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Calculation of the positronium hyperfine interval using the Bethe-Salpeter formalism
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We use a variation of the Bethe-Salpeter equation to complete the calculation of the one-photon annihilation
contribution to the hyperfine interval of positronium at ordea®. Our results are in accord with a quite
different calculation independently done using an effective field theory approach. This completes the evalua-
tion of all thema® terms. We give the total theoretical value for this interval and compare with experiment.
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I. INTRODUCTION At this point, the theoretical expression for the hyperfine
splitting was
Positronium is the bound state of an electron and positron.

These are pointlike, electrically charged particles, which in- 7 al/8 1

teract primarily via the quantum electrodynamiQED) AEy=ma* 1—2——(§+§In(2))

force. The effects of the weak and strong forces are negli- .

gible. Consequently, positronium is subject to much experi- 5 1 7 1

mental and theoretical study, as it provides a means of testing + ﬁaz In(;) ~8n a® |n2(;)

our understanding of bound-state QED in a system undis-

turbed by other forces. =203399.34 MHz, (1.2

Of patrticular interest is the hyperfine interval, the differ-
ence of the energies of the ground state syinand spin
=0 states. If we label positronium statesrés* L ;, where
nis the principal quantum numbe$the intrinsic spinL the
orbital angular momentum, antithe total angular momen- AEeyp=203387.5-1.6 MHz (7.9 ppm) [6,7]

tum, the hyperfine interval IAE=E(13S,) — E(1'S,). The _
theoretical expression for this can be written as 203389.16-0.74MHz (3.6 ppm [8],

which compared unfavorably to the measured values

1.3
AEgn=ma*| A+Ba+Ca?In 1 +Da?+Ea®In? 1
th a a a difference between theory and experiment on the order of
1 10 MHz.
+Fa3ln(— +Gal+-- . (1.1) To get an est|m{:1te of w_hether the term could signifi-
@ cantly reduce the size of this discrepancy, we assumelthat

is of the same order of magnitudeBg|B|=0.39), and take

The theoretical calculation of the hyperfine interval begarnit to be 1. Then, thé term would contribute 18.65 MHz to
with the advent of modern quantum field theory in the latethe hyperfine interval. Thus, it was clear that before any
1940s and early 1950s with the calculation of the coefficienineaningful comparison of theory and experiment could be
A [1-3], followed shortly thereafter by the calculationBf  made, the calculation dd had to be completed.
a one-loop calculation, by Karplus and Klei]. In this paper we describe our calculation of the previously

The computations of the order® terms,C and D, are  unknown two-loop corrections to the one-photon annihila-
much more complex because these are two-loop calculationion graph using a variant of the Bethe-Salpeter formalism.
Consequently, there are many more graphs, most considefubsequent to our calculation, the relative ordéin(1/«)
ably more complicated than those that contribute to lowekoefficient F was calculated by Kniehl and Penif] and
orders. As a result, the calculation of thé coefficients has  Melnikov and Yelkhovsky10]. Their results are included in
been done in parts by many groups and has spanned neathe final theoretical expression at the end of the paper.
40 years. By the mid 1990s, all € and part ofD had been
computed. There remained to be calculated the contributions
to D coming from the two-loop corrections to the one-photon
annihilation graph. AdditionallyE was computed by Karsh- Our formalism is a quasipotential variant of the Bethe-
enboim[5] in 1993. Salpeter formalisnill] and is closely related to the methods

A. Bound-state formalism
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of Barbieri, Remiddi, and Buchntler [12—14 and Caswell the noncovariant tensor contractions, and to express the in-
and Lepagé15]. Details of the formalism are given {ii6]  tegrals in terms of Feynman parameters. This made the cal-
and are summarized below. culation tractable.

The bound-state equation for teee* to e"e* Green’s To regulate the ultraviolet divergences, we use dimen-
function G is G= S+ S,KG, whereS, is a modifiede e sional regularization im=4—2e dimensions. The noncova-
propagator and is the “quasipotential.” FoiS, we usg[17]  riant formalism does not present a problem as the formulas

for n dimensional noncovariant Feynman integrals are not

B —i much more complicated than their covariant counterparts
So(P)=2m8(Po) 500 —Elp—ie) [21].

XA EYTVA- B (=), (1.4 C. The energy shift formula
Corrections to the energy levels can be calculated from

2\1/2
)" ge systematic perturbation serids3,15,23

wherew,= (p%+m p=|p|, and theA . (p) are projec-
tion operators. The reference bound-state equation has t
form Go=Sy+ SyK(Gg, WhereKg is an approximation té

_ =0 A~ ’
containing the dominant nonrelativistic physics and is chosen En=Ent (8K)+(9KGodK) +(8K)(K)

so that the reference equation can be_ solved exactly. The +(5Ké05Ké05K)+(6K)(5KGO(5K)’

reference energy levels and wave functions can be found by

studyin.g the pole structure of the reference Green’s-function +(8K)' (8K G oK) + (SK)[(5K)' ]

Gy. With the particular reference kernél, that we are ) ) .

using, the reference energy levels arE=2m[1 +3(0K)“(6K)"+O(6K)", (1.7

—a?/(4n?)1¥2, wheren is the principal quantum number. . _ _ _

Then=1 reference wave functions have the form where 6K is the difference between the full interaction ker-
nel and the reference kernel aé@ is the reduced reference

20 Wt W\ 12 Green’s function. The parentheses indicate expectation val-
P P

VO(p)=2m8(py) ues between the reference wave functions, while the primes

2W denote differentiation with respect to the reference energy.

XGPIA(PITA_(F)(—»")], (1.5  (Seelld] for details) _ |
This series can be manipulated by using the reference

wave equation and by expandiﬁg) to give

wp+m

where W= E({/Z, I' is a 4X4 spin matrix, andp(p) is the

nonrelativistic momentum space wave function.
P En=EJ+ (KgsSKasSKas) — (KpsSKas)

B. Choice of gauge and ultraviolet regulator +(Kgs—Ko) (Kgs—Ko) " +([Kgs— Ko]R[ Kgs—Kp])

The proper choice of gauge is critical to the success of Hen (1.8
precision QED bound-state calculations. For instance, calcu-
lating in the covariant and algebraically simple Feynmanin this equationSis the product of two full fermion propa-
gauge is not well suited for such problems since spuriougators Kgs is the two particle irreducible Bethe-Salpeter ker-
lower order terms are generated. These extra terms eventya| K, is the reference potential, arftlis that part ofG,
ally cancel, but only when an infinite number of diagrams isin5t comes from the exchange of two or more reference
summed 18]. photons.

The Coulomb gauge is not plagued with this problem. ItS" \we are interested in those terms frolgSKag) and
infrared behavior is sufficiently tame that no false lower Ol (K 5 SKacSKge) that have a virtual annihilation to a single

6
der terms are produced, at least throungh®. So, we choose hha0n “We call thisAE,,,. Its graphical representation is
to use this gauge. However, the cost of this is much greatelj,oin in Fig. 1.

algebraic complexity because of the noncovariance of the || the diagrams with vacuum polarization insertions in

photon propagator, to wit, the annihilation photons have been previously calculated
J y n/ [23,24), as have the many-potential diagrams and the deriva-
. £ — tive diagram[14,15, although not in our formalism. The
/f=(n/)* /2=(n7) remaining diagramgsee Figs. (a), 1(c), and 1d)] are con-

; 1
D) ==~z

structed from the amplitudes shown in Fig. 2. These combine
X(Z n+7 0, |, (1.6)  to give a contribution to the energy ¢ee Appendix B
_ A ; ; AE1a+2(1c—1d):A(lR)m _2/'\an
wheren=(1,0). This problem can be ameliorated to some 4wW2 (IR

degree with the assistance of symbolic algebra computer
programs. For our calculation, we wrote programs using +2A 1 (AT —AM ) (1.9
MACSYMA [19] andMATHEMATICA [20] to compute traces, do om g2 17 2R) AR A
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Ay, =

©

FIG. 1. The one-photon-annihilation kernel

+2< @ - contributions to the hyperfine interval to order
a®. Wave functions are implicit on the left and
© ) right. nR refers to one-loop renormalized and
two-loop renormalized kernels fan=1 andn
=2. MP stands for the many potential part of the
. @ + @ @ reference Green’s functiorC— O is the differ-
ence between the Coulomb photon and the refer-

® ence photon and is the transverse photon.

@ @ T

&l

MP
Q
® oK

where Ag' is the lowest-order decay amplitudd(jr and  have&*-&=1, B,,=B™, andL o=1+a/6+0(a?) [13].

A(2r) are the renormalized one- and two-loop vertex correcConsequently, the lowest order contribution to the energy is
tions to the annihilation amplitude. The calculation of Ay AR/ (4W?)=ma*/4.

AEja.2(1c-1q) 1S the subject of this paper. The total one-  AT'is the sum of the two-loop amplitudes shown in Fig. 2.
photon annihilation energy shift contribution is given by the gach of these gives an unrenormalized contribution to the
result of (1.9 plus the previously calculated vacuum polar- energy of A,nA™/(4W?), wherei can take on the values
ization contributions, plus the results for the many-potentialse Sy, L, LL, or VP, which stand for self-energy, side

and derivative diagrams done in our formalism. vertex, crossed ladder, double ladder, and vacuum polariza-
The renormalized amplitudes have the foAfig=AT"  tion, respectively.
—L1AG andAQg = A7~ L1AT - LA+ LIAT . AT andA7 As we did forAJ', we write each of the two-loop ampli-
are the unrenormalized one- and two-loop amplitudes, tudes displaying an explicB™, an «?, and some terms re-
andL, are the Coulomb gauge one- and two-loop renormaliated to the dimensional regularization. The result is
ization constant§21], A{' is the lowest order amplitude and
mis a space indek. AM=(Qe "B)2B™(al/m)?;,
The lowest-order amplitude can be written &%) _— ] ]
—=BM o, where B"=vZiegye™. In this formula, ¢, whe.reQ=4w,u /m and w is t_he arpnrary mass parameter
=[(mPad)/(87)]Y2 then=1, s state wave function at con- particular to the process of dimensional regularization. The

tact, while e=(0,¢) is the positronium spin vector. We also extraction ofe” YE_ is for convenience sake only is the
Euler-Mascheroni constant.

All the work is in calculating thé;’s and since am? has

These forms for the renormalized amplitudes are a consequen&een fact(())red from each amplitude, we need to know éach
of the energy perturbation series, taking into account the multipli-t0 ordera. ) o
cation of the irreducible one-photon annihilation kernelZjyand The self-energy, side vertex, vacuum polarization, and
writing the bare charges a&; e [16]. A heuristic derivation is Crossed ladder graphs contribute at Ieagmg quf«‘lo the
given by expandingZ;A™ to order &> where AM=AJ+ AT+ AT energy. Thus, we need to calculate their associafedto
+--- is the total unrenormalized annihilation amplitude and ~ order a°. However, this is not true for the double-ladder
=1/(1+L,+L,+---). This is the standard way the vertex operator graph. Consider the case when the outer photon is Coulom-
is renormalized. bic. Making use of the nonrelativistic Scldiager equation
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e f q 1 m(y—1) T 7T+
X = = = —_—— — cee
) PR T 29D a2 110
1.1
Ap = Ar =
Here,y= «/2 and the limits of integration are from 0 ¢g as
in all momentum integrations unless otherwise stated. The

value of the integral and the first two terms in its Laurent
series ina are given. We now are going to make a series of

approximations that will reproduce the first two terms of its
series expansion.
* * Assuming we do not know the value &fx;, we can get
A = ( Agy = ‘ an estimate of its leading order by the following scaling ar-
5B gument. If the momentum is restricted to the nonrelativistic
region,p~ v, then lettingp— yp, an explicity ! is in front
of the scaled integral. However,jif~ 1, then the integral has

@ no factors ofa in front. From this we deduce that:
(1) The leading order is*.

