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Calculation of the positronium hyperfine interval using the Bethe-Salpeter formalism
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We use a variation of the Bethe-Salpeter equation to complete the calculation of the one-photon annihilation
contribution to the hyperfine interval of positronium at orderma6. Our results are in accord with a quite
different calculation independently done using an effective field theory approach. This completes the evalua-
tion of all thema6 terms. We give the total theoretical value for this interval and compare with experiment.
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I. INTRODUCTION

Positronium is the bound state of an electron and posit
These are pointlike, electrically charged particles, which
teract primarily via the quantum electrodynamic~QED!
force. The effects of the weak and strong forces are ne
gible. Consequently, positronium is subject to much exp
mental and theoretical study, as it provides a means of tes
our understanding of bound-state QED in a system un
turbed by other forces.

Of particular interest is the hyperfine interval, the diffe
ence of the energies of the ground state spin51 and spin
50 states. If we label positronium states asn2S11LJ , where
n is the principal quantum number,S the intrinsic spin,L the
orbital angular momentum, andJ the total angular momen
tum, the hyperfine interval isDE5E(13S1)2E(11S0). The
theoretical expression for this can be written as

DEth5ma4S A1Ba1Ca2 lnS 1

a D1Da21Ea3 ln2S 1

a D
1Fa3 lnS 1

a D1Ga31¯ D . ~1.1!

The theoretical calculation of the hyperfine interval beg
with the advent of modern quantum field theory in the la
1940s and early 1950s with the calculation of the coeffici
A @1–3#, followed shortly thereafter by the calculation ofB,
a one-loop calculation, by Karplus and Klein@4#.

The computations of the ordera6 terms,C and D, are
much more complex because these are two-loop calculati
Consequently, there are many more graphs, most cons
ably more complicated than those that contribute to low
orders. As a result, the calculation of thea6 coefficients has
been done in parts by many groups and has spanned n
40 years. By the mid 1990s, all ofC and part ofD had been
computed. There remained to be calculated the contribut
to D coming from the two-loop corrections to the one-phot
annihilation graph. Additionally,E was computed by Karsh
enboim@5# in 1993.
1050-2947/2002/65~4!/042103~32!/$20.00 65 0421
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At this point, the theoretical expression for the hyperfi
splitting was

DEth5ma4F 7

12
2

a

p S 8

9
1

1

2
ln~2! D

1
5

24
a2 lnS 1

a D2
7

8p
a3 ln2S 1

a D G
5203 399.34 MHz, ~1.2!

which compared unfavorably to the measured values

DEexpt5203 387.561.6 MHz ~7.9 ppm! @6,7#

5203 389.1060.74 MHz ~3.6 ppm! @8#,

~1.3!

a difference between theory and experiment on the orde
10 MHz.

To get an estimate of whether theD term could signifi-
cantly reduce the size of this discrepancy, we assume thD
is of the same order of magnitude asB (uBu50.39), and take
it to be 1. Then, theD term would contribute 18.65 MHz to
the hyperfine interval. Thus, it was clear that before a
meaningful comparison of theory and experiment could
made, the calculation ofD had to be completed.

In this paper we describe our calculation of the previou
unknown two-loop corrections to the one-photon annihi
tion graph using a variant of the Bethe-Salpeter formalis
Subsequent to our calculation, the relative ordera3 ln(1/a)
coefficient F was calculated by Kniehl and Penin@9# and
Melnikov and Yelkhovsky@10#. Their results are included in
the final theoretical expression at the end of the paper.

A. Bound-state formalism

Our formalism is a quasipotential variant of the Beth
Salpeter formalism@11# and is closely related to the method
©2002 The American Physical Society03-1
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ADKINS, FELL, AND MITRIKOV PHYSICAL REVIEW A 65 042103
of Barbieri, Remiddi, and Buchmu¨ller @12–14# and Caswell
and Lepage@15#. Details of the formalism are given in@16#
and are summarized below.

The bound-state equation for thee2e1 to e2e1 Green’s
function G is G5S01S0KG, whereS0 is a modifiede2e1

propagator andK is the ‘‘quasipotential.’’ ForS0 we use@17#

S0~p!52pd~p0!
2 i

2~vp2E/22 i e!

3@L1~pW !g0#~1!@L2~pW !~2g0!#~2!T, ~1.4!

wherevp5(p21m2)1/2, p5upW u, and theL6(pW ) are projec-
tion operators. The reference bound-state equation has
form G05S01S0K0G0 , whereK0 is an approximation toK
containing the dominant nonrelativistic physics and is cho
so that the reference equation can be solved exactly.
reference energy levels and wave functions can be found
studying the pole structure of the reference Green’s-func
G0 . With the particular reference kernelK0 that we are
using, the reference energy levels areEn

052m@1
2a2/(4n2)#1/2, wheren is the principal quantum numbe
The n51 reference wave functions have the form

C0~p!52pd~p0!S 2vp

vp1mD S vp1W

2W D 1/2

3f~pW !@L1~pW !GL2~pW !~2g0!#, ~1.5!

whereW5E1
0/2, G is a 434 spin matrix, andf(pW ) is the

nonrelativistic momentum space wave function.

B. Choice of gauge and ultraviolet regulator

The proper choice of gauge is critical to the success
precision QED bound-state calculations. For instance, ca
lating in the covariant and algebraically simple Feynm
gauge is not well suited for such problems since spuri
lower order terms are generated. These extra terms eve
ally cancel, but only when an infinite number of diagrams
summed@18#.

The Coulomb gauge is not plagued with this problem.
infrared behavior is sufficiently tame that no false lower
der terms are produced, at least throughma6. So, we choose
to use this gauge. However, the cost of this is much gre
algebraic complexity because of the noncovariance of
photon propagator, to wit,

Dmn
C ~ l !52

1

l 2 F2gmn1
l ml n

l 22~nl !22
nl

l 22~nl !2

3~ l mnn1l nnm!G , ~1.6!

wheren5(1,0W ). This problem can be ameliorated to som
degree with the assistance of symbolic algebra comp
programs. For our calculation, we wrote programs us
MACSYMA @19# andMATHEMATICA @20# to compute traces, do
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the

n
he
by
n

f
u-
n
s
tu-
s

s
-

er
e

er
g

the noncovariant tensor contractions, and to express the
tegrals in terms of Feynman parameters. This made the
culation tractable.

To regulate the ultraviolet divergences, we use dim
sional regularization inn5422e dimensions. The noncova
riant formalism does not present a problem as the formu
for n dimensional noncovariant Feynman integrals are
much more complicated than their covariant counterpa
@21#.

C. The energy shift formula

Corrections to the energy levels can be calculated fr
the systematic perturbation series@13,15,22#

En5En
01~dK !1~dKĜ0dK !1~dK !~dK !8

1~dKĜ0dKĜ0dK !1~dK !~dKĜ0dK !8

1~dK !8~dKĜ0dK !1~dK !@~dK !8#2

1 1
2 ~dK !2~dK !91O~dK !4, ~1.7!

wheredK is the difference between the full interaction ke
nel and the reference kernel andĜ0 is the reduced referenc
Green’s function. The parentheses indicate expectation
ues between the reference wave functions, while the prim
denote differentiation with respect to the reference ene
~See@16# for details.!

This series can be manipulated by using the refere
wave equation and by expandingĜ0 to give

En5En
01~KBSSKBSSKBS!2~KBSSKBS!

1~KBS2K0!~KBS2K0!81~@KBS2K0#R̂@KBS2K0# !

1¯ . ~1.8!

In this equation,S is the product of two full fermion propa
gators,KBS is the two particle irreducible Bethe-Salpeter ke
nel, K0 is the reference potential, andR̂ is that part ofĜ0
that comes from the exchange of two or more refere
photons.

We are interested in those terms from (KBSSKBS) and
(KBSSKBSSKBS) that have a virtual annihilation to a singl
photon. We call thisDE1g . Its graphical representation i
shown in Fig. 1.

All the diagrams with vacuum polarization insertions
the annihilation photons have been previously calcula
@23,24#, as have the many-potential diagrams and the der
tive diagram@14,15#, although not in our formalism. The
remaining diagrams@see Figs. 1~a!, 1~c!, and 1~d!# are con-
structed from the amplitudes shown in Fig. 2. These comb
to give a contribution to the energy of~see Appendix B!

DE1a12~1c21d!5A~1R!m

1

4W2 A~1R!
m

12A0m

1

4W2 ~A~2R!
m 2A~1R!

m !, ~1.9!
3-2
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FIG. 1. The one-photon-annihilation kerne
contributions to the hyperfine interval to orde
a6. Wave functions are implicit on the left an
right. nR refers to one-loop renormalized an
two-loop renormalized kernels forn51 and n
52. MP stands for the many potential part of th
reference Green’s function.C2O is the differ-
ence between the Coulomb photon and the ref
ence photon andT is the transverse photon.
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where A0
m is the lowest-order decay amplitude.A(1R)

m and
A(2R)

m are the renormalized one- and two-loop vertex corr
tions to the annihilation amplitude. The calculation
DE1a12(1c21d) is the subject of this paper. The total on
photon annihilation energy shift contribution is given by t
result of ~1.9! plus the previously calculated vacuum pola
ization contributions, plus the results for the many-poten
and derivative diagrams done in our formalism.

The renormalized amplitudes have the formA(1R)
m 5A1

m

2L1A0
m andA(2R)

m 5A2
m2L1A1

m2L2A0
m1L1

2A0
m . A1

m andA2
m

are the unrenormalized one- and two-loop amplitudes,L1
andL2 are the Coulomb gauge one- and two-loop renorm
ization constants@21#, A0

m is the lowest order amplitude an
m is a space index.1

The lowest-order amplitude can be written asA0
m

5BmI LO , where Bm5& ief0em. In this formula, f0
5@(m3a3)/(8p)#1/2, then51, s state wave function at con
tact, whilee5(0,ê) is the positronium spin vector. We als

1These forms for the renormalized amplitudes are a consequ
of the energy perturbation series, taking into account the multi
cation of the irreducible one-photon annihilation kernel byZ2

2 and
writing the bare charges asZ3

21e @16#. A heuristic derivation is
given by expandingZ1Am to order a2 where Am5A0

m1A1
m1A2

m

1¯ is the total unrenormalized annihilation amplitude andZ1

51/(11L11L21¯). This is the standard way the vertex opera
is renormalized.
04210
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have ê* • ê51, Bm5Bm* , and LLO511a/61O(a2) @13#.
Consequently, the lowest order contribution to the energ
A0mA0

m/(4W2)5ma4/4.
A2

m is the sum of the two-loop amplitudes shown in Fig.
Each of these gives an unrenormalized contribution to
energy of 2A0mAi

m/(4W2), where i can take on the value
SE, SV, CL, LL, or VP, which stand for self-energy, sid
vertex, crossed ladder, double ladder, and vacuum polar
tion, respectively.

As we did forA0
m , we write each of the two-loop ampli

tudes displaying an explicitBm, an a2, and some terms re
lated to the dimensional regularization. The result is

Ai
m5~Ve2gE!2eBm~a/p!2I i ,

whereV54pm2/m2 andm is the arbitrary mass paramete
particular to the process of dimensional regularization. T
extraction ofe2gE is for convenience sake only.gE is the
Euler-Mascheroni constant.

All the work is in calculating theI i ’s and since ana2 has
been factored from each amplitude, we need to know eacI i
to ordera0.

The self-energy, side vertex, vacuum polarization, a
crossed ladder graphs contribute at leading ordera6 to the
energy. Thus, we need to calculate their associatedI i ’s to
order a0. However, this is not true for the double-ladd
graph. Consider the case when the outer photon is Coul
bic. Making use of the nonrelativistic Schro¨dinger equation

ce
i-
3-3
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ADKINS, FELL, AND MITRIKOV PHYSICAL REVIEW A 65 042103
with the Coulomb potential, it can be seen that the lowe
order decay amplitude and the vertex correction to
lowest-order decay amplitude, the one-rung amplitude,
included in the double-ladder amplitude. These subam
tudes contribute at ordera4 and ordera5 to the energy.
Consequently, if we writeALL

m 5Bm(Ve2gE)2e(a/p)2I LL

5Bm(Ve2gE)2e(a/p)2(I CC1I TC1I CT1I TT), I CC ~both
photons Coulomb! goes asa22 andI TC ~inner photon trans-
verse, outer photon Coulomb! as a21. The lower-order
terms contained inI CC and I TC must be removed befor
calculating thea0 contribution ofI LL .

