PHYSICAL REVIEW A, VOLUME 65, 042105
Diluting quantum information: An analysis of information transfer in system-reservoir interactions
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We design auniversalquantum homogenizer, which is a quantum machine that takes as an input a system
qubit initially in the statep and a set ofN reservoir qubits initially prepared in the same stgteln the
homogenizer the system qubit sequentially interacts with the reservoir qubits \partied swaptransforma-
tion. The homogenizer realizes, in the limit sense, the transformation such that at the output each qubit is in an
arbitrarily small neighborhood of the stateirrespective of the initial states of the system and the reservoir
qubits. This means that the system qubit undergoes an evolution that has a fixed point, which is the reservoir
state¢. We also study approximate homogenization when the reservoir is composed of a finite set of identically
prepared qubits. The homogenizer allows us to understand various aspects of the dynamics of open systems
interacting with environments in nonequilibrium states. In particular, the reversibility vs irreversibility of the
dynamics of the open system is directly linked to speciflassical information about the order in which the
reservoir qubits interacted with the system qubit. This aspect of the homogenizer leads to a model of a quantum
safe with a classical combination. We analyze in detail how entanglement between the reservoir and the system
is created during the process of quantum homogenization. We show that the information about the initial state
of the system qubit is stored in the entanglement between the homogenized qubits.
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[. INTRODUCTION Let U be a unitary operator representing the interaction
between a system qubit and one of the reservoir qubits. In
When a system interacts with a reservoir that is in thermatddition, let us assume that at each time step the system
equilibrium, then after some time the system isqubitinteracts with just a single qubit from the reservsie
thermalized—it relaxes towards the thermal equilibrium.Fig. 1). Moreover, the system qubit can interact with each of
This implies that the information about the original state ofthe reservoir qubits at most once. After the interaction with
the system igirreversibly) “lost” and its new state is deter- the first reservoir qubit the system is changed according to
mined exclusively by the parametet@mperature of the the following rule(which is a completely positive map
reservoir. If the reservoir is composed of a large nunibef
physical objects of the same physical type as the system eP=Tr[UeP e &U™. 1)
itself, then the thermalization process can be understood as ) o o
homogenization: out ol objects(the reservoir prepared in ~ Let us repeat the interactidd times, that is, via a sequence
the same thermal state and a single system in an arbitraf interactions the system qubit interacts withreservoir
state, we obtaitN+ 1 objects in the same thermal state. Thisqubits all prepared in the stafe The final state of the system
intuitive picture is based on certain assumptions about thé then described by the density operator
interaction between the system and the reservoir, the physical ) ()0 s@Nyf T +
nature of the reservoir itself, and the concept of the thermal 05 '=TrglUy ... Us(es’®&" Uy ... Uyl (2
equilibrium. This picture is at the heart of the model of . . .
blackbody radiation, which triggered the birth of quantumWhereUii=U®(®;.l;) describes the interaction between
theory in the seminal work of Planck. In addition, this sameth® kth qubit of the reservoir and the system qubit. This
picture is very important in understanding many processes if*0del of homogenization is very similar to tfellision
quantum physics as well as the fundamental concept of th&0del since the system becomes homogenized via a se-
irreversibility [1,2].
In this paper we present a rigorous analysis of the above o » » » o
picture within the framework of quantum-information theory. U U U
Specifically, we will consider a systei@ represented by a
single qubit initially prepared in the unknown stat§” and
a reservoiR composed oN qubits all prepared in the state

&, which is arbitrary but the same for all qubits. We will & & & & & &

enumerate the qubits of the reservoir and denote the state of RESERVOIR

the kth qubit as&, [3]. From the definition of the reservoir it

follows that initially &£,= ¢ for all k, so the state of the res- FIG. 1. The scenario of homogenization with just three reservoir
ervoir is described by the density matgx™. qubits involved.
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eigenstates of a one-qubit Hamiltonjeand (ii) the number
of qubits in the reservoir is considered to be infinite for any
practical purpose. Thermalization is studied in R&l.

Our paper is organized as follows. In Sec. Il we show that
quantum homogenization can be realized with the help of a
partial swapoperation. In Sec. Ill we show that the partial
swap for qubits generates a contractive map of the system
qubit with the fixed point being the initial state of the reser-
voir. This ensures the required convergence of the homog-
enization procespsee Eqs(3) and (4)]. The uniqueness of
the partial-swap operation is proved in Sec. IV. In Sec. V we
estimate the fidelity of the approximate homogenization map
as a function of the numbeN of reservoir qubits and the
parameters (the precision of the homogenizatiprwhile in
the Sec. VI we will analyze how the reservoir qubits become
entangled as a consequence of their interaction with the sys-

FIG. 2. Thes neig_hborhoqd of the reservoir’s stafénside the  gm qubit. In Sec. VII of the paper, finally, we address pos-
Bloc_h sphere. AfteN |nteract|ons_ betw_een the system and the_res-sib|e applications of the homogenization map.
ervoir, the states of all reservoir qubits and the system qubit are
contained within this sphere.

