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Classical counterexamples to Bell’s inequalities

Yuri F. Orlov
Cornell University, Ithaca, New York 14853

~Received 7 June 2001; published 18 March 2002!

This paper shows that a classical system containing a conventional yes/no decision-making component can
behave like a quantum system of spin measurements in many ways~although it lacks a wave function! when,
in principle, there are no deterministic decision procedures to govern the decision making, and when proba-
bilistic decision procedures consistent with the system are introduced. Most notably, the system violates Bell’s
inequalities. Moreover, since the system is simple and macroscopic, its similarities to quantum systems argu-
ably provide an insight into quantum mechanics and, in particular, EPR experiments. Thus, from the qualitative
correspondences, decisions↔quantum measurements and the impossibility of deterministic decision
procedures↔quantum noncommutativity, we conclude that the violation of Bell’s inequalities in quantum
mechanics does not require the existence of an unknown nonclassical nonlocality. It can merely be a result of
local noncommutativity combined with nonlocalities of the classical type. The proposed classical decision-
making system is a nonquantum theoretical construct possessing complementarity features in Bohr’s sense.
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Here we describe and analyze a type of system, let us
it S, containing only classical components, including a co
ventional computer program generating yes/no decisi
about the correctness of the orientations of given axes
accordance with probability distributions consistent with t
properties of the system.~These decisions can be used
guide other systems.! We show that correlations between d
cisions made in two such systems,S(1) andS(2), having a
common preparation history but separated in space as in
quantum Einstein-Podolski-Rosen~EPR! experiments@1#,
violate Bell’s inequalities@2#. Such quantumlike behavior i
not really surprising given the present author’s description
a classical decision-making machine whose program ca
be deterministic@3#. And it bears out Kanter’s conclusio
that ‘‘undecidability limits our knowledge on the spatial
temporal correlation functions even of classical systems’’@4#,
although the classical systems he analyzes contain ne
decision-making components nor probabilistic decision p
cedures and, therefore, cannot violate Bell’s inequalities.

The key to understanding the quantumlike properties oS
is a theorem on the impossibility of deterministic decisi
procedures~IDP!, the proof of which is given below. This
theorem basically says that no logically consistent the
uniquely connecting the results of two consecutive decisi
made inS is possible, in principle. Qualitatively, this theore
corresponds to the quantum-mechanical thesis that the re
of two consecutive measurements of noncommuting obs
ables cannot be uniquely connected.~None of the known
theoretical ‘‘deterministic’’ models of quantum mechani
tries touniquelyconnect results of two consecutive measu
ments of noncommuting observables, because they are m
els of quantumnot classical mechanics.! The clear qualita-
tive and, in part, quantitative similarity—which we will g
on to demonstrate—between decisions made inS and mea-
surements of spins placed on the same plane, and betw
IDP and quantum noncommutativity~as formulated above!,
means thatS is the first nonquantum theoretical constru
possessing complementarity features in Bohr’s sense@5#.

The main components ofS are the following.
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~a! An oriented axisAW that lies and can be rotated in

homogeneous, isotropic plane. Letu be the angle betweenAW

and a fixed axis. At timet5tk , the angle of axisAW is uk and

the orientation of the axis is denoted byAW k , k50,1,2,3,... .
~b! A generatorG that is a computer program producing

sequence of random values of rotation anglesDuk,k21 , 0
<uDuk,k21u<2p, k52,3,... . When, at some timet5tk , a

value Duk11,k is produced, axisAW changes its orientation

uk→uk11[uk1Duk11,k , AW k→AW k11 . This new orientation
is fixed until the next rotation angleDuk12,k11 is produced at
some timetk11 . The initial orientationAW 0 is arbitrary. The
initial condition for generatorG is that at timet5t0 , G
producesDu1,050, so the first random angleDu2,1 appears
only at some timet5t1.t0 .

~c! A decision-making componentC that is a computer
program written in accordance with rules I–VIII below. Th
initial decisionc0 is defined either as yes,c051, or as no,
c050, by some factor~s! external toS, that is, it isimposed
on S. Then C acts as follows. When some rotation ang
Duk11,k , is produced byG and the new orientationAW k11 is
established during the time intervaltk,t,tk11 , C must de-
cide the correctness of the new orientation, using a proced
based on rules I–VIII.C decides between yes~decision
ck1151! and no~decisionck1150! on the basis of the pre
vious decisionck and the current rotation angleDuk11,k .
Once it has made decisionck11 , C is ready to decide on the
next rotation angleDuk12,k11 .

