xy5~21!n/8uCuk2 . ~49!

We can make a large variety of vortex patterns by chang
the parametersa andC and the zero-energy states in term
of the polynomials~19!. Here we stress that, as shown in t
above discussions, the higher polynomial solutions withn

FIG. 3. Positions of vortices forn50, 61, 62, 63 in the
constant potential (a51), denoted byd.

FIG. 4. Positions of vortices forn50,61 in the PPB (a52),
which are denoted byd for n50, L for n51, and( for n5
21.
04210
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Þ0, which are not described by the plane waves in
(ua ,va) plane, play essential roles in creating vortices.

For the confirmation of the vortices let us calculate t
circulation G defined by Eq.~33!. After some elementary
calculations we obtain thatl 521 for the vortices withn5
even andl 51 for the vortices withn5 odd.

Before closing this section we point out the fact that w
can realize almost all of the vortex patterns because of
infinite degeneracy of the zero-energy solutions. The stud
the vortex patterns will be carried out by determining t
parametera ~the type of potential! and by finding the bes
linear combination in terms of the infinitely degenerate ze
energy states to describe the vortex patterns.

C. Vortices in three dimensions

Let us briefly study vortices in three dimensions. It
obvious that the conformal mappings given in Eq.~2! cannot
apply in three dimensions. Schro¨dinger equations in three
dimensions are generally written as

F2
\2

2m S n1
]2

]z2D1Va~x,y,z!Gc~x,y,z!5Ec~x,y,z!,

~50!

wheren5]2/]x21]2/]y2. The equations, however, can b
reduced to two-dimensional ones in cases where poten
are separable into 211 dimensions such thatVa(x,y,z)
5Va(r)1Vz(z). In general, in three-dimensional mode
where the vortex plane (x,y) and the other axis~z! perpen-
dicular to the vortex plane are completely separable,
wave functions are written by in multiplicative forms such
c(x,y)c(z) and then the zero-energy solutionsc0n

6 (ua ,va)
for Va(r) are applicable. Provided that the eigensta
cEz

(z) for the eigenvaluesEz are obtained in thez direction,

the states written asc0n
6 (ua ,va)cEz

(z) are the eigenstate

having the energy eigenvaluesEz . In these cases all vortice
are described by the axial type and the toroidal vortices
not appear@20#, because the positions of the vortices in t
(x,y) plane do not depend onz.

Here we would like to note the construction of vortices
the case withVa(x,y,z)50. Let us put the plane-wave solu
tion

c0~x,y,z!5Naei (kxx1kyy)eikzz ~51!

into Eq. ~50!, where Va(x,y,z)50 is taken. Taking
\2k2/2m5E2\2kz

2/2m, the equation has solutions same
those for the constant potentialVa52ga in two dimensions,
wherega5\2k2/2m and thenkx

21ky
25k2. This fact implies

that the parallel vortices obtained in Sec. IV B are produci
from c0(x,y,z) and the polynomial solution
f 1

1(x,y)c0(x,y,z) with the nonzero energyE in three dimen-
sions.

Real vortex phenomena@24–34# appear in three-
dimensional spaces. Some of the vortex phenomena wil
understood in the cases discussed above.
8-8
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V. SHORT NOTES ON ZERO-ENERGY SOLUTIONS
FOR gaË0

As noted in Sec. III A, we have the zero-energy solutio
f0

6
„ua(a)…5Mae6kaua(a) of Eq. ~15!. In general, they are

unnormalizable in the (x,y) plane. In some special case
however, they can be normalizable. For example, provi
that the parametersa and a are taken so as to fulfill the
relation

cos~aw2a!.0 for 0<w,2p, ~52!

f0
2
„ua(a)… can be normalizable. The relation can be fulfille

by suitable choices of the parameters such that 0,a,1/2
and2(1/222a)p,a,p/2. There are, of course, differen
choices, when we take the different solutions fro
f0

6
„ua(a)…. It is very hard to answer the question wheth

the choice of the solutions is physically meaningful or n
Such solutions, however, possibly have some meaning
phenomena limited to very special regions, provided that
solutions are used only in the limited regions and smoot
connected to other functions defined outside the regions
fact the solutions are used for constructing the vortices fr
the plane-wave solutions in three-dimensional space.~See
the argument of Sec. IV C.!

Note also here that the solutionsf0
6
„ua(a)…

5Mae6kaua(a) have no current because they can be taken
real. The higher polynomial solutions withn>2 of Eq. ~19!
or Eq. ~20! can, however, have currents because they
generally complex. This means that we have a possibility
producing vortices from these solutions even if they w
appear only in very limited regions.

VI. REMARKS ON NONZERO-ENERGY SOLUTIONS

We shall briefly discuss the equation for nonzero-ene
given by Eq.~7!,

F2
\2

2m
na2a22E ra

2(12a)/aGc~ua ,va!5gac~ua ,va!.