(2) The nonrelativistic region of momentum space is the

()
most important in the sense that the * term is generated
‘ from this sector of momentum space.
~ f A = ‘ (3) We expect the next order corrections, the ordér
AfL = i terms, to come from the relativistic region.
()

This is confirmed by calculating the leading and next to
leading order with a series of approximations. First, note that
(®) Ex, is a singular function ok, for if «— 0 in the integrand,
the integral diverges linearly at the lower end of the momen-
tum integration. They protects against this divergence and

cannot be ignored, confirming the conjecture that the nonrel-
ativistic region of momentum is the dominant one. For these
momentum values, 1€+ 1)~ 1. So, to extract the leading
App = O order we write 1/p2+1)=1—p?/(p?>+1), giving us two
integrals. We expect the integral with the 1 will give the

leading order and the correction term to be of higher order.

Thus,
(®

FIG. 2. Contributing amplitudes(a) lowest order,(b) single 5
ladder,(c) self-energy(d) side vertex(e) crossed laddeff) double Ex :J d 1 _J q p
ladder, andg) vacuum polarization. 1 P p’+y? p(p2+ Y2)(p?+1)

2

with the Coulomb potential, it can be seen that the lowest- _ Z_J dp P (1.12
order decay amplitude and the vertex correction to the @ (p=+y9)(p+1)

lowest-order decay amplitude, the one-rung amplitude, are

included in the double-ladder amplitude. These subampli-
tudes contribute at ordex* and ordera® to the energy. and our suspicion, at least about the leading order, is verified.

Consequently, if we writeA" =B™(Qe™ 7€)% (al )2l For the correction term, the integral convergey i set
=B™(Qe 76)2(a/m) X (Icc+ e+ lecrtl), lec (both to 0. This means.thls termis a regular. functiomoiyoing as
photons Coulombgoes asx 2 and| ¢ (inner photon trans- ¢+ f(a), wherec is a constant anﬁvam’shes ag—0. Thus,
verse, outer photon Coulomtes a~!. The lower-order W€ can sety to 0 in the remainder piece and evaluate the
terms contained il cc and I1c must be removed before integral, gettlng—ql'r/Z, the correct next to leading order Ferm.
calculating thea® contribution ofl , . For the correction term, we_could also argue thatpghén

the numerator makes the regipn-1 the dominant one, so
values ofp~1 set the scale of the correction integral. Hence,
we could approximate 1p¢+ %) by 1/p?, giving us the

The Feynman diagrams generate a multitude of integralsame next to leading order integral as before.

that must be calculated to an accuracy of or@&r How this This type of scaling argument is the simplest way of es-
is done is best explained by looking at a few exampBs.  timating the leading order of an integral. It does not neces-
First, consider(from hereon, the electron mass has been sesarily tell us how to calculate the integral but whether it is of
to 1) the order of interest.

D. Determining orders of a
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As a slightly more complicated example, consider the fol-  For Exs,, the integral does not diverge &s—0 since the
lowing integral over two momentum variables which is 1— @p provides protection for small values @ Hence,

simple enough to do analytically: EXxgp, iS a regular function ofr and goes as® plus terms
1 oh which vanish asr goes to 0(This is why we wrote 1), as
- .
Exz=f d°p d°q — = 22t o2 . we did)
(pe+D)(Pp—G)°(q°+y)° y(y+1) To our order of accuracy, we only need the constant term,

(1.12  so we can approximatéxg, by settingy to 0:

This has leading order* which we would like to calculate

by finding a suitable approximation to the integrand. We do 1 ) 1 1— wp
this by proceeding as above. First restpandq~ . Then, EX3b"’f dp dx tan™

scaling the integration variables by we get aa® in front. PVX(1=X) Pyl 11
For p~ vy andqg~1, the integral scales as>. However, for ( 17

p~1 andg~ v, the integral goes a& !, while for p~1

and q~1, the integral again is of ordet®. Thus, we can This can be done numerically, possibly analytically.
approximate the integral by For Exg,, We write p?= D,— ¥?, resulting again in two
integrals. The first is

1
| 43p B
Jd PAa a2z .
i 4 i dp dx tan ! —|. 1.1
which evaluates to 2y, the leading term. f p T ( \/h—c) (1.18

A final example is an integral that occurs in the analysis
of the double-ladder graph
A way to do this integral is to introduce a third parameter via
Ex3=J dp dx——— - (i) (114 Joda/(he+a?)=1//hotan*(1/Vh;) and then do the inte-
\/_ w,D, Jhe gral. The remaining anda integrals are simple, giving us

With the definitionsh,=p?(1—x)+ wp= Jp?+1, and
D,=p?+ 9% Thex mtegratlon goes from 0 to 1. §—0, do d 1 1
thep integral diverges logarithmically at the low end of the P x\/x_hctan N

— w2 sinh™Y(1/y)/2

momentum integration. Henc&x; probably goes as Ia{ \/h—C)

plus regular terms irm. =122 In(4la) +
To isolate the singular and regular parts, we use,1/

=14 (1-wp)/w,, Which separates the integrand as a part

divergent in they—0 limit and a part convergent in that

limit. Two integrals emerge:

with the anticipated logarithm.
The remaining integral is

2
p 1
EXga= 1(—) (1.15 B zf 1 1)1
x . Dp \/—c v- | dp dx\/x_hctan \/h—c D, (1.19
and

p? 1\1 In this, if we make the replacemept— yp, the y? in front

E Xgp= o | “’P_ cancels, leaving an integral that is regular in the-0 limit.

Vxh D \/—C wp So, using the same arguments as above, to our order of ac-

(1.19 curacy, we have

Zfd d ! tan * ol it fd d ! ! tan * !
- X an Y —| = - X an
7 P VxhD,, Jhe P x(1—x)p?+1 (p°+1) yW(A—x)p>+1

Wfd q 1 1
= —-= X
2] P G adoptrt (PP D)

2
w
=— 5 In(2). (1.20
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E. Orders of the amplitudes Appendix A. The symboll,, stands for the trace with the
Using similar scaling arguments as above, we find thespin vectore™ factored out and removed. This can be done
self-energy, side vertex, vacuum polarization, and crossebiecause after the momentum integral is completed, the trace
ladder amplitudes contribute to the energy at leading ordeis proportional toe™. Finally, AT is the unrenormalized one-
a®. This means thatsg, lsy, lyp, andlg have leading loop vertex operator
ordera®. Their calculation to this degree of accuracy is done
by setting all occurrences of the relative momentum in the AT(—W,B),(W,p))
fermion propagators to @Ghese are higher-order terinsind
replacing factors ofy by 0 in the propagator denominators. . i
The wave function can be replaced by its nonrelativistic :f (d/)n(—le(n)yu)m
value, leaving an easy integration over the relative momen-
tum: fd3p/(27)3(87y)/(p?+ y?)?=1. We are left with in-

tegrals that are independent @fand are the correat? ap- X 7’my(/‘JrWn)—l (—ie(n)y,)iDe" (7~ (0p))
proximations to the full integrals. These integrals are

expressed as integrations over the loop momentum variables. _ _(i) QEJ (d/)"

The momentum integrations are done by Feynman param- A n

eters. The parameter integrals are then numerically integrated

with VEGAS [26]. This procedure works well, except for XVM(V(/_W”H1)7m(7(/+wn)+1)7v
those occasions when numerically unstable integrands are D(W,/)D(—W,/)
generated. These cases are discussed later in the text. vy .

The double-ladder graph presents more of a challenge XDe"(7=(0p)), (22

since, as commented on earlier, it contains?, « 1, and

In(e) terms from the lowest-order one-annihilation photonwhere e(n)=eu¢ with x an arbitrary mass parametes?
diagram and the one-rung ladder diagram. —dma, (A7) =(d")I(im"?), n=(10), /=(/0,7),
To calculate thex® part of the integrals associated with D(+W,/)=[—(/+Wn)2+1] andQ = 47 u2/m?. For cal-
the double-ladder graph, the lower-order parts must first b@ ational purposes we take=1. We find that
determined analytically. These singular parts are then sub-
tracted from the full integrals, leaving subtracted integrals
that have leading ordex®, and can be treated in much the m:iBmJ’ (dp)4(dA)!
same way as the integrals from the other amplitudes. 116w s n
We now describe in more detail the calculation of the

individual diagrams, starting first with a brief examination of XTr[ Yu(Y(Z = W)+ 1)y™( y(/+Wn)+ Dy, ()]
the one-loop amplitude and then following with an in depth D(W,/)D(—=W,/)

discussion of the double-ladder graph, the most difficult to 8

calculate. Our comments on the remaining diagrams will xD‘é”(/—(O,ﬁ))(g). (2.3
generally be limited to those parts of their calculation where Dy

we had to amend our standard numerical procedure to get
numerically stable integrals. The Coulomb part ofAl" has pu, »—0, 0 and D&"(/

—(0,|5))—>1/(/7— B)2. The trace for the Coulomb part, as a

Il. ONE-LOOP AMPLITUDE function of /, has the form

In this section we outline the evaluation of the one-loop
annihilation amplitudeAT'. We illustrate some of our calcu- T(/)=A+B,/ *+C,,/ /" (2.4
lational methods here in this relatively simple setting, and
also define several of the quantities that will appear in th
two-loop calculation.

The one-loop amplitudésee Fig. 2)] can be written as

eI'he leading binding singularity is i\, while only theC
term contains an ultraviolet divergence. We evaluate the
“low-energy” and “ultraviolet” contributions T o(/)=A
+B,/* and Tyy(/)=C,,/*/" separately. For the low-
Al'=— ief (dp)4 TTAT(—Wn+p,Wn+p)¥o(p)] energy contribution we do the€® integral via the integration
formula

Bm
- TJ (dp)s T [AT((—W,P),(W,p)P(P)]

j d/ % (y(/—=Wn)+1)y™(y(/+Wn)+1)— y/y™y/

8wy 2 D(W,/)D(—W,/)
X(F) (2.1 1
P = 4—w|E[(Y(/—WHH1)7m(7(/+Wn)+1)
where @dp),=(d"p)/(2#)" and Tr stands for the trace. The y
wave functionW(p) and the spin parth(j5) are given in —y/ Y"1 00 (2.5

042103-6



CALCULATION OF THE POSITRONIUM HYPERFINE . . . PHYSICAL REVIEW A 65 042103

and analyze carefully the various regimes contained irpthe We found an appropriate parametric form for the transverse
and / integrals as described in Sec. 1D. The low-energyPart of the vertex function, separated off the UV divergence,

contribution is and expanded im. Our result is
2
20 a® (1 _ 2 « T
Al = Bm{ 1-—+ E|n(;) +?0.31249948)] AT= Bm[ —3- ot 5 InZ]+Lalo
+O(a3)}_ 2.6 +a?[~0.271370 6012)]+0(a3)), (2.13
For the ultraviolet contribution we worked out a parametricWhere
form for the corresponding part of the vertex function, sepa- o —(n—3)
rated off the UV divergence, and then did the expansiod. in L(Tl)z —)er(e) _— (2.19
We found a4m (n=1)
2w is the tranverse part of the one-loop renormalization con-
AT ,=B™ =—1,o+L5 I o+ @’ —0.288194 45¢7)] stant. The total one-loop amplitude is the sum of the Cou-
Ccuv 3, L0 (1)'LO .
™ lomb and transverse parts. It is
+O(a3)], (2.7 2a¢ 5a° (1
AT: Bm 1_ 7"!‘ Tln Z +L(1)| LO
where
+a2[—0.247065'(9)]+0(a3)], (2.15
o= [ msam| 1+ 5 (8”)
Lo PIs0LP 3(wp+ 1)° D,2J wherel ;) is the full one-loop renormalization constant
_ a a? 3 c . o
with
IIl. DOUBLE-LADDER AMPLITUDE
1/2
9(p)= wptl)fwp+W 2.9 This amplitude is best calculated by dividing it into four
2wy 2w ' diagrams according to whether the inner and outer photons

are Coulomb or transverse. Then, the? and some of the
being the relativistically correct zero-loop annihilation graph~* terms are isolated in the Coulomb-Coulomb amplitude,

