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Bifurcation bridges between external-cavity modes lead to polarization self-modulation
in vertical-cavity surface-emitting lasers
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1Service d’Electromagne´tisme et de Te´lécommunications, Faculte´ Polytechnique de Mons, Boulevard Dolez 31, B-7000 Mons, Belgiu
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We analyze the bifurcation mechanism responsible for the experimentally observed polarization self-
modulation~PSM! in a vertical-cavity surface-emitting laser subject to optical feedback. We show that closed
branches of time-periodic intensity solutions connecting distinct external-cavity modes~ECMs! exhibit PSM.
Along these bridges, the linearly polarized components of the optical field oscillate in antiphase and with a
frequency close to the difference between two ECM frequencies. A beating mechanism between stable ECMs
then explains the PSM phenomenon. Our results also substantiate recent theoretical studies of edge-emitting
lasers subject to optical feedback.
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Vertical-cavity surface-emitting lasers~VCSELs! gener-
ally emit a linearly polarized light along one of two orthog
nal directions~called x and y) @1#. High-speed switching
between these two polarizations has been experimen
demonstrated when submitting the VCSEL to an opti
feedback through a quarter-wave plate whose optical ax
oriented at 45° according to the VCSEL eigenaxes@2–6#.
After each round trip in the external cavity the light reent
ing the laser cavity is rotated by 90°. The light is then o
served to switch periodically in antiphase betweenx- and
y-linearly-polarized components, at a period close to
slightly larger than twice the external cavity round-trip tim
This so-calledpolarization self-modulation~PSM! may lead
to an all optical source of high-frequency signals@7#.

Experimental studies@4–6# suggest that PSM is related t
a beating between two external cavity modes~ECMs! that
are linearly polarized along the eigenaxes of the compo
cavity. However, none of the previous reports have identifi
the dynamical instability leading to PSM and the beat
mechanism is still unknown.

In previous work@8#, we have determined bifurcation dia
grams from direct integration of rate equations. Branches
stable PSM solutions were followed as we increase the fe
back rate and we have shown that other solutions than P
were possible depending on the external cavity length.
our numerical study allowed us to compute only stable so
tions. Recent studies of simpler delayed semiconductor l
systems@9,10# have shown, however, that unstable solutio
might play a key role in the dynamics. For this purpose, th
have used a continuation package for delay differential eq
tions @11# that follows both stable and unstable steady a
time-periodic solutions. We have adapted this method to
VCSEL problem in order to have a better understanding
the bifurcation mechanisms leading to PSM. Our numer
study complements a linear stability analysis of the EC
solutions revealing their Hopf bifurcation points. As th
feedback rate is progressively increased from zero, we
closed branches of stable and unstable pulsating inten
solutions ~bridges! which connect these Hopf bifurcatio
points. They represent smooth transitions between EC
that are linearly polarized along the two eigenaxes of
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compound cavity. A beating mechanism between the two
teracting ECMs then explains the PSM phenomenon. In p
vious work, only partially stable bridges were reported b
tween a mode~stable ECM! and an antimode~unstable
ECM! @10# but our results show that largely stable bifurc
tion bridges between modes are possible in a delayed s
conductor laser system. They revive the interest in find
fully stable bridges in edge-emitting lasers and they subs
tiate the idea that a bifurcation bridge is a generic pheno
enon for high-frequency pulsating intensities in semicond
tor lasers subject to optical feedback.

Our numerical simulations use the following rate equ
tions @5,8#:

dEx,y

ds
5

1

2
~11 ia!@~112Z!Fx,y21#Ex,y

1hEy,x~s2u!exp~2 if f !, ~1!

T
dZ

ds
5P2Z2~112Z!~FxuExu21FyuEyu2!, ~2!

where

Fx,y512«s,cS uExu22
P

2 D2«c,sS uEyu22
P

2 D . ~3!

Ex andEy are the slowly varying linearly polarized compo
nents of the optical field.Z is the carrier density.s is the time
t divided by the photon lifetimetp , a is the phase-amplitude
coupling coefficient, andT is the ratio of the carrier lifetime
ts to tp . h is the feedback rate normalized bytp

21 andu is
the round-trip time in the external cavity,t[2L/c, divided
by tp ~L is the external cavity length andc is the speed of
light!. f f is the feedback phase.P is the injection current
above threshold. Finally,Fx and Fy are two gain compres
sion functions, withes (ec) the self-~cross-!compression co-
efficient. Equations~1!–~3! have been simulated numerical
using T51000,a53, es50.02, andec50.04. Typical val-
ues for es range between 0.01 and 0.1@12,13# and ec is
typically a factor of 2 larger thanes @12#. We consider
©2002 The American Physical Society01-1
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P50.4 and u5100. If tp51 ps, this means thatt
5100 ps orL51.5 cm. For simplicity, we assumef f50.
h is our bifurcation parameter.

