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Classical counterexamples to Bell's inequalities
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This paper shows that a classical system containing a conventional yes/no decision-making component can
behave like a quantum system of spin measurements in many (ailysugh it lacks a wave functigonvhen,
in principle, there are no deterministic decision procedures to govern the decision making, and when proba-
bilistic decision procedures consistent with the system are introduced. Most notably, the system violates Bell's
inequalities. Moreover, since the system is simple and macroscopic, its similarities to quantum systems argu-
ably provide an insight into quantum mechanics and, in particular, EPR experiments. Thus, from the qualitative
correspondences, decisieaguantum measurements and the impossibility of deterministic decision
procedures-quantum noncommutativity, we conclude that the violation of Bell’s inequalities in quantum
mechanics does not require the existence of an unknown nonclassical nonlocality. It can merely be a result of
local noncommutativity combined with nonlocalities of the classical type. The proposed classical decision-
making system is a nonquantum theoretical construct possessing complementarity features in Bohr’s sense.
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Here we describe and analyze a type of system, let us call () An oriented axisA that lies and can be rotated in a
it S 'containing only classical componepts, including a,cpn'homogeneous, isotropic plane. Lbe the angle betweeh
ventional computer program generating yes/no decisions ) . . L~
about the correctness of the orientations of given axes il’?nd afixed axis. At time=t,, the angleﬁof axis is g and
accordance with probability distributions consistent with thethe orientation of the axis is denoted By, k=0,1,2,3,....
properties of the system{These decisions can be used to  (b) A generatoiG that is a computer program producing a
guide other systemsWe show that correlations between de- sequence of random values of rotation angle 1, 0
cisions made in two such systen®1) andS(2), havinga  <|A6_1|<2m, k=2,3,.... When, at some time=t,, a
common preparation history but separated in space as in theiue A 6, 1, is produced, axisA changes its orientation,
quantum Einstein-Podolski-Rose(EPR) experiments[1], O— O+ 1= 0t A, 1, Av—Ay:1. This new orientation
violate Bell’s inequalitieg2]. Such quantumlike behavior is ]lS fixed until the next rotation angle6, . »,; 1 is produced at

not really surprising given the present author’s description o . . ) LS .
a classical decision-making machine whose program cannG@Me timety.;. The initial orientationA, is arbitrary. The

be deterministid3]. And it bears out Kanter's conclusion 'Mitial condition for generatoiG is that at timet=ty, G
that “undecidability limits our knowledge on the spatial or Producesi 6, ¢=0, so the first random angl& 6, appears
temporal correlation functions even of classical systepag” ~ ONlY at some time=t,>to. _
although the classical systems he analyzes contain neither (¢) A decision-making componer€ that is a computer
decision-making components nor probabilistic decision proProgram written in accordance with rules I-VIil below. The
cedures and, therefore, cannot violate Bell's inequalities.  INitial decisioncy is defined either as yes,=1, or as no,
The key to understanding the quantumlike propertieS of Co=0, by some factds) external toS that is, it isimposed
is a theorem on the impossibility of deterministic decision®? S Then C acts as follows. When some rotation angle,
procedureg(IDP), the proof of which is given below. This A6k 1k, is produced byG and the new orientatioAy. ; is
theorem basically says that no logically consistent theorestablished during the time intervg<t<t,,,, C must de-
uniquely connecting the results of two consecutive decisionside the correctness of the new orientation, using a procedure
made inSis possible, in principle. Qualitatively, this theorem based on rules |-VIII.C decides between ye&lecision
corresponds to the quantum-mechanical thesis that the resultg, 1= 1) and no(decisionc, . ;=0) on the basis of the pre-
of two consecutive measurements of noncommuting obserwious decisionc, and the current rotation angl& 6, .
ables cannot be uniquely connectéblone of the known Once it has made decisian . 1, Cis ready to decide on the
theoretical “deterministic” models of quantum mechanics next rotation angle\ 6y, 5y 1.
tries touniquelyconnect results of two consecutive measure- A preliminary note on the rulesSince all the physical
ments of noncommuting observables, because they are modemponents of are classicalS must obey the rules of clas-
els of quantumnot classical mechanigsThe clear qualita- sical physics and logic. Rules I1-VIIl are such rules. Some of
tive and, in part, quantitative similarity—which we will go them refer to decision procedures. There, as elsewhere in this
on to demonstrate—between decisions mad& and mea- discussion, a decision procedure is regarded as deterministic
surements of spins placed on the same plane, and betwe#nthe probability of the resulting decision equals 1 or O.
IDP and quantum noncommutativitas formulated aboye  However, wherSobeys rules |-V it turns out that, except for
means thatS is the first nonquantum theoretical constructrotation angles divisible byr, C's program must generate
possessing complementarity features in Bohr's s¢bke random decisions with some probabilities for them. In such
The main components & are the following. cases, the decision procedure is regarded as probabilistic.
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Rule | For a decisiorcy 1, only information about two one of the rotation angles inside such intervals equals zero,
values can be usedj, the previous decision, antlfy 1, (A6)o; €[0,7/}). Then the function must also lde for any
the current rotation angléThis means a first-order Markov interval of rotation angles, which is the sum of such
process in the case of probabilistic decisipnghus, ¢y 1 intervals, in particular, for the interval(m/j)<(A0)j
=f(Ck,Abks14). <(j+1)(w/j). But this violates rule IV, since rotation angle
Rule II. For a given rotation angla¢, when a determin- = lies inside this interval, £ 6);; e[ 7,(j + 1)@/]). (A simi-
istic decision procedure is possible, only one of two procedar theorem with respect to spin measurements is presented