A preliminary note on the rules. Since all the physical
components ofSare classical,Smust obey the rules of clas
sical physics and logic. Rules I–VIII are such rules. Some
them refer to decision procedures. There, as elsewhere in
discussion, a decision procedure is regarded as determin
if the probability of the resulting decision equals 1 or
However, whenSobeys rules I–V it turns out that, except fo
rotation angles divisible byp, C’s program must generat
random decisions with some probabilities for them. In su
cases, the decision procedure is regarded as probabilisti
©2002 The American Physical Society06-1
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Rule I. For a decisionck11 , only information about two
values can be used:ck , the previous decision, andDuk11,k ,
the current rotation angle.~This means a first-order Marko
process in the case of probabilistic decisions.! Thus, ck11
5 f (ck ,Duk11,k).

Rule II. For a given rotation angleDu, when a determin-
istic decision procedure is possible, only one of two pro
dures must be used: either thef 1 procedure, 15 f 1(1,Du),
05 f 1(0,Du), or the f 2 procedure, 05 f 2(1,Du), 1
5 f 2(0,Du). ~Sometimes we will refer to them asf 1 transi-
tions, (1,Du→1), (0,Du→0), and f 2 transitions, (1,Du
→0), (0,Du→1). Rule II implies that deterministic trans
tions must be described by one-to-one functions uniqu
defined byDu.

Rule III. If uDuk11,ku50 or 2p, thenck115ck ~f 1 tran-
sitions!.

Rule IV. If uDuk11,ku5p, thenck11512ck[ c̄k ~f 2 tran-
sitions!. ~Later we will see what happens if rule IV is ex
cluded from the list of rules.!

Rule V. Let us call pair (ck ,Duk11,k)—the previous deci-
sion and the current angle—a decision situation. The pro
dure for the next decisionck11 is defined by this decision
situation. If ck ,ck11 ,ck12 are three consecutivecertain de-
cisions, i.e., decisions made in accordance with determin
procedures defined by the corresponding decision situati
then they must obey the following classical rule:

@~ck ,Duk11,k→ck11!∧~ck11 ,Duk12,k11→ck12!#

→~ck ,Duk11,k1Duk12,k11→ck12!,

where → denotes logical implication. If it happens th
uDuk11,k1Duk12,k11u52p1Du.2p, then angle Du is
used for the rotation.

Rules I–V lead to the following theorem.
Theorem on the impossibility of deterministic decisio

procedures. In systemS, deterministic decision procedure
are impossible for an infinite countable set of rotation ang

Proof. Consider the infinite countable set of rotatio
anglesDu j5p/2j , j 51,2,3,... . Take anyj. Whichever de-
terministic function,f 1 or f 2 , of rule II is used as the de
cision procedure for the corresponding angleDu j it follows
from rules I, II, and V that the function for the angle 2Du j
5p/ j —which is the result of two consecutive transitio
with the same angleDu j and, therefore, with the same fun
tion, eitherf 1 or f 2—must bef 1 . But then, as follows from
applying rule V repeatedly,f 1 must also be the function fo
j (2Du j ), which is the result of the integer numberj of the
samef 1 transition. However,j (2Du j )5p and according to
rule IV, the function forDu5p must bef 2 . Therefore, the
use of any deterministic function for any rotation anglep/2j ,
j 51,2,3,... leads to contradiction. j

Note that in our proof we could use a set of finite interv
dDu l of the rotation angles, instead of a pointset ofDu j ’s.
For example,kp/ j <(Du)k j,(k11)p/ j , k50,1,2,3,..., j
51,2,3,..., withf 1 or f 2 assigned for every interval, i.e., th
same function for everyDu inside it. Indeed, according to
rule III, whenk50, the function must bef 1 for any j since
04210
-

ly

e-

ic
s,

-

s.

one of the rotation angles inside such intervals equals z
(Du)0 jP@0,p/ j ). Then the function must also bef 1 for any
interval of rotation angles, which is the sum of su
intervals, in particular, for the intervalj (p/ j )<(Du) j j
,( j 11)(p/ j ). But this violates rule IV, since rotation angl
p lies inside this interval, (Du) j j P@p,( j 11)p/ j ). ~A simi-
lar theorem with respect to spin measurements is prese
in @6#, but with no relation to Bell’s inequalities.!

This is why nondeterministic~i.e., probabilistic! decision
procedures are needed forDuÞkp, k50,1,2,... .