Il. PARTIAL-SWAP OPERATION

quence of individual interactions with the reservoir qubits. et us start with the definition of the so-callsiapop-
The interactions are assumed to be localized in tiiv®,  erationSacting on the Hilbert space of two qubits, which is

they act like ellastic collisiond 4]. given by relation 6]
Our aim is to investigate possible maps induced by the
transformation(2) and describe the process of homogeniza- Sl ele)=[)®|4). )

tion. Homogenization means that due to the interadticdhe ] ) )
states of the qubits in the reservoir change only little whileWith this transformation

after N interactions the system’s state becomes close to the (0) t_ (0)

initial state of the reservoir qubits. Formally, SeTeES =Ew et ©)

after just a single interaction, the state of the syst®iis

D(efV,¢)=<s8, VN=N,, (3 equal to the staté of the reservoir qubit and the interacting
qubit from the reservoir is left in the initial state of system.
D(&c,6)<6, VKk, 1<k=N, (4)  This means the conditio(8) is fulfilled, while the condition
(4) is not—since recall that we want it to hold for @f®.
whereD(,) denotes some distan¢e.g., a trace norinbe- In order to fulfill both conditiong3) and(4) we have to

tween the statesi>0 is a small parameter, which is chosen find some unitary transformation that is “close” to the iden-
a priori to the determination of the degree of the homogenetity on the reservoir qubit, while it performs artial-swap
ity and §L==Tfs[UQ(sk_1)® £UT] is the state of théth res- ~ operation, so that the system qubit at the output is closer to
ervoir qubit after the interaction with the system qubit. the reservoir statg¢ than before the interaction. The swap
The conditions(3) and (4) can be represented using a operator is Hermitian and, therefore, we can define the uni-
geometrical picture. The Bloch sphere of unit radius is af@ry partial swap operation
representation of the state space of a i@} (qubit) sys- o
tem. The initial state of the system qubit and the reservoir P(7)=(cosp)l+i(sinn)S, (7)
state& are represented by tw@listinct points of the Bloch
sphere. We can image another sphere of the raglzentered
at the point representing the reservoir statén what fol-
lows we will call this sphere thé spherg. The task is to
“shrink” the original Bloch sphere representing then-
known) initial state space of the system qubit into the

which serves our purposes. In what follows we denote
sinp=s and cosp=c.

In the process of homogenization, the system qubit inter-
acts sequentially with one of thid qubits of the reservoir
through the transformatioR( 7). After each interaction, the
X , = system qubit becomes entangled with the qubit of the reser-
sphere. So we start witN reservoir qubits in the statand  \qir \yith which it interactedfor more details on the issue of
the system qubit in an arbitrary stgieand we end up with  gnianglement, see Sec.)VIThe states of the system qubit
N+ 1 qubits within thes sphere centered at the point repre- 5nq of the reservoir qubit are obtained by partial traces. Spe-

senting the original reservoir stafe(see Fig. 2 cifically, after the first interaction the system qubit is in the
We note that homogenization is closely relatedthier-  giate described by the density operator

malization There are, however, two main differences: in

thermalization,(i) the stateé of the reservoir qubits is not oP=c?0QV+s%+ics£,09], (8)
completely unknown, but is a thermal state, that is, a state

diagonal in agiven basis (interpreted as the basis of the while the first reservoir qubit is now in the state
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§1=SZQ(SO)+ c2§+ics[g(so),§]. (9)  transformationU in the left-right form, i.e., as a linear op-
erator acting on the space of trace-class operafght§ (see
We can recursively apply the partial-swap transformationRef.[10]). We choose the operato%i,ox,oy,az (whereo,
and after the interaction with theth reservoir qubit, we have are the Pauli matricéss a basis fof/{ H), whereH repre-
() 2 (N=1) L 2y (n—1) sents the Hilbert space o_f a qubit. In_ this case an arbitrary
gs’'=ceg ts¢ticses Tl (100 density operator of a qubit can be written as

as the expression for the density operator of the system qubit, 1
while the nth reservoir qubit is in the state 0= §1+v?/- o (15)

G=s"08 V+cerics[ef Y &, (11)

Since we are interested only in those terms in expression&here|w|<1/2. We can write a state that is an element of
(10) and (11) that are proportional to the operatdiwe can  Z(H) in a vector form, i.e.0 = (1w, wy,w,). Let =31
rewrite the above equations in the form +1-0=(1t,,t,,t,) be the state of the qubit in the reservoir.
After the first interactiorP with the first reservoir qubit, the

() _ 2 ok (M) _(q_ ~2n (n) system qubit evolves according to E40) with n=1. This
0s’=$s kzo CTE+ pres=(1=C¢™é+prest (120 yransformation can be described as

n—1

and o —ol)=s’¢+c?ef +ics[¢,08]
gézsz(l_cz(n_l))g'}'gn,rest- (13

1 - I R
=§1+(szt+czw)~a+ics[t~o,w-a]
In the following section, we are going to show thaifl.,

converges monotonically to the null operator ras>e. In 1 . N ...
this case, obviouslp " — &, so the conditior(3) is fulfilled = §l+[32t+CZW—2CS(t><W)]"U
if the number of qubitdN is large enough. In addition, as

increases¢;, becomes more and more similargpsince the 1oL
commutator in Eq(11) goes to zero; in other words, = §1+W "o, (16)
D(&n,6)<D(&,1,¢). (14

where we used the identity o= 6 1+igj o5 and
Therefore, conditiori4) will be fulfilled for all k if and only
if it is fulfilled for k=1. This gives us a restriction on the
parametery that enters the partial swap; this restriction will
be studied in Sec. V.

wj =s%;+(c?8; — 2cse jutw) (17

with j=x,y,z. Now we can express the transformatigg?)