The steady state intensity solutions of Eqs.~1!–~3! are of
the form

Ex5X exp@ i ~vs1fx!#,

Ey5Y exp@ i ~vs1fy!#, ~4!

where the amplitudesX andY and the phasesfx andfy are
constant. Introducing Eq.~4! into Eqs.~1!–~3! leads to five
equations forX, Y, Z, v, and D[fx2fy which can be
solved analytically.
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Steady state solutions exhibitingX[Y correspond to
single ECMs similar to those of the Lang-Kobayashi~LK !
equations for edge-emitting lasers@14#. The symmetry of the
laser equations allows two types of ECM, namely, theLK
ECMs (D50) and theanti-LK ECMs (D5p). The ECM
frequencies satisfy the transcendental equation

v52h@a cos~f f1vu1D!1sin~f f1vu1D!#, ~5!

while X5Y is obtained by solving the following quadrati
equation forX2:
0524~«s1«c!@2112h cos~f f1vu1D!#X41H 2~«s1«c!~112P!14@2112h cos~f f1vu1D!#

3F11~«s1«c!
P

2 G J X21~112P!F11~«s1«c!
P

2 G2112h cos~f f1vu1D!. ~6!
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Finally, Z is related toX by

Z5
P22FxX

2

114FxX
2

. ~7!

Because of the value ofD, the ECMs correspond to a lin
early polarized light aligned with one of the two eigenaxes
the compound cavity. These eigenaxes are aligned with
optical axes of the quarter-wave plate, which are at645°
according to the VCSEL eigenaxes~x andy! @4,6#.

Steady states withXÞY are also possible but only unde
the conditionec.es . This condition is also found relevan
for the time-periodic solutions that we describe below. U
like the ECMs, the phase differenceD depends onh and is
in general different fromp. These solutions are elliptically
polarized steady states~EPSSs!.

Figure 1~a! showsI x[X2 for the ECMs as a function o
h. The LK and anti-LK ECMs are shown in black and gra
respectively. Except for the first ECM which emerges ath
50, all the ECMs appear in pairs through saddle-node bi
cations. One of the ECMs appearing from this bifurcati
can be stable and is called the ‘‘mode’’ while the other one
always unstable and is called the ‘‘antimode’’@15#. The an-
timodes correspond to the low intensity part of each bra
of steady states. Two branches of EPSSs are also show
Fig. 1~b!. They appear at zero feedback rate and disapp
through a pitchfork bifurcation ath;0.006. It can be shown
analytically that the EPSSs exist only for low values ofh.

We next determine the possible Hopf bifurcation poin
To this end, we use the continuation package of Ref.@11#.
Hopf bifurcation points can be classified into either stable
unstable points. Stable Hopf bifurcation points mark t
change of stability of a steady state and lead to eithe
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subcritical~unstable! or a supercritical~stable! time-periodic
intensity solution. By contrast, unstable Hopf bifurcatio
points do not modify the steady state stability. Figure 1~a!
indicates that the laser admits stable high-intensity ste
state branches which are sequentially LK and anti-
modes. The arrows in Fig. 1~a! identify stable Hopf bifurca-
tion points from which emerge supercritical period
branches. Subcritical branches from stable Hopf bifurcat
points and branches emerging from unstable Hopf bifur
tion points are determined by our numerical continuat
method. These unstable branches play an important rol
the bifurcation diagram. They connect supercritical perio
branches, meaning a change of stability through a secon
bifurcation. These closed branches connecting Hopf bifur
tion points located on nearby but distinct ECMs are cal
bridges@10#. Physically, these bridges can be considered
mixed ECM solutions@10,16# of the form

Ex.X1 exp@ i ~v1s1fx1!#1X2 exp@ i ~v2s1fx2!#,

Ey.X1 exp@ i ~v1s1fy1!#1X2 exp@ i ~v2s1fy2!#. ~8!

The two amplitudesX1 and X2 are functions ofh. X1
50 (X250) at the Hopf bifurcation point of mode 2~mode
1!. By contrast with the single ECM solutions~4!, the inten-
sities uExu2 and uEyu2 are now pulsating in time with a fre
quency given byuv12v2u, meaning a beating between th
ECMs.

