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Quantum entanglement in fermionic lattices

Paolo Zanardi
Institute for Scientific Interchange Foundation, Viale Settimio Severo 65, 1-10133 Torino, Italy
and UnitaINFM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 1-10129 Torino, Italy
(Received 7 May 2001; published 14 March 2p02

The Fock space of a system of indistinguishable particles is isomofjphi& nonunique wayto the state
space of a composite, i.e., many modes, quantum system. One can then discuss quantum entanglement for
fermionic as well as bosonic systems. We exemplify the use of this notion—central in quantum
information—by studying some, e.g., Hubbard, lattice fermionic models relevant to condensed matter physics.
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Much attention has been recently devoted to the notion o§pace. The labels iN, will be referred to asitesand the
quantum entanglemefit]. As a matter of fact this fashion is associated single-particle wave functions will be thought of
mostly due to the vital role that such a notion is generallyas describing éspatially localized state. Accordingly the set
believed to play in quantum-information processi(t@|P) of I's will be referred to as dattice.
protocols[2]. The definition of entanglement relies on the | et P, (PY) denote the whole family of subsefwith N
tensor-product structure of the state space of a composit§ementsof N, . For anyA:={j,,....jx} e P we define the

quantum systerfi3]. _ antisymmetrized state vector
On the other hand such a tensor-product structure is not

present in a large class of systems of major physical interest:

ensembles oidistinguishableparticles. Indeed in this case B 1 EPNPNY

it is known—basically since the birth of quantum theory— A) ._\/WPZSN (=1) ®|:1|‘ﬂi P<|)>' @
that the state space associated withrsubsystems is con-

strained to besubspaceof the N-fold tensor product. De- ,
pending on the bosonic or fermionic nature of the € [As are an orthonormal set. The state spatg(N)

subsystems one has to select the totally symmetric or antBSsociated withN (spinles fermions with single-particle
symmetric subspace. This is an instance superselection Wave fU”_Ct'OHS belonging tEIL is given by the totally anti-
rule [5], i.e., a fundamental limitation on the possibility of Symmetric subspace of(", i.e., H (N):=spar|A)/A
preparing a given state. eP[‘}. The fermion number ranges from 0 kg the total
We see therefore that the existence of quanstatistics ~Fockspace is obtained as a direct sum of the fixed number of
[3] makes the notion of entanglement problematic for syssubspaces, i.eH, = ®y_oH (N)=spard|A)/Ae P }. From
tems made of indistinguishable subsystems, e.g., particlethe  well-known  relation dierLZZk,:OdimHL(N)
Notice that, even if one allows for genegdrastatistic§3],  =3F_,(y)=2", it follows that the fermionic Fock space is
most of the product states ' ,|i) do not belong to the isomorphic to arL-qubit space, each qubit being associated
physical state space at all in that they do not have a propewith a site[10]. The latter isomorphism is realized by the the
transformation under permutations 8f, i.e., they do not mapping
belong to anSy, irrep [4].
Very recently some authors addressed the issue of en- . 2\eL. L
tanglemenior more generally quantum correlationis sys- AH = (C) | A)— @11 |xa(D), 2
tem of two fermiond 6] and boson$7]. Their approach ap-
pears to be the natural generalization of the one used fovhere x,:N_ —{0,1} is the characteristic function of A.
distinguishable particles. Clearly A(|A)) is nothing but aN-qubit basis state having in
In this paper we shall tackle the problem of the relationthejth site a 1(0) if j € A (j & A). The zero-particle stai®)
between entanglement and quantum statistics from a rathés mapped byA onto [0):=|0)“"; thus the latter vector is
different perspective based on entanglement relativity as digeferred to asracuum
cussed in Ref[8]. We shall mostly focus on the fermionic  In our considerations, oncH,_ is endowed byA with a
cas€g9]. In particular, we shall analyze the local, i.e., on-sitemultipartite structure, tensor products of individual single-
entanglement associated with simple fermionic models on @article spaces are not relevant anymore. To exemplify this
lattice. point let us consider the case=3. It is not difficult to see
that all the states ifH3(2), seen as elements bf?, have
the sameentanglement. Indeed all of them can be written as
FERMIONS AND QUBITS |a)®|b)—|b)®|a) for suitable|a) and|b) [11]. On the other
_ o _ hand both the “separable” staté)®|1)®|0) and the “en-
Let us start be recalling basic kinematical facts abouggngled” (0)®|1)—|1)®|0))®|1) belongs toA (Hz(2)).
many-fermion  systems. Leth :=spaf|#)}icn, (NL  This kind of puzzle is solved by observing that the entangle-
:={1,...L}) be an L-dimensional single-particle state ment of, sajja)®|b)—|b)®|a), is notphysical Indeed the

1050-2947/2002/68)/0421015)/$20.00 65042101-1 ©2002 The American Physical Society



PAOLO ZANARDI PHYSICAL REVIEW A 65 042101

involved subsystems, i.e., individual “labeled” particles, duetions associated with differerit’s. Notice that even though

to the very notion of indistinguishability, are physically not automorphismg4) have a single-particle origin, they define

accessible nonlocaltransformations of the Fock space onto themselves.
This situation is just an illustration of the relativity of the Indeed a mappingVe U(H,) is local with respect to the

notion of entanglemer(]. The latter crucially depends on subsystem decomposition associated whtf iff AUWAQl

the choice of a particular partition into physical subsystems. 1‘[:-: JU(CP;.