(Ag'=B™M o), and while the transverse-Coulomb amplitude has the remaining
a~! parts and a Inf). We will also discover that the
Lc_ QT 2(n-2) Coulomb-transverse diagram has a alj( while the
O\ a7 (€) (n—1) transverse-transverse part is leading ora@r
a\l4d 4
_ (4_ [5951“(6)— §+O(e)] (2.10 A. Coulomb-Coulomb ladder
. The Coulomb-Coulomb amplitude is
being the Coulomb part of the one-loop renormalization con- )2
stant. The complete Coulomb contribution is the sum of the AlL= Bm( —) (Qe 7By, (3.1
LO and UV parts: &
M om 20 2« a2| 1 c where
AC_B 1_7+§ILO+§ n Z +L(1)ILO eZEyE
o= [ @aaiany
+ a’[0.024 304 98)]+ O(a3)] ) (2.1
% TCC
The transverse part &7 hasu, v—i, j with (G—7)(7 = P)?D(W,q)D(—W,q)D(W,/)D(—W,/)
i - k'k! 8wy
= ——| 5. — 7
Dd= g | 3 ) CEER > ) 32
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and To calculateA. ., we separate the trace into two parts. The
first is the term with O or 1 factors @f. This part of the trace
has the leadin@(«~2) term so we call ifT . The remain-
Tee=Trlvo(¥(£ =Wn)+ 1) yo(y(q—Wn)+ 1) ing terms in the trace are quadraticdrand have ultraviolet
m 0 ., - divergences. This part of the trace is callgg, .
XyM(y(q+Wn)+ 1)y (y(7+Wn)+ 1) yo®@(p)]. After partitioning the trace in this fashioh,. is separated
(3.3 into two pieces) o andly, . We considel | o first.

1lo
Forl o we have

1 ” N/ ' TLO 8’77’}/
llo=— —f (dg)(d)y(dp)s — : 5 (3.9
64 (4-7)%(7=B)*D(W,q)D(~W,q)D(W,/)D(~W,/) | Dp
|
with T the full trace minus the terms quadraticdn 2.1
Tio=Tul ¥o(y(/ = W)+ 1) yol (v(a—Wn) + 1) The first integral is
Xy (y(g+Wn)+1)—yqy"yq] (1+wW)* dx w
, _ la=—— | (d)j(dp)s—tan }| —
X yo[ y(/+Wn)+ 1) yo®(p)]. (3.5 32w Vxh, Jhe
The first step is to do thg integration. This can be done via 1 1+, wp+ W
poles or parameters. We choose the latter and use X—— 5 , :
(/=P DWW,/ )(=W,/) | @p 2W
(1;d0;9:)
f(dq)i{a = = 8my
(6—7)*D(W,q)D(~W,0q) “\ oz |- (3.9
P
1 1 w
= V_VJ dx——tan Y —|[1;0;(1—x)l;], (3.6)  To calculatel ,, we must first determine its leading order.
Vxhe \/h—c This is done first by doing th&, integration via the residue

5 _ ] theorem, closing the contour in the upper héjfplane. This

puted. _ _ +ie. The result of the”,, integration is
T.o has many terms. Of these, there is one which has no
explicit factors of/, p, or /. This term, as will be shown, (1+W)* dx W
is responsible for the:™ 2 contribution. The other terms have IA:—J’ d3|(dp)é—tan1( —)
at least 2 or 4 factors of momentum. In these, factors of 64m\W \/X_hc \/h—c
andW can be set to one. This reduces the numbers of terms
significantly. What remains is a sum of terms that are qua- % 1 1+ wp /“’p+W 8my
dratic and quartic in the momentum variables. Of these, only w|D|(/— 5)2\ wp 2w D,ZJ '

the quadratic terms must be kept. Quartic terms, which are
12p? or (7-p)?, can safely be dropped as contributing be- (3.10
yond the order of interest, as can be established using the

arguments presented in Sec. | D. Then, corred®(a’), Now, consider the regio?lp~ y andl~vy. We replacew,,,
w, andW by one and tan' (1/vh.) by «/2. Then, letting|

To=Ta+Teg+Tc, (3.7 —+9l and p—yp, we get an explicita~2 in front of the
approximate integral, indicating that this region of momen-
tum space contributes ©(a~2). Corrections to these initial

\/m approximations, in the same integration region, will be
P
2W

where
W+14
_2( )

Vx

12813(x—1) 6473 12
Tg= + and Te=—
B \/; \/; C

1+ wp

@p

0O(a), because the corrections contribute two more powers
of momentum in the numeratgfrom w,~1+ p2/2, for in-
stance.

-p Using similar arguments, the regign~1, |~y and the
regionp~1,|1~1 contribute toO(«). However, ifp~1v, |

3.9 L the integral is0(a®). This means, to th®(a®), only

nonrelativistic values op contribute, but all values dfcon-

This separatek, o into three subintegrals$,, g, andlc. tribute.

TA:

x|

042103-8
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With this in mind, we make the replacement

1::"” \/wsz\;vW 2+%2—pz2. (3.11
Substituting inl 5, we get
—(1+W)4fd ( w I_2 (3.12
Jh,) @D}’
12
CRTRES
IA3:—LJ d%(dp)éﬁtanl(i)
167 Vxh, Jh,
1 p? [8my
"o (i—ﬁ>2( D%) 343

Forl,,, if I~1, the integral i<0(«a?), but forl~ vy, it is
0(a?%). Hence, we replace, by 1, scald by y and approxi-
mate tan’(1/vh.) by 7/2, and get

71_2

IAzzﬁ. (314)

Forl 43, thep integral can be done, leaving us with

vy dx 12 1
1
—f dl tan
4 Vxh, @D Jhe
We can again approximatey~1, scalel by y and let

tan * (1/vh.) go to #/2 without any loss of required accu-
racy. The integral can be done and we obtain

(w1
L -

=" 1613 2/
The evaluation of 54 is more interesting. Fok~ vy, the
integral has a power count @f 2. This region of momen-
tum space gives the lowest order term. If we expand the 1/

to orderl?, we get a correction term that, for-y, gives an
integral that is Ing)+0(a’). Hence, we must calculate cor-
rections to the replacement;— 1. Also, recall that ifl ~ 1,
the integral isO(a?), so the integral for the relativistic re-
gion of | must be calculated as well.

The calculation ofl,; proceeds by using the identity
Uw,=1-1%/2+[(1— )/ w,+1?/2]. This is done instead of
using 1t =1+(w,—
the In(@), which is in the—12/2 term.

Upon making this substitution, we have three integrals.

The ones associated with the 1 arfdcan be done analyti-
cally. For the integral with the (% )/ +1%/2 factor,
which we calll o, ¥ can be set to @it is ordera®), and the
resulting integral done numericallFrom I g and |y, there

1) because it is a simple way to isolate

PHYSICAL REVIEW A 65 042103

S0 we postpone evaluating; for now, and choose to do all
the numerical integrations at ong&o,

m 27 7 (1 w? 2
|A1:—?—7—7|n Z —?|n(2)+7+|A1N
(3.17
and forl 5, adding everything together,
| _7T2 2 772| 1 772| 5 a* 5m? |
e P R A T
(3.18

3. lgand I¢

The calculation ol g andl ¢ is relatively straightforward.
The 7/, integration is done as before. Fay,

I —Efdlﬁitan*(i)
" 2] 7 Jxh, @D Vvhe
o —z|4 (1=x)t 1( 1) (3.19
x)tan } —|. (3.
T vhe
Using liw=1+(1— w))/ oy,
I fdl dx tan‘l( L) e 1+(1 ) °
= —|=|z+(1—-x
B \/X_hc \/h_C D| 2 O)|D|
1—w|)
x| 1+
W)
fdl dx tan‘l(i |2[ +(1-X) = -
) TR R/ D2 Dy
f ( 1 )1—w| §_X}
X¢—| i-x @ |2
2 2 2
=—5In| ~ +—In(2)— g +len, (3.20

wherel gy is the integral with the (+ w|)/w, in Eq. (3.20
and will be done numerically. The remaining integral is

| 1fd|(d) dx J 1)t 7-p
=— p)y—tan ‘| —|———
©am )] R Vhe @D (7—p)?

C
(877')/
— .
Dp

(3.20

We use ¢ —p)2=12+p%—2/-p to decouple the’ and p

will be other integrals that have to be computed numericallyjntegrations. Then,

042103-9
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1 dx 1 12 12 ever, the log terms, which develop whers betweeny and
'C:_f dl tanl( _)_ — 1} 1, cancel, since both terms individually have the same
2 Vxhg Jh/ @D D asymptotic limit in this region. Hence, to ordef we can set
o, to 1 and tan* (1/yhy) to #/2. We get
1Jd|(d)dx T | o :
+— | dldp)y—tan | —=|z——— 4 2
8m vxhg \/h—C Doy (/—p)? |c=7T__7T_ (3.23
24 8
8wy
“\ 5z | (322 and, finally, forl o
p
The last integral is- 2l 53. In the first integral, fot ~1, the Lo | a Lok | ziz_ 2_7T+ 77_4+ 12+| 4
integral vanishes. Fdr~ y, if the integral is done as a sum LOTTATTBTICT 2 o 48 16 AINT BN
of two terms, each term separately goes a&)h@®. How- (3.29
4. The ultraviolet term
The ultraviolet contribution td.. is
e257E " " ! TUV 87Ty
lov= f (da)(d)(dp)s—————— , | — (3.29
64 (G—7)%(7=P)’D(W,q)D(~W,q)D(W,/)D(~W,/) | Dy
|
with a=1-2u,
Tuov=Trlvo(¥ (7 =Wn)+1) voyay"yd 7o 1
— 2\\/2 /
X (/W) +1) 760 ()] (326  NNeo= Zl—a Wiy =2(1=0aW My
The first step is to do the integral with parameters. The 1 -3
; ; ; ; 22 7 Mz 7 n mj 2
required integral i$N¢o andN¢; are the 0 and 1 contraction +(1+X)%5-7y"y- 71— er S| 1<
terms
m n—3 1
| tgp—— 2 re@=T@) -+ [ du=,
(d—7)2D(W,q)D(W,—q) el he
N 1 N and
=f dx dux ¥ T(1+e) — o= T ()X —|.
Hc 2 Hc HC:(l_X)|2+aZW2+’yZ,FIC=aZW2+’y2.
(3.27
This gives
We next do a partial integratioim the x variable on the one
contraction term. This isolates the inner vertex divergence in m a mooml @ 2 261
a term that is independent of the outer lo@pmomentum. cc =7 L nc(OAcHBY| —| (e 75y
This is important because from the renormalized energy shift (3.29

equation, we would like to cancel tHe,AT' term without
doing any extra work. This, we shall see, will be a conse-Al is the Coulomb part of the vertex corrected one-

guence of writing the inner vertex in this manner. annihilation photon diagram, the one-rung ladder diagram. In
So, after the partial integration, Iy, there are terms that have four factors of momentum,
which diverge upon integration. The remaining terms have
J (dg)” ¥dy" v finite integrations. We treat these separately and wiitg
n . 22 :I ' +| v .
—/4)D(W,q)D(W, — fin div )
(G=/)D(W.a)D( a) For I, we can set all factors g to O in the trace, except
" X" € " in the wave function itself. We must also keep ﬂv‘(/’)z
=nc(e)y"+T'(1+e) | dx duFNNCO intact. Then thep integral can be done using
C
(3.28 , 1 8my 1
. (dp)s——— | = | =5
with the definitions (/—p) Dy D,