D. Determining orders of a

The Feynman diagrams generate a multitude of integ
that must be calculated to an accuracy of ordera0. How this
is done is best explained by looking at a few examples@25#.
First, consider~from hereon, the electron mass has been
to 1!

FIG. 2. Contributing amplitudes:~a! lowest order,~b! single
ladder,~c! self-energy,~d! side vertex,~e! crossed ladder,~f! double
ladder, and~g! vacuum polarization.
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Ex15E dp
1

~p21g2!~p211!
5

p~g21!

2g~g221!
5

p

a
2

p

2
1¯ .

~1.10!

Here,g5a/2 and the limits of integration are from 0 tò, as
in all momentum integrations unless otherwise stated. T
value of the integral and the first two terms in its Laure
series ina are given. We now are going to make a series
approximations that will reproduce the first two terms of
series expansion.

Assuming we do not know the value ofEx1, we can get
an estimate of its leading order by the following scaling
gument. If the momentum is restricted to the nonrelativis
region,p;g, then lettingp→gp, an explicitg21 is in front
of the scaled integral. However, ifp;1, then the integral has
no factors ofa in front. From this we deduce that:

~1! The leading order isa21.
~2! The nonrelativistic region of momentum space is t

most important in the sense that thea21 term is generated
from this sector of momentum space.

~3! We expect the next order corrections, the ordera0

terms, to come from the relativistic region.
This is confirmed by calculating the leading and next

leading order with a series of approximations. First, note t
Ex1 is a singular function ofa, for if a→0 in the integrand,
the integral diverges linearly at the lower end of the mom
tum integration. Theg protects against this divergence an
cannot be ignored, confirming the conjecture that the non
ativistic region of momentum is the dominant one. For the
momentum values, 1/(p211);1. So, to extract the leading
order we write 1/(p211)512p2/(p211), giving us two
integrals. We expect the integral with the 1 will give th
leading order and the correction term to be of higher ord
Thus,

Ex15E dp
1

p21g2 2E dp
p2

~p21g2!~p211!

5
p

a
2E dp

p2

~p21g2!~p211!
~1.11!

and our suspicion, at least about the leading order, is verifi
For the correction term, the integral converges ifg is set

to 0. This means this term is a regular function ofa, going as
c1 f (a), wherec is a constant andf vanishes asa→0. Thus,
we can setg to 0 in the remainder piece and evaluate t
integral, getting2p/2, the correct next to leading order term

For the correction term, we could also argue that thep2 in
the numerator makes the regionp;1 the dominant one, so
values ofp;1 set the scale of the correction integral. Hen
we could approximate 1/(p21g2) by 1/p2, giving us the
same next to leading order integral as before.

This type of scaling argument is the simplest way of e
timating the leading order of an integral. It does not nec
sarily tell us how to calculate the integral but whether it is
the order of interest.
3-4
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As a slightly more complicated example, consider the f
lowing integral over two momentum variables which
simple enough to do analytically:

Ex25E d3p d3q
1

~p211!~pW 2qW !2~q21g2!2 5
2p4

g~g11!
.

~1.12!

This has leading ordera21 which we would like to calculate
by finding a suitable approximation to the integrand. We
this by proceeding as above. First restrictp andq;g. Then,
scaling the integration variables byg, we get aa0 in front.
For p;g andq;1, the integral scales asa3. However, for
p;1 andq;g, the integral goes asa21, while for p;1
and q;1, the integral again is of ordera0. Thus, we can
approximate the integral by

Ex2;E d3p d3q
1

~p211!p2~q21g2!2 , ~1.13!

which evaluates to 2p4/g, the leading term.
A final example is an integral that occurs in the analy

of the double-ladder graph

Ex35E dp dx
1

Axhc

p2

vpDp
tan21S 1

Ahc
D , ~1.14!

with the definitionshc5p2(12x)1g2, vp5Ap211, and
Dp5p21g2. The x integration goes from 0 to 1. Ifg→0,
the p integral diverges logarithmically at the low end of th
momentum integration. Hence,Ex3 probably goes as ln(a)
plus regular terms ina.

To isolate the singular and regular parts, we use 1wp
511(12vp)/vp , which separates the integrand as a p
divergent in theg→0 limit and a part convergent in tha
limit. Two integrals emerge:

Ex3a5E dp dx
1

Axhc

p2

Dp
tan21S 1

Ahc
D ~1.15!

and

Ex3b5E dp dx
1

Axhc

p2

Dp
tan21S 1

Ahc
D 12vp

vp
.

~1.16!
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For Ex3b, the integral does not diverge asg→0 since the
12vp provides protection for small values ofp. Hence,
Ex3b is a regular function ofa and goes asa0 plus terms
which vanish asa goes to 0.~This is why we wrote 1/vp as
we did.!

To our order of accuracy, we only need the constant te
so we can approximateEx3b by settingg to 0:

Ex3b;E dp dx
1

pAx~12x!
tan21S 1

pA12x
D 12vp

vp
.

~1.17!

This can be done numerically, possibly analytically.
For Ex3a , we write p25Dp2g2, resulting again in two

integrals. The first is

E dp dx
1

Axhc

tan21S 1

Ahc
D . ~1.18!

A way to do this integral is to introduce a third parameter v
*0

`da/(hc1a2)51/Ahc tan21(1/Ahc) and then do thep inte-
gral. The remainingx anda integrals are simple, giving us

E dp dx
1

Axhc

tan21S 1

Ahc
D 5p2 sinh21~1/g!/2

5p2/2 ln~4/a!1¯

with the anticipated logarithm.
The remaining integral is

2g2 E dp dx
1

Axhc

tan21S 1

Ahc
D 1

Dp
. ~1.19!

In this, if we make the replacementp→gp, the g2 in front
cancels, leaving an integral that is regular in theg→0 limit.
So, using the same arguments as above, to our order o
curacy, we have
2g2 E dp dx
1

AxhcDp

tan21S 1

Ahc
D 5

p→pg

2E dp dx
1

Ax~12x!p211

1

~p211!
tan21S 1

gA~12x!p211
D

5
g→0

2
p

2 E dp dx
1

Ax~12x!p211

1

~p211!

52
p2

2
ln~2!. ~1.20!
3-5
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E. Orders of the amplitudes

Using similar scaling arguments as above, we find
self-energy, side vertex, vacuum polarization, and cros
ladder amplitudes contribute to the energy at leading or
a6. This means thatI SE, I SV, I VP, and I CL have leading
ordera0. Their calculation to this degree of accuracy is do
by setting all occurrences of the relative momentum in
fermion propagators to 0~these are higher-order terms!, and
replacing factors ofg by 0 in the propagator denominator
The wave function can be replaced by its nonrelativis
value, leaving an easy integration over the relative mom
tum: *d3p/(2p)3(8pg)/(p21g2)251. We are left with in-
tegrals that are independent ofa and are the correcta0 ap-
proximations to the full integrals. These integrals a
expressed as integrations over the loop momentum varia
The momentum integrations are done by Feynman par
eters. The parameter integrals are then numerically integr
with VEGAS @26#. This procedure works well, except fo
those occasions when numerically unstable integrands
generated. These cases are discussed later in the text.

The double-ladder graph presents more of a challe
since, as commented on earlier, it containsa22, a21, and
ln(a) terms from the lowest-order one-annihilation phot
diagram and the one-rung ladder diagram.

To calculate thea0 part of the integrals associated wi
the double-ladder graph, the lower-order parts must firs
determined analytically. These singular parts are then s
tracted from the full integrals, leaving subtracted integr
that have leading ordera0, and can be treated in much th
same way as the integrals from the other amplitudes.

We now describe in more detail the calculation of t
individual diagrams, starting first with a brief examination
the one-loop amplitude and then following with an in dep
discussion of the double-ladder graph, the most difficult
calculate. Our comments on the remaining diagrams
generally be limited to those parts of their calculation wh
we had to amend our standard numerical procedure to
numerically stable integrals.

II. ONE-LOOP AMPLITUDE

In this section we outline the evaluation of the one-lo
annihilation amplitudeA1

m . We illustrate some of our calcu
lational methods here in this relatively simple setting, a
also define several of the quantities that will appear in
two-loop calculation.

The one-loop amplitude@see Fig. 2~b!# can be written as

A1
m52 ieE ~dp!48 Tr@L1

m~2Wn1p,Wn1p!C0~p!#

52
Bm

4 E ~dp!38 Trr @L1
m
„~2W,pW !,~W,pW !…F~pW !#

3S 8pg

Dp
2 D , ~2.1!

where (dp)n85(dnp)/(2p)n and Tr stands for the trace. Th
wave functionC0(p) and the spin partF(pW ) are given in
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Appendix A. The symbolTrr stands for the trace with the
spin vectorem factored out and removed. This can be do
because after the momentum integral is completed, the t
is proportional toem. Finally, L1

m is the unrenormalized one
loop vertex operator

L1
m
„~2W,pW !,~W,pW !…

5E ~dl !n8„2 ie~n!gm…
i

g~ l 2Wn!21

3gm
i

g~ l 1Wn!21
„2 ie~n!gn…iD C

mn
„l 2~0,pW !…

52S a

4p DVeE ~dl !n9

3
gm„g~ l 2Wn!11…gm~g~ l 1Wn!11!gn

D~W,l !D~2W,l !

3DC
mn
„l 2~0,pW !…, ~2.2!

where e(n)5eme with m an arbitrary mass parameter,e2

54pa, (dl )n95(dnl )/( ipn/2), n5(1,0W ), l 5(l 0 ,lW ),
D(6W,l )5@2(l 6Wn)211# andV54pm2/m2. For cal-
culational purposes we takem51. We find that

A1
m5

a

16p
BmE ~dp!38~dl !n9

3
Tr@gm„g~ l 2Wn!11…gm~g~ l 1Wn!11…gnF~pW !#

D~W,l !D~2W,l !

3DC
mn
„l 2~0,pW !…S 8pg

Dp
2 D . ~2.3!

The Coulomb part ofA1
m has m, n→0, 0 and DC

mn(l

2(0,pW ))→1/(lW 2pW )2. The trace for the Coulomb part, as
function of l , has the form

T~ l !5A1Bml m1Cmnl ml n. ~2.4!

The leading binding singularity is inA, while only the C
term contains an ultraviolet divergence. We evaluate
‘‘low-energy’’ and ‘‘ultraviolet’’ contributions TLO(l )5A
1Bml m and TUV(l )5Cmnl ml n separately. For the low-
energy contribution we do thel 0 integral via the integration
formula

E dl 0

2p

„g~ l 2Wn!11…gm
„g~ l 1Wn!11…2gl gmgl

D~W,l !D~2W,l !

5
i

4v l

1

Dl
[ „g~ l 2Wn!11…gm

„g~ l 1Wn!11…

2gl gmgl ] l 0→0 ~2.5!
3-6
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and analyze carefully the various regimes contained in thpW
and lW integrals as described in Sec. I D. The low-ener
contribution is

ACLO
m 5BmH 12

2a

p
1

a2

8
lnS 1

a D1a2@0.312 499 4~8!#

1O~a3!J . ~2.6!

For the ultraviolet contribution we worked out a paramet
form for the corresponding part of the vertex function, se
rated off the UV divergence, and then did the expansion ina.
We found

ACUV
m 5BmH 2a

3p
I LO1L ~1!

C I LO1a2@20.288 194 452~7!#

1O~a3!J , ~2.7!

where

I LO5E ~dp!38g~p!S 11
p2

3~vp11!2D S 8pg

Dp
2 D

511
a

6
1

a2

16
1O~a3! ~2.8!

with

g~p!5S vp11

2vp
D S vp1W

2W D 1/2

~2.9!

being the relativistically correct zero-loop annihilation gra
(A0

m5BmI LO), and

L ~1!
C 5S a

4p DVeG~e!
2~n22!

~n21!

5S a

4p D H 4

3
VeG~e!2

4

9
1O~e!J ~2.10!

being the Coulomb part of the one-loop renormalization c
stant. The complete Coulomb contribution is the sum of
LO and UV parts:

AC
m5BmH 12

2a

p
1

2a

3p
I LO1

a2

8
lnS 1

a D1L ~1!
C I LO

1a2@0.024 304 9~8!#1O~a3!J . ~2.11!

