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Quantum entanglement in fermionic lattices
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The Fock space of a system of indistinguishable particles is isomorphic~in a nonunique way! to the state
space of a composite, i.e., many modes, quantum system. One can then discuss quantum entanglement for
fermionic as well as bosonic systems. We exemplify the use of this notion—central in quantum
information—by studying some, e.g., Hubbard, lattice fermionic models relevant to condensed matter physics.
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Much attention has been recently devoted to the notion
quantum entanglement@1#. As a matter of fact this fashion i
mostly due to the vital role that such a notion is genera
believed to play in quantum-information processing~QIP!
protocols@2#. The definition of entanglement relies on th
tensor-product structure of the state space of a compo
quantum system@3#.

On the other hand such a tensor-product structure is
present in a large class of systems of major physical inter
ensembles ofindistinguishableparticles. Indeed in this cas
it is known—basically since the birth of quantum theory
that the state space associated withN subsystems is con
strained to besubspaceof the N-fold tensor product. De-
pending on the bosonic or fermionic nature of t
subsystems one has to select the totally symmetric or a
symmetric subspace. This is an instance of asuperselection
rule @5#, i.e., a fundamental limitation on the possibility o
preparing a given state.

We see therefore that the existence of quantumstatistics
@3# makes the notion of entanglement problematic for s
tems made of indistinguishable subsystems, e.g., partic
Notice that, even if one allows for generalparastatistics@3#,
most of the product stateŝ i 51

N u i & do not belong to the
physical state space at all in that they do not have a pro
transformation under permutations ofSN , i.e., they do not
belong to anSN irrep @4#.

Very recently some authors addressed the issue of
tanglement~or more generally quantum correlations! in sys-
tem of two fermions@6# and bosons@7#. Their approach ap-
pears to be the natural generalization of the one used
distinguishable particles.

In this paper we shall tackle the problem of the relati
between entanglement and quantum statistics from a ra
different perspective based on entanglement relativity as
cussed in Ref.@8#. We shall mostly focus on the fermioni
case@9#. In particular, we shall analyze the local, i.e., on-s
entanglement associated with simple fermionic models o
lattice.

FERMIONS AND QUBITS

Let us start be recalling basic kinematical facts ab
many-fermion systems. LethLªspan$uc l&% l PNL

(NL

ª$1, . . . ,L%) be an L-dimensional single-particle state
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space. The labels inNL will be referred to assitesand the
associated single-particle wave functions will be thought
as describing a~spatially! localized state. Accordingly the se
of l’s will be referred to as alattice.

Let PL (PL
N) denote the whole family of subsets~with N

elements! of NL . For anyAª$ j 1 ,...,j N%PPL
N we define the

antisymmetrized state vector

uA&ª
1

AN!
(

PPSN

~21! uPu
^ l 51

N uc j P~ l !
&. ~1!

The uA&’s are an orthonormal set. The state spaceHL(N)
associated withN ~spinless! fermions with single-particle
wave functions belonging tohL is given by the totally anti-
symmetric subspace ofhL

^ N , i.e., HL(N)ªspan$uA&/A
PPL

N%. The fermion number ranges from 0 toL, the total
Fockspace is obtained as a direct sum of the fixed numbe
subspaces, i.e.,HL5 % N50

L HL(N)5span$uA&/APPL%. From
the well-known relation dimHL5(N50

L dimHL(N)
5(N50

L (N
L )52L, it follows that the fermionic Fock space i

isomorphic to anL-qubit space, each qubit being associat
with a site@10#. The latter isomorphism is realized by the th
mapping

L:HL→~C2! ^ L:uA&→ ^ l 51
L uxA~ l !&, ~2!

where xA :NL→$0,1% is the characteristic function of A.
ClearlyL(uA&) is nothing but aN-qubit basis state having in
the j th site a 1~0! if j PA ( j ¹A). The zero-particle stateu0” &
is mapped byL onto u0&ªu0& ^ L; thus the latter vector is
referred to asvacuum.