dures must be used: either the procedure, &1, (1,A6), in [6], but with no relation to Bell’'s inequalitie)s.
0=f,(0,A0), or the f_ procedure, &f_(1,A60), 1 This is why nondeterministi¢i.e., probabilisti¢ decision
=f_(0,A0). (Sometimes we will refer to them ds transi-  procedures are needed faw+km, k=0,1,2,....

tions, (1A6—1), (0A6—0), and f_ transitions, (1A6 [Our IDP theorem may not hold if the angle space is not

—0), (0A6—1). Rule Il implies that deterministic transi- continuous but consists, for example, only of angleg,
tions must be described by one-to-one functions uniquely= 7k/(2N+1) with a fixed integerN. In such a case, a

defined byAaé. deterministic decision procedure is possible. See formulas
Rule Il If A6, 1x/=0 or 2m, thency,=cy (f, tran-  (36)—(38) in [6].]
sitions. Rule VI In a case not covered by rules lI-IV, a condi-

Rule IV, If [A 6y 1y =7, thency,;=1—c,=C (f_ tran-  tional probability of random decisions, p(Cy1)
sitiong. (Later we will see what happens if rule IV is ex- =p(Cy1|Ck,A b+ 1x), must be introduced.
cluded from the list of rules. Rule VIL The probability of a decisiol, p(cy), is de-

Rule V. Let us call pair €, ,A 6,1 )—the previous deci- fined as in the classical axiomatic theory of probability. The
sion and the current angle—a decision situation. The proceprobabilities of decisiong(Cy. 1) = P(Cx+1/Ck A O+ 1x), IN
dure for the next decision, . ; is defined by this decision programC, and the probability of the appearance of a rota-
situation. Ifc,,cy41,Cy.» are three consecutiveertainde-  tion anglew=w(A 6) in programG, are mutually indepen-
cisions, i.e., decisions made in accordance with deterministident.
procedures defined by the corresponding decision situations, Before turning to rule VIII, we introduce formuld$)—(3)
then they must obey the following classical rule: below, which follow from rules VI and VII.

Since there are only two decisions,=1 or 0 andcy
=(1-c=0 or 1, we have, in ndently of the val f
[(Ck A+ 1k Chs 1) D(Chs 1,8 Ok 2+ 1 Ckv2) ] Ck(—l aﬁlt(j)Agkf_l,, @ have, independently of the values o
—(Cx, Ay 1t Abki2k+1—Cks2), _ _ _

p(ck)=0, p(ctcy)=p(c)+p(c)=1, p(cklicy)=0.

where — denotes logical implication. If it happens that prom ryle il
|A Ok 1kt Abkioxia|=27+A60>27, then angleAd is
used for the rotation.

Rules |-V lead to the following theorem.

Theorem on the impossibility of deterministic decision-
procedures In systemS, deterministic decision procedures and from rule 1V,
are impossible for an infinite countable set of rotation angles.