The transverse part ofA1
m hasm, n→ i , j with

DC
i j ~k!5

21

k2 S d i j 2
kikj

kW2 D . ~2.12!
04210
y

-

-
e

We found an appropriate parametric form for the transve
part of the vertex function, separated off the UV divergen
and expanded ina. Our result is

AT
m5BmH 2

2a

3p
I LO1

a2

2
lnS 1

a D1L ~1!
T I LO

1a2@20.271 370 60~12!#1O~a3!J , ~2.13!

where

L ~1!
T 5S a

4p DVeG~e!
2~n23!

~n21!
~2.14!

is the tranverse part of the one-loop renormalization c
stant. The total one-loop amplitude is the sum of the C
lomb and transverse parts. It is

A1
m5BmH 12

2a

p
1

5a2

8
lnS 1

a D1L ~1!I LO

1a2@20.247 065 7~9!#1O~a3!J , ~2.15!

whereL (1) is the full one-loop renormalization constant

L ~1!5L ~1!
C 1L ~1!

T 5S a

4p DVeG~e!. ~2.16!

III. DOUBLE-LADDER AMPLITUDE

This amplitude is best calculated by dividing it into fou
diagrams according to whether the inner and outer phot
are Coulomb or transverse. Then, thea22 and some of the
a21 terms are isolated in the Coulomb-Coulomb amplitud
while the transverse-Coulomb amplitude has the remain
a21 parts and a ln(a). We will also discover that the
Coulomb-transverse diagram has a ln(a), while the
transverse-transverse part is leading ordera0.

A. Coulomb-Coulomb ladder

The Coulomb-Coulomb amplitude is

Acc
m 5BmS a

p D 2

~Ve2gE!2eI cc , ~3.1!

where

I cc52
e2egE

64
E ~dq!n9~dl !n9~dp!38

3
Tcc

~qW 2lW !~ lW 2pW !2D~W,q!D~2W,q!D~W,l !D~2W,l

3S 8pg

Dp
2 D ~3.2!
3-7
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and

Tcc5Trr @g0„g~ l 2Wn!11…g0„g~q2Wn!11!

3gm
„g~q1Wn!11…g0

„g~ l 1Wn!11…g0F~pW !].

~3.3!
a

n
,
e

rm
ua
n
a
e
t

04210
To calculateAcc , we separate the trace into two parts. T
first is the term with 0 or 1 factors ofq. This part of the trace
has the leadingO(a22) term so we call itTLO . The remain-
ing terms in the trace are quadratic inq and have ultraviolet
divergences. This part of the trace is calledTUV .

After partitioning the trace in this fashion,I cc is separated
into two pieces,I LO and I UV . We considerI LO first.
1. ILO

For I LO we have

ILO52
1

64
E ~dq!49~dl !49~dp!38

TLO

~qW 2lW !2~ lW 2pW !2D~W,q!D~2W,q!D~W,l !D~2W,l !
S 8pg

Dp
2 D ~3.4!
r.

n-
l
be
ers
with TLO the full trace minus the terms quadratic inq:

TLO5Trr @g0„g~ l 2Wn!11…g0@„g~q2Wn!11…

3gm
„g~q1Wn!11…2gqgmgq#

3g0@g„~ l 1Wn!11…g0F~pW !#. ~3.5!

The first step is to do theq integration. This can be done vi
poles or parameters. We choose the latter and use

E ~dq!49
~1;q0 ;qi !

~qW 2lW !2D~W,q!D~2W,q!

5
1

W
E dx

1

Axhc

tan21S W

Ahc
D @1;0;~12x!l i #, ~3.6!

where ulW u5 l and hc5(12x) l 21g2. Then, TLO is com-
puted.

TLO has many terms. Of these, there is one which has
explicit factors oflW , pW , or l 0 . This term, as will be shown
is responsible for thea22 contribution. The other terms hav
at least 2 or 4 factors of momentum. In these, factors ofvp
andW can be set to one. This reduces the numbers of te
significantly. What remains is a sum of terms that are q
dratic and quartic in the momentum variables. Of these, o
the quadratic terms must be kept. Quartic terms, which
l 2p2 or (lW •pW )2, can safely be dropped as contributing b
yond the order of interest, as can be established using
arguments presented in Sec. I D. Then, correct toO(a0),

TLO5TA1TB1TC , ~3.7!

where

TA522
~W11!4

Ax
S 11vp

vp
DAvp1W

2W
,

TB5
128~ l 2~x21!

Ax
1

64l 0
2

Ax
and TC52

128lW •pW

Ax
.

~3.8!

This separatesI LO into three subintegrals,I A , I B , andI C .
o

s
-

ly
re
-
he

2. IA

The first integral is

I A5
~11W!4

32W
E ~dl !49~dp!38

dx

Axhc

tan21S W

Ahc
D

3
1

~ lW 2pW !2D~W,l !~2W,l !
S 11vp

vp
DAvp1W

2W

3S 8pg

Dp
2 D . ~3.9!

To calculateI A , we must first determine its leading orde
This is done first by doing thel 0 integration via the residue
theorem, closing the contour in the upper halfl 0 plane. This
picks up the poles atl 052W2v l1 i e and l 05W2v l
1 i e. The result of thel 0 integration is

I A5
~11W!4

64pW
E d3l ~dp!38

dx

Axhc

tan21S W

Ahc
D

3
1

v lDl~ lW 2pW !2 S 11vp

vp
DAvp1W

2W S 8pg

Dp
2 D .

~3.10!

Now, consider the regionsp;g and l;g. We replacevp ,
v l and W by one and tan21 (1/Ahc) by p/2. Then, lettingl
→g l and p→gp, we get an explicita22 in front of the
approximate integral, indicating that this region of mome
tum space contributes toO(a22). Corrections to these initia
approximations, in the same integration region, will
O(a0), because the corrections contribute two more pow
of momentum in the numerator~from vp;11p2/2, for in-
stance!.

Using similar arguments, the regionp;1, l;g and the
region p;1, l;1 contribute toO(a). However, if p;g, l
;1, the integral isO(a0). This means, to theO(a0), only
nonrelativistic values ofp contribute, but all values ofl con-
tribute.
3-8
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With this in mind, we make the replacement

S 11vp

vp
DAvp1W

2W
;21

g2

4
2

p2

4
. ~3.11!

Substituting inI A , we get

I A15
~11W!4

8W E dl
dx

Axhc

tan21S W

Ahc
D l 2

v lDl
2 , ~3.12!

I A25
g2

4 E dl
dx

Axhc

tan21S 1

Ahc
D l 2

v lDl
2 ,

I A352
1

16p
E d3l ~dp!38

dx

Axhc

tan21S 1

Ahc
D

3
1

v lDl

p2

~ lW 2pW !2 S 8pg

Dp
2 D . ~3.13!

For I A2 , if l;1, the integral isO(a2), but for l;g, it is
O(a0). Hence, we replacev l by 1, scalel by g and approxi-
mate tan21(1/Ahc) by p/2, and get

I A25
p2

32
. ~3.14!

For I A3 , thep integral can be done, leaving us with

I A352
g

4 E dl
dx

Axhc

l 2

v lDl
tan21S 1

Ahc
D F2

l
tan21S l

g D2
g

Dl
G .

~3.15!

We can again approximatev l;1, scale l by g and let
tan21 (1/Ahc) go to p/2 without any loss of required accu
racy. The integral can be done and we obtain

I A352
p2

16 S p2

3
2

1

2D . ~3.16!

The evaluation ofI A1 is more interesting. Forl;g, the
integral has a power count ofa22. This region of momen-
tum space gives the lowest order term. If we expand the 1v l
to orderl 2, we get a correction term that, forl;g, gives an
integral that is ln(a)1O(a0). Hence, we must calculate co
rections to the replacementv l→1. Also, recall that ifl;1,
the integral isO(a0), so the integral for the relativistic re
gion of l must be calculated as well.

The calculation ofI A1 proceeds by using the identit
1/v l512 l 2/21@(12v l)/v l1 l 2/2#. This is done instead o
using 1/v l511(v l21) because it is a simple way to isola
the ln(a), which is in the2 l 2/2 term.

Upon making this substitution, we have three integra
The ones associated with the 1 andl 2 can be done analyti
cally. For the integral with the (12v l)/v l1 l 2/2 factor,
which we callI A1N , g can be set to 0~it is ordera0!, and the
resulting integral done numerically.~From I B and I UV there
will be other integrals that have to be computed numerica
04210
.

,

so we postpone evaluatingI A1N for now, and choose to do al
the numerical integrations at once.! So,

I A152
p2

a22
2p

a
2

p2

2
lnS 1

a D2
p2

2
ln~2!1

p2

4
1I A1N

~3.17!

and for I A , adding everything together,

I A5
p2

a22
2p

a
2

p2

2
lnS 1

a D2
p2

2
ln~2!2

p4

48
1

5p2

16
1I A1N .

~3.18!

3. IB and IC

The calculation ofI B and I C is relatively straightforward.
The l 0 integration is done as before. ForI B ,

I B5
1

2 E dl
dx

Axhc

l 2

v lDl
tan21S 1

Ahc
D

1E dl
dx

Axhc

l 4

v lDl
2 ~12x!tan21S 1

Ahc
D . ~3.19!

Using 1/v l511(12v l)/v l ,

I B5E dl
dx

Axhc

tan21S 1

Ahc
D l 2

Dl
F1

2
1~12x!

l 2

v lDl
G

3S 11
12v l

v l
D

→E dl
dx

Axhc

tan21S 1

Ahc
D l 2

Dl
F1

2
1~12x!

l 2

Dl
G

1E dl
dx

xA12x

1

l
tan21S 1

lA12x
D 12v l

v l
F3

2
2xG

5
p2

2
lnS 1

a D1
p2

2
ln~2!2

p2

8
1I BN , ~3.20!

whereI BN is the integral with the (12v l)/v l in Eq. ~3.20!
and will be done numerically. The remaining integral is

I C5
1

4p
E d3l ~dp!38

dx

Axhc

tan21S 1

Ahc
D 1

v lDl

lW •pW

~ lW 2pW !2

3S 8pg

Dp
2 D . ~3.21!

We use (lW 2pW )25 l 21pW 222lW •pW to decouple thelW and pW
integrations. Then,
3-9
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I C5
1

2
E dl

dx

Axhc

tan21S 1

Ahc
D l 2

v lDl
F l 2

Dl
21G

1
1

8p
E d3l ~dp!38

dx

Axhc

tan21S 1

Ahc
D 1

Dlv l

p2

~ lW 2pW !2

3S 8pg

Dp
2 D . ~3.22!

The last integral is22I A3 . In the first integral, forl;1, the
integral vanishes. Forl;g, if the integral is done as a sum
of two terms, each term separately goes as ln(a)1a0. How-
e
n

e

h

se

04210
ever, the log terms, which develop whenl is betweeng and
1, cancel, since both terms individually have the sa
asymptotic limit in this region. Hence, to ordera0 we can set
v l to 1 and tan21 (1/Ahc) to p/2. We get

I C5
p4

24
2

p2

8
~3.23!

and, finally, forI LO

I LO5I A1I B1I C5
p2

a22
2p

a
1

p4

48
1

p2

16
1I A1N1I BN .

~3.24!
4. The ultraviolet term

The ultraviolet contribution toI cc is

I UV5
e2egE

64
E ~dq!n9~dl !n9~dp!38

TUV

~qW 2lW !2~ lW 2pW !2D~W,q!D~2W,q!D~W,l !D~2W,l !
S 8pg

Dp
2 D ~3.25!
e-
. In
m,
ve

t

with

TUV5Trr @g0„g~ l 2Wn…11!g0gqgmgqg0

3„g~ l 1Wn!11…g0F~pW !#. ~3.26!

The first step is to do theq integral with parameters. Th
required integral is~NC0 andNC1 are the 0 and 1 contractio
terms!

E ~dq!n9
gqgmgq

~qW 2lW !2D~W,q!D~W,2q!

5E dx du x21/22eFG~11e!
NCO

Hc
11e

2
1

2
G~e!x

NC1

Hc
e G .

~3.27!

We next do a partial integration~in thex variable! on the one
contraction term. This isolates the inner vertex divergenc
a term that is independent of the outer loop~l! momentum.
This is important because from the renormalized energy s
equation, we would like to cancel theL1A1

m term without
doing any extra work. This, we shall see, will be a con
quence of writing the inner vertex in this manner.