In our considerations, onceHL is endowed byL with a
multipartite structure, tensor products of individual sing
particle spaces are not relevant anymore. To exemplify
point let us consider the caseL53. It is not difficult to see
that all the states inH3(2), seen as elements ofh3

^ 2, have
the sameentanglement. Indeed all of them can be written
ua& ^ ub&2ub& ^ ua& for suitableua& andub& @11#. On the other
hand both the ‘‘separable’’ stateu1& ^ u1& ^ u0& and the ‘‘en-
tangled’’ (u0& ^ u1&2u1& ^ u0&) ^ u1& belongs toL„H3(2)….
This kind of puzzle is solved by observing that the entang
ment of, sayua& ^ ub&2ub& ^ ua&, is notphysical. Indeed the
©2002 The American Physical Society01-1
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PAOLO ZANARDI PHYSICAL REVIEW A 65 042101
involved subsystems, i.e., individual ‘‘labeled’’ particles, d
to the very notion of indistinguishability, are physically n
accessible.

This situation is just an illustration of the relativity of th
notion of entanglement@8#. The latter crucially depends o
the choice of a particular partition into physical subsystem
In this case ‘‘good’’ subsystems are associated with the se
single-particle modes~labeled byl PNL! whose occupation
numbers are physical observables andnot with the particles
themselves. From this perspective one can have entan
ment without entanglement. For instance, a one-parti
state, e.g.,u0& ^ u1&1u1& ^ u0&, can be—with respect to th
partition into mode subsystems—entangled. It is importan
stress that such a kind of one-particle entanglement~or cor-
relation!, despite its paradoxical nature, has been rece
proven to allow for quantum teleportation@12#; therefore it
has to be regarded as a genuineresourcefor QIP.

The Fock spaceHL , since it allows for a varying particle
occupation, doesnot correspond generally to the state spa
of a physical system. For charged fermions coherent su
positions of vectors belonging to different particle-numb
sectors are forbidden due to the charge superselection
@5#. In this sense our qubits areunphysical. Only qubit states
in the L„HL(N)… are associated with~N-particle! physical
states. Accordingly not all the elements of End(HL) corre-
spond to physical observables: the latter span the subalg
F of number-conserving operators, i.e.,Fª$X/@X,N#50%
5 % NEnd„HL(N)….

LOCAL ENTANGLEMENT

Let uC&PHL(N) be the associatedj th local-density ma-
trix given by r jªTrjI

uC&^Cu, where TrjI denotes the trace
over all but thej th sites. For anyj PNL one obtains a bipar
tition of HL , i.e., C2

^ (C2) ^ (L21) therefore the entropyS
~von Neumann as well as linear! of r j is a measure of the
entanglement of thej th site with the remainingN21 ones.

Local entanglement isrelative to the decomposition into
subsystems, i.e., sites defined by mapping~2! @8#. One could
consider different isomorphisms giving rise toinequivalent
partitions into ‘‘local’’ subsystems. This fact can be clear
seen by introducing creation and annihilation operat
$cj% j 51

L ,End(HL) (@a,b#65ab6ba), which satisfy ca-
nonical ~anti! commutation relations for~fermions! bosons,

@ci ,cj #650, @ci ,cj
†#65d i j , cj u0&50~ j PNL!. ~3!

Of courseHL5span$P j 51
L (cj

†)nj u0&/n1 ,...,nLPN`%. If U is
a L3L unitary matrix then it is well known that the follow
ing ~Bogoliubov! transformation

ci→ c̃iª(
j 51

L

Ui j cj ~ i PNL! ~4!

maps fermions~bosons! onto fermions ~bosons! giving
rise to an automorphism of the observable algeb
Accordingly new occupation-number representatio
LU :P i 51

L ( c̃i
†)niu0&° ^ i 51

L uni& (ni50,1) are defined.
Clearly entanglement is stronglyrelative to the decomposi-
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tions associated with differentLU’s. Notice that even though
automorphisms~4! have a single-particle origin, they defin
nonlocaltransformations of the Fock space onto themselv
Indeed a mappingWPU(HL) is local with respect to the
subsystem decomposition associated withLU iff LUWLU

21

PP i 51
L U(C2) i .