Proof. Consider the infinite countable set of rotation P(CksalCi = m) = S1-c ¢, 4 @
anglesA ¢,=m/2j, j=1,2,3,.... Take any. Whichever de-
terministic function,f, or f_, of rule Il is used as the de- For the same reason, namely, there being only two possible
cision procedure for the corresponding anglg; it follows  decisions forc,. ; in any decision situation ,A 6,1y, we
from rules |, 1I, and V that the function for the angle\2, can always express the relative probabilities of these deci-
= 1/j—which is the result of two consecutive transitions sions as cdsp and sirf ¢, wherep= ¢(A Ox+1x) - Assuming
with the same anglé ¢; and, therefore, with the same func- that transitions (1 #—0) and (OA §— 1) have equal prob-
tion, eitherf , or f_—must bef , . But then, as follows from abilities (which is consistent with rule Il whep=1 or 0),
applying rule V repeatedly, . must also be the function for the following probabilities pck,ckH(A 9) for transitions
1(2A6;), which is the result of the integer numbjeof the (¢, A¢—c,.,), AO=A6,,,,, must be built intoC’s pro-
samef . transition. Howeverj(2A ;) = 7 and according to  gram: '
rule IV, the function forA #= 7 must bef _ . Therefore, the

p(ck+1|ck0) = 5Ck ’Ck+l: p(Ck+1|Ck , = 277),

use of any deterministic function for any rotation angij, (1A6—1), p(A6)=cod o(A9),
j=1,2,3,... leads to contradiction. |
Note that in our proof we could use a set of finite intervals o
8A6, of the rotation angles, instead of a pointsetAdf;’s. (LAG—0),  pioA0)=si p(A6), (2
For example,kw/j<(A6)<(k+1)n/j, k=0,1,2,3,...,] )
=1,2,3,..., withf , or f_ assigned for every interval, i.e., the (0A6—1), poyAf)=sir’ ¢(A6),
same function for evenA# inside it. Indeed, according to
rule Ill, whenk=0, the function must bé, for anyj since (0,A6—0), poo(Ab)=cog ¢(Ah), (2b)
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secutive measurements gfspin projections on different
¢(A0)=—-h(A0), h(0)=h(xm)=h(*2m)=2k+1. axes, when spins and axes are placed in the same plane. In
&) such a quantum system, we can consider projec¢tpsra-
tors) P, Pa=(1+23,)/2, instead of spin-projection opera-
tors§,, whereA’s are different axes in the plane. It follows
Eq. (3), the signs on different sides of the equations are no{r_om the formula_ forP Fhat this ob_servable IS mgasured
interdependent simultaneously witts,, with the possible outcomggigen-
Rule VIII. Functionh(A 6), obeying the boundary condi- Values 1 (sx=+73) or 0 (sa=—3). P andPg do not com-
tions(3), is chosen foSby some person or system outstle  Mute if Ogp#km and are complementary for this reason,
Note thath(A#)=1 is one of the possible functions. For While in systemSthe complementarity appears as a result of
simplicity we assume that the probabilistic decision procethe IDP theorem. All the qualitative and quantitative phe-
dure for the yes/no decisions is defined by Egs) and(2b), nomena described in the above-thought experiments made on
with h=1. systemS can be observed in this quantum system, if we
We can now see that the classical syst&npossesses Consider consecutive measurements of spin projections on
some features of quantumlike complementarity. According tg@ndomly chosen axes in the quantum system as correspond-
[5], complementarity means “the existence of different asINg 0 consecutive decisions & _ .
pects of the description of a physical system, seemingly in- (The analogy between the two systems is, of course, lim-
compatible but both needed for a complete description of thé€d- There is no place for operators and wave functions in

system.” Consider two arbitrary nonparallel ax&sand B, systemS. More important, the quantization of spin in quan-
_ . tum mechanics is a result of rotation symmetry three-
Og— 0p=A0gp# k. Let an external observer of decisions

. o o dimensionalspace, whereas in syste® whose axes are
in Sselect cases where a specific decision, gay 1, about P T