1

11l. HOMOGENIZATION IS A CONTRACTIVE MAP HQ(s) as

In this section we want to show that)— ¢ monotoni- 1
cally for all parameters;# 0. This means, in particular, that 1 0 0 0 1
condition(3) does not put any constraint op To show this wy, sty c? 2cst,  —2cst || wy
convergence, we use trBﬁna_ch theorenj7] t_hat concerns W' szty —2cst, 2 2cst, w, )
the fixed point of a contractive transformation. L&tbe a y 5 5
space with a distance functidh(g, ), then the transforma- W, s°t, 2cst  —2csy c W,

tion T is called contractive if it fulfills the inequality (18)

D(T[e],T[¢])<kD(g,¢) with 0<k<1 for all p,(€S. A

fixed point of the transformatiofi is an element ofS for o more formally, asoP=To®, whereT is the matrix

which T[£]=¢. The Banach theorem states that a contractivgepresenting the superoperator acting on the linear space

map has a unique fixed poif8] and that the iteration of the 7174y, If we express the matri¥ as

map converges to it, i.eT,N o ]— & for eachg € S. We note

that contractive transformations within the context of .

guantum-information processing have been recently dis- 1 of

cussed also in Ref9]. T= 2 T/ (19
In our caseS is the set of physical states, i.e., the set of all

density matrices of a single qubit. The ma@pthat we are

considering is defined by Q) —T[eP]1=0). We must thenitis easy to check that in our cabe= c?t. This implies

show that the map is contractive and t§as a fixed point of  that the state is a fixed point of the map under consider-

the map. ation, i.e., Té=¢&. The system state after theh iteration
We begin by finding the superoperator induced by thethen reads
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n-1 - R thatUp® pUT= &,® p, whereé, is unknown. Putting the last
o= S+ > LT +T"W|- o two results together we obtain that
i=o
. -1 UpopUT=pep (25)
— 2 2j¢ e -
=5lt|s JZO ¢ ]Han} T for any p representing a pure state. From here it follows that
the unitary transformatiob) acting on the joint Hilbert space
1 - I H2="H®H must be of the form
= S1H[(1-c™) {+TW] o, (20)

U:lp)ye|p)—e?lyye|y), (26)

wp_e{e ';O.r the Iasztnequaht); we summed tzme geometric SUnhere the parameter is independent of the stafgs). There-

Zj=o(c9)’=(1-cT)/(1~c?). Of coursec™ —~0 unlessc  ¢qre the action of the unitary transformation is fixed on the

=cosn=1. Numerically one can check tha@f'— O, where symmetric subspace 6{2 up to a phase fact@¢. Neither

O represents the zero operator. The&—£. In what fol-  the two conditiong23) and(24) nor the conditior(26) tell us

lows we prove this convergence for all values of the paramgnything about the action of the unitary transformatibon

eter 7. . . . the antisymmetric subspace f2. This means that the ac-
~To prove that the maj is contractive, we must define a tjon of U on the antisymmetric subspace is arbitrary. How-

distance function orf. Let us introduce the trace distance ever, in the case of qubits the antisymmetric subspace is one

D(¢, )= Trle—w| and the vectorsv=(1py,vy,v,) and  dimensional and we can proceed further. Because the anti-

r=w-—v. For a qubit we have symmetric subspace is one dimensional and invariant under

the action of the unitary transformatidh we have

Ul )—leH e =edwlvt) —lvH)le), 27

since the eigenvalues of the operatobr are given by\.  \yhereg is a constant depending @ Now the transforma-
==]r|. In qrder to find the contraction parametefor our  tion U is given by Eqs(26) and(27) up to two constants
transformationT we proceed as follows. From the Eq$9)  and 6. What we would now like to show is that these condi-

D(0,w)=Tr(W—0)-a|=Trr-o|=2|r], (21

and(21) we obtain tions require thatl be a partial-swap operator up to a global
., . -, phase factor. This phase factor has no physical consequences.
D(T[e],Tlw)=Trlr -o|=2|r |, (22 If we define the unitary operatay’ to be
wherer '=w '—v '=t+Tw—s*t—To=T(Ww—0)=Tr U'=expg(- 92y,

=02F—2£:six r. _Since |t_>|2s»1/4 and |r >=c)rl®  then Eqs.(26) and (27) give us
+4c?s?|txr|2=|r|2c?(c®+4s%|t|%sin?B), where B<mr is

the angle between the vectdrandr, we find that the con- |¢>|</f)u—,>ei(‘p_9)/2|¢>|lﬂ>
traction coefficienk=c. This last equality is due to the fact '
that|r '|<|r|c. If c=cos»<1 then the mafT is contractive U
and the convergence to the fixed poinis assured. [ )| gy = [ ) ) — €O 2|y ) — | )| ).
IV. UNIQUENESS OF THE PARTIAL-SWAP OPERATION Comparing these equations to K@), we see tha’ is just

the partial-swap operator with= (¢ — 0)/2. We can, there-

In what follows we will discuss the question of the choice fore, conclude that in the case of qubits, the partial swap is
of the unitary transformatiob that describes the interaction the only possible operator that satisfies the conditions of ho-
between a system from the reservoir and the initial systenmogenization Eqs(23) and(24). The partial swap uniquely
undergoing the homogenization process. If both the systemdetermines yet another universal quantum machildg the
and the reservoir state are the same, the interaction shoulthiversal quantum homogenizer
not affect either qubit, and this should be true no matter what

the state of the system and reservoir qubit are. This implies V. APPROXIMATE HOMOGENIZATION
that the unitary operator must satisfy the following two con-
ditions: In what follows we will analyze homogenization not as
the limit of the infinite number of interactions, but as an
Tri(UpepUT)=)p, (23 approximate process after a finite number of steps. Let us
suppose that the paramet@from Eqgs.(3) and (4) is fixed.
Trg(UpepUT)=p (24)  This parameter characterizes our approximation. We will use

the partial-swap evolution for the description of the homog-
for any single-qubit state. Let us first discuss the case of enization.
pure states. Ifp represents a pure state then the condition In the first step we give a condition on the paramejexf
(23) says thatUp® pUT=p® &;, where&; needs to be de- the partial swap(7). For our map T, we have that
termined. However from the second conditi@d) it follows ~ D(e%V,&)<D(e{ V,£)<D(0?,£). On the other hand
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from Eq. (14) we know thatD(&y,€)<D(&n-1,&). As we We see that if we fix the number of reservoir’s quhits
have discussed earlier, we can adjust the parameserthat  then the other two parameters are determined by the relations
the conditionD(£],£)<4 is fulfilled. Obviously, the dis- (32 and(29).