As a particular, though quite relevant, case one can c
sider Fourier transformation, i.e.,Uk jªeik j , kª2p( l
21)/L ( l PNL). The wave vectorsk label the so-called re-
ciprocal lattice~LU is denoted byL* ! and represent physica
modes delocalized over the spatial lattice. It is obvious t
states that are entangled~nonentangled! with respectL can
be nonentangled~entangled! with respectL* .

The situation we shall investigate in this paper is the f
lowing. SupposeHPEnd(HL) is a nondegenerate~grand-
canonical! Hamiltonian andH5(memuem&^emu is its spectral
decomposition. Ifr j

m denotes thej th local-density matrix
associated with the energy eigenstateem , one can compute
the quantity

S1/bª
1

ZL (
m51

2L

e2bem(
j 51

L

S~r j
m!, ~5!

where Z is the ~grand-canonical! partition function, i.e.,Z

ª(m51
2L

e2bem. Equation~5! is the thermal expectation valu
of the local entanglement averaged over the whole lat
@13#. In particular, we will be interested in the limitb°`,
i.e., local entanglementS0 in the ground state.

When the energy spectrum shows degeneracies, Eq.~5! is
no longer well defined. We assume that there is a ‘‘natur
~see examples below! way to select a complete set of com
muting observables containingH, whose joint eigenvectors
provide theem’s to be used in Eq.~5!.

To begin with, we observe that

r i5u1&^1u^Cuni uC&1u0&^0u^Cu12ni uC&, ~6!

whereniªci
† ci5u1&^1u i ^ 1iI is the local occupation-numbe

projector. Indeed ^1ur i u1&5Tr(u1&^1u,r i)5Tr(nir i)
5^Cuni uC& in the same way one obtains the other diago
element of r i . Moreover, ^0ur i u1&5Tr(u1&^0ur i)
5Tr(ci

†r i)5^Cuci
†uC&50, the last equality is due to th

fact that uC& is a particle-number eigenstate, i.e., an eige
state of the operatorN̂ª( j 5

L nj .
Itinerant Fermions. We now consider free~spinless! fer-

mions hopping in the lattice. The Hamiltonian is given by

HFree52t (
j 51

L21

~cj 11
† cj1H.c.!2mN̂. ~7!

Introducing the Fourier fermionic operatorsck

ª1/AL( j 51
L eik jcj , it is a textbook exercise to prove that E

~7! has eigenstates given by theN-particle vectorsuk&
ªPm51

L ckm

† u0& (kª(k1 ,...,kN)PRN with eigenvaluesek

ª22t(m51
N cos(km)2mN.

The local-density matrix is easily obtained by using E
~6! and the translational properties of theuk&’s. If T denotes
1-2
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QUANTUM ENTANGLEMENT IN FERMIONIC LATTICES PHYSICAL REVIEW A65 042101
the natural representation inHL of the cyclic permutations
i ° i 11 ~mod L!, i.e., the translation operator, one h
Tuk&5exp((m51

N km)uk&. Therefore

^kunj uk&5~1/L !( i 51
L ^kuni uk&5N/L5.. n.

Whereby

E5~1/Z! (
N50

L

S~N/L !ebmNZN~b!

5~1/Z!Tr@S~N̂/L !e2bHFree#,

in which S(n)52n ln n2(12n)ln(12n) and ZN(b)

ªTrHL(N)e
2b(HFree1mN̂) is the~N-particle! canonical partition

function.
The fractionp(N)ªebmN ZN /Z gives of course the prob

ability of having anyN-particle configuration. In the thermo
dynamical limit (N,L°`,N/L5const) p(N) becomes
strongly peaked around the expectation valueN0 of N̂. In
this case local entanglement is simply given by the Shan
function E;S(n0); it readily displays an intuitive feature
local entanglement vanishes for the empty~fully filled ! lat-
tice being the unique associated state, given the pro
u0& ( ^ l u1& l); moreover,E is maximal at half-filling, i.e.,n0
51/2. Notice that for the statesuk& entanglement associate
with the L* partition is obviously zero.