@Our IDP theorem may not hold if the angle space is n
continuous but consists, for example, only of anglesDuk
5pk/(2N11) with a fixed integerN. In such a case, a
deterministic decision procedure is possible. See formu
~36!–~38! in @6#.#

Rule VI. In a case not covered by rules II–IV, a cond
tional probability of random decisions, p(ck11)
5p(ck11uck ,Duk11,k), must be introduced.

Rule VII. The probability of a decisionck , p(ck), is de-
fined as in the classical axiomatic theory of probability. T
probabilities of decisions,p(ck11)5p(ck11uck ,Duk11,k), in
programC, and the probability of the appearance of a ro
tion anglew5w(Du) in programG, are mutually indepen-
dent.

Before turning to rule VIII, we introduce formulas~1!–~3!
below, which follow from rules VI and VII.

Since there are only two decisions,ck51 or 0 andc̄k
[(12ck)50 or 1, we have, independently of the values
ck21 andDuk,k21 ,

p~ck!>0, p~ck∨ c̄k!5p~ck!1p~ c̄k!51, p~ck∧ c̄k!50.

From rule III,

p~ck11uck0!5dck ,ck11
5p~ck11uck ,62p!,

and from rule IV,

p~ck11uck ,6p!5d~12ck!,ck11
. ~1!

For the same reason, namely, there being only two poss
decisions forck11 in any decision situationck ,Duk11,k , we
can always express the relative probabilities of these d
sions as cos2 w and sin2 w, wherew5w(Duk11,k). Assuming
that transitions (1,Du→0) and (0,Du→1) have equal prob-
abilities ~which is consistent with rule II whenp51 or 0!,
the following probabilities pck,ck11

(Du) for transitions

(ck ,Du→ck11), Du[Duk11,k , must be built intoC’s pro-
gram:

~1,Du→1!, p11~Du!5cos2 w~Du!,

~1,Du→0!, p10~Du!5sin2 w~Du!, ~2a!

~0,Du→1!, p01~Du!5sin2 w~Du!,

~0,Du→0!, p00~Du!5cos2 w~Du!, ~2b!
6-2
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CLASSICAL COUNTEREXAMPLES TO BELL’S INEQUALITIES PHYSICAL REVIEW A65 042106
w~Du!5
Du

2
h~Du!, h~0!5h~6p!5h~62p!52k11.

~3!

The boundary conditions~3! follow from rules III and IV. In
Eq. ~3!, the signs on different sides of the equations are
interdependent.

Rule VIII. Functionh(Du), obeying the boundary condi
tions~3!, is chosen forSby some person or system outsideS.

Note thath(Du)[1 is one of the possible functions. Fo
simplicity we assume that the probabilistic decision pro
dure for the yes/no decisions is defined by Eqs.~2a! and~2b!,
with h[1.

We can now see that the classical systemS possesses
some features of quantumlike complementarity. According
@5#, complementarity means ‘‘the existence of different a
pects of the description of a physical system, seemingly
compatible but both needed for a complete description of
system.’’ Consider two arbitrary nonparallel axesAW and BW ,
uB2uA[DuBAÞkp. Let an external observer of decision
in S select cases where a specific decision, saycA51, about
axisAW ~more precisely, about any axis inside a small inter
of angles arounduA! is followed by some decision about ax
BW . He can observe, in principle, all events in the syst
without disturbing it. What he will see is the random dist
bution of the decisionscB with the probabilitiesp(cB51)
5cos2(DuBA/2), p(cB50)5sin2(DuBA/2). If, instead, he se-
lects cases where a specific decision about axisBW , say cB

51, is preceded by some decision about axisAW , then he will
see the random distribution of thecA decisions with the same
probability distribution. If he tries to find some hidden dete
ministic chains of events connecting these different de
sions, he will realize that there are no such chains.~This
point will be discussed later.! If he asks the system design
to make the decision-making program deterministic, the
swer will be that such a change is impossible without cha
ing the fundamentals of the system. And finally, if he decid
to observe~and that means to select! a chain of step-by-step
decisions leading from cA to cB , for example,
cA ,cC ,cB ,uBA5uBC1uCA , he will realize that any such in
termediate observation, made without any physical influe
on the system, will change the final probability distributio
These are fundamental features of complementary obs
ables, let us call them herePA andPB , which are not com-
patible in any classical logical sense but, at the same ti
are inseparable parts of the whole system.