042103-10
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If this were not done, that is if 1i— )2—12, thenl, would ~ The calculation is straightforward and we get
diverge in the infrared since, as will be shown, it is of order 1 11

a L. lav==" 782" = Tldvn-
So, forlg, (a=1-2u), 186" 5de

(3.33

5. nc(€) term

The last part of the Coulomb-Coulomb term to calculate
is the first expression of Eq3.29. For this we need the
Coulomb part of the one-rung annihilation diagram to order

4 m
X |4a2/3— 3 (20x+ a?—4)/2—16a%|. (3.30 @ Thisis

1 1 1
in= f(d/) dXd“[ D,D(W,/)D(—W,/)H,

4(1-e)
lsn, has a leading ordes ! term that comes from the 46 AC= 3 %¢
expression in Eq(3.30. The other terms, if calculated indi-
vidually, have Ing)’s, but these eventually cancel. The re- where L,, the one loop renormalization constant, equals
mainder of the calculation df;, is straightforward, and we @/(4m)Q T (€) andlcs=1—(4a)/(3m). I .o andB™ are as

get (4, is the part ofl 4, that is done numerically before. Then, after making a Laurent expansiomeg(e) in
e and « and collecting terms,

Lyl oB™+ Q1 B™, (3.39

v
o= —— ] _ 4 19/a\?1 19«
fin 2ua finN (3 3]) EQE"]C(E)Ag‘:ngAg‘_F (Qe yE)2654< ) z+1_8;
For I 4, the calculation follows standard techniques after 1 83 2
we realize that it is of orden®. Thus, we can set all factors - —a?—— (—) B™ (3.39
of vto 0. Then, after its tracdly, , is calculated, we find it 6 162

can be written a3 4, ="ty . Thel< cancels against a similar 6. A results

term in the denominator so our expression to evaluate is ) i i )
Putting the various pieces together and computing the nu-

e2<vE Sy X" € merical integrals,
Idi\,——F(1+e) 556 j(d ) dXdUW 4 3a 5
AE”C=(—L1 0+BM™1-——+|—| [2.8783607)]
taiv 3 9
a1 (= /25 27 0)(—/2—274)" 2 11 .
-7 € _ -
(3.32 ( (de%) { 82 27 e” (3.39

B. Transverse-Coulomb ladder
For the transverse-Coulomb amplitude we have

m

B 2
AR = - 64( )(n ‘[ waa

Tee
(—(/=9)?)(/—P)?D(W,q)D(—W,q)D(W,/)D(—W,/)

8wy

(3.39

with the trace K-'P(/’—Wn /+Wn)

f(d ),,7.(7(q W) +1)y"(v(a+W)+1)y;
(—=(/=a))D(W,q)D(-W,q)

th:Trr[')’O('Y(/_Wn)"‘ 1)7i((q_Wn)+ 1)
XYMy (q+Wn)+ 1)y (y(/+Wn)+ 1)y, ®(p)]

X 8/ =)
X85 (/—q) (3.39
f dzdxdu i’zx{r(u €) A“f
and&?}(/—)): 5” _;|ZJ /|2
Unlike the Coulomb-Coulomb calculation, here it is more 1
efficient to treat the inner vertex as a whole. So, we write - EF(1+ €) Al+e Ac (3.40

o , a — ) Nto, Nt1, andNy, are the zero, one, and two contraction
AT(/=Wn,/+Wn) = 72— Ar (/= Wn/+Wn), terms, Ar=zxHr, and Hy=—(1—x)/2+(1—x2)I?

(3.39  +2a(l1—x)/nW+xa?W2+ y2.
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The divergence o\ is separated by doing a partial in- and the following definitions:
tegration on the two contraction term, which, after some fur-

ther manipulations, gives

Ee= xa?W?+ 72’

A= r(€)y"+ ATa+ ATy (3.41) ~ Ny
N(Nto) = (02’
with
_ N n—3
1-2¢ x1~e€ 1 ST N - m
77T(e)=(1—6)[ —(1+2¢) r(e)fdxdu i NN = 2=l g = (5=mz| ™%,
3—2¢ he
t
(3.42 Hr=—(1-x)2/%+22(1— x)a/ nW+ xa®W?+ 32,
—in 32 N(Nto) 2
ATA=J dz dx dW L(2+e€) —zre B=(1-x)(—/*+2a(/nmW).
T
1 N(Nqry) The separation of the inner transverse vertex divergence in
i — this way is done for the same reasons as for the Coulomb
(1+ 6) 1+e |* (343) .
2 Hy part of the inner vertex.
Putting this all together, we can write for the transverse-
— 1-2e¢ Coulomb vertex
Afg=(e—1)| ———(1+2¢) |[T'(1+€)y™
3—2¢ a o 2
e A{?::EQGUT(G)A?_{_ ;) B™(Qe”7E)? Yy (3.45
X f dz dx dU’TB, (3.49
Hi™* with

, _eZEyEf (d/)"(d ), T”[—yo(y(/—n\l\l)+ 1)(X;nA+ X?g)()’(/‘Fn\/\/)‘Fl))’o(D(ﬁ)] (8777>
T 64 #nlCP)3 (7=P)’D(W,/)D(~W,/) Dy
= a5, (3.46

1. Ja

SinceJ, has leading ordew ! and nota~?, it is sufficient to use the nonrelativistic approximation of the wave function,
leaving an easy integration over the relative momentum. What remains is an expression that we separate into an ultraviolet
convergent and ultraviolet divergent part. These are, respectiigly,andJyy, with

] __if w Tl ol (V7 =nW) + DATA(Y(/ +nW) + 1) = (y/ATuy/ ) }(L+ 7o) ve] (2.47
Wo="5z] (d7)a D(W,”/)D(-W,/)D, '
|
and Ty and T, are the traces associated with tNéN;,) and

N(Ny;,) terms. The calculation is made easier if a partial
integration with respect ta is done on thel, term. This

ez“/E J' (d/)" Trr[’yo’y/'KTA'}’/(l'}_ 70) 76]

Jawv=" 51 4 D(W,/)D(—W./)D, results in €g="To|,—1,ht=H1l,=1)
(3.48
For the low-energy term, after the trace is computed, Jalo=— if (d7);dx dudz ,1
64 DD(W,/)D(-W,/)
1 P 1
JALO:_@f (d7);dx du dZD,D(W,/)D(—W,/') X (4a2X2+(4_a2)X2|2)h_T
X ,:—%— % ,:—i : (3.49 +4(a?x? - 12)¢E|2H—1T : (350
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The next step is to determine which terms are singular, and Putting this together,
as was the case with the Coulomb-Coulomb calculation, this
is simpler after the”, integration is done. 1 11

If we do the/, integration by closing the contour in the Jato=— 1 i J Y
upper half plane, the nonanalytic terms come from the pole 12a 24
at/,=W-—w,+ie. The other poles contribu®(a®) terms
only. So, for the purposes of calculating theé * and In)
terms only, it would suffice to sét to 0 in ht andH+. So,

+Jaon, (353

a

where, as usually oy is the part of] 5 o that has to be done

numerically.

1 1 hr—hy The analysis ofl 5,y proceeds rather smoothly once it is
(3.5) realized that it isO(a). Parameters are used throughout,

which facilitates the isolation of the divergent part. We have

hT hro  hyohy

1 1 HTO_HT

—_—=—t — . =
A~ Hro " HyoHr (352 Ja=Ja0tIauy
. 371 #%\1 w1 11
where Hyo=H+|, o and hyo=hy|, —o. This isolates the = (EZ_ E)__ ot 5a™ 2Inl = +JALON+JUVN _
nonanalytic terms in the integrals associated witly and € @
H+o. The correction terms are at ma3{a®). The reason is (3.59
the expressionshig—hy) and Hyo—H7y) each have an ex-
plicit factor of 7, thereby suppressing the singular behavior 2 3
at theW—w,+ie pole. So, for the correction parts we get VB
to 0 and calculate the integrals numerically. From Eq.(3.46),
|
e?ere Tref Yol ¥(7 = W) + L]AZH(7(/ +nW) + 1) 3D ()}

J' (d/)p(dp)3 2 =JgLotTJBuv > (3.59
4 (/=P)’D(W,/)D(=W,/)

Wrr:erfe a separzri]tlon |r|1todf|n|temand dd|vergeﬂt parts is madesnd T;o=H+], ,—0- This separatedg o into two subinte-
The finite part has a leadin and we call itJ We
b g ba BLO* grals. SinceHyo—Hy=(1— X)x/5—2(1—x)za/, the in-

have for this integral
g tegral associated with this factor is leading ord@nbecause
of the /y’s). We do this part numerically. The integral asso-

2 X(1—x) ciated with 1ﬁT0 is similar to others already done. Thg
integration is completed first, yielding

1
Jgio0= fd/ dxdudz
o= | (4 DID(W,/)D(-W,/) i,

1 . 1 14 x(1— x)
—— | (d/),dxdudz > - fdldxdudz — (3.58

3 D\D(W,/)D(—W,/) ¥ wHro

X(1-x) |1 1 1 ) .
X —— /O a’ g+ —as?/y+—asg|. (3.56  Then, the log term is extracted by writingad/as 1+ (w,
Ht 2 6 —1)/w,. The subintegral associated witho(—1)/w, is

leading O(a®) and can be done numerically. The integral

Because of the factors of, the second part of E¢3.56) is that has the one from the expression fob1above is

leading order®, so we puta to 0 and integrate numerically.
Setting this aside for the moment, let us turn our attention to 14 x(1—x)

the first integral of Eq(3.56). 1 f dldx du dz— , (3.59
The analysis for this is similar that done fdp . To 3 D/ Ho

extract the leading log, we write ﬁ/r in the form

and can be done analytically. This gives fy; o,

1 1 Hp—H-
= (3.57) _772| / 772| ™
H H HTOHT JBLO_ 24 n(l CY)JF n(2) 2 +JBLON y (36@
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where Jg oy IS the sum of the various subintegrals done
numerically.
The divergent part odg is

PHYSICAL REVIEW A 65042103

3. n1(e) term

This calculation proceeds in much the same manner as the
nc(e) calculation of Sec. IIIA5. After expanding ie and
a, pr(€)=—1/3— (17/9)e+ (2w/9) e — (106/27)°T (€).
Combining this with Eq(3.349),

2€7e —2¢
Jeuy= I'l—e)(1+e€ —(1+2¢
o=, T (Lt e)| ———(1+2¢)
1-¢2 ome, 2 0nr(e)AT L Am+{ a)z(ﬂ ROE
1—x)x €T YTy ye 222 e Ac="3LiAcT | | — € -
xf(d/)'n’dxdudz( ) ‘ el “YZHV]. 4 3 w 108 €
D|D(W,/)D(_W,/)HT 17 « 1 115/ 2
——=—+—a’+—=|—| (B™
(3.6 367 18 324\ 7
The trace is 4/(2—3)(2/3—2€l?+12). From this point, (3.64
parameters are used and we get
4. AR results
11 531 After doing the numerical integrations, we get
JBUV:7_2?+ 4_32;"_‘JBUVN1 (3.62
1 o a? 1
and fOfJB, A{g: —§L1 Ag‘FBm —5 ; +?In(;)
= L1, 381 7Tzl / 772|2 ak 4.30290%8 aZQ—VEzfll
Js=JsotIsuv=75 2 735 ¢+ 5z N(Le) + 571n(2) o) -4 88)]+| —| (Qe 7)™ 5=
2 1 1 89
_ﬁ—’_JBLON_'—‘]BUVN' (363 +; _55(2)4'@ . (363
C. Coulomb-transverse ladder
For the Coulomb-transverse amplitude,
@ 2
Ag=B" —| (Qe ), (3.60
with
e*ZEyE " AN ’ TCt 8777
o= f (da)i(d)(dp)s——— - , ; (3.67
64 (/=% (/=p)*ID(W,q)D(~W,q)D(W,/)D(-W,/) \ Dp
and
Ter=Trel Yi(¥(/ = W)+ 1) yo(y(q—Wn) + 1) y™(y(a+Wn) + 1) yo(¥(/ + W)+ 1)y, ()18 (/—p). (3.6

This integral is of order Inf) and a®, with the log term coming from the zero and opéerms of the trace. We call this part

KLo, while the yqy™yq part, of ordera?, is labeledK,, .