So, after the partial integration,

E ~dq!n9
gqgmgq

~qW 2lW 2!D~W,q!D~W,2q!

5hC~e!gm1G~11e!E dx du
x2e

Hc
11e

NNCO
m

~3.28!

with the definitions
in

ift

-

a5122u,

NNC0
m 5

1

Ax
@2a2W2gm22~12x!aWl mg0

1~11x!2gW •lW gmgW •lW #2AxF 1

n23
1

n23

n21
xGgml 2,

hC~e!5G~e!F 1

n23
1

n23

n21
G E du

1

h̃c
e
,

and

Hc5~12x!l 21a2W21g2,h̃c5a2W21g2.

This gives

Acc UV
m 5

a

4p
VehC~e!AC

m1BmS a

p D 2

~Ve2gE!2eI UV8

~3.29!

AC
m is the Coulomb part of the vertex corrected on

annihilation photon diagram, the one-rung ladder diagram
I UV8 , there are terms that have four factors of momentu
which diverge upon integration. The remaining terms ha
finite integrations. We treat these separately and writeI UV8
5I fin1I div .

For I fin we can set all factors ofpW to 0 in the trace, excep
in the wave function itself. We must also keep 1/(pW 2lW )2

intact. Then thep integral can be done using

E ~dp!38
1

~ lW 2pW !2
S 8pg

Dp
2 D 5

1

Dl

.

3-10
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If this were not done, that is if 1/(pW 2 lW)2→ l 2, thenI fin would
diverge in the infrared since, as will be shown, it is of ord
a21.

So, for I fin (a5122u),

I fin5
1

64E ~dl !49dx du
1

Ax

1

DlD~W,l !D~2W,l !Hc

3F4a2l 0
22

4

3
~20x1a224!l 2216a2G . ~3.30!

I fin has a leading ordera21 term that comes from the 16a2

expression in Eq.~3.30!. The other terms, if calculated ind
vidually, have ln(a)’s, but these eventually cancel. The r
mainder of the calculation ofI fin is straightforward, and we
get ~I finN is the part ofI fin that is done numerically!

I fin52
p

2a
1I finN. ~3.31!

For I div , the calculation follows standard techniques af
we realize that it is of ordera0. Thus, we can set all factor
of g to 0. Then, after its trace,Tdiv , is calculated, we find it
can be written asTdiv5l2 tdiv . Thel 2 cancels against a simila
term in the denominator so our expression to evaluate is

I div52G~11e!
e2egE

256 E ~dl !n9 dx du
x2e

~12x!11e

3
tdiv

@ l 21a2/~12x!#11e~2l 212l 0!~2l 222l 0!
.

~3.32!
re
e

04210
r

r

The calculation is straightforward and we get

I div52
1

18e22
11

54e
1I div N . ~3.33!

5. hC(e) term

The last part of the Coulomb-Coulomb term to calcula
is the first expression of Eq.~3.29!. For this we need the
Coulomb part of the one-rung annihilation diagram to ord
a. This is

AC
m5

4~12e!

322e
L1I LOBm1VeI CSB

m, ~3.34!

where L1 , the one loop renormalization constant, equ
a/(4p)VeG(e) andI CS512(4a)/(3p). I LO andBm are as
before. Then, after making a Laurent expansion ofhC(e) in
e anda and collecting terms,

a

4p
VehC~e!AC

m5
4

3
L1AC

m1F ~Ve2gE!2e
19

54 S a

p D 2 1

e
1

19

18

a

p

2
1

6
a22

83

162S a

p D 2GBm. ~3.35!

6. Acc
m results

Putting the various pieces together and computing the
merical integrals,

Acc
m 5S 4

3
L1DAC

m1BmH 12
13

9

a

p
1S a

p D 2

@2.878 360~7!#

1S a

p D 2

~Ve2gE!2eF2
1

18

1

e2 1
4

27

1

e G J . ~3.36!
B. Transverse-Coulomb ladder

For the transverse-Coulomb amplitude we have

Atc
m52

Bm

64
S a

p
D 2

~V!2eE ~dq!n9~dl !n9~dp!38
Ttc

~2~ l 2q!2!~ lW 2pW !2D~W,q!D~2W,q!D~W,l !D~2W,l !
S 8pg

Dp
2 D

~3.37!
n

with the trace

Ttc5Trr @g0„g~ l 2Wn!11…g i„~q2Wn!11…

3gm
„g~q1Wn!11…g j~g~ l 1Wn!11…g0F~pW !#

3d i j
T ~ lW 2qW ! ~3.38!

andd i j
T (lW )5d i j 2lW i lW j / l 2.

Unlike the Coulomb-Coulomb calculation, here it is mo
efficient to treat the inner vertex as a whole. So, we writ

LT
m~ l 2Wn,l 1Wn!5

a

4p
L̄T

m~ l 2Wn,l 1Wn!,

~3.39!
L̄T
m~ l 2Wn,l 1Wn!

5E ~dq!n9
g i~g~q2W!11!gm~g~q1W!11!g j

„2~ l 2q!2
…D~W,q!D~2W,q!

3d i j
T ~ lW 2qW !

5E dz dx du z3/2xFG~21e!
NT0

DT
21e

2
1

2
G~11e!

NT1

DT
11e 1

1

4
G~e!

NT2

DT
e G . ~3.40!

NT0 , NT1 , and NT2 are the zero, one, and two contractio
terms, DT5zxHT , and HT52(12x)lW 0

21(12xz) l 2

12a(12x)l nW1xa2W21g2.
3-11
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The divergence ofL̄T
m is separated by doing a partial in

tegration on the two contraction term, which, after some f
ther manipulations, gives

L̄T
m5hT~e!gm1L̄TA

m 1L̄TB
m ~3.41!

with

hT~e!5~12e!F122e

322e
2~112e!GG~e!E dx du

x12e

h̃t
e

,

~3.42!

L̄TA
m 5E dz dx du

z3/2x

~zx!e FG~21e!
N~NT0!

HT
21e

2
1

2
G~11e!

N~NT1!

HT
11e G , ~3.43!

L̄TB
m 5~e21!F122e

322e
2~112e!GG~11e!gm

3E dz dx du
x12e

H̃T
11e

B, ~3.44!
04210
-

and the following definitions:

h̃e5xa2W21g2,

N~NT0!5
NT0

~zx!2 ,

NNT15
NT1

zx
12~12e!l 2xFn23

n21
2~52n!zGgm,

H̃T52~12x!zl 212z~12x!al nW1xa2W21g2,

B5~12x!„2l 212a~ l n!W….

The separation of the inner transverse vertex divergenc
this way is done for the same reasons as for the Coulo
part of the inner vertex.

Putting this all together, we can write for the transvers
Coulomb vertex

Atc
m5

a

4p
VehT~e!AC

m1S a

p D 2

Bm~Ve2gE!2eJtc ~3.45!

with
on,
ltraviolet
Jtc5
e2egE

64
E ~dl !n9~dp!38

Trr @g0„g~ l 2nW…11!~L̄TA
m 1L̄TB

m !„g~ l 1nW!11…g0F~pW !#

~ lW 2pW !2D~W,l !D~2W,l !
S 8pg

Dp
2 D

5JA1JB . ~3.46!

1. JA

SinceJA has leading ordera21 and nota22, it is sufficient to use the nonrelativistic approximation of the wave functi
leaving an easy integration over the relative momentum. What remains is an expression that we separate into an u
convergent and ultraviolet divergent part. These are, respectively,JALO andJAUV , with

JALO52
1

64E ~dl !49
Trr @g0$„g~ l 2nW!11…L̄TA

m
„g~ l 1nW!11…2~gl L̄TA

m gl !%~11g0!ge#

D~W,l !D~2W,l !Dl
~3.47!
ial

and

JAUV52
e2egE

64 E ~dl !49
Trr @g0gl L̄TAgl ~11g0!ge#

D~W,l !D~2W,l !Dl
.

~3.48!

For the low-energy term, after the trace is computed,

JALO52
1

64E ~dl !49 dx du dz
z3/2x

DlD~W,l !D~2W,l !

3F T0

HT
22

1

2

T1

HT
G . ~3.49!
T0 and T1 are the traces associated with theN(NT0) and
N(NT1) terms. The calculation is made easier if a part
integration with respect toz is done on theT0 term. This
results in (t05T0uz51 ,hT5HTuz51)

JALO52
1

64E ~dl !49 dx du dz
1

DlD~W,l !D~2W,l !

3F ~4a2x21~42a2!x2l 2!
1

hT

14~a2x2212!Azl2
1

HT
G . ~3.50!
3-12



an
th

e
o

-
io

is
ut,
ve

CALCULATION OF THE POSITRONIUM HYPERFINE . . . PHYSICAL REVIEW A 65 042103
The next step is to determine which terms are singular,
as was the case with the Coulomb-Coulomb calculation,
is simpler after thel 0 integration is done.

If we do thel 0 integration by closing the contour in th
upper half plane, the nonanalytic terms come from the p
at l 05W2v l1 i e. The other poles contributeO(a0) terms
only. So, for the purposes of calculating thea21 and ln(a)
terms only, it would suffice to setl 0 to 0 in hT andHT . So,

1

hT
5

1

hT0
1

hT02hT

hT0hT
, ~3.51!

1

HT
5

1

HT0
1

HT02HT

HT0HT
, ~3.52!

where HT05HTu l 050 and hT05hTu l 050 . This isolates the

nonanalytic terms in the integrals associated withhT0 and
HT0 . The correction terms are at mostO(a0). The reason is
the expressions (hT02hT) and (HT02HT) each have an ex
plicit factor of l 0 , thereby suppressing the singular behav
at theW2v l1 i e pole. So, for the correction parts we seta
to 0 and calculate the integrals numerically.
d

.
t

04210
d
is

le

r

Putting this together,

JALO52
p

12

1

a
1

11

24
p2 lnS 1

a
D 1JALON , ~3.53!

where, as usual,JALON is the part ofJALO that has to be done
numerically.

The analysis ofJAUV proceeds rather smoothly once it
realized that it isO(a0). Parameters are used througho
which facilitates the isolation of the divergent part. We ha

JA5JALO1JAUV

5S 371

432
2

p2

12D 1

e
2

p

12

1

a
1

11

24
p2 lnS 1

a D1JALON1JUVN .

~3.54!

2. JB

From Eq.~3.46!,
JB5
e2egE

64
E ~dl !n9~dp!38

Trr $g0@g~ l 2nW!11#L̄BT
m
„g~ l 1nW!11…g0F~pW !%

~ lW 2pW !2D~W,l !D~2W,l !
5JBLO1JBUV , ~3.55!
o-

al
where a separation into finite and divergent parts is ma
The finite part has a leading ln(a) and we call itJBLO . We
have for this integral

JBLO5
1

6
E ~dl !49 dx du dz

l 2

DlD~W,l !D~2W,l !

x~12x!

H̃T

2
1

3
E ~dl !49 dx du dz

1

DlD~W,l !D~2W,l !

3
x~12x!

H̃T

F1

2
l 0

22al 01
1

2
al 2l 01

1

6
al 0

3G . ~3.56!

Because of the factors ofl 0 , the second part of Eq.~3.56! is
leading ordera0, so we puta to 0 and integrate numerically
Setting this aside for the moment, let us turn our attention
the first integral of Eq.~3.56!.

The analysis for this is similar that done forJALO . To
extract the leading log, we write 1/H̄T in the form

1

H̄T

5
1

H̄T0

1
H̄T02H̄T

H̄T0H̄T

~3.57!
e.

o

and T̄T05H̄Tu l 050 . This separatesJBLO into two subinte-

grals. SinceH̄T02H̄T5(12x)xl 0
222(12x)zal 0 , the in-

tegral associated with this factor is leading ordera0 ~because
of the l 0’s!. We do this part numerically. The integral ass
ciated with 1/H̄T0 is similar to others already done. Thel 0
integration is completed first, yielding

1

3
E dl dx du dz

l 4

Dl
4

x~12x!

v l H̄T0

. ~3.58!

Then, the log term is extracted by writing 1/v l as 11(v l
21)/v l . The subintegral associated with (v l21)/v l is
leading O(a0) and can be done numerically. The integr
that has the one from the expression for 1/v l above is

1

3
E dl dx du dz

l 4

Dl
4

x~12x!