= : oo i placed on a plane, the “quantization”—discreteness of the
axisA (more precisely, about any axis inside a small intervales/ng decisions—is merely a feature of classical logic and
of angles around,,) is followed by some decision about axis exists independently of the existence of the third dimengion.
B. He can observe, in principle, all events in the system But even thougts lacks a wave function, the probability
without disturbing it. What he will see is the random distri- phase(3) has some properties of quantum phases. Let us
bution of the decisiongg with the probabilitiesp(cg=1) change the structure d a little and link the probability
=CcoS(Abgnl2), p(cg=0)=SsirP(Afz42). If, instead, he se- phasep(A6) to some external factors governing the phase
lects cases where a specific decision about Bxisaycg  development between the system’s decisions; the only task
—1, is preceded by some decision about a@ighen he will of G, then! is to introduce tr_le timegs w_hen deC|_S|pns must
see the random distribution of tieg decisions with the same P& made in accordance with the previous decisions and the
probability distribution. If he tries to find some hidden deter- "otation angles developed under the influence of these exter-
ministic chains of events connecting these different deci-nal factors. Now, it follows from the rules of the system that
sions, he will realize that there are no such chaifihis (e Phase advancey.;— ¢x= ¢y 1x developed before the
point will be discussed latérif he asks the system designer Ck+1-d€cision is made may be forgotten after this decision is
to make the decision-making program deterministic, the anMade, since the next decisiap, , does not depend on it.
swer will be that such a change is impossible without chang] NiS IS @ feature of every first-order Markov chain. But3n
ing the fundamentals of the system. And finally, if he decidedhere is much more than that. In the classical Markov chain
to observe(and that means to selée chain of step-by-step of 1, 0 events, the probab_llltles of_three consecutive out-
decisions leading fromc, to cg, for example, COMES must obey the classical relation
Ca,Cc,Cr,0ga= Ogct Oca, he will realize that any such in-
termediate observation, made without any physical inﬂuenc%(ck,
on the system, will change the final probability distribution.
These are fundamental features of complementary observ-
ables, let us call them hefe, and Py, which are not com- = PG A Ot 14— Cier 1) P(Cier 1A O 2+ 17 Cicr2)
patik_JIe in any classical logical sense but, at the same time,  +p(c,,A O 15— Crr 1) P(Crr 1,4 Ot s 1 Cicr 2),
are inseparable parts of the whole system.

The exact characteristics of an observaBlein Sare the )
full set of its possible numerical value€),1}, here the same
for all axes; the direction of the axis to which its values aréwhereCy, 1 =1—Cs1, Ay ox=Ab o1+ A1y But

assigned; its relationi to»other observables, in this case, Tﬁ’robabilities(Za) and (2b) in Sviolate this relation. For ex-
Py’s for differentY’s, Y# X; and the methods of observing ample, when the summed rotation angle on the left side of
it, which means in this case methods of observing results oEq. (4) equals, the left side equals zero faj, ,=cy, in
decisionscy’s. The difference betweei®y and cyx is the  accordance with rule IV and formuld), while the right side
same as the difference between, say, momentum and one cdn be positive if none of the two intermediate angles equals
its numerical values obtained from measurements. 0 or 7. The deep reason for this violation of classical rules in
Up to this point, there is no observable quantitative dif-Eq. (4) is that, according to IDPg, . ; is forbidden to be
ference between the systeédand a quantum system of con- either 1 or O in the infinite number of cases when rotation

The boundary condition&) follow from rules Il and IV. In

A6y 26— Cis2)
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anglesA 6, # k. So if ¢y, nevertheless appears to be 1 mathematical structure of all parts Sfinvolved in generat-

or 0 at some time,, we must assume that systesnhas ing random event&decisions 1 and)dcan give us a physical
made an unpredictable jurpas “collapsed) at this time, theory conne_ct_ing the concrete conditions ins®leiith its _
because any predictable transition to a cergin, value concrete decisions. Nevertheless, the ensemble of such deci-
would violate IDP. But the only parameter that can jump hereSions is not a classical one because the concrete conditions
is phasep. We conclude that the development of phgsim ~ INSide S being uniquely connected witty,,, are not(and

S not only may begin anew after the intervention of anycannot b&uniquely connected with the valueg, A fy .
decision, butmustbegin anew, regardless of what the sys-ONlY the probability distribution, with a givein(Ad), is
tem’s physical decision-making mechanism is. Thus, the colqug‘f’Iy _connected W'th. them.. Th.e only physmgl .theory
lapse of the probability phase as a result of a deciiea- possible in such a case is an infinite setagbosterioricon-

surement, in quantum mechanids a consequence of the CIUSrI]OHS that at tmt:esk, k:%’l'z"l“' thzre were sduch-and-
IDP theorem(noncommutativity in quantum mechanics such connections between the valwgs A .1 and states