1. Ko

For K, o we can write

TLO 877’)’

1
K :_J d ”n d/ ”n d !
LO 64 (dg)z(d7)y(dp)s

042103

(7 =@)%(=(/=Pp))D(W,q)D(~W,a)D(W,/)D(~W,/)

(3.69

|

2
DP
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The trace term is the full trace minugy™yq: For K, o1 we have
Too=Ti(rly(7/=Wn)+1]y{[ ¥(a—Wn)+1]

1 dx 1

Xy [ y(a+Wn)+1]—yqy™ya}yo KLoF—Ef d®l(dp)s xh tanl(\/_h_
c c

X[/ +Wn)+1]y,@(5) 5 (7 —B).

8wy
2
DP

-

irpt-aitp=a/p

7 pl2+10(/ - P)?]

p*—
The g integration is done next, using the formulas in Eq. w Dyr
(3.6) and then the trace is computed. We find the trace can be (3.73
divided into factors having either four or six powers of mo-
mentum. Those with six powers a@{ «), as can be seen by

using the counting rules. This leaves us with The p integral can be done, leaving us with

128 S S
Tio=—— [1*+p*-41%p°-4/ . pp*~4/ - pl? 12
KLOl fd (_ PN
. D
+10(7-5)3]. (3.70 he/ @11
|2
To get this expression, we have made the nonrelativistic ap- W
A > . he/ @D
proximation ford(p) and averaged over spins. To compute ¢
Eq. (3.69, the 7/, integration is completed by closing the [ Y b
contour in the upper half plane. So, X|—2tan | —|+ - D, (3.74
d/, 1
j i (/-p)?D(W,/)D(—W,/) The? terms in both integrals have a tg(part. Combining
these terms and usingdy=1+(1—- w))/w, ,K| o, takes the
1 2w +r 3.7 form
B E rw|D|((w|+r)2—W2)’ ( ' :D
where we have definet=/ — p andr =|f|. Using the scal- K oo — 1 '_2
ing arguments, we see that Af and p are confined to the Lot \/h—c D,

nonrelativistic region, then Eq3.71) goes as—1/(2r°D)),
this being the most singular term in thg, integral. In this 1 dld (1—w|) 1 . _1( 1 )
region, all the terms iff o are the same order. Consequently, f X ———tan °| ———
we find a power count of either laf or «® whenl andp are X(1=x) IV1—x
simultaneously restricted to the nonrelativistic region. How- I
ever, it is also true that ip~ v while | ~1, the first term of - wf dl dx B
TLo is O(a), while the other terms have extra factorsaof xVIZ(1-x)+117+1
These terms can be neglected when the integration variables
are restricted to this region of momentum space.

These are the only regions that have contributions of the
order of interest. Proceeding, we write

W

X |2+1—tan‘1(l)), 3.79

wherel — vl in the last integral. The (£ w,) integral is done

— E 2ot numerically, while the others can be done analytically. Call-
2 roDy((o+1)°—W?) ing the numerically integrated pak, o;y, We get the ex-
1 1 2oi+r 1 pression
T 2neD |t | (ernZ=w2 F”
1 1 B 77_2 2 ) ’7T2
:_2w|l‘2D|+2w|l‘2((w|+l’)2—W2)' 372 KLOl__Fln(E)_?ln(Z)_W (E_Z +KLO(1; 8
T

Associated with this form are two subintegral§,o; and
KLoz- The relativistic part oK o,K o2, is
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To get this, all terms in the numerator that dependocare
1 dx 1 8my o . T .
= | Bl(dp).——tan | — || —= dropped and the approximatior-| is made. This integral is
02 (dp)s 2 . . . . .
127 Vxh vhe Dy done numerically. So, delaying the numerical integrations

until the rest of the amplitude is calculated, we have

-

[|4+p —412p2—4/ - pp?—4/ - pl2+ 107 - P)?]
oM *(w,+1)2—W?)

1Jd|d 1 1 L 1 a2 (1 2 , a2 1
- = X tan . Kio=——+1I (—)——I 2)— (——— +K
6 (1—x) @i+ ) I V1—x o= g~ M@= 157 ) HKiow
(3.77 +Kioz-
2. Kyy
The part ofl ., with the ultraviolet divergence is
ZGyE TUV
Kuy= f (AP - , (3.79
(/=@ (/=p)*ID(W,q)D(=W,q)D(W,/)D(=W,/)
with
Tov=Te[ % (Y7 = W) + 1) yoyay™yavo(¥(£ +Wn) + 1) ;@ (p) 15/ (7 = p). (3.79

We use Eq(3.28 to do theq integration, and, as in the previous calculations, get two terms for the ultraviolet part of the
amplitude

o
AQUVZEQEUC(G)A?+ B™

« ? - 2€e !
—| (e Ky, (3.80

3. Kyy

The calculation of this expression is straightforward. After ghiategration, we have

ezfyE [x(1=x)]"¢
Kuv=— F(1+ €) d/)”d du W (3.81
Tee[ % (Y7 = Wa) + 1) yoNNEo vo(¥(£ + W) + 1) ¥, (1+ o) yel 55(/) (3.8
[12+a2/(1—x) 1Y (= /) (= 2+ 2/0)(—/%=2/) ' :
|
The divergent part of this integral can be done analytically 11 29 1 2 191
and is(N, is the two/" contraction term and, t, andy are K(JV:?—Z?JF 216 122" 302 T Ko (389

the Feynman parameters used to dothimtegratior)

e?<7el'(2¢) s¥% N,
——fdsdtdydxd.,(1 T (x(1=s)a%)e

4. nc(e) term
For this part of the calculation we need the transverse part

1t et 77_2+ 191 (383 ©°f the one-rung ladder to order. This is
726 216€ 144 324 -
while the remaining part oK, is done numerically. We m__ 12 _2_ m
then get AT=—3 5.k 1lLoB™ Q B (3.89
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while 7¢c(€) to sufficient accuracy is m 4 m 1, (1
Act:(ng AT+Bm —ga In ;

A )+ 8,38 Ira+ (3.86 2

_ R . a

gl gt 57el(lre), +(; [6.265238 113)]
.o 2
giving us N ezt 51

+(7T (Qe77®) [72 2108 (3.88

D. Transverse-transverse ladder

o
m The double transverse graph is leading or@a®).

A B Lt PR EC (L
1, ") AT =3 L AT - (Qe 78" 5

68/ a2 - There are no Ing) terms. The amplitude is given by
81l (3.87)
2
Al= Bm(%) (Qe 7E)2q, (3.89
5. AJ} results
For A7} we finally get where

| _eZE)’EJ 40 (4 (do). Ttt 8wy 39
= ea ) A gy (D WD (- Wb (W, bW,/ | o2 ) ©90

and 1. Lfn

Te=Tulvi(y(7—n)+ 1) ys(y(q—n)+1)
XyY™(y(q+n)+ D)y (y(/+n)+1)yP(p)]

>

X 85 (7 —P) 6L/ —P). (3.91

One way of getting a numerically stable integral is to use
parameters for the inner loop integration and then do a Wick
rotation on the remaining momentum varialgf® poles are
crossed Also, we can sep to 0 in the fermion propagators,

v to 0 in the denominators and ugéd p)é(877'y)/D’23=1.

. o This simplifies matters considerably and we are left with the
With the absence of any log terms, it is reasonable to tr)following to calculate:

to calculate the entire amplitude via parameters. However,
this approach results in numerical instabilities, forcing us to
isolate the numerically troublesome terms and calculate them
separately. The ill-behaved parts are found to occur in the
ultraviolet finite part of the amplitude. Hence, we separate
the transverse-transverse amplitude into a UV finite and UV

Ain=B p Lfin (3.92

divergent part) t1=Lg,+Lyy -

where

_ 1 " v Tfin
|
In this approximation, the trace becomes Using parameters for theg integral, we get
Tin=Tr[7i(¥(/ =)+ D)y (»(g—n)+1) L fin 3
1 z°'°x
X y™(y(q+n)+1)— yqy™ [+n)+1 _ - " .
Y™ (y(g+n)+1)—yqy"ya} y(y(1+n)+1) 64f (d/); dz dx du(_/z)(_/2+2/0)(_/2_2/0)
X y(1+ o)
- - NO 1 Nl
X (—y€)18}(/ =) 84(7). (3.94 X[p— EK}’ (3.99

042103-17



ADKINS, FELL, AND MITRIKOV PHYSICAL REVIEW A 65042103

where A=zxH; and Hy is as defined in the transverse- Next, a zx(1—x) is factored from theA’s. Each term
Coulomb ladder calculation. Interestingly enough, the tracén the denominator lma 1 as thecoefficient of its /2
of the term that is linear i in the fermion line vanishes. term. The integration contour is then rotated counter-

This simplifies the contraction terms which become clockwise to run along the imaginaw, axis. A change of
64 64 variable/,—i/y is made, resulting in a numerically stable
N0=—§(zx)2/él2 and N1=§/é. integral.