In this case “QOOd" Subsystems are associated with the set of AsS a particu|ar, though quite re|evant, case one can con-

single-particle mode#labeled byl € N;) whose occupation sider Fourier transformation, ey =gkl ke=2m(l

numbers are physical observables awod with the particles  — 1)/L (IeN,). The wave vector label the so-called re-

themselves. From this perspective one can have entanglgiprocal lattice(A , is denoted by\ *) and represent physical

ment without entanglement. For instance, a one-particlemodes delocalized over the spatial lattice. It is obvious that

state, e.g.|0)®[1)+|1)®[0), can be—with respect to the states that are entanglédonentangledwith respectA can

partition into mode subsystems—entangled. It is important te nonentangledentangled with respectA*.

stress that such a kind of one-particle entanglenf@ntor- The situation we shall investigate in this paper is the fol-

relation), despite its paradoxical nature, has been recentlyoying. SupposeH € End(X,) is a nondegeneratégrand-

proven to allow for quantum teleportati¢2]; therefore it canonical Hamiltonian ancH = = e,| e){ex is its spectral

has to be regarded as a genuissourcefor QIP. decomposition. Ifp" denotes thejth local-density matrix

The Eock space{, , since it allows for a varying particle ;qqqciated with the energy eigenstate one can compute
occupation, doesot correspond generally to the state spacey,q quantity

of a physical system. For charged fermions coherent super-

positions of vectors belonging to different particle-number 1 oL L
sectors are forbidden due to the charge superselection rule S e e Bem m 5
[5]. In this sense our qubits atmphysical Only qubit states VBT ZL mE:l jzl Sle). ©

in the A(H,_(N)) are associated witfiN-particle physical

states. Accordingly not all the elements of Ek{ corre- WhereZ is the (grand-canonicalpartition function, i.e..Z
spond to physical observables: the latter span the subalgebrazﬁq: e~ Pem_Equation(5) is the thermal expectation value
JF of number-conserving operators, i.65;={X/[X,N]=0}  of the local entanglement averaged over the whole lattice

= @ NENdHL(N)). [13]. In particular, we will be interested in the limg—oc,
i.e., local entanglemerg, in the ground state
LOCAL ENTANGLEMENT When the energy spectrum shows degeneracies S

o ) no longer well defined. We assume that there is a “natural”
_Let|W) e 7, (N) be the associatefth local-density ma- (geq examples belgwvay to select a complete set of com-
trix given by Pi’=Tr1|‘l'><q’|’ where Ty denotes the trace ting observables containirg, whose joint eigenvectors
over all but thejth sites. For any e N one obtains a bipar- provide thee,,’s to be used in Eq(5).

tition of H,, i.e., (20 (C?)®L-1 therefore the entropy To begin with, we observe that
(von Neumann as well as lingaof p; is a measure of the
entanglement of th¢th site with the remaining—1 ones. pi =1LV |n;|¥)+]0)O[(W|l—n;| W), (6)

Local entanglement igelative to the decomposition into . _
subsystems, i.e., sites defined by mappi2ig 8]. One could wheren;:=c! ¢;=]1)(1];®1; is the local occupation-number

consider different isomorphisms giving rise ittequivalent  projector. Indeed  (1[p;|1)=Tr(|1)(1],p;)=Tr(nip;)
partitions into “local” subsystems. This fact can be clearly =(W¥|n;|¥) in the same way one obtains the other diagonal
seen by introducing creation and annihilation operatorelement of p;. Moreover, (0|p;|1)=Tr(|1){0|p;)

{¢;}_1CEnd(H,) ([a,b]l.=ab*ba), which satisfy ca- =Tr(c/p;)=(¥|c/[W)=0, the last equality is due to the
nonical (ant)) commutation relations foffermiong bosons,  fact that| V) is a particle-number eigenstate, i.e., an eigen-
state of the operatd¥:=3j_n; .