The exact characteristics of an observablePX in Sare the
full set of its possible numerical values,$0,1%, here the same
for all axes; the direction of the axis to which its values a
assigned; its relations to other observables, in this case
PY’s for different Y’s, YW ÞXW ; and the methods of observin
it, which means in this case methods of observing result
decisionscX’s. The difference betweenPX and cX is the
same as the difference between, say, momentum and on
its numerical values obtained from measurements.

Up to this point, there is no observable quantitative d
ference between the systemSand a quantum system of con
04210
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secutive measurements of1
2-spin projections on differen

axes, when spins and axes are placed in the same plan
such a quantum system, we can consider projectors~opera-
tors! P̂A , P̂A[(112ŝA)/2, instead of spin-projection opera
tors ŝA , whereAW ’s are different axes in the plane. It follow
from the formula forPA that this observable is measure
simultaneously withsA , with the possible outcomes~eigen-
values! 1 (sA51 1

2 ) or 0 (sA52 1
2 ). P̂A andP̂B do not com-

mute if uBAÞkp and are complementary for this reaso
while in systemS the complementarity appears as a result
the IDP theorem. All the qualitative and quantitative ph
nomena described in the above-thought experiments mad
systemS can be observed in this quantum system, if w
consider consecutive measurements of spin projections
randomly chosen axes in the quantum system as corresp
ing to consecutive decisions inS.

~The analogy between the two systems is, of course, l
ited. There is no place for operators and wave functions
systemS. More important, the quantization of spin in qua
tum mechanics is a result of rotation symmetry inthree-
dimensionalspace, whereas in systemS, whose axes are
placed on a plane, the ‘‘quantization’’—discreteness of
yes/no decisions—is merely a feature of classical logic a
exists independently of the existence of the third dimensio!

But even thoughS lacks a wave function, the probabilit
phase~3! has some properties of quantum phases. Let
change the structure ofS a little and link the probability
phasew~Du! to some external factors governing the pha
development between the system’s decisions; the only
of G, then, is to introduce the timestk’s when decisions mus
be made in accordance with the previous decisions and
rotation angles developed under the influence of these ex
nal factors. Now, it follows from the rules of the system th
the phase advancewk112wk[wk11,k developed before the
ck11-decision is made may be forgotten after this decision
made, since the next decisionck12 does not depend on it
This is a feature of every first-order Markov chain. But inS
there is much more than that. In the classical Markov ch
of 1, 0 events, the probabilities of three consecutive o
comes must obey the classical relation

p~ck ,Duk12k→ck12!

5p~ck ,Duk11,k→ck11!p~ck11 ,Duk12,k11→ck12!

1p~ck ,Duk11,k→ c̄k11!p~ c̄k11 ,Duk12,k11→ck12!,

~4!

wherec̄k11512ck11 , Duk12,k5Duk12,k111Duk11,k . But
probabilities~2a! and ~2b! in S violate this relation. For ex-
ample, when the summed rotation angle on the left side
Eq. ~4! equalsp, the left side equals zero forck125ck , in
accordance with rule IV and formula~1!, while the right side
can be positive if none of the two intermediate angles equ
0 or p. The deep reason for this violation of classical rules
Eq. ~4! is that, according to IDP,ck11 is forbidden to be
either 1 or 0 in the infinite number of cases when rotat
6-3
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YURI F. ORLOV PHYSICAL REVIEW A 65 042106
anglesDuk11,kÞkp. So if ck11 nevertheless appears to be
or 0 at some timetk8 , we must assume that systemS has
made an unpredictable jump~has ‘‘collapsed’’! at this time,
because any predictable transition to a certainck11 value
would violate IDP. But the only parameter that can jump h
is phasew. We conclude that the development of phasew in
S not only may begin anew after the intervention of a
decision, butmustbegin anew, regardless of what the sy
tem’s physical decision-making mechanism is. Thus, the
lapse of the probability phase as a result of a decision~mea-
surement, in quantum mechanics! is a consequence of th
IDP theorem~noncommutativity in quantum mechanics!.

Note that the conditional probabilities~2a! and ~2b! can-
not appear in classical-mechanics systems that lack com
nents to which the IDP theorem applies.

What physically distinguishes our probabilities~2a! and
~2b! from the usual classical ones? Classical probabilities
observations of events having numerical values are in
duced when we lack knowledge about those values, altho
those values are present before we begin our observation
such cases, the observations reveal the objectively exis
numbers. Our analysis ofS has shown that quantumlik
probabilities appear when there can be no algorithm to h
us get knowledge about certain numerical values in any
cision situation belonging to an infinite set of decision si
ations. But such values may result from decisions~measure-
ments, in quantum mechanics!, since procedures fo
decisions~measurements! are not algorithms. However, in
such cases, questions about whether the observed num
values were present before the observations cannot be
swered, in principle, because the answers presuppose th
istence of an algorithm that we have proved does not ex
Nevertheless, it is clear that those values could not have b
present with certainty~i.e., with probability equal to 1!, since
such a presence would violate IDP. The following examp
show what can be present in an ordinary classical case,
cannot be present in a quantumlike one.

