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Entanglement in the steady state of a collective-angular-momentum„Dicke… model
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We model the behavior of an ion trap with all ions driven simultaneously and coupled collectively to a heat
bath. The equations for this system are similar to the irreversible dynamics of a collective angular momentum
system known as the Dicke model. We show how the steady state of the ion trap as a dissipative many-body
system driven far from equilibrium can exhibit quantum entanglement. We calculate the entanglement of this
steady state for two ions in the trap and in the case of more than two ions we calculate the entanglement
between two ions by tracing over all the other ions. The entanglement in the steady state is a maximum for the
parameter values corresponding roughly to a bifurcation of a fixed point in the corresponding semiclassical
dynamics. We conjecture that this is a general mechanism for entanglement creation in driven dissipative
quantum systems.
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I. INTRODUCTION

Generically, many-body quantum systems are known
be difficult to simulate efficiently on a classical comput
This is because the quantum system may explore region
state space with nonzero entanglement, giving these sys
access to a vastly larger state space than is possible c
cally. In an open quantum system we may, in some circu
stances, be able to resort to stochastic methods, suc
Monte Carlo simulations. However, this will not be possib
for open systems in which the steady state itself is entang
as in the example we describe here. Terhal and DiVince
@1# have considered the possibility of using a quantum co
puter to simulate open quantum systems in thermal equ
rium. Plenioet al. @2# have considered how decay can lead
entanglement rather than destroying it. Cabrilloet al. @3# dis-
cuss creating entanglement in two or more atoms, by driv
the atoms with a weak laser pulse and detecting the spo
neous emission. In a recent paper by Arnesenet al. @4#, the
authors look at a situation where the spins in a Heisenb
chain with an external magnetic field show entanglemen
the thermal state with nonzero temperature. In this paper
formulate a Dicke-type model of an ion-trap quantum co
puter, and in terms of this model analyze the irreversi
dynamics ofN two-level systems.

In the following we model the behavior of an ion tra
with all ions driven simultaneously and coupled collective
to a heat bath. The equations are similar to the so-ca
Dicke model @5#. This model includes resonance fluore
cence of a set of two-level atoms driven by a resonant
herent laser field as well as a collective decay mechan
We will first describe how a collective-decay mechanis
may be realized forN trapped ions interacting with a collec
tive vibrational mode when the vibrational mode is subjec
controlled heating. Simulating irreversible dynamics for
trapped ion has been previously suggested by a numbe
authors@6#. By coherently driving to force the system into
nontrivial steady state, we show that, for the case of t
ions, this steady state can be partially entangled by explic
calculating the Wooters entanglement measure~concurrence!
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@7#. Extending this result to many ions is not possible
present due to the lack of a general measure of the entan
ment of mixed states in higher dimensions. However, we
calculate the entanglement between two ions or atoms
tracing over all the other ions or atoms. This will show us
least whether entanglement is present. Interestingly,
maximum entanglement occurs for parameter values
which the corresponding semiclassical system undergo
bifurcation and loss of stability of the fixed point. We co
jecture that the loss of stability of a semiclassical fixed po
will generically be associated with entanglement in t
steady state of the full quantum system.

II. THE MODEL

In the 1970s the Dicke model and cooperative effe
were subjects of research in various groups~see, e.g.,@8–10#
and references therein!. The model consists of a group o
two-level atoms, which is placed in a volume with dime
sions small compared to the wavelength associated with
atom’s two-level dipole and evolves on time scales sho
than anyĴ2-breaking relaxation mechanism~see@8#!, such as
an angular momentum system, which has collective ato
raising and lowering operators,Ĵ1 andĴ2 , with a fixed spin
quantum numberj 5N/2, whereN is the number of atoms.