Itinerant Fermions We now consider freéspinless$ fer-
mions hopping in the lattice. The Hamiltonian is given by

[ci,cjl-=0, [CiaCjT]i:(sij, cjl0)=0(jeN.). (3

Of courseH, =spafIli_;(c)"|0)/ny,....n e N} If Uis

a L XL unitary matrix then it is well known that the follow- L-1
ing (Bogoliuboy transformation Hereem —t 2, (] 4Cj+H.c)—uN. 7
=1
L
ci—TCj= 21 Ujjc; (ieNp) (4)  Introducing the Fourier fermionic operatorscy
=

:=1//LS}_,e™Ic;, itis a textbook exercise to prove that Eq.
maps fermions(bosons onto fermions (bosons giving (7 has eigenstates given by the-particle vectors|k)
: - =TIL _,cl |0) (ki=(Kq,....ky) e RN with eigenvaluese
rise to an automorphism of the observable algebrai=''m=1% 1r---KN) € g k
Accordingly new  occupation-number  representations:=—2tSN_, cosf,)— uN.
Ay, @DHM0y—ek n)  (nj=0,1) are defined. The local-density matrix is easily obtained by using Eq.
Clearly entanglement is strongtglative to the decomposi- (6) and the translational properties of the’s. If T denotes
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the natural representation i, of the cyclic permutations SUPERSYMMETRIC DIMER
i—i+1 (mod L), i.e., the translation operator, one has

N We consider here a two-site, i.e.daner, version of the
TIK) =expCh_1kn|K). Therefore

so-called supersymmetric Essler-Korepin-SchoutégisS)

model[14]. For zero chemical potential, i.e., half-filling the

<k|nj|k>=(1/|-)2i":1<k|ni|k>: N/L=:n. EKS Hamiltonian acts on the basis states as follows:
=(—1)lellBl

Whereby Hla)®|8)=(—1)!“IP|g)®|a), 9

where |a| is the parity of the single-site statéw), i.e., ||

- =|1|=1,]0|=]11|=0. SinceH is just agradedpermutator

E=(1/Z)N§=:O S(N/L)eP*Nzy(B) the relations[H,N,]=0 hold true. The state space splits
according to theN,, configurationst, = &y ;H({N,}), and
=(UZ)TI[S(N/L)e ™ PHFree], the Hamiltonian can be diagonalized within each sector. No-

tice that Eq.(9) is also invariant under a globphrticle-hole

in which S(N=-nlnn—(1—-min(1—n and Z transformation, i.e.lo)«<|—a), [0)<|1]).
. ,B(SH(F )mfv) . (=) .( ) . N(.'(.g) It is straightforward to check thatl admits four singlets
=Tl (n€ ree 47 is the(N-particle) canonical partition  \onentangledthe configurationg0, 0, 0, (2, 0, O along

function. with their particle-hole conjugatésnd six doublet$(1, O,
The fractionp(N) :=e®#" Z, /Z gives of course the prob- 0), (0, 1, 0 and conjugates and the self-conjugatd1, 0,
ability of having anyN-particle configuration. In the thermo- (0, 0, 1] with entanglement In 2. Moreover, sin¢¢?=1,
dynamical limit (N,L—o,N/L=const) p(N) becomes one gets an energy spectrum given{byl, 1}, both being
strongly peaked around the expectation valg of N. In  eigenvalues that are eightfold degenerate. Therefére
this case local entanglement is simply given by the Shannor 12 In 2 coshB/16 cosh3=3/41n 2: the local entanglement
function E~S(ny); it readily displays an intuitive feature: (at half-filling) is temperature independent.
local entanglement vanishes for the emfiylly filled) lat- This very simple result is due to the large symmetry group
tice being the unique associated state, given the productf the Hamiltonian(9). A more interesting case is obtained
[0y (®,|1),); moreover,E is maximal at half-filling, i.e.ng introducing a model in which a free parameter controls the
=1/2. Notice that for the statgk) entanglement associated competition between the localized and itinerant nature of the

with the A* partition is obviously zero. lattice fermions.
SPIN-(1/2) FERMIONS HUBBARD DIMER
Here we consider the lattice models of the sfiif®) fer- If HEree Simply denotes Eq(7) with an extra spin index,

mion model. We have then to introduce an extra dicothomidhen the Hubbard Hamiltonigi15] reads
variableo=1, | to label the single-particle state vectors. As L
usual, fermionic operators corresponding to differeistal- _ o

o . b . . H pupb= HEeet U2, Ny . 10
ways anticommute. In this case it is convenient to consider Hubb (,;,l Free ,—Z‘l I (10

the 2‘-dimensional Fock space as the isomorphiéold

tensor power of four-dimensional space, i#g=(C*)%". The new local terms added account for the on-site interac-

The local state space is spanned by the vac{@nand the tion, e.g., Coulomb repulsion experienced by pairgopipo-

vectors site) spin fermions sitting on the same lattice site. By intro-

ducing the total fixed spin-number operatd?#g::EjL:lnj(,

11)i=c/10), [1)j:=¢] |0y, [11)j=cf,c]|0). (8) (o=T1,]) is easy to check that both of them commute with

the Hubbard Hamiltoniari10). This implies thatH ,, can

be separately diagonalized in each joint eigenspace

The pj=Trj|¥)(V| is now a 4x4 matrix. If the . ) . .
~ H(N; ,N,) of theN,’s. In the the dimer case, i.e., tikémer,