2. UV divergent terms
The UV divergent part of the amplitude is

Bm( ) Tuy
= QeVEszd "(d/ ,
V= 5g | ) (28T | (AN e 2 2 = P 2a0) (— P20 (= 2 27— =2
[
with the trace with
Tov=Tu[vi(¥(Z =)+ D) ysyay"yqy(y(/ +n)+1) 732 {
N AT =] dzdxdu—- F(2+6)—2—e
X 1+ yo) (— y€) 164(/ — @) 8 (7). (3.97 ™ (2% ’
The i | of theygy™ i 1 NN
e integral of theyqy™yq term is _EF(1+E) H1+Ti _ (3.100
~ vquvmqvt T
Am(l—n,l+n)=f(d )
T Dn(=g7+290)(— 97— 200) and the following definitions:
X 65(7 —q) (3.98 Nro
312 Nro NNro= (zx)?2'
:dedXdW F(Z‘l‘é)qm
T . [\ , [n—3
NNpy=—+2(1-€)I*X| ——7—(5-n)z ™.
——r(1+e)H1+E . (3.99

n1(€) and ATy are the same as in the transverse-Coulomb
N+, and Ny, are the 0 and 1 contraction terms and are dif-section.
ferent than those calculated in the transverse-Coulomb sec- Putting these in E(3.89, we find
tion. However, the two contraction term\,, andH, are
as before. o . 2 2er
The divergent part of this expression is made manifest by ~ Auv= 7 7r(€e)AT+ BM(Qe” "E)Ly
an integration by parts, so we get (3.102

AT=nr(e)y™+ AT+ ATy (3.100  with

e?ere [ys(y(/ =)+ D(ATa+ AT (W7 + 1) + D) yi(1+ y0) yel
p o rrLl/s TA BT t 0 T,
Liy=La+Lg= f(d/) YT T s T(). (3.103
|
3. L, and Lg calculation L 481 72\ 1 . 310
To do this calculation, we introduce three Feynman pa- A~ "geat 18/ T han (3.104

rameterss, t, andy. The UV divergences for each are sepa-
rated and calculated analytically, while the remaining parts
of L, andLg are numerically integrated. The result is and
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L 11 651 5’ 23 n fd/"d S Wis
B™ 2_8822_ 1728;_ 1728— 128 SE— 7 A1 ( ) p)3 rr['y SF( n p)7
3.10
( 9 XSe(/+Wn+P)3c(/+Wn+p)Se(/+Wn+p)
and " R 8777 c ,
Xy ®(P)]| 5z | Dunl)- (4.9)
Lb\/: LA+ LB P
1 1 (@? 10271 5#* 23 : : .
=——— >+ R ——+Lan 3¢ is the mass renormalized self-energy operator in Cou-
288 € 18 1728 ¢ 1728 128 lomb gauge. This must be put in a form where the renormal-
Flan. (3.106 ization constant is explicit. There are several equivalent ex-
BN pressions. One that is particularly convenient is to wkite
as the Yennie gauge self-energy operator plus a gauge cor-
4. 717(e) term rection term. One advantage of this form is that all terms are
For this term we use the previously given expressions foseparately infrared finite. Other forms fbg have individual
n1(e) andAT and get terms that are infrared divergent. These cancel upon summa-
tion, but it makes these forms more difficult to work with.
o 1 o2 17 1 Specifically, we have
. € m_ _ m _ —vye\2€|
(477)9 meAT="zLATH| 7] (e (432 e)

2c(/+Wn+p)=(B;—Byy)(y(/+Wn+p)—1)

223( a\?
+m(; (3.107 +3(/+Wn+p)+25(/+Wn+p),
(4.2
5. A7 results

Adding the numerical integrations to the analytic parts, whereB,;=—L, is the Coulomb gauge wave function renor-
malization constant3,y is the corresponding Yennie gauge

m 1 mooml [ @ 2 quantity, and g, the gauge correction piece, is the sum of
A=~ §L1 AT+B P [0.385704021)] five terms. This gives foAZg,
+(a 2(Q yE)Z[ 1 1+1<1§(2) 9598)“ ,
— e i R A i P - —=l -
- 288 " |3 172 AT 2B, AT BT W) Qe 2 (43

(3.108

E. Double-ladder results with

The total double-ladder amplitude is gotten by adding

Egs.(3.36), (3.69), (3.88, and(3.108. This gives oo e2<ve f ) Tse
5 B ( N—/?=2/N)%(—/?+2/n)
A = 2 aeroamiam 1—2) &] + L (4.4
Ll \ 4 1 T 3 @

2

5.226 39711) + and

(Qe ve)2e

X

11 o Tse= Tl V(0 (/ =)+ 1)y (y(n+ /) + 1) S y(n+ /)
_3_2? _(__§(2)+192H (3.109 SE [y*“(y Y Y

+3c(n+/Ny(n+)+1)y" (1+y) vl (45
whereAT' is the one-loop amplitude.
The hardest part of the calculation is now done. The re-
maining amplitudes have leading orde?. A brief synopsis  To get this, the definitions ;= a/(477)(252 are used. Then,

of their computation follows. since |l g¢ is leading ordera ,p is set to 0 in the fermion
lines, the substitutionsW—1,®(p)— —(1+y,)ye are
/ 2_ 1 ..

IV. SELF-ENERGY AMPLITUDE made, and (dp)3(8my)/Dy=1 is used to do the remaining

integration over the relative momentum.
The amplitude for the self-energy correction to the vertex In this nonrelativistic limit, the expressions for the self-
corrected lowest-order amplitude is energy terms become
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Sa(N+ ) =31+ /)+3o(n+ /) +3a(n+/) and
+34(n+/)+35(n+/), _
Sv(int)==(y(n+/)—=1D* B+ 1) (1+e€)
_ 1 )
21(n+/)=§1“(1+e)f dxdz z Ve ex~e Xf g xte y(r+/7)
A=) [= /2= 2/n+xlI(1-x) ] ¢
[(7(n+/) 1)NR+NL(7(n+/) 1)] (4.6)
H1+E ’ '
gz(n+/):|2( y(n+/)—=1)T(2+€) where B, the gauge parameter that defines the Yennie gauge
[27], equals 2/(1-2€) andq=(1+/o,zf). The denomina-
dx dy di g 1 (1=2)(2—X) tors are G=x+(1-x)(—/?-2n/), H=G+x(1-2)I?,
XJ xdzadt z H2te ' ﬁ=G+x(1—z)tI2, while the spinor factors iX.; are
— |2 7 Z
23(n+|):E(y(n+/)—1)r(1+e) NR:(')’[(n""/)_XQJ"'1)[7’(”"'/)_2(1070]"'(2_227)

—€e,—1/2—€
xfdxdzdt)% z and

(1-2[1-(3-26)7]

Tlte ’ N =[y(n+/)—2q0y0{ Y[ (n+/)—xq]+ 1} +(2—Xx).
H (4.9

2

= ‘ : B
S4n+)==(y(n+ /)= 1)(/?+2/ ) 5 T(2+ —
a( ) 1 )= o) 2 (2+¢) Another advantage of_expressiﬁlg; in this manner is that,

with the exception of2,, there are canceling terms in the
fdx EG2+6, numerators and denominators.
Putting the various pieces together, we can write

Se(n+/)=(y(n+/)—1)2BT(1+€)

1
X f dx X17€W

+(1—e)§(7(n+/)+1) ,

(y(n+/)+2)(1—x) ISE=IY+§1 I (4.9

with the following expressions for thig’s:

S o e A s
(4.10
l,=— F(t—l—e)ezﬂEJ' (d/)rdx dz z V2 ex—e
Tn[m(v(/ n)+1lizTE((7(//2+n2?/nl))zl;I J;lz\li(zy/(i) n)]y,(1+ 70)76][)2”(/) 419
|2=—F(23—: MEJ (d/)pdx dz Z V% x!~(1-2)(2—x)I?
XTrr [y (y(Z=n)+ 1)y (y(/+n)+1)y,(1+ yo) ve] DS,(/), @12

H2 4= /2=2/n)(—/?+2/n)
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I'(l+e
64

DAL [y (y(7 =)+ 1)y"(y(7/+n)+ 1)y, (1+ yo) ve]
HYT (= /2=2/n)(—1%+2/n)

I3 ) eZGVEf (d/)rdxdz dtz Y2 ex¢(1-2z)[1—(3—2¢€)z]I?

DS.(/), (413

I'(2+¢€)p? T /=n)+1)y"(y(/+n)+1)y,(1+
PGl 646)3 eZeyEf(d/);;dx ime T L7 )Gzzz(_(?/f%m;) )71+ %) ve] DS(/), (414
and
I'(1+¢€) ,
52——( 326 'BEZE”EJ (d)pdx X € Trp| ¥ (¥(/—n)+1)y™
({[7(/+n)+2](1 X)+ (=€) B2} y(/+n)+1)y,(1+yo) ye
Gl+5( /2+ Z/n) /.w(/) (415)

Eachl; is evaluated using parameters, with the divergent _

terms, if any, separated and computed analytically. The re-  AZ4(p".p")= —f dx dU{X_m_E

maining finite parts are done numerically, giving us

I'(2+e) P I'(1+e)

Ac HZ e +Ac1 Hite
c c

2
o
AT=2B, A Bm( )[5 683940 311)]

I'(2+e€) 8 I'(l+e€)

11 capZTe +Becy DL

st
E

+BM

|

2
) (Qe 'yE)Ze

5 ) 139)1
g(( )—% —

(4.19

(5.9

where
V. SIDE VERTEX

_1_ 2,12 _ =212 12
The amplitude for the vertex correction to the annihilation He=1-uv[ko—xk]+(1—x)[up"“+vp’?], (5.53

vertex is )
Dc=1—xuvk?, (5.5b
B™
ASy= 74 f(d/)”(dp)STrr['yaSF(/ Wn+p) and
X yMSe(/+Wn+p)ALL (£ +Wn+ ,Wn+ p)®(p 2
S PIAL( P ()] YR —— (5.63
Ty
X —T)Dgﬁ(/). (5.2)
Dy -1 X
A =(NE,—vP)+x —_3+—_1 yP
A’f is the one-loop vertex operator in Coulomb gauge. When n n

writing this operator in a form suitable for calculation, it is n—2

best to write a separate expression for the Coulomb and +Xm70757’O]H01, (5.6b
transverse parts. This results in the following lengthy expres-

sion for the vertex operator:

2
ey B —_— B 2
A’f(p",p’)=L17B+(—4L:T>QEA§(p”,p’), (5.2 Beo=—3 v uvk’, (5.60

where

n—-3 n-—1

AB(p",p)=AE4p".p")+AE(p"p), (5.3

andL,=—B;. The subtracted Coulomb part of the vertex
correction function is with
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NZo=7°(y(p"—Qc)+ 1) ¥ [ ¥(p' — Qc) + 117, .

and the definitionk=p”"—p’, v=1-u, Qc=(q%xd), q
— u pH+ v p! ,
verse part of the vertex correction function is

AB(p".p')= f dz dx dL{zl’z‘fx‘f

I'(3+¢€)

T(1+e)
AT2 H2+E B

Tl H1+e
T

I'2+e)

d ge P I'(l+e)
T2 pZTe

_|._
I i+e
D1

(5.9

where

Hy=x—xuv[k3—zK]+ (1= x)[u(1—pp2) +v(1-ps3)]

+(1-zx)[up"?+vp'?], (5.93
Dr=x—zxwk?+z(1-x)[u(1-p">)+v(1-p'?)],
(5.9
and
ZX'\#O NTlHTl’ (5103
-1 — n—2 -1
A%:T(Ngl_Ngl)‘FTZX[ m+(n—3)z
n—2
+ - +2z YOY'BYO]HTL (5.100
8 1
Bf,=—5 N\Dr, (5.100
Bf = — —X{(1-4e+26)y+(2—€)y*y*¥*}Dry,

(5.1009

T'(1+e)

and Hgy=(d/9x)Hc. The subtracted trans-

T [70(7(/_

PHYSICAL REVIEW A 65 042103
with

B=7Y(¥(p"=Qn+1)yP(y(p'— Q) +1)

Xy (G258 —aia;), (5.119
=7 (y(p"=D+ 1)y (v(p' 1) +1)

X Y(728= i/ )]1-contraction (5.11b

NFi=—(n=-2)x[ny*= """, (5110

and the definitionsQr=x(q%zd), Hy;=(d/dz)H;, and
D11=(d/9z)Dy. The contraction in(5.11bh is to be done
over / using the “metric” diag(1#,— §;;) and the replace-
ment/— Q. Both A2¢(p”,p’) and A24(p”,p’) vanish in
the “particle at rest” limit, that is wherp”, p’—n and yn
—1 on the left and right. For the present calculatigf,
=/+n, p'=n, k=7 andgq=n+u/.
Using Eq.(5.3), we can write Eq(5.1) as

2
o
Ag]VZZL(l)Alm"‘ Bm ;) (Qei’ye)zq SV (512)

The subtracted part of this amplitude @ «"), so we can
make the appropriate nonrelativistic approximations, simpli-
fying the expression forgy, to

e2€vE
lsv="— f(d/)I,Trr[yaSF(/ n)y"Se(/+n)

XAB(/+n,n)(1+ y0) ye]DS4(7), (5.13

which, from the equation foA2, can be written as the sum
of 16 terms.