Note that the conditional probabiliti€2a and (2b) can- of S. The necessity of this infinite description manifests the

not appear in classical-mechanics systems that lack compg’lc_ll(_hOf an algori';]hm—hwf]ilch, by ci;finitionl, is a filnitedtext.
nents to which the IDP theorem applies. us, even though all parts & are classical and our

What physically distinguishes our probabilitiéza) and probability axioms are classical, we can expect probabilities

(2b) from the usual classical ones? Classical probabilities of28 @nd (2b) to violate Bell's inequalities since the func-

observations of events having numerical values are introtional forms of these probapllmes are conS|stent_W|'th the
ructure and rules d§, to which the IDP theorem is inte-

duced when we lack knowledge about those values, althoug’fﬁt v bound. T f his. | f heck a Bell i
those values are present before we begin our observations. §ia!y bound. To confirm this, let us first check a Bell In-
uality not for an ensemble of pairs 86 but for an en-

such cases, the observations reveal the objectively existin X .

numbers. Our analysis o6 has shown that quantumlike SemPIE(S) of single systems, using arguments analogous to
probabilities appear when there can be no algorithm to helghose developed ifv]. Consider three oriented axés B, C

us get knowledge about certain numerical values in any dewith angles between them\fag, Afgc, AOac=A0ap
cision situation belonging to an infinite set of decision situ-+Afgc. A researcher investigating Bell's inequalities se-
ations. But such values may result from decisiémgasure- lects cases wheSs in the ensemble have made decisions
ments, in quantum mechanjcssince procedures for about the correctness of these three orientatieash inside
decisions(measurementsare not algorithms. However, in some small intervat-dA 6/2 equal for all axes Let us de-
such cases, questions about whether the observed numerig@ite here eight triplets of such possible decisions as
values were present before the observations cannot be aA* B* C*; A*,B*,C;...;A",B~,C", instead of ouc,,
swered, in principle, because the answers presuppose the &, c. (which would be the triplets 1, 1, 1; 1, 1, 0;...; 0, O,
istence of an algorithm that we have proved does not exisg) |5 g x* yes/no decisions for any axi are random

Nevertheless, itis clear that those values could not have begiynsequences of the previous decisions and the correspond-
present with certaintyi.e., with probability equal toJi since  jng rotation angles. We will see later that if our ensemble is

such a presence would violate IDP. The following examples,repared as ensemb(8) is, then there exist the normalized
show what can be present in an ordinary classical case, and . - N .

! . unconditional probabilities p(X")=w=3 (of decision
cannot be present in a quantumlike one.

Take a statistical ensemble 86 prepared as follows. In YeS”) andp(X~)=1-w=3 (of decision “no”) about the
line with (c), some external factor defines the initial decisionorientation of axis<. Assumingp(X™) =3, we can calculate
co (and onlycy, not the following decisionsimposed on  the joint probabilities forA, B, andC needed for any Bell
each S Let cy be imposed randomly with probabilities inequality, in the three cases of transition (A fag

w(Co), B7), (A", A0pc—C), and B ,Afgc—C*). From
W(1)=w(0)=1. ) Egs.(2a) and(2b) with h=1,
oo 2 - A0 1 Afps

If this external factor were, say, some external classical genp(A+B )=p(B7|A")p(A")=wsir* > 55'”2 5
erator of random numbers, then by analyzing the mechanism (6)
of this generator we could, in principle, have full information
about the physical conditions preceding evegydecision Sla s o L Afac
and, therefore, could precisely predict evexy. Then the P(ATCT)=p(CT|A")p(A")=wsin’ 2
theory of those predictions could be translated into the
needed algorithm. The mere possibility of such a theory _E .n2A0Ac )
makes this ensemble &s classical. =25 2