In the rotating frame with Markov, electric-dipole, an
rotating-wave approximations and ignoring a small atom
frequency shift, the master equation for the density matrix
this group of atoms under the cooperative influence of
electromagnetic field is@9,11,12#

]r̂

]t
52 i

V

2
@ Ĵ11 Ĵ2 ,r̂ #1

gA

2
~2Ĵ2r̂ Ĵ12 Ĵ1Ĵ2r̂2 r̂ Ĵ1Ĵ2!,

~2.1!

where V is the Rabi frequency andgA is the EinsteinA
coefficient of each atom. This model can be solved exa
@11# and it exhibits a critical-point nonequilibrium phas
transition forV/ j 5gA in the limit V, j→` @9#.
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A. Collective driving

How do we get a similar master equation to Eq.~2.1! in
an ion trap? The coherent evolution is easy: We just shine
same laser at the carrier frequency on all the ions at the s
time, thus forcing each ion to undergo Rabi oscillations
the same frequency. If we start initially with all the ions
their electronic ground stateug&, the ions will not leave the
j 5N/2 space. From there we can then define collective
gular momentum operators in the following way:

Ĵ25(
i 51

N

ŝ2
( i ) , ~2.2!

Ĵ15(
i 51

N

ŝ1
( i ) , ~2.3!

where the raising and lowering operators for each ion
defined by ŝ25ug&^eu and ŝ15ue&^gu. With this the
Hamiltonian for simultaneous resonant driving of all the io
can be written as

Ĥ5\
V

2
~ Ĵ11 Ĵ2!, ~2.4!

whereV is the Rabi frequency for the electronic transitio

B. Cooperative damping

For the collective-decay mechanism we need to cou
the ions equally to the same heat reservoir. In this paper
will argue that the reservoir may be taken to be the cen
of-mass vibrational mode. It is subject to heating and
assume that it is in a thermal state. To couple the ions to
vibrational mode we need another laser, which, again, i
minates all the ions at the same time, but which is detu
from the carrier frequency to the red region by the trap f
quency so that the electronic state of each atom gets cou
simultaneously to the center-of-mass vibrational mode. T
is described by a Hamiltonian for thei th ion of the form

Ĥ red
( i ) 5\V2~ ŝ1

( i )â1ŝ2
( i )â†!, ~2.5!

where we have introduced the bosonic annihilation oper
â for the vibrational mode and the coupling constant isV2
5hV0. The parameterh25Er /(\Mv0) is the Lambe-
Dicke parameter, whereEr is the recoil kinetic energy of the
atom,v0 is the trap vibrational frequency, andM is the ef-
fective mass for the center-of-mass mode. The Lamb-Di
limit assumesh!1, which is easily achieved in practice
The frequencyV0 is the effective Rabi frequency for th
electronic transition involved. This sideband transition
used to efficiently remove thermal energy from the vib
tional degree of freedom. If the rate of this cooling proce
can overcome heating due to external fluctuations in the
potential, the ion may eventually be prepared in the vib
tional ground state. However, in general, the vibrational s
will reach a thermal mixture,r̂v5Z 21exp(2\v0â

†â/kBT),
where Z5Tr@exp(2\v0â

†â/kBT)#, at some effective tem
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peratureT. If the heating and cooling rates are such that
system relaxes at a ratea, large compared with any othe
time scale for ion motion, the ion can effectively be regard
as interacting with a thermal reservoir at temperatureT. We
can also arrange that the associated rate of energy dissip
is small,gA!v0, which simply requires that the coupling t
the vibrational degree of freedom is weak. Finally we a
sume that the temperature of the vibrational degree of fr
dom is such thatgA!kBT/\. Under these assumptions w
may eliminate the description of the vibrational motion fro
the dynamics and obtain a master equation for the electr
stater̂ ( i )i of the ion,

dr̂ ( i )

dt
52

i

\
@Ĥ,r̂ ( i )#1gAn̄D@ŝ1

( i )#r̂ ( i )

1gA~ n̄11!D@ŝ2
( i )#r̂ ( i ), ~2.6!

where the superoperator is defined by

D@Â#r̂5ÂrÂ†2
1

2
~Â†Âr̂1 r̂Â†Â!, ~2.7!

and whereĤ is the Hamiltonian for any other reversibl
electronic dynamics andn̄ is the mean thermal occupatio
number of the vibrational degree of freedom. In what follow
we assume that the cooling is very efficient and setn̄50. At
any time we may turn off the cooling lasers, thus reduc
gA suddenly to zero. We note that the irreversible dynam
of the electronic state is due entirely to the interaction w
the phonons associated with the vibrational degree of fr
dom.