Take a statistical ensemble ofS’s prepared as follows. In
line with ~c!, some external factor defines the initial decisi
c0 ~and only c0 , not the following decisions! imposed on
each S. Let c0 be imposed randomly with probabilitie
w(c0),

w~1!5w~0!5 1
2 . ~5!

If this external factor were, say, some external classical g
erator of random numbers, then by analyzing the mechan
of this generator we could, in principle, have full informatio
about the physical conditions preceding everyc0 decision
and, therefore, could precisely predict everyc0 . Then the
theory of those predictions could be translated into
needed algorithm. The mere possibility of such a the
makes this ensemble ofS’s classical.

Let us now turn to a singleS. The IDP theorem implies
that it is impossible to have a physical theory that helps
observer ofS to predict the decisions—ck11 values—made
in any decision situation (ck ,Duk11,k), k51,2,... . Bearing
this in mind, we have already introduced the probabilit
~2a! and ~2b! of ck11’s. Analyzing, again, the physical an
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mathematical structure of all parts ofS involved in generat-
ing random events~decisions 1 and 0! can give us a physica
theory connecting the concrete conditions insideS with its
concrete decisions. Nevertheless, the ensemble of such
sions is not a classical one because the concrete condi
insideS, being uniquely connected withck11 , are not~and
cannot be! uniquely connected with the valuesck , Duk11,k .
Only the probability distribution, with a givenh(Du), is
uniquely connected with them. The only physical ‘‘theory
possible in such a case is an infinite set ofa posterioricon-
clusions that at timestk , k50,1,2,..., there were such-and
such connections between the valuesck , Duk11,k and states
of S. The necessity of this infinite description manifests t
lack of an algorithm—which, by definition, is a finite text.

Thus, even though all parts ofS are classical and ou
probability axioms are classical, we can expect probabilit
~2a! and ~2b! to violate Bell’s inequalities since the func
tional forms of these probabilities are consistent with t
structure and rules ofS, to which the IDP theorem is inte
grally bound. To confirm this, let us first check a Bell in
equality not for an ensemble of pairs ofS’s but for an en-
semble~5! of single systems, using arguments analogous
those developed in@7#. Consider three oriented axesAW , BW , CW
with angles between themDuAB , DuBC , DuAC[DuAB
1DuBC . A researcher investigating Bell’s inequalities s
lects cases whenS’s in the ensemble have made decisio
about the correctness of these three orientations~each inside
some small interval6dDu/2 equal for all axes!. Let us de-
note here eight triplets of such possible decisions
AW 1,BW 1,CW 1; AW 1,BW 1,CW 2;...; AW 2,BW 2,CW 2, instead of ourcA ,
cB , cC ~which would be the triplets 1, 1, 1; 1, 1, 0;...; 0,
0!. In S, XW 6 yes/no decisions for any axisXW are random
consequences of the previous decisions and the corresp
ing rotation angles. We will see later that if our ensemble
prepared as ensemble~5! is, then there exist the normalize
unconditional probabilities p(XW 1)5w5 1

2 ~of decision
‘‘yes’’ ! and p(XW 2)512w5 1

2 ~of decision ‘‘no’’! about the
orientation of axisXW . Assumingp(XW 6)5 1

2 , we can calculate
the joint probabilities forAW , BW , andCW needed for any Bell
inequality, in the three cases of transitions (AW 1,DuAB

→BW 2), (AW 1,DuAC→C2), and (BW 2,DuBC→C1). From
Eqs.~2a! and ~2b! with h[1,

p~AW 1BW 2!5p~BW 2uAW 1!p~AW 1!5w sin2
DuAB

2
5

1

2
sin2

DuAB

2
,

~6!

p~AW 1CW 2!5p~CW 2uA1!p~AW 1!5w sin2
DuAC

2

5
1

2
sin2

DuAC

2
, ~7!

p~AW 2BW 2!5p~BW 2uAW 2!p~AW 2!5~12w!cos2
DuAB

2

5
1

2
cos2

DuAB

2
, ~8!
6-4
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CLASSICAL COUNTEREXAMPLES TO BELL’S INEQUALITIES PHYSICAL REVIEW A65 042106
Using Eqs.~6! and ~8!,

p~BW 2!5w sin2
DuAB

2
1~12w!cos2

DuAB

2
5

1

2

5p~BW 1! when w5
1

2
. ~9!