H̄T0

, ~3.59!

and can be done analytically. This gives forJBLO ,

JBLO5
p2

24
ln~1/a!1

p2

24
ln~2!2

p2

72
1JBLON , ~3.60!
3-13
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where JBLON is the sum of the various subintegrals do
numerically.

The divergent part ofJB is

JBUV5
e2egE

64
G~12e!~11e!F122e

322e
2~112e!G

3E ~dl !n9 dx du dz
~12x!x12el 2Trr @g l gmg l ge#

DlD~W,l !D~2W,l !H̄T
11e

.

~3.61!

The trace is 4/(2e23)(2l 0
222e l 21 l 2). From this point,

parameters are used and we get

JBUV5
1

72

1

e2 1
53

432

1

e
1JBUVN, ~3.62!

and forJB ,

JB5JBLO1JBUV5
1

72

1

e2 1
53

432

1

e
1

p2

24
ln~1/a!1

p2

24
ln~2!

2
p2

72
1JBLON1JBUVN . ~3.63!
04210
3. hT(e) term

This calculation proceeds in much the same manner as
hC(e) calculation of Sec. III A 5. After expanding ine and
a,hT(e)521/32(17/9)e1(2p/9)ae2(106/27)e2G(e).
Combining this with Eq.~3.34!,

a

4p
VehT~e!AC

m52
1

3
L1AC

m1H 2S a

p D 2

~Ve2gE!2e
17

108

1

e

2
17

36

a

p
1

1

18
a21

115

324S a

p D 2J Bm.

~3.64!

4. Atc
m results

After doing the numerical integrations, we get

Atc
m5S 2

1

3
L1DAC

m1BmH 2
5

9 S a

p D1
a2

2
lnS 1

a D
1S a

p D 2

@24.302905~8!#1S a

p D 2

~Ve2gE!2eF 1

72

1

e2

1
1

e S 2
1

2
z~2!1

89

108D G J . ~3.65!
rt
C. Coulomb-transverse ladder

For the Coulomb-transverse amplitude,

Act
m5BmS a

p D 2

~Ve2gE!2eI ct ~3.66!

with

I ct5
e22egE

64
E ~dq!n9~dl !n9~dp!38

Tct

~ lW 2qW !2@2~ l 2p!2#D~W,q!D~2W,q!D~W,l !D~2W,l !
S 8pg

Dp
2 D ~3.67!

and

Tct5Trr @g i„g~ l 2Wn!11…g0„g~q2Wn!11…gm
„g~q1Wn!11…g0„g~ l 1Wn!11…g jF~pW !#d i j

T ~ lW 2pW !. ~3.68!

This integral is of order ln(a) anda0, with the log term coming from the zero and oneq terms of the trace. We call this pa
KLO , while thegqgmgq part, of ordera0, is labeledKUV .

1. KLO

For KLO we can write

KLO5
1

64
E ~dq!49~dl !49~dp!38

TLO

~ lW 2qW !2
„2~ l 2p!2

…D~W,q!D~2W,q!D~W,l !D~2W,l !
S 8pg

Dp
2 D . ~3.69!
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The trace term is the full trace minusgqgmgq:

TLO5Trr „g i@g~ l 2Wn!11#g0$@g~q2Wn!11#

3gm@g~q1Wn!11#2gqgmgq%g0

3@g~ l 1Wn!11#g jF~pW !…d i j
T ~ lW 2pW !.

The q integration is done next, using the formulas in E
~3.6! and then the trace is computed. We find the trace ca
divided into factors having either four or six powers of m
mentum. Those with six powers areO(a), as can be seen b
using the counting rules. This leaves us with

TLO52
128

3
@ l 41p424l 2pW 224lW •pW pW 224lW •pW l 2

110~ lW •pW !2#. ~3.70!

To get this expression, we have made the nonrelativistic
proximation forF(pW ) and averaged over spins. To compu
Eq. ~3.69!, the l 0 integration is completed by closing th
contour in the upper half plane. So,

E dl 0

p i

1

~ l -p!2D~W,l !D~2W,l !

52
1

2

2v l1r

rv lDl~~v l1r !22W2!
, ~3.71!

where we have definedrW5lW 2pW andr 5urWu. Using the scal-
ing arguments, we see that iflW and pW are confined to the
nonrelativistic region, then Eq.~3.71! goes as21/(2r 2Dl),
this being the most singular term in thel 0 integral. In this
region, all the terms inTLO are the same order. Consequent
we find a power count of either ln(a) or a0 whenl andp are
simultaneously restricted to the nonrelativistic region. Ho
ever, it is also true that ifp;g while l;1, the first term of
TLO is O(a0), while the other terms have extra factors ofa.
These terms can be neglected when the integration varia
are restricted to this region of momentum space.

These are the only regions that have contributions of
order of interest. Proceeding, we write

2
1

2

2v l1r

rv lDl~~v l1r !22W2!

52
1

~2r !v lDl
F1

r
1S 2v l1r

~v l1r !22W22
1

r D G
52

1

2v l r
2Dl

1
1

2v l r
2
„~v l1r !22W2

…

. ~3.72!

Associated with this form are two subintegrals,KLO1 and
KLO2 .
04210
.
be

p-

,

-

les

e

For KLO1 we have

KLO152
1

12p
E d3l ~dp!38

dx

Axhc

tan21S 1

Ahc
D S 8pg

Dp
2 D

3
@ l 41p424l 2pW 224lW •pW pW 224lW •pW l 2110~ lW •pW !2#

v lDl r
4 .

~3.73!

The p integral can be done, leaving us with

KLO15
4

3 E dl
dx

Axhc

tan21S 1

Ahc
D l 2

v lDl

2gE dl
dx

Axhc

tan21S 1

Ahc
D l 2

v lDl

3F22 tan21S l

g D1
l

g

g22 l 2

Dl
G . ~3.74!

The l 2 terms in both integrals have a ln(a) part. Combining
these terms and using 1/v l511(12v l)/v l ,KLO1 takes the
form

KLO152
1

3
E dl

dx

Axhc

tan21S 1

Ahc
D l 2

Dl

2
1

3
E dl dxS 12v l

v l
D 1

Ax~12x!
tan21S 1

lA12x
D

2pE dl dx
1

xAl 2~12x!11

l

l 211

3S l

l 211
2tan21~ l ! D , ~3.75!

wherel→g l in the last integral. The (12v l) integral is done
numerically, while the others can be done analytically. Ca
ing the numerically integrated partKLO1N , we get the ex-
pression

KLO152
p2

6
lnS 1

a D2
p2

6
ln~2!2p2 S p2

12
2

1

4D1KLO1N .

~3.76!

The relativistic part ofKLO ,KLO2 , is
3-15
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KLO25
1

12p
E d3l ~dp!38

dx

Axhc

tan21S 1

Ahc

D S 8pg

Dp
2 D

3
@ l 41p424l 2pW 224lW •pW pW 224lW •pW l 2110~ lW •pW !2#

v l r
4
„~v l1r !22W2)

→
1

6
E dl dx

1

Ax~12x!

1

v l~ l 1v l !
tan21S 1

lA12x
D .

~3.77!
ll

04210
To get this, all terms in the numerator that depend onp are
dropped and the approximationr→ l is made. This integral is
done numerically. So, delaying the numerical integratio
until the rest of the amplitude is calculated, we have

KLO52
p2

6
lnS 1

a D2
p2

6
ln~2!2p2S p2

12
2

1

4D1KLO1N

1KLO2 .
f the
2. KUV

The part ofI ct with the ultraviolet divergence is

KUV5
e2egE

64
E ~dq!n9~dl !n9~dp!38

TUV

~ lW 2qW !2@2~ l 2p!2#D~W,q!D~2W,q!D~W,l !D~2W,l !
~3.78!

with

TUV5Trr @g i„g~ l 2Wn!11…g0gqgmgqg0„g~ l 1Wn!11…g jF~pQ !#d i j
T ~ lW 2pW !. ~3.79!

We use Eq.~3.28! to do theq integration, and, as in the previous calculations, get two terms for the ultraviolet part o
amplitude

ActUV
m 5

a

4p
VehC~e!AT

m1BmS a

p D 2

~Ve2gE!2eKUV8 . ~3.80!

3. KUV

The calculation of this expression is straightforward. After theq integration, we have

KUV52
e2egE

64
G~11e!E ~dl !n9 dx du

@x~12x!#2e

~12x!
~3.81!

Trr @g i„g~ l 2Wn!11…g0NNC0
m g0„g~ l 1Wn!11…g j~11g0!ge#d i j

T ~ lW !

@ l 21a2/~12x!#11e~2l 2!~2l 212l 0!~2l 222l 0!
. ~3.82!
part
The divergent part of this integral can be done analytica
and is~N2 is the twol contraction term ands, t, andy are
the Feynman parameters used to do thel integration!

2
e2egEG~2e!

256 E ds dt dy dx du
s3/2t

~12x!12e

N2

~x~12s!a4!e

5
1

72

1

e2 1
29

216

1

e
1

p2

144
1

191

324
, ~3.83!

while the remaining part ofKUV8 is done numerically. We
then get
y
KUV8 5

1

72

1

e2 1
29

216

1

e
1

p2

144
1

191

324
1KUVN . ~3.84!

4. hC(e) term

For this part of the calculation we need the transverse
of the one-rung ladder to ordera. This is

AT
m52

122e

322e
L1I LOBm2

2a

3p
VeBm, ~3.85!
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while hC(e) to sufficient accuracy is

4

3
G~e!1F38

9
1

328

27
eGG~11e!, ~3.86!

giving us

a

4p
hC~e!VeAT

m5
4

3
L1AT

m2S a

p D 2

~Ve2gE!2S 19

216

1

e D
2

68

81S a

p D 2

. ~3.87!

5. Act
m results

For Act
m we finally get
tr
ve
t
e
th
at
U

04210
Act
m5S 4

3
L1DAT

m1BmH 2
1

6
a2 lnS 1

a D
1S a

p D 2

@6.265 238 1~13!#

1S a

p D 2

~Ve2gE!2eF 1

72

1

e2 1
5

108

1

e G J . ~3.88!

D. Transverse-transverse ladder

The double transverse graph is leading orderO(a0).
There are no ln(a) terms. The amplitude is given by

Att
m5BmS a

p D 2

~Ve2gE!2eI tt , ~3.89!

where
I tt5
e2egE

64 E ~dq!n9~dl !n9~dp!38
Ttt

„2~ l 2q!2
…„2~ l 2p!2

…D~W,q!D~2W,q!D~W,l !D~2W,l ! S 8pg

Dp
2 D ~3.90!
se
ick

,

the
and

Ttt5Trr @g i„g~ l 2n!11…gs„g~q2n!11…

3gm
„g~q1n!11…g t„g~ l 1n!11…g jF~pQ !#

3d i j
T ~ lW 2pW !dst

T ~ lW 2pW !. ~3.91!

With the absence of any log terms, it is reasonable to
to calculate the entire amplitude via parameters. Howe
this approach results in numerical instabilities, forcing us
isolate the numerically troublesome terms and calculate th
separately. The ill-behaved parts are found to occur in
ultraviolet finite part of the amplitude. Hence, we separ
the transverse-transverse amplitude into a UV finite and
divergent part,I TT5Lfin1LUV .
y
r,

o
m
e
e
V

1. Lfin

One way of getting a numerically stable integral is to u
parameters for the inner loop integration and then do a W
rotation on the remaining momentum variable~no poles are
crossed!. Also, we can setpW to 0 in the fermion propagators
g to 0 in the denominators and use*(dp)38(8pg)/Dp

251.
This simplifies matters considerably and we are left with
following to calculate:

Afin
m 5BmS a

p D 2

Lfin , ~3.92!

where
Lfin5
1

64E ~dq!49~dl !48
Tfin

~2l 2!@2~q2l !2#~2l 212l 0!~2l 222l 0!~2q212q0!~2q222q0!
. ~3.93!
In this approximation, the trace becomes

Tfin5Trr @g i„g~ l 2n!11…gs$„g~q2n!11…

3gm
„g~q1n!11…2gqgmgq%g t„g~ l 1n!11…

3g j~11g0!

3~2ge!#d i j
T ~ lW 2qW !dst

T ~ lW !. ~3.94!
Using parameters for theq integral, we get

Lfin

5
1

64 E ~dl !49 dz dx du
z3/2x

~2l 2!~2l 212l 0!~2l 222l 0!