Typical bridges are shown in Fig. 2 and illustrate differe
types of connections. In the first case@Fig. 2~a!#, a periodic
branch emerges from a stable Hopf bifurcation point loca
on an anti-LK mode. As the feedback rate is progressiv
increased, the amplitude of the oscillations increases un
limit point is reached. The bridge then terminates at a sta
1-2
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but subcritical Hopf bifurcation point located on a LK mod
This implies a small domain of bistability between this L
mode and the stable branch of periodic solutions. Along
branch of periodic states, the intensitiesI x and I y of the two
linearly polarized modes of the VCSEL oscillate in a
tiphase, as shown in Fig. 3~a!. They represent a typical PSM
regime. The period of the PSM is larger than but close
twice the external cavity round-trip time. These branches
PSM from moderate to high feedback rates correspond to
experimentally reported PSM@2–6,17#. They exhibit a fre-
quency that results from a beating between two modes
argued from experimental results@4–6#. Since the ECM fre-
quency depends on the feedback rate, the frequencyf PSM of
PSM depends on the feedback rate as well. We have ind
observed numerically thatf PSM becomes closer to 1/(2u) as
we consider bridges at higher feedback rates. This last p
is also in good agreement with experimental findings@17#.

In the second case@Fig. 2~b!#, a branch of periodic solu
tions connects a stable Hopf bifurcation point located o
LK mode to an unstable Hopf bifurcation point located on
LK antimode. The periodic solution changes stabil
through a torus bifurcation point. This periodic branch

FIG. 1. Steady states ofI x as a function ofh, for the parameters
specified in the text.~a! represents the LK ECMs and anti-LK
ECMs in black and gray, respectively. Then denotes a pitchfork
bifurcation point to EPSS solutions shown in~b!, for clarity. L and
s correspond to LK and anti-LK Hopf bifurcation points. Stab
and unstable branches are shown by solid and dashed lines, re
tively. The arrows indicate supercritical Hopf points.
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different from the previous one becauseI x(s)[I y(s) @see
Fig. 3~b!#.

In the third case@Fig. 2~c!#, an isolated branch of periodi
solutions is shown to connect a stable~subcritical! Hopf bi-
furcation point located on an anti-LK mode to an unsta
Hopf bifurcation point located on a LK ECM. The stabilit
of the high-intensity part of the twisted branch is determin
by two limit points. Along this branch, the two intensitiesI x
and I y evolve in antiphase@see Fig. 3~c!#, but the period is
longer than in Fig. 3~a!.

The PSM phenomenon interpreted as a beating betw
modes persists as we modify the values of the paramete
Eqs. ~1!–~3!. The bifurcation transition to PSM is also ob

ec-

FIG. 2. Enlargements of parts of Fig. 1~a!, showing bifurcation
bridges between ECMs. The maximum ofI x is plotted as a function
of h. The same symbols as in Fig. 1 mark the Hopf bifurcati
points.h and3 denote limit points of periodic solutions and toru
bifurcation points, respectively.
1-3
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served if we consider spin relaxation mechanisms in the V
SEL model@4,18#. Moreover, both complex@4,18# and sim-
plified @5,8# models reproduce qualitatively well the typical
reported PSM time traces@2#.

Bridges of periodic solutions connecting modes and a
modes have recently been found for edge-emitting las
subject to optical feedback@10#. For our VCSEL problem, a
mode-antimode connection is also possible@Fig. 2~b!#. How-
ever, our laser system admits other types of bridge. Of p
ticular interest is the connection between two modes as il

FIG. 3. Time traces ofI x ~solid line! andI y ~dashed line! for ~a!
h50.038,~b! h50.009,~c! h50.00842. They correspond to typ
cal dynamical regimes that are observed along the branches of
periodic solutions shown in Figs. 2~a!–2~c!, respectively~see the
arrows in Fig. 2!.
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trated in Fig. 2~a!. Indeed, by contrast with mode-antimod
bridges, a large part of the bridge is now stable and is the
fore available experimentally. Furthermore, the two beat
ECMs that create PSM are stable and may be identified
recording optical spectra. Mode-mode bridges have not b
documented for edge-emitting lasers. This is because
number of ECMs is larger for our laser system compared
the single-polarization Lang-Kobayashi problem. Con
quently, more bridges between ECMs may be expec
Bridges between ECMs are also suspected to exist i
double-feedback laser system@19#.

In summary, the experimentally observed PSM in an
ternal cavity VCSEL is the result of a beating phenomen
between two distinct but close ECMs. PSM is observ
along branches connecting two single ECM Hopf bifurcati
points or bridges. These bridges sequentially appear as
increase the feedback rate, suggesting that it is a bifurca
mechanism which may be observed in other delayed la
systems. They motivate further experimental studies of
bifurcation diagram of the PSM regimes as well as theor
cal studies in order to determine the conditions for eith
mode-mode or mode-antimode bridges.
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