Let us now turn to a singl& The IDP theorem implies
that it is impossible to have a physical theory that helps an P I Afpp
observer ofSto predict the decisionseg, ; values—made P(A"B7)=p(B"|A7)p(A")=(1~w)cos 2
in any decision situationci,A 6y 1x), k=1,2,.... Bearing
this in mind, we have already introduced the probabilities _ EcosgAﬁAB ®
(28) and (2b) of ¢, 4's. Analyzing, again, the physical and 2 2’
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Using Eqgs.(6) and(8), But as we already saw in E@), which is equivalent to Eq.
(15), if Abyyox=m andA by, 4170, 7, then the left side
Abnp :E of Eq. (15) equals zerdsee rulgV) and formula(1)], while
2 2 the right side is positive.
1 Since rule IV of our system is, as we can see, directly
:p(|§+) when w=—. (9) involved in the violation of Bell’s inequalities, it makes
2 sense to look at what happens if we excludéitd only i}
. P from the set of system rules. If rule 1V is excluded, the proof
The result (9) shows that, indeed, ifp(A)=z, then ot e |DP theorem is destroyed becausteterministicpro-
P(Ai;1)=7. And sincep(Ay)=73 at the beginning of our cedure for all decisionsc,A@—cy.;) is now possible:
Markov chain, we concludeby induction that Eq.(9) is ¢, ,=c,. This means that only. is permitted. So for any

correct for any axis at any time, Abii1x and any pair of axesX, Y, we now have

AaAB

p(B™)=wsir? >

+(1—w)cos

p(A%)=p(B*)=p(G*)=1, w=1. 10 POXTIYH)=1, p(X“[Y")=p(X*[Y")=0. (A similar
analysis is made ifi3].) These probabilities radically differ
Further, from Eqgs.(2a and (2b), which obey rule IV. With such a
deterministic decision procedure, inequaliiy?) is trivially
23 i -1 _Abgc 1 satisfied as &0
+R-)— +IR— e __ .
P(CTB7)=p(CT|B)P(B™)= 23|n2 2+ W=y Turning finally to the usual form of Bell’s inequalities, let

(11 us describe a classical EPR type of decision-making system
. ) comprising an ensemble of pairgS{1),S(2))—of the sys-
Now assume that these probabilities behave classically. Thegmg that we analyzed earlier. There is an infinite set of axes
they must obey the corresponding Bell inequallty, in par-  qriented isotropically in all directions in a plane. Every pair
ticular, of Ss is prepared at some initial timg;=t,,=t, in the

following way. The same arbitrary axis is assigned to each
system of a pair. The initial yes/no decision about the cor-
rectness of its orientatioricy(1),cq(2)) is imposed ran-

p(A*B7)<p(B"C")+p(A*C"). (12)

However, the corresponding inequality following from Egs.

(6), (7), and(11), domly, sop(ﬂi)z% for both systems; these decisions are
mutually opposite, i.e., either (1,&)@&*,5\‘) or (0,1)

SinzAaABSSinerBc-l—SinerAc (13) =(A~,A"). After an initial decision is imposed on it, each
2 2 2 7 system of a pair makes its own first decisionrl),

o c,(2)—asfollows. One system, eithe®(1) or S(2) (at ran-
is violated, for example, when 6,g=97/8, Abgc=27/8,  4om) makes this decisioat the time of the preparation, ,
and Afac=117/8, with the left side of Eq(13) equal t0  gnq the other systemostponest. After this, S(1) andS(2)
0.962 and th_e right equal to 0.838. Thu.s, our probabilities; o transported to two unconnected places, 1 and 2; and later,
(28 and(2b) indeed do not behave classically. _ at timest;>t,, t,>t,, their respective generatorg€s{1),

It is not difficult to l‘mdﬁ thg concrete cause of this phe'G(Z)—wiII produce their ownlocal rotation angles. Each
nomenon. Three axed, B, C are involved in Bell's in-  system must remember the decision imposed on/made by it
equalities. When there are only two axes, then according t@uring preparation.
the IDP theorem, it is impossible to assign certain numbers, Recall that according to the design of these systems, the
Cx andcy. 1, to both; however, it is still possible to assign very first rotation angle equals zerd 6, ((1)=A 01 «(2)
the classical conditional and joint probabilitie&a), (2b), (7), =0, see(b), above. Therefore, the first decisions that the
(8),... without inconsistency. It is when there are three axesystems make themselves, whether postponed or not, are
that the joint probabilities become inconsistent, because i8,(1)=cy(1), c;(2)=c,(2), seerule IlI. Let systemS(1),
such cases some decisions for intermediate angles are ifor example, postpone its first decision. Th@(1), genera-
volved. Take, for example, one of the consistency relationgor of S(1), must remember that its first rotation angle has
of classical probability theory used to deduce Bell's inequali-yet to be generated. Given the preparation, the first rotation
ties, angle ofS(1) can equal onl 6, ;= 0, whereas thésecondl

R R rotation angle of5(2), A6, ;, will be random. The times, ,
P(Aks2 A =pP(Aci2 " Acr 1 AT t, of the local decisions o8(1), S(2) about the correctness
of the orientation of their local axes need not be correlated.