3FN0

D22
1

2

N1

D G , ~3.95!
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where D5zxHT and HT is as defined in the transvers
Coulomb ladder calculation. Interestingly enough, the tr
of the term that is linear inq in the fermion line vanishes
This simplifies the contraction terms which become

N052
64

3
~zx!2l 0

2l 2 and N15
64

3
l 0

2.
if
se

b

pa
a
rt

04210
e
Next, a zx(12x) is factored from theD8s. Each term
in the denominator has a 1 as thecoefficient of its l 2

term. The integration contour is then rotated count
clockwise to run along the imaginaryl 0 axis. A change of
variablel 0→ i l 0 is made, resulting in a numerically stab
integral.
2. UV divergent terms

The UV divergent part of the amplitude is

AUV
m 52

Bm

64 S a

p D 2

~Ve2gE!2eE ~dq!n9~dl !n9
TUV

@2~ l 2q!#2~2l 2!~2q212q0!~2q222q0!~2l 212l 0!~2l 222l 0!
~3.96!
mb
with the trace

TUV5Trr @g i„g~ l 2n!11…gsgqgmgqg t„g~ l 1n!11…

3g j~11g0!~2ge!#dst
T ~ lW 2qW !d i j

T ~ lW !. ~3.97!

The integral of thegqgmgq term is

L̃T
m~ l 2n,l 1n!5E ~dq!n9

gsgqgmqg t

~2q212q0!~2q222q0!

3dst
T ~ lW 2qW ! ~3.98!

5E dz dx du
z3/2x

~zx!e FG~21e!
ÑT0

HT
21e

2
1

2
G~11e!

ÑT1

HT
11e 1

1

4
G~e!

NT2

HT
e G . ~3.99!

ÑT0 and ÑT1 are the 0 and 1 contraction terms and are d
ferent than those calculated in the transverse-Coulomb
tion. However, the two contraction term,NT2 , andHT , are
as before.

The divergent part of this expression is made manifest
an integration by parts, so we get

L̃T
m5hT~e!gm1L̃TA

m 1L̃TB
m ~3.100!
-
c-

y

with

L̃TA
m 5E dz dx du

z3/2x

~zx!e FG~21e!
ÑNT0

HT
21e

2
1

2
G~11e!

ÑNT1

HT
11e G . ~3.101!

and the following definitions:

ÑNT05
ÑTO

~zx!2 ,

ÑNT15
ÑT1

zx
12~12e!l 2xFn23

n21
2~52n!zGgm.

hT(e) and L̄TB
m are the same as in the transverse-Coulo

section.
Putting these in Eq.~3.89!, we find

AUV
m 5

a

4p
VehT~e!AT

m1S a

p D 2

Bm~Ve2gE!2eLUV8

~3.102!

with
LUV8 5LA1LB5
e2egE

64 E ~dl !n9
Trr @gs„g~ l 2n!11…~L̃TA

m 1L̄BT
m !„g~ l 1n!11…g t~11g0!ge#

~2l 2!~2l 212l 0!~2l 222l 0!
dst

T ~ lW !. ~3.103!
3. LA and LB calculation

To do this calculation, we introduce three Feynman
rameters,s, t, andy. The UV divergences for each are sep
rated and calculated analytically, while the remaining pa
of LA andLB are numerically integrated. The result is
-
-
s

LA5S 2
481

864
1

p2

18D 1

e
1LAN ~3.104!

and
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LB52
1

288

1

e22
65

1728

1

e
2

5p2

1728
2

23

128
1LBN

~3.105!

and

LUV8 5LA1LB

52
1

288

1

e2 1S p2

18
2

1027

1728D 1

e
2

5p2

1728
2

23

128
1LAN

1LBN . ~3.106!

4. hT(e) term

For this term we use the previously given expressions
hT(e) andAT

m and get

S a

4p DVehT~e!AT
m52

1

3
L1AT

m1S a

p D 2

~Ve2gE!2eS 17

432

1

e D
1

223

648S a

p D 2

. ~3.107!

5. Att
m results

Adding the numerical integrations to the analytic parts

Att
m5S 2

1

3
L1DAT

m1BmH S a

p D 2

@0.385 704 0~21!#

1S a

p D 2

~Ve2gE!2eF2
1

288

1

e2 1
1

e S 1

3
z~2!2

959

1728D G J .

~3.108!

E. Double-ladder results

The total double-ladder amplitude is gotten by add
Eqs.~3.36!, ~3.65!, ~3.88!, and~3.108!. This gives

ALL
m 5S a

4p DVeG~e!A1
m1BmH 122S a

p D1
a2

3
lnS 1

a D
1S a

p D 2

5.226 397~11!1S a

p D 2

~Ve2gE!2e

3F2
1

32

1

e2 1
1

e S 2
1

6
z~2!1

89

192D G J , ~3.109!

whereA1
m is the one-loop amplitude.

The hardest part of the calculation is now done. The
maining amplitudes have leading ordera0. A brief synopsis
of their computation follows.

IV. SELF-ENERGY AMPLITUDE

The amplitude for the self-energy correction to the ver
corrected lowest-order amplitude is
04210
r

-

x

ASE
m 5

Bm

2

a

4p
VeE ~dl !n9~dp!38 Trr @gmSF~ l 2Wn1p!gm

3SF~ l 1Wn1P!SC~ l 1Wn1p!SF~ l 1Wn1p!

3gnF~pW !#S 8pg

Dp
2 DDmn

C ~ l !. ~4.1!

SC is the mass renormalized self-energy operator in C
lomb gauge. This must be put in a form where the renorm
ization constant is explicit. There are several equivalent
pressions. One that is particularly convenient is to writeSC
as the Yennie gauge self-energy operator plus a gauge
rection term. One advantage of this form is that all terms
separately infrared finite. Other forms forSC have individual
terms that are infrared divergent. These cancel upon sum
tion, but it makes these forms more difficult to work wit
Specifically, we have

SC~ l 1Wn1p!5~B12B1Y!„g~ l 1Wn1p!21…

1SY~ l 1Wn1p!1SG~ l 1Wn1p!,

~4.2!

whereB152L1 is the Coulomb gauge wave function reno
malization constant,B1Y is the corresponding Yennie gaug
quantity, andSG , the gauge correction piece, is the sum
five terms. This gives forASE

m ,

ASE
m 52B1A1

m1BmS a

p D 2

~Ve2gE!2eI SE ~4.3!

with

I SE5
e2egE

32 E ~dl !n8
TSE

~2l 222l N!2~2l 212l n!
~4.4!

and

TSE5Trr @gm
„g~ l 2n!11…gm

„g~n1l !11…„S̄Y~n1l !

1S̄G~n1l !…„g~n1l !11…gn~11g0!ge#. ~4.5!

To get this, the definitionsS i5a/(4p)VeS̄ i are used. Then
since I SE is leading ordera0,pW is set to 0 in the fermion
lines, the substitutionsW→1,F(pW )→2(11g0)ge are
made, and*(dp)38(8pg)/Dp

251 is used to do the remainin
integration over the relative momentum.

In this nonrelativistic limit, the expressions for the se
energy terms become
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S̄G~n1l !5S̄1~n1l !1S̄2~n1l !1S̄3~n1l !

1S̄4~n1l !1S̄5~n1l !,

S̄1~n1l !5
1

2
G~11e!E dx dz z21/22ex2e

3
@„g~n1l !21…NR1NL„g~n1l !21…#

H11e ,

S̄2~n1l !5 l 2~g~n1l !21!G~21e!

3E dx dz dt x12ez21/22e
~12z!~22x!

H̄21e
,

S̄3~n1 l !5
l 2

2
„g~n1l !21…G~11e!

3E dx dz dt x12ez21/22e

3
~12z!@12~322e!z#

H̄11e
,

S̄4~n1l !52„g~n1l !21…~ l 212l 0!
b2

2
G~21e!

3E dx x12e
1

G21e ,

S̄5~n1l !5„g~n1l !21…2bG~11e!

3E dx x12e
1

G11e F „g~n1l !12…~12x!

1~12e!
b

2
„g~n1l !11…G ,
04210
and

S̄Y~n1l !52„g~n1l !21…2~b11!G~11e!

3E dx
x12e

~12x!11e

g~r 1l !

@2l 222l n1x/~12x!#11e ,

~4.6!

whereb, the gauge parameter that defines the Yennie ga
@27#, equals 2/(122e) andq5(11l 0 ,zlW ). The denomina-
tors are G5x1(12x)(2l 222nl ), H5G1x(12z) l 2,

H̄5G1x(12z)t l 2, while the spinor factors inS̄1 are

NR5~g@~n1l !2xq#11!@g~n1l !22q0g0#1~22x!
~4.7!

and

NL5@g~n1l !22q0g0#$g@~n1l !2xq#11%1~22x!.
~4.8!

Another advantage of expressingS̄C in this manner is that,

with the exception ofS̄1 , there are canceling terms in th
numerators and denominators.

Putting the various pieces together, we can write

I SE5I Y1(
i 51

5

I i ~4.9!

with the following expressions for theI i ’s:
I Y52
~11b!G~11e!

32
e2egEE ~dl !n9dx

x12e

~12x!11e

Trr $gm@g~ l 2n!11#gmg~ l 1n!gn~11g0!ge%

@2l 222l n1x/~12x!#11e~2l 212l n!
Dmn

C ~ l !,

~4.10!

I 152
G~11e!

64
e2egEE ~dl !n9dx dz z21/22ex2e

3
Trr @gm„g~ l 2n!11…gm@„g~ l 1n!21…NR1NL„g~ l 2n!…#gn~11g0!ge#

H11e~2l 222l n!2~2l 212l n!
Dmn

C ~ l !, ~4.11!

I 252
G~21e!

32
e2egEE ~dl !n9dx dz z21/22ex12e~12z!~22x!l 2

3
Trr @gm„g~ l 2n!11…gm

„g~ l 1n!11…gn~11g0!ge#

H̄21e~2l 222l n!~2l 212l n!
Dmn

C ~ l !, ~4.12!
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I 352
G~11e!

64
e2egEE ~dl !n9dx dz dt z21/22ex12e~12z!@12~322e!z# l 2

3
Trr @gm„g~ l 2n!11…gm

„g~ l 1n!11…gn~11g0!ge#

H̄11e~2l 222l n!~2 l 212l n!
Dmn

C ~ l !, ~4.13!

I 452
G~21e!b2

64
e2egEE ~dl !n9 dx x12e

Trr @gm„g~ l 2n!11…gm
„g~ l 1n!11…gn~11g0!ge#

G21e~2l 212ln !
Dmn

C ~ l !, ~4.14!

and

I 552
G~11e!b

32
e2egEE ~dl !n9 dx x2e Trr Fgm„g~ l 2n!11…gm

3
~$@g~ l 1n!12#~12x!1~12e!b/2%g~ l 1n!11!gn~11g0!ge

G11e~2l 212l n! GDmn
C ~ l !. ~4.15!
en
r

on

e
is
an
e

ex
Each I i is evaluated using parameters, with the diverg
terms, if any, separated and computed analytically. The
maining finite parts are done numerically, giving us

ASE
m 52B1A1

m2BmS a

p D 2

@5.683 940 3~11!#

1BmS a

p D 2

~Ve2gE!2eF 1

16

1

e2 1S 5

6
z~2!2

139

96 D 1

e G .
~4.16!

V. SIDE VERTEX

The amplitude for the vertex correction to the annihilati
vertex is

ASV
m 5

Bm

2

a

4p
VeE ~dl !n9~dp!38Trr @gaSF~ l 2Wn1p!

3gmSF~ l 1Wn1p!L~1!
b ~ l 1Wn1,Wn1p!F~pW !#

3S 8pg

Dp
2 DDC

ab~ l !. ~5.1!

L1
b is the one-loop vertex operator in Coulomb gauge. Wh

writing this operator in a form suitable for calculation, it
best to write a separate expression for the Coulomb
transverse parts. This results in the following lengthy expr
sion for the vertex operator:

L1
b~p9,p8!5L1gb1S a

4p DVeL̄S
b~p9,p8!, ~5.2!

where

L̄S
b~p9,p8!5L̄CS

b ~p9,p8!1L̄TS
b ~p9,p8!, ~5.3!

and L152B1 . The subtracted Coulomb part of the vert
correction function is
04210
t
e-

n

d
s-

L̄CS
b ~p9,p8!52E dx duH x21/22e

3FAC2
b G~21e!

HC
21e 1AC1

b G~11e!