Each of these integrals 8(«"), so Feynman parameters
are used. However some of the resulting parameter integrals
are numerically unstable. Fortunately for these, only small
adjustments are needed to get numerical stability.

For instance, unstable behavior occurs in the calculation
of

n)+1)y"(y(/+n)+1)A2,(1+ yo) ve]

cem= eZGVEJ (d/)rdx dux Y2

32

72 2_ 2 1+e (5.19
(== 200)(—=/"+2/ g)He

(The first subscript refers to the spanning photon and the second subscript refers to the exchange pligtgn. rBeans the
AL, part of A4 and a Coulomb exchange photpfihe terms which cause the trouble are not hard to locate. They are the ones
in the trace that are linear i. But, these are odd functions &f, and integrate to 0. Upon eliminating these from the trace,

the resulting numerical integration converges.

Another example of a numerically unstable integral is

I'(1+e)
32

ltcm=

Tor ['YO('Y(/_

eZGVEj (d/)rdx dudz 22 ex~¢

n)+1)y™(y(/+n)+ 1A% (1+ yo) el

72 2 2 1+e 5.19
(=0 =20 ) (= “+2/9)H7
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Here, again, the troublesome terms are the ones linegg.in 2

However, these can not be neglected since these expressions Bm( ) (Qe eI (6.9
are not odd functions of’,. A strategy that works is to

isolate the/y part of the integrand and use

1 1 e2€7E
(=/2=2/9) (=/%+2/) le="g4" f(d/)”(qu’Trr[vaSFq n)y,Se(q—/—n)

_1 1 1 X Y"Se(A— /7 +N) y5Se(N— ) 7,(1+ 7o) el
4/0\(=/%=2/0) (=/%+2/) up o
X DZP(q)DL (/). (6.2

and cancel theé, in the numerator. This procedure yields a
numerically stable integral.

For other similar integrals, relations such as/?=
(=/?%=2/4—7/%+2/,)I2 can be used to eliminate denomi-
nators and stabilize the integrands.

Adding the results of all the integrations, we find

The calculation proceeds as follows. We write the photon
propagators as sums of the Coulomb part and the transverse
part. This partitionslsy in a natural way into four parts,
according to whether both photons are Coulomb, one Cou-
2 1 lomb and the other transverse, etc. The Coulomb-transverse
P ((Qe 75)26( T 16¢2 and the transverse-Coulomb should be equal so their separate
calculation provides a partial check on our results. A straight-
forward application of Feynman parameters suffices, with
one exception, to extract the UV divergent parts of each in-
tegral and to yield a finite integral that behaves nicely when
(5.16 computed numerically.
VI. CROSSED LADDER The exception to the above occurs when computing the
Coulomb-Coulomb part. After separating the UV divergent
parts, the remaining finite part is numerically unstable. The
.unstable part of the remaining finite part can be identified as
the following integral:

AD,=2L,AT+B™

+

1 5 1)
~ 0@+ 5 2.093273812) .

The crossed ladder diagram is leading ord€r so we
make the usual nonrelativistic simplifications and getaan
independent integral whose finite part is computed numeriz
cally. The amplitude is
|

=7 [ @)iaa 2902~ 7o) 6.3
“G17(/0— 1)*~ 0 ][(do— 1)*~ wgl[(Fo=dot 1)*~ 0" ?][(/o— G0~ 1)*~ w"*]’ '
|
The w’s are the relativistic energies: a 2 ) 5 511
“YE)4E| | — — _
A7 =B ( ) ‘(Qe ) ( 5242+ 75 6)
=V@+1, o' =V(/-§%*+1 (6.4)
—1.796 10319)]. (6.6
and w is as before.
For the numerical evaluation, we first integrate over VII. VACUUM POLARIZATION
and o which yields the following surprisingly simple look-
ing expression The amplitude originating from the vacuum polarization
correction to the exchanged photon has been previously done
(0qo—1) (20" + w; + o) [28—30. It is the simplest to calculate and can be done ana-

— f dldgdu lytically. For completeness, we will outline our calculation of
this amplitude.

The unrenormalized Coulomb gauge photon propagator is

wqw|w'(w’2— Di(w'+ w|+wq)2—1] '
(6.5

whereu is the cosine of the angle betwegrandq andl and , c . 1 c .,

g are the magnitudes of the momentum vectors. This integral D= 1+11(/) DW(/)=231+HR(/) Du(?)

can be integrated successfully and give$.233 703 221). (7.1
This diagram has no inner loop divergence, so its diver-

gent part is proportional to &/After separating this, the final with DC (7) given in Eq.(1.6). Z5 is the charge renormal-

value of the crossed ladder amplitude is ization constant 11+11(0)] andIlR(/?) the renormalized
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scalar vacuum polarization function, of which the one loopthe formulas given earlier for the renormalized one and two-

approximation is needed. A useful form for this is

72 Y e 2
I )r(7)=— ﬁﬂ I'l+e)/

xfdz

Then, the vacuum polarization amplitude takes the form

7’(3—22)(1-22)
(1-z(1—2z2)/%)t e

(7.2

2
Alp=B" p (Qe 7E)%Iyp (7.3
with
r(1+
lyp= — (48 o eZEYEJ (d/) dz
7’(3—22)(1-22) 1
(1-2(1-2) /%)< D(W,/)D(—W,/)
XTo [y“(y(7-m)+1)y"(y(/+n)+1)y”
X (1+ o) vel[ /D5 (/)] (7.4
The trace times?D; (/) is
4 16(e—1)
= 2 2 2 2
/(=) +8e - =2 (7.5

Symmetry arguments can be used to reduce the number

loop vertex amplitudes ATr=AT'-L;Ag" and AZz=A7
—L,AT—L,AJ+L2AT (see Appendix B and taking into
account the above mentioned cancellation, we get upon sum-
ming Egs.(3.109, (4.16), (5.16), (6.6), and(7.6), a contri-
bution to the energy shift of the hyperfine interval of

3

—a’[0.083747 212)]} . (8.

1 a ad?

___J’__
iz en

1

4
AEja+2(1c—14)= Ma [ o

IX. PREVIOUSLY CALCULATED AMPLITUDES

The remaining amplitudes shown in Fig. 1 have been pre-
viously calculated and their results are compiled here for
easy reference.

The one-loop vacuum polarization contribution, pictured
in Fig. 1(b), is the renormalized scalar vacuum polarization
functionITz(4W?) times the lowest-order amplitude. This is

ma,4 2

8« a 5

AEla:T —5 ; +Z+"' |0
_ 4 2 a+a2 2 a? 0.1
B ) P R T e

The «?/16 term is from the expansion of the one-loop
Ohcuum polarization  function [29,31, while the

denominators so that only two Feynman parameters are 2/27(a?/ ) is from the relativistic expansion of the wave

needed. The integrals are relatively standard and we get
2

A BmaZQWEZEll 11 #* 1
vem B ) (e T e Taa e T 16 Bed

(7.6

VIIl. TOTAL TWO-LOOP VERTEX CORRECTION TO
THE ONE ANNIHILATION PHOTON AMPLITUDE

We have completed all the necessary calculations to co
pute the energy shift of the two-loop vertex corrected one
photon annihilation amplitude. This shift is twice the differ-
ence of the shifts associated with Figgc)land 1d), to
which we must also add the shift due to Figa)l

It appears that we need to know the unrenormalized on
loop vertex correction to ordex®. However, this is not so
since thea® part of the energy contribution of Fig(d mi-
nus twice the part of Fig. (dl) that comes from the relative
order &? part of the unrenormalized one-loop vertex correc-
tion AT cancel. Then, using

L1=<%)QGF(6),

3
§§(2

391} 1

@ 2
— —YE]2¢€ N
L2 77') [re 7] { 576/ ¢

96 €

+1.258 3855) + O( e)] [21],

function.
The vacuum polarization contributions from FidelLmi-

nus Fig. If) is

The 2/27@?/7) term here also comes from the relativistic
expansion of the wave function and cancels the similar term
in AE,,. The other part was worked out by Karshenboim
29].

The two-loop vacuum polarization contribution was done
some time ago by Barbieri, Christillin, and Remidi@B] and
Samuel[24]. The result, plus the reducible product of the

+2012
27 @

8

9

o

)

AE o 1¢= maA( 9.2

dwo one-loop vacuum polarization functions,

(¢4

+0.038332773 %
9.3

1
AE1g+lh: ma4[ - g C(z In

Note that this is does not include the “Coulomb distortion”
part of [23] which we include in the many-potential ampli-
tudes of Fig. k).

The many-potentialMP) terms of Figs. @), 1(j), and
1(k) are similar to the MP contributions in other equivalent
formalisms. The corresponding contributions were worked
out by Caswell and Lepadé5], where it was noted that the
contributions having two annihilation photons and an anni-
hilation photon with a transverse exchange photon should be
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TABLE I. Contributions to the positronium hyperfine interval at AE J7 a8 . 1| o | 4 a2 5 | 1 . 1367
orderma?®. th= Ma 1—2— ; § E n( ) o ﬂ n ; W
Contribution D AE (MHz) 5197+<221+ 1 )I X 53 . )

—_—— [ n —_—
Three-photon-annihilatiof36—-38 —0.05194 —0.969 3456 |\ 144" 272 (2) 3272 £3)
Two-photon-annihilatior}39,40 —0.03248 —0.606 3 3
One-photon-annihilatiofithis work,[32]) —0.12565 —2.344 e |n2(£) + (2_17_ 1—7In(2))iln 1) } )
One-photon-exchand®8,41,42 —-0.01374 —0.256 8 a 90 3 ™ @
Two-photon-exchangpt3,44] —-0.54535 -10.175 (10.2
Three-photon-exchand&3,35,45—-4Y 0.376 32 7.021 ) ) ) o
Total -039283 —7.329 This gives the theoretical prediction AEy,

=203391.69 MHz, which disagrees with the experimental
values by 2.6 to 4.2 MHz.

formalism independent, while the term involving the ex- R
change of a Coulomb minus lowest order photon should beX!- 1S THERE A POSITRONIUM HYPERFINE PUZZLE*

our result for the Coulomb minus lower order contribution ;7 In(a) term contributes-0.32 MHz to the hyperfine split-
agrees with that of Buchntier and Remiddi[14], which  {ing it is reasonable to expect that thé term G in Eq. (1.1)
u.nderscores the c!osepess of the formalisms. Fgr the indigill not be sizable enough to bring theory and experiment
vidual ' MP contributions ~we  have,AEy=ma’[1/16  into agreement. This raises the spectre of whether there is a
—U16/(2)], AE;j=ma’[7/16-1/47(2)], and AE;c  “positronium hyperfine puzzle” analogous to the orthop-
=ma®[—3/16] to give a total MP contribution of ositronium decay rate puzz[@4]. This cannot be answered
AEy; 1)+ 1= mMa"[ 5/16-5/164(2)]. _ o until a more precise experiment is done. Also useful would
The final contribution, from Fig. () is the derivative pe an estimate of at least the dominant contributioah
term. This is similar to the derivative term calculated by grder to rule out the possibility tha has a valug~20 to
Caswell and LepagL5], except for a formalism dependent 30) |arge enough to account for the present discrepancy.
sign and the fact that only the one-photon annihilation part jth regard to the theoretical calculation, based upon our

contributes here. The derivative termA€ ;= — ma5/32.
The total result for the coefficient ofia® coming from all
one-photon annihilation contributions is

AE;_, ani=—0.125648112). (9.9
This agrees with the analytic result
analytic a6 13 27
AEl,y,ann—7 3—25(3)4' §§(2)In(2)
1183 ) 147 9
T 192¢D 33 ©.9

of Hoang, Labelle, and Zebarjg@2], who used the effective
field theory NRQED for their calculation. The numerical
value of the analytic result is-0.125648 7.