tanceD(&1,£) depends on the initial state of the system,

Q(SO), and onz. Therefore we have to determine the maxi- VI. ENTANGLEMENT VIA HOMOGENIZATION

mum value ofy, for which the distance is less than or equal

to 4, independentthe universality conditiohof' the initia! nature of quantum entanglement, there are still open ques-
states of the sys_tem ""“‘?' reservow. Fgr a anb't the MaXMUrions that have to be answered. In particular, a problem that
value of trace distance is achieved fwr-—t, correspond- \yaits for a thorough illumination is the nature of multipar-
ing to the situation in which the states are pure and mutually;qje entanglemenf13]. There are several aspects of quan-
orthogonal. The argument for this can be easily seen from g, mytiparticle correlations that have been investigated re-

In spite of all the progress in the understanding of the

geometric representation of a qubit. In this case cently. One example is the investigation of intrinsleparty
, oy * 5 entanglement(i.e., generalizations of the Greenberger-
D(&1,6€)=2sTr|t- 0| =257 (28)  Horne-Zeilinger statg14]). Another is the realization that in

. contrast to classical correlations, entanglement cannot freely
since for a pure stafeé|= 3. From Eq.(28) we get the simple be shared among many objects.

relation Coffman et al. [15] have recently studied a set of three
qubits, and have proved that the sum of the entanglement
sinp<+/6/2. (29 (measured in terms of the tangleetween qubits 1 and 2 and

qubits 1 and 3 is less than or equal to the entanglement
The second step is to determine the minimum number obetween qubit 1 and the rest of the system, i.e., the sub-
interactionsN, that ensures for an arbitrary initial state of the system 23. Specifically, let us define the bipartite concur-
system that the final state is in a sphere of raditaround  rence[16] of a two-qubit system in the statg, to be
the reservoir statg. The worst case, i.e., when the number
of necessary iterations is maximal, is intuitively the case Cik=C(ej)=max0O;—N,—N3z— A4}, (33
whenD (0, ¢) is maximal. In Sec. Il we proved the con-
vergence of the system stategdor any »+# 0. Therefore we where the\;’s are the square roots of the eigenvalues of the
are sure that such aN exists. As was just discussed in the matrix R= @ (oy® o) (0jk)* (0y® 0y) listed in decreasing
previous paragraph, the distarib(ag(so) ,€) is maximal when order. The tangle is equal to the square of the concurrence,
the two states are pure and mutually orthogonal. Moreovelt,e., Tjk:(cjk)2_ Using this definition we can express the
our transformatiorT does not change the commutation rela- Coffman-Kundu-WootteréCKW) [15] inequality as
tion, which is initially equal to zero, i.e[o{" ,£]=0 for all

> - 2 2 2

N. Introducingw= —t for the commuting states we obtain Ciot C13=C1 (23)- (34)
W 1 s In the same paper they conjectured that a similar inequality
o )=§1+ (1-2cNt- o, (300 might hold for an arbitrary numbe of qubits prepared in a
pure state. That is, one has
and for the distance we find N
- s - - - c? $C.2.*, 3
D(e,&)=Trj(w '—1)-g|=2c"NTr|t-0|. (3D k=Thej KT 39

This distance is maximal if we fidl and maximize over all where the sum on the left-hand side is taken over all qubits
0¥ andé. Again, since t|=1 for pure states, we obtain the except the qubif, while CJ.ZT denotes the concurrence be-
distanceD (8" &) =2¢*"=2(cos7)™. I the parameters)  yyeen the qubif and the rest of the systefdenoted a3).

ands in the experessiof29) are such that sip=1/5/2, then Several interesting results in the investigation of the vari-
we can find the lower boun s on the number of reservoir ous bounds on entanglement in multipartite systems have
quitS that are necessary to achieve the homogenization Wilbeen reported recenﬂy_ In particu|ar, Wootté]:g] has con-

a required fidelity, sidered aninfinite collection of qubits arranged in an open
line, such that every pair of nearest neighbors is entangled.
N=N .= In 612 (32) In this translationally invarianentangled chainthe maxi-
°TIn(1-46/2)° mum closest-neighbdbipartite entanglemen{measured in

the concurrengeis bounded by the value {2 (it is not
Both bounds on the parameteysandN are completely de- known whether this bound is achievap|é@7]. Later Koashi
termined by the paramete After performingN iterations, et al. [18] considered dinite system ofN qubits in which
N+ 1 qubits are in states belonging to th&eighborhood of each pair out oN(N—1)/2 possible pairs is entangléthe
the initial state of the reservoir, no matter what the st@tes so-called web of entanglementt has been proved that the
and Q(SO) were. maximum possible bipartite concurrence in this case is equal
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to 2/N. Dur [19] considered other possible inequalities assowherec=cosz, s=sin.
ciated with variously entangled qubits in multipartite sys- The matrixR constructed frorrggf) has only one nonzero
tems. eigenvalue 4°s?(1—a,_;)2. This implies for the concur-
Within the context of our investigation it is very natural to rence,
ask, what is the nature of the entanglement created during the
process of homogenization. In this section we will address Cl=2cs(1—ay_4). (39)
several questions related to this issue. First, we will study the
bipartite entanglement between the system qubit and the resrom Eq.(10) we find the recurrence formula for the param-
ervoir qubits, and then we will analyze entanglement beetersa,,
tween reservoir qubits, which is induced by the interaction
with the system qubit. We will show that the CKW bounds a=a,_1c%+s?=1—c%(1—ay), (40)
are saturated, that is, tié+1 qubit state created by a se-
quence of partial-swap operations in the homogenizatiofrom which we obtain
process satisfies the inequality in E85) as an equality.
Ci=2csEk D(1-a,), (42)
A. Bipartite concurrence ® )
) ) . whereag:=(&|p|€) and Cgy is the concurrence measuring
Let us consider the 'concurrent‘ék between thg —th  {he entanglement between the system qubitkthdeservoir
andkth qubits(irrespective of whether these are reservoir Ofqubit just after their joint interactiofi.e., it is supposed that
system qubits after thenth interaction, assuming that ini- e system qubit has interacted all together jusimes. We
tially t.he system Was_in the stage and the rgservoir qubits  :an conclude that the system qubit is entangled withkthe
were in the state. Without loss of generality we shall al- yeseryoir qubit. On the other hand we can ask whether this
ways assume thgt<k. The valuej=0 denotes the system entanglement will persist after the system interacts later with
qubit andj=1,2, ... N denote the qubits of the reservoir. other reservoir qubits. In order to make the discussion sim-
The reduced density operatofy) describing the two qu- pler we will study a particular case when initially the system