SPIN-„1Õ2… FERMIONS

Here we consider the lattice models of the spin-~1/2! fer-
mion model. We have then to introduce an extra dicothom
variables5↑, ↓ to label the single-particle state vectors. A
usual, fermionic operators corresponding to differents’s al-
ways anticommute. In this case it is convenient to consi
the 22L-dimensional Fock space as the isomorphicL-fold
tensor power of four-dimensional space, i.e.,HF>(C4) ^ L.
The local state space is spanned by the vacuumu0& and the
vectors

u↑& jªcj↑
† u0&, u↓& jªcj↓

† u0&, u↑↓& jªcj↓
† cj↑

† u0&. ~8!

The r j5Tr jI uC&^Cu is now a 434 matrix. If the
N-particle stateuC& is ~a! translational invariant and~b! an
eigenstate ofSz

ª( j 51
L (nj↑2nj↓), it is easy to see tha

r j51/L diag(12N↑2N↓2Nl ,N↑ ,N↓ ,Nl), where Ns

ª( j 51
L ^Cunj s(12nj 2s)uC& (s5↑,↓) is the number of lat-

tice sites singly occupied by as fermion and Nl

ª( j 51
L ^Cunj↑nj↓uC& is the number of doubly occupie

sites. We see that local entanglement in stateuC& is a func-
tion just of the occupation numbersNa (a5↑,↓,l ); in par-
ticular, it follows that Eq.~5! can be effectively computed fo
Hamiltonians commuting with the Na’s, i.e., E
5($Na%e

bmNS($Na%)Z($Na%)/Z. An instance of this case i
illustrated in the following.
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SUPERSYMMETRIC DIMER

We consider here a two-site, i.e., adimer, version of the
so-called supersymmetric Essler-Korepin-Schoutens~EKS!
model @14#. For zero chemical potential, i.e., half-filling th
EKS Hamiltonian acts on the basis states as follows:

Hua& ^ ub&5~21! uauubuub& ^ ua&, ~9!

where uau is the parity of the single-site stateua&, i.e., u↑u
5u↓u51, u0u5u↑↓u50. SinceH is just agradedpermutator
the relations@H,Na#50 hold true. The state space spli
according to theNa configurationsHL5 % $Na%H($Na%), and
the Hamiltonian can be diagonalized within each sector. N
tice that Eq.~9! is also invariant under a globalparticle-hole
transformation, i.e.,us&↔u2s&, u0&↔u↑↓&.

It is straightforward to check thatH admits four singlets
nonentangled@the configurations~0, 0, 0!, ~2, 0, 0! along
with their particle-hole conjugates# and six doublets@~1, 0,
0!, ~0, 1, 0! and conjugates and the self-conjugated~1, 1, 0!,
~0, 0, 1!# with entanglement ln 2. Moreover, sinceH251,
one gets an energy spectrum given by$21, 1%, both being
eigenvalues that are eightfold degenerate. ThereforeE
512 ln 2 coshb/16 coshb53/4 ln 2: the local entanglemen
~at half-filling! is temperature independent.

This very simple result is due to the large symmetry gro
of the Hamiltonian~9!. A more interesting case is obtaine
introducing a model in which a free parameter controls
competition between the localized and itinerant nature of
lattice fermions.

HUBBARD DIMER

If HFree
s simply denotes Eq.~7! with an extra spin index,

then the Hubbard Hamiltonian@15# reads

HHubb5 (
s5↑,↓

HFree
s 1U(

j 51

L

nj↑nj↓ . ~10!