If the external laser field on each ion is identical~in am-
plitude and phase! the interaction Hamiltonian is

ĤI5\V2~ âĴ11â†Ĵ2!, ~2.8!

whereĴ1 andĴ2 are defined in Eqs.~2.3! and~2.2!. For the
case of a linear ion trap, with separately addressable i
identical laser fields could easily be obtained by splitting
cooling laser into multiple beams. In this way we can sim
late an angular momentum system with quantum numbej
5N/2. This imposes a permutation symmetry on the syst
which reduces the effective Hilbert-space dimension fromN

to 2N11. Thus an exponentially large portion of the ava
able Hilbert space, i.e., all the states withj ,N/2, is not used
in this simulation. However, it is easy to generate the r
evant unitary transformations to simulate thej 5N/2 angular
momentum quantum system.

It is not trivial to keep the vibrational mode in a therm
state of fixed temperature. One way of doing this was
cently suggested by Kielpinskiet al. @13#: They propose to
put one ion, which is of a different species than all the oth
ions, in the center of a string of ions, so that they have
odd number of ions in the trap. Through this center io
which can be cooled at will without disturbing the coheren
of the other ions, all the other ions get sympathetica
cooled and this allows for keeping the string of ions a
7-2
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ENTANGLEMENT IN THE STEADY STATE OF A . . . PHYSICAL REVIEW A65 042107
well-defined temperature. The authors conclude that suc
scheme of sympathetic cooling is ‘‘well within the reach
current experimental technique’’@13#. We assume for furthe
calculations that the center-of-mass mode is kept in suc
thermal state by the outlined technique. In the followi
derivation of the master equation we do not explicitly p
laser cooling into the equation. We just assume that the
brational state instantly, i.e., on a time scale fast compare
all the other processes involved, relaxes back into the t
mal state.

With all these assumptions we get the master equa
describing the collective motion of the density matrix of
the ions,

]r̂

]t
52 i

V

2
@ Ĵ11 Ĵ2 ,r̂ #1gA

n̄

2
~2Ĵ1r̂ Ĵ22 Ĵ2Ĵ1r̂2 r̂ Ĵ2Ĵ1!

1gA

n̄11

2
~2Ĵ2r̂ Ĵ12 Ĵ1Ĵ2r̂2 r̂ Ĵ1Ĵ2!, ~2.9!

where n̄ is the mean phonon number of the vibration
center-of-mass mode andgA52V2

2h2. Note that forn̄50
this equation is identical to Eq.~2.1! for the Dicke model.

III. STEADY STATE AND ENTANGLEMENT FOR jÄ1

With two ions we havej 51 and from the master equa
tion, Eq.~2.9!, we can write down the equation of motion fo
the components of the 333 density matrix of the state of th
system, taking into account that Tr(r̂)51 and thatr̂ is Her-
mitian. Getting the steady state is then a matter of sim
algebra.

Once we have determined the steady state of thej 51
system, we can rewrite this state in the underlying two-qu
basis. What we are interested in is the change of entan
ment in the system as the parametersg and n̄ change. The
entanglement of two qubits is well defined@7,14,15# and we
choose the concurrence@7# as a measure for it.

A numeric evaluation of the concurrence leads to the p
in Fig. 1. What we see is that we can get a certain amoun
entanglement in the steady state of a coherently driven
tem that is coupled to a thermal reservoir. This is remarka
as the steady state is independent of the initial state, w
can be unentangled. The coherent evolution alone does
lead to any entanglement for an initially unentangled st
either, as it only consists of~simultaneously acting! single-
qubit rotations and no coupling between the qubits is pres
Thus the entanglement is due to the cooperative decoher
in the system acting together with the coherent evolution