bits under consideration is given by the expression is in the statg1) while the reservoir qubits are in the state
(N) _ 7o &N |0). Nevertheless, prior to this task we study another aspect
O =Trx(Uy- - - Us[ @@ E7T]), (38 of multipartite entanglement within the context of homogeni-

_ + i i i zation. Specifically, we will study how a given qubit is en-
with ¢[oc]=P,oP| , whereP, is the partial-swap operation tangled with the rest of the system.

acting between the system qubit and tie qubit of the
reservoir{see Eq(7)]. The line over the indices in the trace
formula denotes the partial trace over all subsystems except
those with the line over them. In the case of pure multiqubit states one can define a
Using the definition(33) of the concurrence, it is trivial to measure of the entanglement between a single qubit and the
see thatCJ(E):O for j,k>n, that is, the qubits that have not rest of the systerfiL5] with the help of the determinant of the
interacted yet are not entangled. On the other hand, a gene@gnsity operator of the specific qubit under consideration. In
expression for the concurrence is difficult to derive, so weparticular, let us begin the homogenization process with the
concentrate our attention on a special case, when the reséystem and the reservoir qubits initially in pure states. After
voir is initially in a pure state| £) while the system qubitisin n partial swaps thejth qubit is in the stateo!"
an arbitrary state. =Tr{(Uy- - Us[| )] €)(*NM]). The degree of entanglement
Following the homogenization scenario the system qubibetween thgth qubit and the rest of the system is given by
after (k—1) interactions is in the stag@{ ), which can be the expressiofl5]

expressed in terms of the ba JEHY as
Xp | $‘§> |§ >} TJ(n)E[CJ’]_]Z::4 deth(n) ’ (42)

B. One qubit vs rest of the system

(k=1)_ _ LN/ el 1
Go Bl e+ (1ac)lENE bl ol whererj(”) is the tangle, which is equal to the square of the
[+ bg_,| €€ (37 corresponding concurrence.

Obviously, for thejth qubit of the reservoir, the tangle is

After we apply thekth partial-swap operation between the zero until it interacts with the system qubit. After the inter-
system and th&th reservoir qubit we find the bipartite den- action its value remains constant, irrespective of the further
sity operator in the matrix forniin the given basis evolution of the system qubit during the homogenization

process. This means that

a1 Cbk—l iSbk_l 0
. if n<j<N
) k-1C (1-ay_1)c?  isc(l—a4) O M= S J (43)
o=l . . ) , J 4detg if j=n<N.
—isbg_; -—isc(l—ax_;) s(l—-ax-y) O
0 0 0 0] In order to justify the last equation we note that all measures

(38 of entanglement remain unchanged under local unitary trans-
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formations, and that all transformatiot (except thejth - o n 2 20 1)
one are local with respect to the partition®j (where j G =|C +|:1|z¢kj s°c 00)(00)
denotes all qubits excepth). S _

The tangle between the system qubit and the reservoir is +52¢2~1)01)(01] + s?c?0 Y| 10)(10]
given by the expression +82cI Tk "2(c+is)k1|01)(10)

7§V =4 deto”, (44) + 82 tK-2(c—is)ki[10)(01 (49)

from which it follows that the shared entanglement betweergnd
the system qubit and the whole reservoir depends on the total N
number of interactions, unlike in the casé43) of the res- (n_ 2 2(1-1) on
ervoir qubits. Qox |=%:¢k s¢ |00)(00 +¢*|10)(10]

C. The case|#)o=|1) and |£);=[0) +°eXDI0D(01 +isc™ K (e-+is)"{01)(10
In order to have a deeper insight into the problem of en- —isc" ¥ *(c—is)"M10)(01, (50

tanglement induced by the homogenization process, let UWhich determines the values of the concurrences. The corre-
consider a specific initial state of the system and the resel> '

voir: |#)=10) and |£);=]1). In this case we find for the sponding eigenvalues: of (t?e matricesR{}), constructed
: : . >
tangle between the system and the rest of the reservoir qubit®™m the density matricegji” (in the casen>k), are

after thenth interaction, the expression & R},’P)={4s4c2(j+k‘2),0,0,q,
(n) — N_ 4~20(1 _ ~2n