The result ~9! shows that, indeed, ifp(AW k
6)5 1

2 , then

p(AW k11
6 )5 1

2 . And sincep(AW 0
6)5 1

2 at the beginning of our
Markov chain, we conclude~by induction! that Eq. ~9! is
correct for any axis at any time,

p~AW 6!5p~BW 6!5p~CW 6!5 1
2 , w5 1

2 . ~10!

Further,

p~CW 1BW 2!5p~CW 1uBW 2!p~BW 2!5
1

2
sin2

DuBC

2
, w5

1

2
.

~11!

Now assume that these probabilities behave classically. T
they must obey the corresponding Bell inequality@7#, in par-
ticular,

p~AW 1BW 2!<p~BW 2CW 1!1p~AW 1CW 2!. ~12!

However, the corresponding inequality following from Eq
~6!, ~7!, and~11!,

sin2
DuAB

2
<sin2

DuBC

2
1sin2

DuAC

2
, ~13!

is violated, for example, whenDuAB59p/8, DuBC52p/8,
and DuAC511p/8, with the left side of Eq.~13! equal to
0.962 and the right equal to 0.838. Thus, our probabilit
~2a! and ~2b! indeed do not behave classically.

It is not difficult to find the concrete cause of this ph
nomenon. Three axesAW , BW , CW are involved in Bell’s in-
equalities. When there are only two axes, then accordin
the IDP theorem, it is impossible to assign certain numb
ck and ck11 , to both; however, it is still possible to assig
the classical conditional and joint probabilities~2a!, ~2b!, ~7!,
~8!,... without inconsistency. It is when there are three a
that the joint probabilities become inconsistent, becaus
such cases some decisions for intermediate angles ar
volved. Take, for example, one of the consistency relati
of classical probability theory used to deduce Bell’s inequ
ties,

p~Ak12
1AW k

1!5p~Ak12
1Ak11

1AW k
1!

1p~Ak12
1Ak11

2AW k
1!, ~14!

in which we have ordered time,tk,tk11,tk12 . When
p(Ak

1)51, Eq. ~14! can be rewritten as

p~Ak12
1uAk

1!5p~Ak12
1Ak11

1uAk
1!

1p~Ak12
1Ak11

2uAk
1!. ~15!
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But as we already saw in Eq.~4!, which is equivalent to Eq.
~15!, if Duk12,k5p andDuk12k11Þ0, p, then the left side
of Eq. ~15! equals zero@see rule~IV ! and formula~1!#, while
the right side is positive.

Since rule IV of our system is, as we can see, direc
involved in the violation of Bell’s inequalities, it make
sense to look at what happens if we exclude it~and only it!
from the set of system rules. If rule IV is excluded, the pro
of the IDP theorem is destroyed because adeterministicpro-
cedure for all decisions (ck ,Du→ck11) is now possible:
ck11[ck . This means that onlyf 1 is permitted. So for any

Duk11,k and any pair of axes,XW , YW , we now have

p(XW 6uYW 6)51, p(XW 2uYW 1)5p(XW 1uYW 2)50. ~A similar
analysis is made in@3#.! These probabilities radically diffe
from Eqs. ~2a! and ~2b!, which obey rule IV. With such a
deterministic decision procedure, inequality~12! is trivially
satisfied as 0<0.

Turning finally to the usual form of Bell’s inequalities, le
us describe a classical EPR type of decision-making sys
comprising an ensemble of pairs—„S(1),S(2)…—of the sys-
tems that we analyzed earlier. There is an infinite set of a
oriented isotropically in all directions in a plane. Every pa
of S’s is prepared at some initial timetA15tA25tA in the
following way. The same arbitrary axisAW is assigned to each
system of a pair. The initial yes/no decision about the c
rectness of its orientation„c0(1),c0(2)… is imposed ran-
domly, sop(AW 6)5 1

2 for both systems; these decisions a
mutually opposite, i.e., either (1,0)[(AW 1,AW 2) or (0,1)
[(AW 2,AW 1). After an initial decision is imposed on it, eac
system of a pair makes its own first decision—c1(1),
c1(2)—asfollows. One system, eitherS(1) or S(2) ~at ran-
dom!, makes this decisionat the time of the preparation, tA ,
and the other systempostponesit. After this, S(1) andS(2)
are transported to two unconnected places, 1 and 2; and
at timest1.tA , t2.tA , their respective generators—G(1),
G(2)—will produce their ownlocal rotation angles. Each
system must remember the decision imposed on/made b
during preparation.