HC
11e G

1FBC2
b G~21e!

DC
21e 1BC1

b G~11e!

DC
11e G J ,

~5.4!

where

HC512uv@k0
22xkW2#1~12x!@upW 921vp82#, ~5.5a!

DC512xuvk2, ~5.5b!

and

AC2
b 5

2

n23
xgbHC1 , ~5.6a!

AC1
b 5~NC0

b 2gb!1xH F 21

n23
1

x

n21Ggb

1x
n22

n21
g0gbg0J HC1 , ~5.6b!

BC2
b 5

2

n23
gbuvk2, ~5.6c!

BC1
b 5H F 21

n23
1

1

n21Ggb1
n22

n21
g0gbg0J uvk2,

~5.6d!

with
3-21
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NC0
b 5g0~g~p92QC!11!gb@g~p82QC!11#g0,

~5.7!

and the definitionsk5p92p8, v512u, QC5(q0,xqW ), q
5up91vp8, and HC15(]/]x)HC . The subtracted trans
verse part of the vertex correction function is

L̄TS
b ~p9,p8!5E dz dx duH z1/22ex2e

3FAT2
b G~31e!

HT
21e 1AT1

b G~11e!

HT
11e G

1x2eFBT2
b G~21e!

DT
21e 1BT1

b G~11e!

DT
11e G J ,

~5.8!

where

HT5x2xuv@k0
22zkW2#1~12x!@u~12p09

2!1v~12p08
2!#

1~12zx!@upW 921vpW 82#, ~5.9a!

DT5x2zxuvk21z~12x!@u~12p92!1v~12p82!#,
~5.9b!

and

AT2
b 5zxNT0

b 2
z

n21
N̄T1

b HT1 , ~5.10a!

AT1
b 5

21

2
~NT1

b 2N̄T1
b !1

n22

2
zxH F 21

n21
1~n23!zGgb

1F2
n22

n21
12zGg0gbg0J HT1 , ~5.10b!

BT2
b 5

1

n21
N̄T1

b DT1 , ~5.10c!

BT1
b 52

n22

n21
x$~124e12e2!gb1~22e!g0gbg0%DT1 ,

~5.10d!
04210
with

NT0
b 5g i~g~p92QT!11!gb~g~p82QT!11!

3g j~qW 2d i j 2qiqj !, ~5.11a!

NT1
b 5g i~g~p92 l !11!gb~g~p82 l !11!

3g j~ lW 2d i j 2l i l j !u12contraction, ~5.11b!

N̄T1
b 52~n22!x2@ngb2g0gbg0#, ~5.11c!

and the definitionsQT5x(q0,zqW ), HT15(]/]z)HT , and
DT15(]/]z)DT . The contraction in~5.11b! is to be done
over l using the ‘‘metric’’ diag(1/z,2d i j ) and the replace-
ment l →QT . Both L̄CS

b (p9,p8) and L̄TS
b (p9,p8) vanish in

the ‘‘particle at rest’’ limit, that is whenp9, p8→n andgn
→1 on the left and right. For the present calculation,p9
5l 1n, p85n, k5l andq5n1ul .

Using Eq.~5.3!, we can write Eq.~5.1! as

ASV
m 52L ~1!A1

m1BmS a

p D 2

~Ve2ge!2eI SV. ~5.12!

The subtracted part of this amplitude isO(a0), so we can
make the appropriate nonrelativistic approximations, sim
fying the expression forI SV to

I SV52
e2egE

32 E ~dl !n9 Trr @gaSF~ l 2n!gmSF~ l 1n!

3L̄s
b~ l 1n,n!~11g0!ge#Dab

C ~ l !, ~5.13!

which, from the equation forL̄S
b , can be written as the sum

of 16 terms.
Each of these integrals isO(a0), so Feynman parameter

are used. However some of the resulting parameter integ
are numerically unstable. Fortunately for these, only sm
adjustments are needed to get numerical stability.

For instance, unstable behavior occurs in the calcula
of
ones
ce,
I CCA15
G~11e!

32
e2egEE ~dl !n9dx du x21/22e

Trr @g0„g~ l 2n!11…gm
„g~ l 1n!11…AC1

0 ~11g0!ge#

lW 2~2l 222l 0!~2l 212l 0!HC
11e

. ~5.14!

~The first subscript refers to the spanning photon and the second subscript refers to the exchange photon. So,I CCA1 means the
AC1

b part ofLS
b and a Coulomb exchange photon.! The terms which cause the trouble are not hard to locate. They are the

in the trace that are linear inl 0 . But, these are odd functions ofl 0 and integrate to 0. Upon eliminating these from the tra
the resulting numerical integration converges.

Another example of a numerically unstable integral is

I TCA152
G~11e!

32
e2egEE ~dl !n9dx du dz z1/22ex2e

Trr @g0„g~ l 2n!11…gm
„g~ l 1n!11…AT1

0 ~11g0!ge#

lW 2~2l 222l 0!~2l 212l 0!HT
11e

. ~5.15!
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Here, again, the troublesome terms are the ones linear inl 0 .
However, these can not be neglected since these expres
are not odd functions ofl 0 . A strategy that works is to
isolate thel 0 part of the integrand and use

1

~2l 222l 0!

1

~2l 212l 0!

5
1

4l 0
S 1

~2l 222l 0!
2

1

~2l 212l 0! D
and cancel thel 0 in the numerator. This procedure yields
numerically stable integral.

For other similar integrals, relations such as2l 25
(2l 222l 02l 212l 0)/2 can be used to eliminate denom
nators and stabilize the integrands.

Adding the results of all the integrations, we find

ASV
m 52L1A1

m1BmS a

p D 2H ~Ve2gE!2eS 2
1

16

1

e2

1F2
1

12
z~2!1

5

24G 1

e D22.093 273 3~12!J .

~5.16!

VI. CROSSED LADDER

The crossed ladder diagram is leading ordera0, so we
make the usual nonrelativistic simplifications and get ana
independent integral whose finite part is computed num
cally. The amplitude is
-

gr

e
l

04210
ons

i-

ACL
m 5BmS a

p D 2

~Ve2gE!2eI CL ~6.1!

I CL5
e2egE

64 E ~dl !n9~dq!n9Trr @gaSF~q2n!gmSF~q2l 2n!

3gmSF~q2l 1n!gbSF~n2l !gn~11g0!ge#

3DC
ab~q!DC

mn~ l !. ~6.2!

The calculation proceeds as follows. We write the phot
propagators as sums of the Coulomb part and the transve
part. This partitionsI SV in a natural way into four parts,
according to whether both photons are Coulomb, one Co
lomb and the other transverse, etc. The Coulomb-transve
and the transverse-Coulomb should be equal so their sepa
calculation provides a partial check on our results. A straig
forward application of Feynman parameters suffices, w
one exception, to extract the UV divergent parts of each
tegral and to yield a finite integral that behaves nicely wh
computed numerically.

The exception to the above occurs when computing t
Coulomb-Coulomb part. After separating the UV diverge
parts, the remaining finite part is numerically unstable. T
unstable part of the remaining finite part can be identified
the following integral:
I 5
1

4 E ~dl !49~dq!49
~22q0!~22l 0!

qW 2l 2@~ l 021!22v l
2#@~q021!22vq

2#@~ l 02q011!22v82#@~ l 02q021!22v82#
. ~6.3!
n
one
na-
of

r is

-

The v’s are the relativistic energies:

vq5AqW 211, v85A~ lW 2qW !211 ~6.4!

andv l is as before.
For the numerical evaluation, we first integrate overl 0

andq0 which yields the following surprisingly simple look
ing expression

I 52E dl dq du
~vqv l21!~2v81v i1vq!

vqv lv8~v8221!@~v81v l1vq!221#
,

~6.5!

whereu is the cosine of the angle betweenlW andqW andl and
q are the magnitudes of the momentum vectors. This inte
can be integrated successfully and gives21.233 703 2~21!.

This diagram has no inner loop divergence, so its div
gent part is proportional to 1/e. After separating this, the fina
value of the crossed ladder amplitude is
al

r-

ACL
m 5BmS a

p D 2H ~Ve2gE!2eS F2
5

24
z~2!1

5

48G 1

e D
21.796 103~19!J . ~6.6!

VII. VACUUM POLARIZATION

The amplitude originating from the vacuum polarizatio
correction to the exchanged photon has been previously d
@28–30#. It is the simplest to calculate and can be done a
lytically. For completeness, we will outline our calculation
this amplitude.

The unrenormalized Coulomb gauge photon propagato

Dmn8 ~ l !5
1

11P~ l !
Dmn

C ~ l !5Z3

1

11PR~ l !
Dmn

C ~ l !

~7.1!

with Dmn
C (l ) given in Eq.~1.6!. Z3 is the charge renormal

ization constant, 1/@11P(0)# andPR(l 2) the renormalized
3-23
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scalar vacuum polarization function, of which the one lo
approximation is needed. A useful form for this is

P~1!R~ l 2!52
a

3p
VeG~11e!l 2

3E dz
z2~322z!~122z!

~12z~12z!l 2!11e . ~7.2!

Then, the vacuum polarization amplitude takes the form

AVP
m 5BmS a

p D 2

~Ve2gE!2eI VP ~7.3!

with

I VP52
G~11e!

48
e2egEE ~dl !n9 dz

3
z2~322z!~122z!

~12z~12z!l 2!11e

1

D~W,l !D~2W,l !

3Trr @gm
„g~ l -n!11…gm

„g~ l 1n!11…gn

3~11g0!ge#@ l 2Dmn
C ~ l !#. ~7.4!

The trace timesl 2Dmn
C (l ) is

4

l 2 l 2~ l 224!18el 22
16~e21!

2e23
l 2. ~7.5!

Symmetry arguments can be used to reduce the numbe
denominators so that only two Feynman parameters
needed. The integrals are relatively standard and we get

AVP
m 5BmS a

p D 2

~Ve2gE
!2eH 1

24

1

e22
1

144

1

e
1

p2

16
2

1

864J .

~7.6!

VIII. TOTAL TWO-LOOP VERTEX CORRECTION TO
THE ONE ANNIHILATION PHOTON AMPLITUDE

We have completed all the necessary calculations to c
pute the energy shift of the two-loop vertex corrected o
photon annihilation amplitude. This shift is twice the diffe
ence of the shifts associated with Figs. 1~c! and 1~d!, to
which we must also add the shift due to Fig. 1~a!.

It appears that we need to know the unrenormalized o
loop vertex correction to ordera6. However, this is not so
since thea6 part of the energy contribution of Fig. 1~a! mi-
nus twice the part of Fig. 1~d! that comes from the relative
ordera2 part of the unrenormalized one-loop vertex corre
tion A1

m cancel. Then, using

L15S a

4p DVeG~e!,

L25S a

p D 2

@Ve2gE#2eH 7

96

1

e2 1F3

8
z~2!2

391

576G 1

e

11.258 385~5!1O~e!J @21#,
04210
of
re

-
-

e-

-

the formulas given earlier for the renormalized one and tw
loop vertex amplitudes,A1R

m 5A1
m2L1A0

m and A2R
m 5A2

m

2L1A1
m2L2A0

m1L1
2A0

m ~see Appendix B! and taking into
account the above mentioned cancellation, we get upon s
ming Eqs.~3.109!, ~4.16!, ~5.16!, ~6.6!, and ~7.6!, a contri-
bution to the energy shift of the hyperfine interval of

DE1a12~1c21d!5ma4H 1

4
2

a

p
1

a2

6
lnS 1

a D
2a2@0.083 747 2~12!#J . ~8.1!

IX. PREVIOUSLY CALCULATED AMPLITUDES

The remaining amplitudes shown in Fig. 1 have been p
viously calculated and their results are compiled here
easy reference.

The one-loop vacuum polarization contribution, pictur
in Fig. 1~b!, is the renormalized scalar vacuum polarizati
functionPR(4W2) times the lowest-order amplitude. This

DE1a5
ma4

4 H 2
8

9 S a

p D1
a2

4
1¯J I 0

2

5ma4H 2
2

9 S a

p D1
a2

16
2

2

27

a2

p J . ~9.1!

The a2/16 term is from the expansion of the one-loo
vacuum polarization function @29,31#, while the
22/27(a2/p) is from the relativistic expansion of the wav
function.

The vacuum polarization contributions from Fig. 1~e! mi-
nus Fig. 1~f! is

DE1e21 f5ma4H 8

9 S a

p D 2

1
2

27

a2

p J . ~9.2!