V=4 detol=4c?"(1—c?"), (45
° ° E(RI) ={4s2c2+k-1) 0.0, . (51)

i (n) — __~2n 2n .
SINCe 2o _(1. ¢ )|O><Q|+C 1){1] [cf. Eq. (12)]. Itis The square roots of these eigenvalues aratlsan Eq. (33).
clear from this expression that as—o the degree of en- For the concurrences we find

tanglement between the system and the reservoir is mono-

tonically decreasing. On the other hand, the state of - for n<k=N
the jth qubit after the interaction with the system CJE:[ 2 j+k-2 (52
qubit is & —=s2dD+c?0)(0]=(1—s2c20- ) 0)(0| 2sc for k=n=N,
+s2¢20-D]1)(1| [cf. Eq. (13)] from which it follows that 0 for n<k=N
c<“>={ _ 53
74D = 45262011 - s2c20- 1), (46) 0k 125"kt for k=n=N (53

o . ) . We see that the concurrence between any two qubits of the
In other words, after its interaction with the system qubit, theéreseryoir is zero until both of them have interacted with the
jth qubit is constantly entangled with the rest of the systeMgysiem qubit. Then the concurrence rises during the interac-
T.hese simple ex_amples iIIu;trate the more general conclyjon to a new value and remains constant in the subsequent
sions presented in the previous paragraph. evolution. On the other hand, the value of the entanglement
(n%et us turn our attention to the bipartite concurrencesyetween the system qubit and any qubit from the reservoir
Cjk’ - With the given initial conditions, we easily find the pecomes nonzero after their joint interaction, but then it
state vector describing the whole system aftémteractions, tends back to zero.
This means that the system qubit acts as a “mediator” of
) ) entanglement between the reservoir qubits, which have never
|‘I’>:Cn|1>o‘59|0>®N+IZ1 [1)®]0)*Nisc' “*(c+is)N'].interacted directly. It is obvious that later the two reservoir
- (47) qubits interact with the system qubit, smaller is the degree of
their mutual entanglement. Nevertheless, this value is con-
g Stant and does not depend on the subsequent evolution of the
system qubif(i.e., it does not depend on the number of in-
teractionsn).
Once we have derived expressions for the bipartite con-
currences, we can verify the CKW inequalit§s), which in

n

We recall thatN is the total number of reservoir qubits, an
that we have assumed that k. The statg0)®N' denotes all
qubits except the qubitin the state|0). Tracing over the
appropriate subsystems we find the density matricesj for

<n<k, our notation takes the form
off’=¢/@|0)(0], . o
Si(n)= 2, [CRP=A"=[C{M2 (54)
i k=1 :
etk =ef’®]0)(0]. (48)
First, let us consider the entanglement of the system qubit
For k<n we find with the reservoir. Using Eq53) we can explicitly evaluate
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the expression for the left-hand side of the inequaliy)

a}nd we can compare it. with e>_<pressi(3‘§5) representing the 0O e)
right-hand side of this inequality. We find that .\ I
O/ O r\O

n
so<n>=k§1 [C§12=4c®(1-c®=1", (55 Uo Upa Yos

. . . FIG. 3. In this figure we schematically describe the process of
which means that the bound on the bipartite entanglemerl,tntanglement between the system qubit and the reservoir qubits via

between the system and the reservoir qubits is saturated aRgmogenization. The initial state of the whole system is shown in
the two S|de§ are equal'. ' . _the left part of the figure: We have the system qubit denoted by the
In fact, this property is also valid for the reservoir qubits. pjack circle, while the reservoir qubits are denoted as white circles.
So, let us consider a quhjtof the reservoir. In the case  After the interactiorl,; between the system and the first reservoir
<j all the C}E) vanish. That mean§j(n):0=rj(”). If n qubits a corresponding change of statespresented in different
=j then degrees of gray colprand establishment of the entangleméep-
resented by the thick black lings exhibited. After the interaction

5 i1 5 n ) Uy, with the second reservoir qubit, a three-particle entangled state
Sj(n)=[08}’] + > [C(k?)] + > [CEE)] is created, with various degrees of bipartite entangleniesgire-
k=1 k=1+1 sented by black and gray lines, where the gray line corresponds to

-1 n the entanglement between reservoir qubits that have not interacted
:43202(n+J1)+4S4C2(J2)( E cZk4 z CZK) directly). In the right section of the figure we see the situation after
k=1 k=j+1 the interactionU o5 of the system qubit with the third reservoir qu-

bit. All qubits are now entangled, black lines describe the entangle-
ment between the system and the reservoir qubits, which is estab-
:45202(1—1)(1_3202(1—1))' (56) lished due to the direct interaction,_while_grgy lines corresppnd to

the entanglement between reservoir qubits induced by the interac-
tion with the system qubit.

= 452c2(0+171) 4 463c2(~2)(c2— §2¢2 — 20+ 1))

In the calculation we used the equality

-1 n n _ So, that is how we define the limN—oe: first, we assume
> e+ D k=D c*—1-c¥. (57)  that the system qubit has interacted with all feubits in
k=1 k=i+1 k=0 the reservoir folN finite, then, we letN go to infinity, always
assuming that we make the best possible homogenization
according to the bounds of Sec. V.

As a first result, it is instructive to realize that in the limit
N— o (whend—0) the functionsS,(N) andS;(N) are such

Comparing this result with Eq(46) we obtain again the
equality in Eq.(54),

") 0 for n=N that
Sm=77= 452c?0-V[1-52c20-V] for j=n<N. ?
(58) N
, _ , im0 sy (60)
To understand in greater detail the meaning of the above N0 k(N)