Recall that according to the design of these systems,
very first rotation angle equals zero,Du1,0(1)5Du1,0(2)
50, see~b!, above. Therefore, the first decisions that t
systems make themselves, whether postponed or not,
c1(1)5c0(1), c1(2)5c0(2), seerule III. Let systemS(1),
for example, postpone its first decision. ThenG(1), genera-
tor of S(1), must remember that its first rotation angle h
yet to be generated. Given the preparation, the first rota
angle ofS(1) can equal onlyDu1,050, whereas the~second!
rotation angle ofS(2), Du2,1, will be random. The timest1 ,
t2 of the local decisions ofS(1), S(2) about the correctnes
of the orientation of their local axes need not be correlat

In line with the conditions of any EPR type of exper
ment, a researcher investigating correlations between d
sions made by the paired systems has access to both the
decisions about the axis orientations, and to the orientat
of the local axes. Moreover, the researcher’s ‘‘nonlocalit
permits him or her to measure angles between axes bel
ing to paired systems. But he does not know whose fi
6-5
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YURI F. ORLOV PHYSICAL REVIEW A 65 042106
decision—S(1)’s or S(2)’s—was postponed. Let him first
select three local orientations that areidentical for S(1) and
S(2): AW , BW , and CW ~each inside some small interva
6dDu/2!, such thatDuAB1DuBC5DuAC . Then let him se-
lect the following pairs of local decisions: (AW 1,BW 1),
(BW 2,CW 2), and (AW 1,CW 1). @The notation: the first pair, for
example, means either thatS(1)’s decision about the correct
ness of theAW orientation iscA51 andS(2)’s decision about
the correctness of theBW orientation iscB51, or thatS(2)’s
decision about the correctness of theAW orientation iscA51
and S(1)’s decision about the correctness of theBW orienta-
tion is cB51.#

It is easy to see that the Bell inequality corresponding
this case,

p~AW 1,BW 1!<p~BW 2,CW 2!1p~AW 1,CW 1!, ~16!

is violated for the same angles between the axes as in
~12!. Indeed, we know that at one of two locations, place 1
our example,Du(1)50. Let the decision observed~by the
researcher! at this place be ‘‘no.’’@According to Eq.~16!, the
decision at place 2 is also ‘‘no.’’# Given our researcher’s
selection of decisions, displayed in Eq.~16!, the decision at
place 1 can be either about axisBW @decisionBW 2(1)# or about
axis CW @decisionCW 2(1)#, that is, either transitionBW 2(1), 0
→BW 2(1) or transitionCW 2(1), 0→CW 2(1). These arelocal
transitions at place 1. SinceDuBCÞ0, p, these two cases a
place 1 are directly connected to two mutually incompati
subensembles of our ensemble. Now, the preparation of
ery system pair is such that the decision at place 2 wo
certainly be ‘‘yes’’ if the rotation angle there were also ze
In such a case, there would be a deterministic connec
betweenS(1) andS(2), namely, either„BW 2(1),BW 1(2)… or
„CW 2(1),CW 1(2)…. But sinceDu(1)50, Du~2! must be ran-
dom and, given the researcher’s selection of two ‘‘no’’ de
sions in Eq.~16!, the selected rotation angle at place 2 for t
rotation fromBW to CW must beDuBC . So the selected case
place 2 is either transitionBW 1(2), DuBC→CW 2(2) or transi-
tion CW 1(2), 2DuBC→BW 2(2). These arelocal transitions at
place 2. Sincep(BW 6)5p(CW 6)5p(AW 6)5 1

2 in our ensemble,
as in Eq. ~10!, p„BW 21(1),CW 2(2)…5p„CW 21(1),BW 2(2)…
5 1

2 sin2(DuBC/2), as in Eq.~11!. There are two more mutu
ally incompatible subensembles corresponding to the
change 1↔2, that is, Du(2)50. So the totalp(BW 2,CW 2)
52 sin2(DuBC/2). Similar arguments apply to the other co
relations in Eq.~16!.