X. THE TOTAL HYPERFINE INTERVAL

In Table I, we list all ordema® contributions to the hy-
perfine interval which gives fob a value 0of—0.392 83 and
a contribution of—7.329 MHz to the energy difference.

Since our work was completed, the orderIn() contri-
bution has been calculated by Kniehl and Peffih and
Melnikov and Yelkhovsky[10]. This allows us, using the
results of Hoang, Labelle and Zebarjad, E5), the three-
photon exchangépure recoil results of Czarnecki, Melni-
kov and Yelkhovsky[33], the ordera’ In%(a) calculation of

experiences with the present calculation, it is our opinion the
next order term should be computed using more modern field
theory methods, collectively called effective field theories
(EFT) [35].

Positronium is a nonrelativistic system and EFT are con-
structed to take advantage of this by making a separation
between the nonrelativistic and relativistic parts of the calcu-
lation. This distinction is determined by the various energy
scales present in the theory. This separation allows for much
simpler identification of terms that contribute to a particular
order in . This is to be contrasted with conventional rela-
tivistic field theory methods, as used in this paper, where
integrals contribute to many orders in the fine structure con-
stant. It is this that makes the analytic evaluation of these
integrals extremely difficult.

EFT calculations are still highly nontrivial, particularly
since the relativistic part d& will require the computation of
the three-loop electron-positron scattering diagrams. This
part of the calculation alone will require considerable re-
sources, both human and computer. It is probably safe to say
that this calculation will not be completed in the immediate
future.

ACKNOWLEDGMENTS

We thank A. Hoang, P. Labelle, S. Zebarjad, and K. Pa-
chucki for discussions of their work prior to publication. We
also thank S. Karshenboim and J. Sapirstein for useful dis-
cussions. G.S.A. and P.M.M. would like to acknowledge the
support of the National Science Foundati@hrough Grant

Karshenboim[5], and the above mentioned contribution to Nos. PHY-9408215, PHY-9722074, and PHY-007084ad

write an analytic expression farE correct to ordew’ In(«)

the Franklin and Marshall College Grants Committee.

042103-25



ADKINS, FELL, AND MITRIKOV PHYSICAL REVIEW A 65042103

APPENDIX A: NOTATION D|=|2+ 72,| :|/7|7
The orthopositronium reference wave function is

n=(1,0).

20, )

wp-l-m

wp+W 172
2W

‘I’O(p)=2w5(po)(
APPENDIX B: RENORMALIZED PERTURBATION

X[A L (B)(1+0)(— YO A _(B)(— )] SERIES
In this appendix, we will derive Eq1.9) graphically, us-
x(ﬂ) ( 8”7) ing the following definitions. The vertices are
ovz/| D2
¢o | [8my —iey™ = < ,—tey™ = C< and 4™ =<. (B1)
=278(Po)| = (—2 @(p), (A1) . : .
0
2v2)\ Dy e is the renormalized charge, the unrenormalized charge

ande= eozﬁ’z. Z5 is the charge renormalization constant and

where ¢o=\/(ma)3/(87) is the wave function at contact, tg two loops is
D,=p?+ 9% p=|pl, W=m\(1-a?)/(4n?), €=(0%) is

the positronium spin vector and

23: :[1+C1+C2+"']_1
1+C
€=(0,0,1), (A2)
=1-C;—C,+C3+0(ad). (B2)
e =— —(=1j.0). (A3) A renormalized fermion propagator is
V2
The nonrelativistic approximation of the wave function is - _ + S +... (B3)
WO(p)— 2 8(po) (L bo |8y
(P)—2m&(Po) (1+ 7o) (— ve) 3 D2 |’ and the product of two renormalized fermion propagators is
(A4)
Other definitions used in the text are Sy S
BM=vZiepoe™ —— - * - e
B4
(d/) 5= (d )l 2m)", (B9
In the two last equations, the unadorned lines are free fer-
B mion propagatorsiR stands fom-loop renormalized and the
(d7)p=(d"/)1(i7™), stubby lines attached to the self energy insertions are free
propagators.
D(=W,q)=—q°=2Wna+ y?, The two-particle irreducible kernel is

K:KA+K/IR//= =>__<+ I (BS)

with?

°The factor of—1 is a fermionic minus sign.
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| ¢

The last figure on the right stands for the expansion

(B8)

and

(B7)

+ +

£

PHYSICAL REVIEW A 65 042103

The unrenormalized vertex function is
['M= M+ AT HAD+---. (B9)

In this, 1, 2, etc., refer to one-loop, two-loop, etc., so

(B10)

and

QL

(B11)

If we multiply I''™ by a wave function on the right and is a complicated function ofxr and can be expanded in a

integrate we obtain
' = A7 + AT+ AT + ...

(v G e

(B12)

In the graphical representation of the amplitudes, the wave

function is always implicit on the rightleft). Af' is repre-
sented by the first diagram;" by the second and}' by the
third diagram. 2J stands for two-loop unrenormalized.

The renormalized vertex is
IR=Z,(I")M=(1+L+Lo+..) Y (y"+AT+AT+...)
=y (AT—L1y™+ (A7 —LiAT— Loy
+yML2+)
=y"+ AR+ ASR+- -, (B13)

and when convoluted with a wave function,

TR0 = AT + AT, 4 ATe+ ... = < + 6 . é .
(B14)

A7k is represented by the second diagram &3{ by the
third. It is important to remember that each term in EB{L4)

series of powers ofr and In().

We are now in a position to derive EL.9). The dia-
grams we are interested in come from the second and third
terms of Eq(1.8), i.e.,KgsSKgsSKgs— KgsSKgs, which we
represent pictorially as

AF = —

(B15)

Implicit on the left and right are wave functions and integra-
tions over relative momenta. The double horizontal lines and
the double vertical lines are the previously defined renormal-
ized fermion propagators and two particle irreducible ker-
nels.

We need those parts &fE that contain the single annihi-
lation photon kernel. To orde#®, these are the ones with
one, two or three factors of the annihilation kerig|. Call
theseAE;, AE,, and AE;, and their SUmMAE ,;=AE;
+AE,+ AE;. For the term with three factors of the annihi-
lation kernel, we have

The vacuum polarization bubble is

(B16)
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u@u = il (k) = —i(—guk?® + kuk )II(K?) = uOu + u@u + u@u +... (B17)

To the required order of accuracy, only the first term of Eq. I1,(k?)=T1,(0)+I;4k?)=C,+1I;x(k?. (B19)
(B17) is needed. Then, we can use
In this last equation, we have replaced the subtracted one-
loop vacuum bubble by the renormalized one-loop vacuum
bubble, that is,
yQu = T (k) = —i(—guuk® + Kok, )L (2)

(B19) I11R(K?) = Z51115(k?) —TT15(ky),

and since this involves no loss of accuracy. Then

AE; = ->~w<cf + 201 - . (B20)

To get this form, we have made use of the definition

.—->V\N<H1}z(k2) = - (B21)

For AE,, we separate it into two subexpressions. The fik§,,, is particularly simple:

The remaining subexpression is

At = 2> (O—]->

(>——©—<l ) 0~
(P OO

-2 (e Ol e O e O

Dl D G Ol

A -l 426+,

To get this, we have expressed the renormalized self-energy insertions in the vacuum polarization loops in terms of the
unrenormalized self-energy operator. Also, we udge= y™L,+ AL, which pictorially is

042103-28



CALCULATION OF THE POSITRONIUM HYPERFINE . . . PHYSICAL REVIEW A 65042103

Q - L+ @ (B23)

So, upon addingAE,, andAE,, we get

a2 (Yo g e O
A DA A
+(1+ 201)>WO‘M< . 820

This can be further simplified using

OO e O S e a e
- >~v-<(c2 + Tar(K?))

Next, we need to write the unrenormalized one-loop vacuum polarization bubble ({BE4).in terms of the renormalized
bubble. To do this we need to express the two factors of the renormalized charge where a photon meets the vacuum
polarization bubble in terms of the bare charges, usfigZse,. Doing this,

=>W<cl(1_cl)_+... (B26)

For the terms in the first line of E¢B24) we can write

2 (DO O =2 [ e ey
=2 (M —M) C1
OO,

Putting everything together, we get for the sum of the two- and three-annihilation kernels
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R L O P OSY

A= (-
+>w<(cl+02 (M >01 o9

The one-annihilation term is

sz-p—q +2(>—q ->—)

For this, we make use of E¢B4) and Eq.(B7), giving

AE1=—MZ§Z§1—2 (>\-<{§+>W€+ +

+W%+>MQ‘>W<§)' (B30)

To get this expression many cancellations and approximations have been used. An example of such an approximation is the
following which uses the unperturbed wave equation to show that the difference of the two diagrams is of higher order.

3%

Such terms can be dropped from EB29). In Eq.(B30), we used Eq(B8) to expand the third diagram in the parentheses and
then wrote the renormalized self-energy and vertex insertions in terms of their unrenormalized counterparts and appropriate
renormalization constants. The renormalization constants cancel and we are left with

»AEl = M z3z3' -2 (>w~<§ - >\~<§) : (B32)

Next, we want to put the first term in EB32) in a form with factors ofC; andC, explicit before adding this to E¢B28).
So, usingZ; '=1+C,+C,+-, we get

- O B2 = - S - @+ a2 - M (B39
—(C1+C2) M
M ZZ+ 2L101 >vv-< -(C1+Cy) M (B34

To get this, we used
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—(C1 + Cg)(Z% -1) Mz 2C Ly >V\/'< + 0(07).
For AE;, we now have

AE; = — M ZZ +2L,Cy - (C1+Cy) M
_q (>W<§ _ >W<§ . (B35)

Adding this to Eq.(B28), we have

-+ D@D - D)
= A= o AD - oADA
—(C1+Cy) (M - >w-<) +20, <>w<~§ - >w<)

We were able to write the last two terms in EB36) in terms of renormalized quantities by making use of the identities

€ =< - 37
P u>
é = é - L,<§ - L2< + L§<, (B39

and the approximations

Z5=1-2L,—-2L,+3L3+0(ad), (B40)

Do
=2>\~<§ - >rvv<+0(a6). (B41)

aeier [ - e
_ __2 (}v@ - ) (842
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We also note that the term proportional@3 is of O(«’), as it is the sum of the terms proportional@g. Our final result
for the one-photon-annihilation contribution to the energy shift is

- P -

N S oSO
(e - 4

(B43)

The sum of the last two terms &fE;p3is AE;,41 5(1c-14)» EQ. (1.9 of the main text.
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