expressions, let us consider the entanglement in the Kmit

—o of a very large number of qubits in the reservoir. We which means that the entanglement of the system qubit with
have to be careful with the definition of this limit. Let us first the reservoir is the same as the entanglement of an arbitrary
recall the definition of homogenization. We want to obtainreservoir qubit to the rest of the homogenized system. This
homogenized qubits in states within someeighborhood of  reflects the fact that not only states of individual qubits are
the reservoir’s state|Q)(0| in our casg In Sec. V we the same but also the amount of entanglement between each
showed that if we have a large number of quiditswe can  of the qubits and the rest of the system are e(seg Fig. 3
achieve an arbitrarily good homogenization, since in the |n spite of the fact that the pairwise entanglement between
bound(32) we can leté—0. In turn, the bound29) means  qubits in the limitN— o tends to zero, the information about
that 6— 0 is obtained fois— 0. The behavior of the expres- the initial state of the system qubit is distributed among the
sionc?M in this limit is as follows: Sinces—0, thenc—1,  homogenized qubits. Thus we have infinitely many infinitely
but still c< 1, therefore limgy_...c*N=0, too. Now, looking at  small correlations between qubits and it seems that the re-
Egs. (52), (53), (55), and (58), we see that in the limilN quired information is lost. However, &goes to infinity we
— all the concurrencies vanish. Therefore, the shared erhave infinitely many qubits and the information redistributed
tanglement between any pair of qubits is zero in this caseamong them has to be vanishingly small. If we sum up all the
ie., IimNﬁwCJ(,’(\')zo. Also the entanglement shared betweenmutual concurrences between all qubits we obtain a finite
a given qubit and the rest of the homogenized system, ex+alue,

pressed in terms of the functigg(N), is zero,

N N
lim S¢(N)=0, k=0,1,...N. (59) lim > [C{12= Iim% _20 S(N)=2. (61)
“

N—oe N—oo) <k N—o0
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This supports our argument that the information about therepared in &nownstate denoted d€). The perfect copy-
initial state of the system is “hidden” in mutual correlations ing transformatiorC should be of the form
between qubits of the homogenized system. In the conclud-
ing section of the paper we will study how this information ¢
can be recovered. [M|0)[S)— 1) ¥)]S'). (63)

To clarify the meaning of Eq(61), we recall the recent
results of Koashet al.[18]. These authors have considered aFrom the linearity of quantum mechanics it follows that the
system ofN qubits composing thereb of entanglemerithat ~ cloning transformatiori63) is not possible.
is, each of theN(N—1)/2 possible pairs of qubits is en-  Even though ideal cloning, i.e., the transformatié8), is
tangled, while the degree of entanglement is equal for alprohibited by the laws of quantum mechanics for abi-
pairs. It has been shown that the maximal degree of pairwiséary (unknown state|y), it has been shown that it is still
entanglement in the web of entanglement is givenG#&}) possible to design quantum cloners that operate reasonably
=2/N, that is, the maximum tangle is=4/N2. Given that Well [21]. These quantum cloners have been specified by the
there areN(N—1)/2 possible pairs we find that the total following conditions.

value of the pairwise tangle is (i) The state of the original system and its quantum copy
at the output of the quantum cloner, described by density
N(N-1) 4 operatorsp{°“? and p{*"Y, respectively, are identical, i.e.,
lim ——————=2, (62
N—o0 2 N2 ~(out) _ ~(out
pE= oo, (64

which is the same value as found in the homogenized system o . )
under consideration. (i) If no a priori information about then state of the

original system is available, then it is reasonable to require
thatall pure states should be copied equally well. One way
to implement this assumption is to design a quantum copier
such that the distances between density operators of each

In this paper we have shown that one can choose a unitarystem at the outpyt®? (wherej=1,2) and the ideal den-
transformation that exchanges information between a Systety operatorp!'® , which describes thin state of the origi-
qubit and a qubit from a reservoir, which, when applied se1,51 mode areJ input-state independent.

quentially to the system and each qubit in the reservoir, will iy Finally, it is also required that the copies are as close
generate an evolution that has the resevoir state as a fix possible to the ideal output state, which is, of course, just

point. In fact, .the state of the system qubit and tho_se of thene input state. This means that the quantum-copying trans-
[eser;/ow qtl_Jb'tS ?}?Cﬁme thﬁ tsham?'. IMoreover, ﬂt]'ls unitarysrmation has to minimize the distance between the output
ransformation, which we call theartial-swapoperation, is statef)]((’“t) of the copied qubit and the ideal staft{éd).

the only transformation, which is independent of the initial .
y P It has been shown by various authors that quantum clon-

igar;e;igg ttrr]]?ssystem and the reservoir qubits, which will ac-ers satisfying the above conditions do exitL, 2. Re-

This result is interestinger sesince it allows us to un- cently, experimental realizations of these quantum machines

derstand in greater detail the dynamics of open sys{@hs ha\|/_|e been re:;prtgd a.:, ;/;éBB,ZIAl]. ht i |
It is also a nontrivial fact that the partial-swap operation. OWEVET, s 1S not the only approach to guantum clon-

applied to the system qubit and a set of reservoir qubits alng; one can fo_rmulate t_he problem from a slightly dlffere_nt
erspective using the ideas of quantum homogenization.

lows us to realize an arbitrary contractive map of the systentL; . " .
qubit [12] y P y irst, one can lift the conditiori64) that the qubits at the

tput are in the same state, that is, it can be assumed that

VII. CONCLUSIONS AND DISCUSSION: APPLICATIONS
OF HOMOGENIZATION

On the other hand, the results presented in the paper c . ; -
be used in the context of quantum-information processin the qublt§ at the output are in t.he state; that_smelar, .bUt .
Specifically, quantum homogenization can be utilized forhot identical. The second condition, which might be lifted is

guantum cloning and in a protocol realizingyaantum safe that Fhe “blank” qubit is initially in th.eknownstate|o). We_ :
with a classical combinatian can instead assume that both the input state of the original

and that of the “blank” are unknown. If this point of view is
adopted, then the quantum homogenization as characterized
by the conditions(3) and (4) can be successfully used for
It is well known that unknown quantum states cannot beapproximate cloning. Specifically, in this scenario the reser-
copied perfectly. Specifically, Wootters and Zuf@0] have  Vvoir qubits play the role of originals, that is, it is the stdte
presented a very simple proof that a perfect cloning transforwe want to copy, while the system, which is supposed to be
mation for unknown quantum states is impossible. The ideahomogenizedthis system is initially in an unknown state
guantum-cloning scenario would look as follows: The quan-g(so)), plays the role of the “blank” system onto which the
tum cloner is initially prepared in a stat§) that does not information is going to be copied. From the description of
depend on theinknownstate|) of the input qubit that is quantum homogenization we see that quantum cloning in
going to be cloned. In addition, a qubit onto which the infor-this context is a process in which we start withreservoir
mation is going to be copied is available. This particle isqubits, all in the same state and end up wittN+ 1 qubits