In a slightly different procedure, the researcher could
lect decisionsBW 2 only at place 1 and decisionsCW 2 only at
place 2. Then the following two chains of arguments
logical implications—would lead to the same results:

~1! BW 2~1!→BW 1~2!→Fp„CW 2~2!…5sin2
DuBC

2 G ,
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so p„BW 2~1!,CW 2~2!…5
1

2
sin2

DuBC

2
,

~2! CW 2~2!→CW 1~1!→Fp„BW 2~1!…5sin2
DuBC

2 G ,
so p„BW 2~1!,CW 2~2!…5

1

2
sin2

DuBC

2
.

It is impossible, in principle, to combine Eqs.~1! and~2! into
a single chain since such a combination would lead
„BW 2(1),CW 2(2)…→„BW 2(1),CW 1(1)…, with the conclusion
„BW 2(1),CW 1(1)… violating the IDP theorem.

These arguments show that the nonlocal correlations
Eq. ~16! are quantitatively the same as the local correlatio
in Eq. ~12!. Thus, the Bell inequalities~16! in systemS are
violated without any involvement of nonconventional, no
classical nonlocalities. The cause of the violations is direc
connected with the existence of the IDP theorem, which
valid for every localS(1) andS(2) system.

Quantitatively, the violation of Bell’s inequalities in ou
EPR type of classical system, the pair„S(1),S(2)…, is iden-
tical to that predicted for the quantum singletS-wave state of
two 1

2 spins placed in the same plane. The reason, as we
now show, is that in the quantum case we can const
chains of arguments similar to those we have in the class
case; these chains lead to the same formulas for the p
abilities present in Bell’s inequalities.

Two spins are located in two unconnected places, 1 an
and three directions,AW , BW , CW , common to both places ar
chosen. Let the researcher install the axis of the analyze
place 1 in directionBW and the axis of the analyzer at place
in direction CW , and then select the results of measureme
sB(1)52 1

2 , sC(2)52 1
2 . Two different possible chains o

arguments, similar to those in our classical example, a
from such results.

~1! Taking into account that the full spin of the syste
equals zero, it follows from the observationsB(1)52 1

2 that
sB(2)51 1

2 —the certain value. From the local noncomm
tativity of operatorsŝB(2) andŝC(2), it then follows that the
value ofsC(2) cannot be certain; the joint probability of th
observed valuessC(2)52 1

2 and sB(1)52 1
2 must be

1
2 sin2(DuBC/2).

~2! From the observationsC(2)52 1
2 follows the certain

value sC(1)51 1
2 and then the same joint probability a

above. The same holds for other pairs of axes. Note that
to noncommutativity~IDP in the classical example!, it is im-
possible, in principle, to combine any two possible chains
arguments into a single chain.

These arguments not only are similar to those in class
„S(1),S(2)…, with the same quantitative results, but al
similarly do not include the concept of some unknown, no
classical type of nonlocality. Notwithstanding all these sim
larities, the two systems are fundamentally different. T
major difference is, of course, that in the classical exam
we have an isotropic distribution of probabilities of mutua
opposite ‘‘correct’’ orientations,p„XW 6(1)…5p„XW 7(2)…5 1

2 ,
6-6
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while in the quantum example we have a probability amp
tudeC(↑,↓)52C(↓,↑)51/&, corresponding to an isotro
pic distribution of mutually opposite spin directions. So t
analogy is not complete, nor is the possibility of completi
it clear at this point. Nonetheless, the fundamental differe
between our classical and quantum prepared states le
untouched the quantitative identity of the violation of Bel
inequalities in both systems and the similarity of the arg
ments proving it. For the arguments in both cases take
starting point a measurement~a decision in the classical ex
ample! already madein one of two places 1, 2. In both case
this assumption means that the initially prepared state
already collapsed in all space: in„S(1),S(2)…, it is the ‘‘col-
lapse’’ of the prepared probability distribution, and in th
quantum example, the collapse of the prepared probab
amplitude. And in both systems, the newly prepared sta
into which the initial states have collapsed are similar to o
another, unlike those initial states.
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However, the quantum mechanics concept of wa
function collapse in all space simultaneously, which lies b
hind the scenes in our arguments, is not completely un
stood and is not similar to the classical ‘‘collapse’’ o
probabilities. While taking this into account, we conclu
from the similarity of the arguments in all other respects~as
laid out above! that the violation of Bell’s inequalities in
quantum mechanics does not require the existence of s
special, unknown quantum nonlocality. Since, in the class
„S(1),S(2)… system, there are no such nonlocalities and
violation of Bell’s inequalities is caused by the locally a
plied IDP theorem, the corresponding violation in quantu
mechanics may be interpreted as a result of local nonc
mutativity combined with nonlocalities of the classical typ
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