N-particle statd¥) is (a) translational invariant an¢b) an

eigenstate ofS:=3[_,(n;;—n;)), it is easy to see that one finds
pj=1/L diag(1-N;—N;—N; N; N, )N),  where N, ,
=35 (V[N (1-n;_,)|¥) (c=1,]) is the number of lat- dimH(N; ,N ) =TI, ik

tice sites singly occupied by ar fermion and N,
L . .

=f21-=1(\1f|n”n”|\lf> is the number of doubly occupied then at most(for N;=N;=1) one has to solve a four-

sites. We see that local entanglement in stdteis a func-  gimensional diagonalization problem.

tion just of the occupation numbeb$, (a=1,].1); in par- The (unnormalizedl ground state for the repulsive case
ticular, it follows that Eq(5) can be effectively computed for y~0 is given by—G,|0), where

Hamiltonians commuting with the N,’s, ie., E
=E{Na}eBMNS({Na})Z({Na})/Z. An instance of this case is G0:=CLCL+CZTC£a1+a+(U/4t)(CITC£¢_CLCZI)’
illustrated in the following. (11
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0.8 T T T T With respect to this reciprocal decomposition local entangle-
0.7 K A — ment is anincreasingfunction of U/4t. From the free case,
0.6 A* e a=1, which is unentangled up to strong coupliag=,
0.5 — which givesSj () =1/2 (see Fig. 1L
So 04+ o - The example of the Hubbard dimer shows that, not sur-
03+ - - prisingly, entanglement is well suited to analyze the interplay
092 kL - - between itinerant and localized features of the Hubbard
01 - i Model (10): the hopping ternt (repulsionU) term is respon-
0 a I L ] ! sible for entanglement in the re@kciproca) lattice decom-
4 6 10 position.
U/4t

CONCLUSIONS
FIG. 1. Entanglement of the Hubbard dimer ground state as a In this paper we discussed some issues related to en-

function of U/4t for decomposition associated with real and recip- tanglement in the system of indistinguishable particles. For
rocal lattice. these systems quantum statistics applies and therefore their

. , . state space is not naturally endowed with a tensor-product
wherea. (x) =x= y1+x%, and the associated eigenvalue is grycture.

given byEy= —2ta_. The entanglement of the statkl) is Nevertheless, mappings between their Fock spaces and
easily studied as a functidd/4t. Using linear entropy as an muiltipartite state spaces can be establisted well-known
entanglement measure one findg(U/t)=1-Tr p(2)= 1 occupation-number representati@nd then the usual defini-
—1/2(a +1)(e% +1) 2. Local entanglement is monotoni- tion of entanglement can be applied. For systems with
cally decreasing as a function bff4t (Fig. 1). In particular, ~ single-particle states available, the set of possible inequiva-
one obtains the free limB,(0)=3/4 and the strong coupling lent decompositions intb subsystemémodes is parameter-
limit Sy(2)=1/2 that correspond to ground states given byized by the grougJ(L) of Bogoliubov transformations.
uniform superpositions of, respectively, four and two states We focused on simple, e.g., Hubbard, models of fermions
[see Eq(11)]. Of course the physical interpretation is quite on lattices, studying how, as a function of the model param-
simple: the higher the on-site repulsidh the more local eters, local entanglement varies both with respect to real and
charge fluctuations are suppressed and the smaller the numigciprocal lattice decomposition. Results suggest that this no-
ber of available states. Eventually for infinite repulsion dou-tion of entanglement is well suited to describe interplay be-
bly occupied sites get decoupled and only spin fluctuationgween localization and itinerancy in these systems.

survive. In this regime the Hubbard model is known to be We believe that the approach pursued in this paper—
equivalent to anantiferromagneticHeisenberg model for besides establishing a connection between the field of
spin 1/2[16]. The ground state as well as thermal entanglequantum-information processing and condensed-matter
ment for theséand relatefimodels have been quite recently physics—can provide physical insight into the study of inter-

studied[17]. acting ensembles of indistinguishable particles.
It is instructive to write the dimer ground-state creator
(11) in terms of the Fourier operators!”):=1V2(cy, ACKNOWLEDGMENTS
*Cy,) (0=1,1), from Eq.(11) one finds | acknowledge discussions with R. R. Zapatrin, Lara
Faoro, and X-G. Wang. Moreover, | thank the authors of Ref.
Gola)= > (1+ ka)c%k”c(ﬂ‘”. (12) _[6] for drawing my attention to their work and for stimulat-
K== ing correspondence.
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