In line with the conditions of any EPR type of experi-
ment, a researcher investigating correlations between deci-
sions made by the paired systems has access to both the local
decisions about the axis orientations, and to the orientations

+p(Arra A AL, (14

in which we have ordered timet, <t,, <ty .,. When
p(A")=1, Eq.(14) can be rewritten as

Ao A ) = DAL - AL LT IALT of thg Ioc'al axes. Moreover, the researcher’s “nonlocality”
P(Acr2 AT =P(Aks2 Acsa IAC) permits him or her to measure angles between axes belong-
+p(Acio A |A). (15 ing to paired systems. But he does not know whose first
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decision—S(1)’s or S(2)'s—was postponed. Let him first . L 1 Abgc
select three local orientations that adentical for S(1) and so p(B7(1),C (2))255”12 5
S(2): A, B, and C (each inside some small interval

+dA6/2), such thatA Oag+ A Ogc=A O5c. Then let him se- . . . L Abge
lect the following pairs of local decisions:A(,B"), (2) C(2)=C"(1)—|pB (1)=sir 5> |

(B-,C7), and A*,C*). [The notation: the first pair, for
example, means either th&{1)’s decision about the correct-
ness of theA orientation isca=1 andS(2)’s decision about
the correctness of thB orientation iscg=1, or thatS(2)’s
decision about the correctness of therientation isca=1

2

S0 p(é_(l),é‘(Z))=%sin2

It is impossible, in principle, to combine Eq4) and(2) into

and S(1)’s decision about the correctness of tBeorienta- a single chain since such a combination would lead to
fion is Cp— 1] (B~(1),C (2))—(B(1),C*(1)), with the conclusion

It is easy to see that the Bell inequality corresponding toB(1),C" (1)) violating the IDP theorem.
this case, These arguments show that the nonlocal correlations in
Eq. (16) are quantitatively the same as the local correlations
L L L in Eq. (12). Thus, the Bell inequalitie€l6) in systemS are
p(A",B")<p(B~,C7)+p(A",C"), (16)  violated without any involvement of nonconventional, non-
classical nonlocalities. The cause of the violations is directly

o . _connected with the existence of the IDP theorem, which is
is violated for the same angles between the axes as in EQaiid for every localS(1) andS(2) system

(12). Indeed, we know that at one of two locations, place 1 in Quantitatively, the violation of Bell's inequalities in our

our example A .0(1):0' Let the decisiqn observeliy the EPR type of classical system, the 1),5(2)), is iden-
resgqrcherat this plac.e be “no“.’[Agzcgrd|ng to Eq{16), the, tical toyfhat predicted fo?lthe quantupr?(gin)g&gv;ve state of
deuspn at plac.e' 2 1s a}lso noJ .G|ven our researphers two 3 spins placed in the same plane. The reason, as we will
selection of decisions, dlsplayfd in E(q.G)Lthe decision at now show, is that in the quantum case we can construct
place 1 can be either about afigdecisionB™ (1)] or about  chains of arguments similar to those we have in the classical
axis C [decisionC™(1)], that is, either transitioB™ (1), O  case; these chains lead to the same formulas for the prob-
—B~(1) or transitionC~ (1), 0—C~(1). These ardocal  abilities present in Bell's inequalities.

transitions at place 1. Sinakfgc+#0, 7, these two cases at WO spins are located in two unconnected places, 1 and 2,
place 1 are directly connected to two mutually incompatibleand three directionsi, B, C, common to both places are
subensembles of our ensemble. Now, the preparation of ewhosen. Let the researcher install the axis of the analyzer at
ery system pair is such that the decision at place 2 woulgyace 1 in directiorB and the axis of the analyzer at place 2

certainly be “yes” if the rotation angle there_V\_/er_e also ZET0-in direction C, and then select the results of measurements
In such a case, there would be f’i det§[m|n|sflf connectmgB(l):_%' sc(2)=—1. Two different possible chains of
betweenS(1) andS(2), namely, either(B~(1),B7(2)) or  arguments, similar to those in our classical example, arise
(C7(1),C"(2)). But sinceAf(1)=0, AA(2) must be ran- from such results.