A. Quantum cloning
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FIG. 4. The result of the unwinding process with a trial-and-  F|G. 5. The result of the unwinding process with a trial-and-
error strategy when the system qubit is correctly chosen from a sefrror strategy when the system qubit is chosen incorrectly from a
of ten homogenized particles. We plot a histogram representing thget of ten homogenized particles. In the figure we represent results
number of reconstructed states of the system qubit wifalling  of 9x 9! random unwindings. None of these sequences lead to the
into the bin withz=z,+0.05. There are altogether 9! sequencescorrect reversal of the original homogenization. We plot the histo-
that we have checked and just one results in a correct reversal of th‘ﬁam representing the number of reconstructed states of the system
homogenization process. qubit with s falling into the bin withz=z,+0.05.

in states that are very clogkow close depends on the value cess leads to a completely wrong result.

of N) to the state, so we have performed a version Mf Therefore we can consider the quantum homogenization
—N+1 cloning on the reservoir state. as a process that generates a combination to a quantum safe.
The combination is the sequence in which the reservoir par-
ticles interact with the system particles, and the object in the
safe is the initial state of the system particle. The combina-

After the system qubit is homogenized it is in the sametion consists of classical information, and the object in the
state as the reservoir qubits, so we can ask: What happenegfe consists of quantum information. The security here is
to the information encoded in the initial state of the systemgiven by the homogeneity of the final ensemble; it is difficult
qubit? Is it irreversibly lost? Certainly not, because we con+to distinguish among the particles by measuring them. The
sidered only unitary transformations, and that means that thgnwinding process can be performed reliably only when the
information encoded in the initial state of the system qubit iscombination is available. An important aspect of this scheme
not lost but is transferred into quantum correlations betweers that if one has tried one possible unwinding of the state,
all of the qubits. The parameters characterizing the state Qfnd measured the result to gain some information about it, it
the system are transformed into parameters determining the not possible at that point to try to unwind it in a different
entanglement shared among the system and reservoir qubitgay. That is, the nature of quantum-mechanical measure-
One question is whether the initial state of the system qubifnent prevents repeated unwinding procedures on the same
can be recovered. homogenized set of particles.

The process of homogenization is described by a se- To illustrate the above protocol let us assume that we
quence of unitary operations. Consequently, it can be repegin with the system qubit in the stdte) and nine reser-
versed: That is, the homogenized system can be “unwoundyoir qubits in the|0). After quantum homogenization we try,
and the original state of the systepd” and the reservoi€  randomly, to unwind the process. Let us assume that we are
can be recovered. Perfect unwinding can be performed onlyicky and we have chosen the first qubit in the unwinding
when theN+1 qubits of the output state interact, via the process correctly, that is, it is the original system qubit. Even
inverse of the original partial-swap operation, in the “cor- with this good start, we have to find the rest of the combi-
rect” order. The system particle must be identified fromnation, the proper sequence of the reservoir qubits, in order
among theN+1 output qubits, and this and the reservoirto completely “open” the quantum safe. Here we adopt a
particles must interact in the reverse of the order in whichtrial-and-error strategy, and we test all possible permutations
they originally interacted. Therefore, in order to unwind theof the reservoir qubits. Obviously, in this case joste se-
homogenized system, the classical information about the oguence is correct, i.e., jushesequence will result in open-
dering of the particles is vital. Obviously, if there are at theing the quantum safe and recovering the system state. All
outputN+ 1 particles, then there exisN( 1)! permutations 9!1=362 880 possible permutations of the reservoir qubits
of possible orderings, only one of which will reverse thewere tested. Since we have chosen the states of the system
original process. The probability to choose the system parand the reservoir qubits to be two orthogonal basis states of
ticle, which is in the stat@(SN), correctly is 1/N+1). Even  a single qubit, we can parametrize the reconstructed system
when this particle is chosen successfully, then there are stifitate with just a single parametsr i.e., pynwound= 3 (1
N! different possibilities of choosing the sequence of inter-+zo,) =[(1+2)/2]|0)(0| +[(1—2)/2]|1){(1|, such that
actions with the reservoir qubits. If one has no knowledge-1<z=<1. In Fig. 4 we plot the histogram representing the
about the output particles, the probability of successfully unnumberNg of reconstructed states of the system qubit gith
winding the homogenization transformation isN/A 1)!. As  falling into the bin withz=2z,=0.05. We see that a randomly
we shall see, if at the beginning of the unwinding process thehosen combination will not open the quantum safe. In fact,
reservoir particle is chosen incorrectly then the whole promost of the reconstructed states are within the interval

B. Quantum safe with a classical combination
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<7z=<0, i.e., between the reservoir state and the completelthis information is discarded, the process becomes irrevers-
random state. ible even though the overall dynamics is unitary. This irre-
Let us now consider what happens when we choose theersibility can be used to protect quantum information. A
wrong qubit as the system qubit, i.e., what we have chosen afetailed analysis of the security of the protocol that we have
the system qubit was, in fact, one of the original reservoirproposed for this remains to be done, but the example we
qubits. As can be checked explicitly, in this case there is NGyave treated numerically strongly suggests that quantum in-

way to correctly unwind the homogenization process. Obviformation protected in this way is very secure.
ously, with no prior knowledge, the probability to choose an

incorrect system qubit from a set bf+1 homogenized qu-
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