As noted in Sec. II, this equation can be read as the equa
for determining the strength of the coupling constantga of
the original potentialVa(r)52a2gar2(a21) for the given
energyE. We shall, however, discuss it from a slightly di
ferent standpoint. If we can solve the eigenvalue problem
the potential of2a22Era

2(12a)/a , we can obtain the eigen
values of the original equation

F2
\2

2m
n2a2gar2(a21)Gc~x,y!5Ec~x,y!.

Let us show one example fora51/2, where the original
potential is written as

V1/2~r!52
1

4
g1/2

1

r
for g1/2.0. ~53!

For real and negative eigenvalues (E,0) Eq. ~7! can be
understood as a two-dimensional harmonic oscillator w
04210
s

d

r
.
in
e
y
In

s

re
r

l

y

on

r

h

spring constantk58uEu. The eigenvalues of the two
dimensional harmonic oscillator are well known as

Enxny
5~nx1ny11!\v, ~54!

where nx and ny are zero or positive integers andv
52A2uEu/m. Thus we have the relation

g1/25Enxny
. ~55!

From this relation we obtain the eigenvalueE as

E52
mg1/2

2

8~2N11!2\2
, ~56!

with N5(nx1ny)/2. We can directly confirm the eigenva
ues by solving the original equation for the solutio
c(x,y)5R(r)eil w ~l is an integer!, which correspond to the
symmetric solutions of the harmonic oscillator described
nx5ny . We see that, provided that one of the eigenva
problems can be solved, we can also obtain the eigenva
of the other equation. It is interesting that harmon
oscillator (r2) and Coulomb-type (r21) potentials are
mapped to each other by conformal mapping and that the
a relation between the energy eigenvalues of the two po
tials in two dimensions.

VII. CONCLUDING REMARKS

We have shown that all Schro¨dinger equations with sym
metric potentials of the typeVa(r) in two dimensions can be
reduced to the same equation with a constant potential
the zero-energy eigenstates in terms of conformal mappi
and the states with the zero-energy are in the infinite deg
eracy. The degeneracy becomes not only the origin of
huge variety of vortex patterns but it will possibly be a
interesting tool to investigate complicated problems of s
face physics including boundaries as well. And the idea
be extended to phenomena in three dimensions. Particu
this scheme will become a powerful tool for studying vort
phenomena. Actually a vortex-lattice solution has been fou
in this scheme@45#. We may expect that the hydrodynamic
approach in quantum mechanics presented here will o
many interesting aspects in physics such as the investiga
of vortex patterns@24–34#. We have to note here that man
vortex phenomena are discussed in nonlinear problems@46#,
whereas our scheme is based on the linear equation. In
istic phenomena we have to solve vortex problems in
cases with many potential sources. In such cases interac
among vortices, which are known in hydrodynamics@38–
41#, must be taken into account. We have also to cons
effects from boundaries of systems. In order to compl
vortex dynamics in quantum mechanics and to analyze
vortex phenomena, the introduction of such interactions
effects must be performed in the present scheme. At pres
however, the relation between the nonlinear approach and
present one is still an open question.

We briefly note here that in order to represent the wh
8-9
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(ua ,va) plane, the double sheets of the (x,y) plane ~Rie-
mann surface! are needed for the choice ofa561/2. In gen-
eral, for the choice ofa561/p, the p sheets of the (x,y)
plane, such asp spiral sheets, are required to cover the wh
(ua ,va) plane. We may consider that the case fora
50@V0(r)}r22# can be examined in the limit ofp→`,
where the infinite spiral sheets are needed in the (x,y) plane.
From this fact we can understand that the zero-energy s
tions for ther22 potential behave as power types such
r iq, which are expressed by logarithmic exponentseiq ln r.
Actually we obtainq56A2mg0 /\22 l 2 for the potential
V0(r)52g0r22 , wherel is an integer defined by the eigen
value\ l of the angular momentum.

It should be noticed that some kinds of equations in
drodynamics@38–41# are obtainable from the original eigen
value equation~1! by changing parameters such as\ and
fer

J

m

y

04210
e

u-
s

-

massm. This means that the conformal mappings~2! are
applicable to hydrodynamical problems in two dimensio
and infinite degeneracy can also take place. The analys
terms of the functions obtained in this paper will also b
come an interesting approach in many aspects of hydro
namical problems.

Finally we would like to note that the infinite degenera
of the zero-energy solutions brings infinite variety to man
body systems with a fixed energy, which possibly becom
the origin of an entropy different from the Boltzmann e
tropy @42–44#. This entropy has nothing to do with the de
termination of usual temperatures in thermal equilibrium b
the freedom stored in the entropy can be released in the
nonequilibrium@43#. These considerations will also give ris
to a different aspect in statistical mechanics extended fr
Hilbert spaces to Gel’fand triplets@42,44#.
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