The new local terms added account for the on-site inter
tion, e.g., Coulomb repulsion experienced by pairs of~oppo-
site! spin fermions sitting on the same lattice site. By intr
ducing the total fixed spin-number operatorsN̂sª( j 51

L nj s

(s5↑,↓) is easy to check that both of them commute w
the Hubbard Hamiltonian~10!. This implies thatHHubb can
be separately diagonalized in each joint eigensp
H(N↑ ,N↓) of the N̂s’s. In the the dimer case, i.e., thedimer,
one finds

dimH~N↑ ,N↓!5PsS 2
Ns

D ;

then at most~for N↑5N↓51! one has to solve a four
dimensional diagonalization problem.

The ~unnormalized! ground state for the repulsive cas
U.0 is given by2G0u0&, where

G0ªc1↑
† c1↓

† 1c2↑
† c2a↓

† 1a1~U/4t !~c1↑
† c2↓

† 2c1↓
† c2↑

† !,
~11!
1-3
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PAOLO ZANARDI PHYSICAL REVIEW A 65 042101
wherea6(x)5x6A11x2, and the associated eigenvalue
given byE0522ta2. The entanglement of the state~11! is
easily studied as a functionU/4t. Using linear entropy as an
entanglement measure one findsS0(U/t)512Tr r0

251
21/2(a1

4 11)(a1
2 11)22. Local entanglement is monoton

cally decreasing as a function ofU/4t ~Fig. 1!. In particular,
one obtains the free limitS0(0)53/4 and the strong coupling
limit S0(`)51/2 that correspond to ground states given
uniform superpositions of, respectively, four and two sta
@see Eq.~11!#. Of course the physical interpretation is qui
simple: the higher the on-site repulsionU the more local
charge fluctuations are suppressed and the smaller the
ber of available states. Eventually for infinite repulsion do
bly occupied sites get decoupled and only spin fluctuati
survive. In this regime the Hubbard model is known to
equivalent to anantiferromagneticHeisenberg model for
spin 1/2@16#. The ground state as well as thermal entang
ment for these~and related! models have been quite recent
studied@17#.

It is instructive to write the dimer ground-state crea
~11! in terms of the Fourier operatorscs

(6)
ª1/&(c1s

6c2s) (s5↑,↓), from Eq. ~11! one finds

G0~a!5 (
k56

~11ka!c↑
~k!†c↓

~k!† . ~12!

FIG. 1. Entanglement of the Hubbard dimer ground state a
function of U/4t for decomposition associated with real and rec
rocal lattice.
ur

io
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With respect to this reciprocal decomposition local entang
ment is anincreasingfunction of U/4t. From the free case
a51, which is unentangled up to strong couplinga5`,
which givesS0* (`)51/2 ~see Fig. 1!.

The example of the Hubbard dimer shows that, not s
prisingly, entanglement is well suited to analyze the interp
between itinerant and localized features of the Hubb
Model ~10!: the hopping termt ~repulsionU! term is respon-
sible for entanglement in the real~reciprocal! lattice decom-
position.

CONCLUSIONS

In this paper we discussed some issues related to
tanglement in the system of indistinguishable particles.
these systems quantum statistics applies and therefore
state space is not naturally endowed with a tensor-prod
structure.

Nevertheless, mappings between their Fock spaces
multipartite state spaces can be established~the well-known
occupation-number representation! and then the usual defini
tion of entanglement can be applied. For systems withL
single-particle states available, the set of possible inequ
lent decompositions intoL subsystems~modes! is parameter-
ized by the groupU(L) of Bogoliubov transformations.

We focused on simple, e.g., Hubbard, models of fermio
on lattices, studying how, as a function of the model para
eters, local entanglement varies both with respect to real
reciprocal lattice decomposition. Results suggest that this
tion of entanglement is well suited to describe interplay b
tween localization and itinerancy in these systems.

We believe that the approach pursued in this pape
besides establishing a connection between the field
quantum-information processing and condensed-ma
physics—can provide physical insight into the study of int
acting ensembles of indistinguishable particles.
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