IV. ZERO-TEMPERATURE CASE

The analysis here is restricted to the casej 51. For j

.1 andn̄Þ0, numerical methods will need to be employ
to derive the steady state; however, in this case another p
lem will arise due to the fact that there is currently no me
sure of entanglement forN coupled qubits. Nevertheles
other phase transitions analogous to that in the Dicke mo
04210
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~see, e.g.,@8,9# and references therein! will appear.
For n̄50 we can compare our results for the steady st

to those calculated by Puri and Lawande@16# ~see also La-
wandeet al. @17#!. They calculate the steady state to be

r̂S5
1

D (
m,n50

2

~g* !2m~g!2nĴ2
mĴ1

n , ~4.1!

where

D5 (
k50

2

H2,kugu22k ~4.2!

is a normalization constant,g5 i /g, whereg5gA /V as de-
fined above, and

H2,m5
~21m11!! ~m! !2

~22m!! ~2m11!!
. ~4.3!

With this we can write the density matrix of the steady st
in matrix form as

r̂S5
1

D S 1 2 iA2g 22g2

iA2g 112g2 2 iA2g2 i2A2g3

22g2 iA2g1 i2A2g3 112g214g4
D ,

~4.4!

where we have calculatedD as

D5314g214g4. ~4.5!

This gives the same result as above if we setn̄50. The
concurrence for this special case is plotted in Fig. 2, but
time we plot it againstugu51/g as well. Thus the Dicke
model, as a special case of our model, shows entanglem
in the steady state.

To date, no definite measure of entanglement exists
N.2 up . But we can calculate the entanglement betw

FIG. 1. Plot of the concurrence as a measure of entanglem

depending on the parametersg5gA /V and n̄, the mean phonon
number of the thermal vibrational state.
7-3
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S. SCHNEIDER AND G. J. MILBURN PHYSICAL REVIEW A65 042107
just two of theN ions at least for the Dicke model, where th
temperature of the bath is zero. The steady is then given
@11,16,17#

r̂S5
1

D (
l 50

2 j

(
l 850

2 j S Ĵ2

g
D lS Ĵ1

g*
D l 8

. ~4.6!

By writing this as a sum of states with angular moment
j 151 and j 25 j 21 we can trace over the part of the Hilbe
space withj 25 j 21 and thus get the density matrix in th
steady state for just two ions~or atoms in the original Dicke
model!. From there we can again calculate the concurren
This time we plot it against the relative Rabi frequency@11#
V r5V/( j g). We note that the maxima of the entangleme
occur close to the critical point in the cooperative lim
j ,V→` of the Dicke model, i.e., aroundV r51. The two-
ion entanglement is not the real measure of entangleme
the system. Thus we cannot take the cooperative limit as
two-ion entanglement goes to zero in this limit. However,
note from the plots in Fig. 3 that the maximum value of t
two-ion entanglement indeed does move closer to the p
V r51 for increasingN.

FIG. 2. Plot of the concurrence as a measure of entanglem
depending on the parametersugu51/g5V/gA and 1/ugu5g ~dashed

line! with n̄50, i.e., for the Dicke model.
ev
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V. CONCLUSION

In this paper we have demonstrated how the steady s
of a dissipative many-body system, driven far from equil
rium, may exhibit nonzero quantum entanglement. This
sult is significant for two reasons. First, the steady state
mixed state and the study of quantum entanglement
mixed states is a very active field of inquiry@18#. It imme-
diately raises the question of whether the entanglement
be distilled and used as a resource for some quantum c
munication or computation task@19#. Second the maximum
entanglement occurs at the same parameter values for w
the semiclassical dynamics of the system undergoes a b
cation of the fixed point corresponding to the quantum ste
state. At the bifurcation point the time constant associa
with the fixed point goes to zero as the bifurcation is a
proached. This is reminiscent of a phenomenon that cha
terizes quantum phase transitions, in which a morpholog
change in the ground state, as a parameter is varied, is a
ciated with a frequency gap tending to zero@20,21#. We con-
jecture that the association between the bifurcation of a fi
point of the semiclassical description and the maximum
entanglement will be a general feature of dissipative ma
body systems driven far from equilibrium.
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FIG. 3. Plot of the two-ion concurrence as a measure of
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51, ~b! j 54, ~c! j 516, and~d! j 564.
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