dom and, given the researcher’s selection of two “no” deci- (1) Taking into account that the full spin of the system

sions in Eq(16), the selected rotation angle at place 2 for theequals zero, it follows from the observatisg(1)=—3 that

rotation fromB to C must beA dg¢. So the selected case at Se(2)=+ 3—the certain value. From the local noncommu-

place 2 is either transiti0§+(2), Aﬁscﬂé_(Z) or transi-  tativity of operatorssg(2) andéq(Z), it thn follows.t_hat the
ton G (2) —Ag B (2). Th docal t i ¢ value ofsc(2) cannot be certain; the joint probability of the
fion C( )_' ’BC™ S+)' eff arl cattransitions al - ohserved valuessc(2)=—3% and sg(1)=—% must be
place 2. Sincg(B~)=p(C~)=p(A~)=3 in our ensemble, 1 gjr2(Ag,/2).
as in Eq. (10, p(B Y1),C (2))=p(C %1),B (2) (2) From the observatiosc(2)=—% follows the certain
=1 sirf(Abgd2), as in Eq.(11). There are two more mutu- value sc(1)=+13% and then the same joint probability as
ally incompatible subensembles corresponding to the exabove. The same holds for other pairs of axes. Note that due
change 1-2, that is,A9(2)=0. So the totalp(§‘,é‘) to noncommutativity(IDP in the classical examplgit is im-
=2 sirf(A6gd/2). Similar arguments apply to the other cor- Possible, in principle, to combine any two possible chains of
relations in Eq(16). arguments into a single chain.

In a slightly different procedure, the researcher could se- These arguments not only are similar to those in classical
lect decisions8~ only at place 1 and decisior™ only at  (S(1),5(2)), with the same quantitative results, but also
place 2. Then the following two chains of arguments—Sim"a”y do not include the concept of some unknown, non-

logical implications—would lead to the same results: classical type of nonlocality. Notwithstanding all these simi-
larities, the two systems are fundamentally different. The

major difference is, of course, that in the classical example
Abgc we have an isotropic distribution of probabilities of mutually

(1) B (1)—B"(2)—|p(C (2)=sir 2 opposite “correct” orientationsp(X*(1))=p(X*(2))= %,
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while in the quantum example we have a probability ampli- However, the quantum mechanics concept of wave-
tudeW(7,])=—-Y(|,1)=1W2, corresponding to an isotro- function collapse in all space simultaneously, which lies be-
pic distribution of mutually opposite spin directions. So thehind the scenes in our arguments, is not completely under-
analogy is not complete, nor is the possibility of completingstood and is not similar to the classical “collapse” of
it clear at this point. Nonetheless, the fundamental differencgrobabilities. While taking this into account, we conclude
between our classical and quantum prepared states leav@gm the similarity of the arguments in all other respeets
untouched the quantitative identity of the violation of Bell's |3ig out abové that the violation of Bell's inequalities in
inequalities in both systems and the similarity of the argu-yyantum mechanics does not require the existence of some
ments proving it. For the arguments in both cases take as gacial, unknown quantum nonlocality. Since, in the classical
starting point a measureme@: decision in the classical ex- (S(1),S(2)) system, there are no such nonlocalities and the
amplg already maden one of two places 1, 2. In both cases y;g|ation of Bell's inequalities is caused by the locally ap-
this assumption means that the initially prepared state hgsjieq |DP theorem, the corresponding violation in quantum
already collapsed in all space: (§(1),5(2)), itis the “col-  pechanics may be interpreted as a result of local noncom-

lapse” of the prepared probability distribution, and in the ,ytativity combined with nonlocalities of the classical type.
guantum example, the collapse of the prepared probability

amplitude. And in both systems, the newly prepared states The author thanks the Open Society Institute for support-
into which the initial states have collapsed are similar to oneng this work and Gennady Berman, Kurt Gottfried, and Sid-
another, unlike those initial states. ney Orlov for useful discussions.
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