The 2/27(a2/p) term here also comes from the relativist
expansion of the wave function and cancels the similar te
in DE1a . The other part was worked out by Karshenbo
@29#.

The two-loop vacuum polarization contribution was do
some time ago by Barbieri, Christillin, and Remiddi@23# and
Samuel@24#. The result, plus the reducible product of th
two one-loop vacuum polarization functions,

DE1g11h5ma4H 2
1

8
a2 lnS 1

a D10.038 332 773 8J .

~9.3!

Note that this is does not include the ‘‘Coulomb distortion
part of @23# which we include in the many-potential ampl
tudes of Fig. 1~k!.

The many-potential~MP! terms of Figs. 1~i!, 1~j!, and
1~k! are similar to the MP contributions in other equivale
formalisms. The corresponding contributions were work
out by Caswell and Lepage@15#, where it was noted that the
contributions having two annihilation photons and an an
hilation photon with a transverse exchange photon should
3-24
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formalism independent, while the term involving the e
change of a Coulomb minus lowest order photon should
formalism dependent. We found this to be the case, altho
our result for the Coulomb minus lower order contributi
agrees with that of Buchmu¨ller and Remiddi@14#, which
underscores the closeness of the formalisms. For the i
vidual MP contributions we have,DE1i5ma6@1/16
21/16z(2)#, DE1 j5ma6@7/1621/4z(2)#, and DE1k
5ma6@23/16# to give a total MP contribution of
DE1i 11 j 11k5ma6@5/1625/16z(2)#.

The final contribution, from Fig. 1~l! is the derivative
term. This is similar to the derivative term calculated
Caswell and Lepage@15#, except for a formalism dependen
sign and the fact that only the one-photon annihilation p
contributes here. The derivative term isDE1l52ma6/32.

The total result for the coefficient ofma6 coming from all
one-photon annihilation contributions is

DE12g2ann520.125 648 1~12!. ~9.4!

This agrees with the analytic result

DE12g2ann
analytic 5

ma6

p2 H 13

32
z~3!1

27

8
z~2!ln~2!

2
1183

192
z~2!1

1477

324J ~9.5!

of Hoang, Labelle, and Zebarjad@32#, who used the effective
field theory NRQED for their calculation. The numeric
value of the analytic result is20.125 648 7.

X. THE TOTAL HYPERFINE INTERVAL

In Table I, we list all orderma6 contributions to the hy-
perfine interval which gives forD a value of20.392 83 and
a contribution of27.329 MHz to the energy difference.

Since our work was completed, the ordera7 ln(a) contri-
bution has been calculated by Kniehl and Penin@9#, and
Melnikov and Yelkhovsky@10#. This allows us, using the
results of Hoang, Labelle and Zebarjad, Eq.~9.5!, the three-
photon exchange~pure recoil! results of Czarnecki, Melni-
kov and Yelkhovsky@33#, the ordera7 ln2(a) calculation of
Karshenboim@5#, and the above mentioned contribution
write an analytic expression forDE correct to ordera7 ln(a)

TABLE I. Contributions to the positronium hyperfine interval
orderma6.

Contribution D DE ~MHz!

Three-photon-annihilation@36–38# 20.051 94 20.969
Two-photon-annihilation@39,40# 20.032 48 20.606
One-photon-annihilation~this work, @32#! 20.125 65 22.344
One-photon-exchange@28,41,42# 20.013 74 20.256
Two-photon-exchange@43,44# 20.545 35 210.175
Three-photon-exchange@33,35,45–47# 0.376 32 7.021
Total 20.392 83 27.329
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DEth5ma4H 7

12
2

a

p S 8

9
1

1

2
ln~2! D1a2S 5

24
lnS 1

a D1
1367

648p2

2
5197

3456
1S 221

144
1

1

2p2D ln~2!2
53

32p2 z~3! D
2

7

8

a3

p
ln2S 1

a D1S 217

90
2

17

3
ln~2! D a3

p
lnS 1

a D J .

~10.1!

This gives the theoretical prediction DEth
5203 391.69 MHz, which disagrees with the experimen
values by 2.6 to 4.2 MHz.

XI. IS THERE A POSITRONIUM HYPERFINE PUZZLE?

Since thea7 ln2(a) term contributes20.92 MHz and the
a7 ln(a) term contributes20.32 MHz to the hyperfine split-
ting, it is reasonable to expect that thea7 termG in Eq. ~1.1!
will not be sizable enough to bring theory and experime
into agreement. This raises the spectre of whether there
‘‘positronium hyperfine puzzle’’ analogous to the ortho
ositronium decay rate puzzle@34#. This cannot be answere
until a more precise experiment is done. Also useful wo
be an estimate of at least the dominant contribution ofG in
order to rule out the possibility thatG has a value~'20 to
30! large enough to account for the present discrepancy.

With regard to the theoretical calculation, based upon
experiences with the present calculation, it is our opinion
next order term should be computed using more modern fi
theory methods, collectively called effective field theori
~EFT! @35#.

Positronium is a nonrelativistic system and EFT are c
structed to take advantage of this by making a separa
between the nonrelativistic and relativistic parts of the cal
lation. This distinction is determined by the various ener
scales present in the theory. This separation allows for m
simpler identification of terms that contribute to a particu
order in a. This is to be contrasted with conventional rel
tivistic field theory methods, as used in this paper, wh
integrals contribute to many orders in the fine structure c
stant. It is this that makes the analytic evaluation of the
integrals extremely difficult.

EFT calculations are still highly nontrivial, particularl
since the relativistic part ofG will require the computation of
the three-loop electron-positron scattering diagrams. T
part of the calculation alone will require considerable
sources, both human and computer. It is probably safe to
that this calculation will not be completed in the immedia
future.
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APPENDIX A: NOTATION

The orthopositronium reference wave function is

C0~p!52pd~p0!S 2vp

vp1mD S vp1W

2W D 1/2

3@L1~pW !~11g0!~2ge!L2~pW !~2g0!#

3S f0

2&
D S 8pg

Dp
2 D

52pd~p0!S f0

2&
D S 8pg

Dp
2 DF~pW !, ~A1!

where f05A(ma)3/(8p) is the wave function at contac
Dp5p21g2, p5upW u, W5mA(12a2)/(4n2), e5(0,ê) is
the positronium spin vector and

ê05~0,0,1!, ~A2!

ê6152
1

&
~61,i ,0!. ~A3!

The nonrelativistic approximation of the wave function is

C0~p!→2pd~p0!~11g0!~2ge!S f0

2&
D S 8pg

Dp
2 D .

~A4!

Other definitions used in the text are

Bm5& ief0em,

~dl !n85~dnl !/~2p!n,

~dl !n95~dnl !/~ ipn/2!,

D~6W,q!52q262Wnq1g2,
04210
Dl5 l 21g2,l 5ulW u,

n5~1,0W !.

APPENDIX B: RENORMALIZED PERTURBATION
SERIES

In this appendix, we will derive Eq.~1.9! graphically, us-
ing the following definitions. The vertices are

~B1!

e is the renormalized charge,e0 the unrenormalized charg
ande5e0Z3

1/2. Z3 is the charge renormalization constant a
to two loops is

Z35
1

11C
5@11C11C21¯#21

512C12C21C1
21O~a3!. ~B2!

A renormalized fermion propagator is

~B3!

and the product of two renormalized fermion propagators

~B4!

In the two last equations, the unadorned lines are free
mion propagators,nRstands forn-loop renormalized and the
stubby lines attached to the self energy insertions are
propagators.

The two-particle irreducible kernel is
~B5!

with2

~B6!

2The factor of21 is a fermionic minus sign.
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and

~B7!

The last figure on the right stands for the expansion

~B8!
d

av

04210
The unrenormalized vertex function is

G8m5gm1L1
m1L2

m1¯ . ~B9!

In this, 1, 2, etc., refer to one-loop, two-loop, etc., so

~B10!

and
~B11!
a

hird

a-
nd
al-

er-

-
h

i-
If we multiply G8m by a wave function on the right an
integrate we obtain

~B12!

In the graphical representation of the amplitudes, the w
function is always implicit on the right~left!. A0

m is repre-
sented by the first diagram,A1

m by the second andA2
m by the

third diagram. 2U stands for two-loop unrenormalized.

The renormalized vertex is

GR
m5Z1~G8!m5~11L11L21...!21~gm1L1

m1L2
m1...!

5gm1~L1
m2L1gm!1~L2

m2L1L1
m2L2gm

1gmL1
21¯ !

5gm1L1R
m 1L2R

m 1¯, ~B13!

and when convoluted with a wave function,

~B14!

A1R
m is represented by the second diagram andA2R

m by the
third. It is important to remember that each term in Eq.~B14!
e

is a complicated function ofa and can be expanded in
series of powers ofa and ln(a).

We are now in a position to derive Eq.~1.9!. The dia-
grams we are interested in come from the second and t
terms of Eq.~1.8!, i.e.,KBSSKBSSKBS2KBSSKBS, which we
represent pictorially as

~B15!

Implicit on the left and right are wave functions and integr
tions over relative momenta. The double horizontal lines a
the double vertical lines are the previously defined renorm
ized fermion propagators and two particle irreducible k
nels.

We need those parts ofDE that contain the single annihi
lation photon kernel. To ordera6, these are the ones wit
one, two or three factors of the annihilation kernelKA . Call
theseDE1 , DE2 , and DE3 , and their sumDE1235DE1
1DE21DE3 . For the term with three factors of the annih
lation kernel, we have

~B16!

The vacuum polarization bubble is
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~B17!
q

ne-
um
To the required order of accuracy, only the first term of E
~B17! is needed. Then, we can use

~B18!

and
04210
. P1~k2!5P1~0!1P1S~k2!5C11P1R~k2!. ~B19!

In this last equation, we have replaced the subtracted o
loop vacuum bubble by the renormalized one-loop vacu
bubble, that is,

P1R~k2!5Z3P1S~k2!→P1S~k2!,

since this involves no loss of accuracy. Then
s of the
~B20!

To get this form, we have made use of the definition

~B21!

For DE2 , we separate it into two subexpressions. The first,DE2a , is particularly simple:

~B22!

The remaining subexpression is

To get this, we have expressed the renormalized self-energy insertions in the vacuum polarization loops in term
unrenormalized self-energy operator. Also, we usedA1

m5gmL11A1R
m , which pictorially is
3-28
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~B23!

So, upon addingDE2a andDE2b we get

~B24!

This can be further simplified using

~B25!

Next, we need to write the unrenormalized one-loop vacuum polarization bubble in Eq.~B24! in terms of the renormalized
bubble. To do this we need to express the two factors of the renormalized charge where a photon meets the
polarization bubble in terms of the bare charges, usinge25Z3e0 . Doing this,

~B26!

For the terms in the first line of Eq.~B24! we can write

~B27!

Putting everything together, we get for the sum of the two- and three-annihilation kernels
042103-29
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~B28!

The one-annihilation term is

~B29!

For this, we make use of Eq.~B4! and Eq.~B7!, giving

~B30!

To get this expression many cancellations and approximations have been used. An example of such an approximat
following which uses the unperturbed wave equation to show that the difference of the two diagrams is of higher or

~B31!

Such terms can be dropped from Eq.~B29!. In Eq.~B30!, we used Eq.~B8! to expand the third diagram in the parentheses
then wrote the renormalized self-energy and vertex insertions in terms of their unrenormalized counterparts and ap
renormalization constants. The renormalization constants cancel and we are left with

~B32!

Next, we want to put the first term in Eq.~B32! in a form with factors ofC1 andC2 explicit before adding this to Eq.~B28!.
So, usingZ3

21511C11C21¯ , we get

~B33!

~B34!

To get this, we used
042103-30
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For DE1 , we now have

~B35!

Adding this to Eq.~B28!, we have

~B36!

We were able to write the last two terms in Eq.~B36! in terms of renormalized quantities by making use of the identitie

~B37!

~B38!

~B39!

and the approximations

Z2
25122L122L213L1

21O~a3!, ~B40!

~B41!

We found that

~B42!
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We also note that the term proportional toC2 is of O(a7), as it is the sum of the terms proportional toC1 . Our final result
for the one-photon-annihilation contribution to the energy shift is

~B43!

The sum of the last two terms ofDE123 is DE1a12(1c21d) , Eq. ~1.9! of the main text.
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