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Bifurcation bridges between external-cavity modes lead to polarization self-modulation
in vertical-cavity surface-emitting lasers
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We analyze the bifurcation mechanism responsible for the experimentally observed polarization self-
modulation(PSM) in a vertical-cavity surface-emitting laser subject to optical feedback. We show that closed
branches of time-periodic intensity solutions connecting distinct external-cavity niBE@#8s) exhibit PSM.

Along these bridges, the linearly polarized components of the optical field oscillate in antiphase and with a
frequency close to the difference between two ECM frequencies. A beating mechanism between stable ECMs
then explains the PSM phenomenon. Our results also substantiate recent theoretical studies of edge-emitting
lasers subject to optical feedback.
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Vertical-cavity surface-emitting lasef®CSEL9 gener- compound cavity. A beating mechanism between the two in-
ally emit a linearly polarized light along one of two orthogo- teracting ECMs then explains the PSM phenomenon. In pre-
nal directions(called x and y) [1]. High-speed switching vious work, only partially stable bridges were reported be-
between these two polarizations has been experimentallyveen a mode(stable ECM and an antimodgunstable
demonstrated when submitting the VCSEL to an opticalECM) [10] but our results show that largely stable bifurca-
feedback through a quarter-wave plate whose optical axis igon bridges between modes are possible in a delayed semi-
oriented at 45° according to the VCSEL eigenak®s6].  conductor laser system. They revive the interest in finding
After each round trip in the external cavity the light reenter-fully stable bridges in edge-emitting lasers and they substan-
ing the laser cavity is rotated by 90°. The light is then ob-tiate the idea that a bifurcation bridge is a generic phenom-
served to switch periodically in antiphase betweenmand  enon for high-frequency pulsating intensities in semiconduc-
y-linearly-polarized components, at a period close to butor lasers subject to optical feedback.
slightly larger than twice the external cavity round-trip time.  Our numerical simulations use the following rate equa-
This so-calledpolarization self-modulatioitPSM) may lead  tions[5,8]:
to an all optical source of high-frequency signgfs.

Experimental studiefgt—6] suggest that PSM is related to dE.y _ E - _
a beating between two external cavity mode&€Ms) that ds 2(1+|0()[(1+22)F"*y 1By
are linearly polarized along the eigenaxes of the compound )
cavity. However, none of the previous reports have identified + 7By x(s—o)exp—idy), @

the dynamical instability leading to PSM and the beating
mechanism is still unknown. _I_d_Z
In previous worl{ 8], we have determined bifurcation dia- ds
grams from direct integration of rate equations. Branches of
stable PSM solutions were followed as we increase the feegvhere
back rate and we have shown that other solutions than PSM
were possible depending on the external cavity length. But = :1_850( |E,|2— E) —ecs
our numerical study allowed us to compute only stable solu- i ' 2 ’
tions. Recent studies of simpler delayed semiconductor laser o .
systemg9,10] have shown, however, that unstable solutionsEx @1dE, are the slowly varying linearly polarized compo-
might play a key role in the dynamics. For this purpose, the;}"'e!"'FS of the optical f|eld; |s_the carrier densitysis the tllme
have used a continuation package for delay differential equd-divided by the photon lifetime, , « is the phase-amplitude
tions [11] that follows both stable and unstable steady andFOuPling coefficient, andis the ratio of the carrier lifetime
time-periodic solutions. We have adapted this method to oufs t0 7. 7 is the feedback rate normalized by~ and ¢ is
VCSEL problem in order to have a better understanding ofhe round-trip time in the external cavity=2L/c, divided
the bifurcation mechanisms leading to PSM. Our numericaby 7p (L is the external cavity length antlis the speed of
study complements a linear stability analysis of the ECMIight). ¢ is the feedback phas®. is the injection current
solutions revealing their Hopf bifurcation points. As the above threshold. Finally;, andF, are two gain compres-
feedback rate is progressively increased from zero, we fingion functions, withe, (€.) the self-(crossycompression co-
closed branches of stable and unstable pulsating intensisfficient. Equationg1)—(3) have been simulated numerically
solutions (bridges which connect these Hopf bifurcation using T=1000, a=3, €,=0.02, ande.=0.04. Typical val-
points. They represent smooth transitions between ECMses for €5 range between 0.01 and 0[12,13 and ¢, is
that are linearly polarized along the two eigenaxes of thdypically a factor of 2 larger thares [12]. We consider

=P—Z—(1+2Z)(F,|E,|*+F,|E,[?), )

P
Ef-5 @
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P=0.4 and #=100. If 7,=1 ps, this means thatr
=100 ps orL=1.5 cm. For simplicity, we assumg;=0.
7 is our bifurcation parameter.

The steady state intensity solutions of E(9—(3) are of
the form
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Steady state solutions exhibiting=Y correspond to
single ECMs similar to those of the Lang-KobayashK)
equations for edge-emitting laségfst]. The symmetry of the
laser equations allows two types of ECM, namely, thé
ECMs (A=0) and theanti-LK ECMs(A=1). The ECM

) frequencies satisfy the transcendental equation
E,.=Xexdi(ws+ ¢,) ],

E,=Yexfdi(ws+¢y)], (4)

where the amplitudeX andY and the phase#, and ¢, are
constant. Introducing Ed4) into Eqgs.(1)—(3) leads to five
equations forX, Y, Z, o, and A=¢,— ¢, which can be
solved analytically.

w=—nlacod i+ wbh+A)+sin(p;i+wb+A)], (5

while X=Y is obtained by solving the following quadratic
equation forx?:

0=—4(este)[—1+27cog P+ wh+A) X +{ —(este)(1+2P)+4[ — 14+ 27cog ds+ wh+A)]

P
X1+ (egt SC)E

©6)

P
}X2+(1+2P) 1+(ss+£c)§} —1+2ncog ¢+ wbh+A).

Finally, Z is related toX by subcritical(unstable or a supercritica(stablg time-periodic

intensity solution. By contrast, unstable Hopf bifurcation

P—2F.X2 points do not modify the steady state stability. Figufe) 1
= —Xz (7) indicates that the laser admits stable high-intensity steady
1+4F,X state branches which are sequentially LK and anti-LK

modes. The arrows in Fig.(d) identify stable Hopf bifurca-

Because of the value af, the ECMs correspond to a lin- tion points from which emerge supercritical periodic
early polarized light aligned with one of the two eigenaxes oforanches. Subcritical branches from stable Hopf bifurcation
the compound cavity. These eigenaxes are aligned with theoints and branches emerging from unstable Hopf bifurca-
optical axes of the quarter-wave plate, which arerat5° tion points are determined by our numerical continuation
according to the VCSEL eigenaxésandy) [4,6]. method. These unstable branches play an important role in

Steady states wit)X+Y are also possible but only under the bifurcation diagram. They connect supercritical periodic
the conditione.> €. This condition is also found relevant branches, meaning a change of stability through a secondary
for the time-periodic solutions that we describe below. Un-bifurcation. These closed branches connecting Hopf bifurca-
like the ECMs, the phase differendedepends ony and is  tion points located on nearby but distinct ECMs are called
in general different fromr. These solutions are elliptically bridges[10]. Physically, these bridges can be considered as
polarized steady statéEPSSH mixed ECM solutiong 10,16 of the form

Figure Xa) showsl,=X? for the ECMs as a function of
7. The LK and anti-LK ECMs are shown in black and gray,
respectively. Except for the first ECM which emergesnat
=0, all the ECMs appear in pairs through saddle-node bifur-
cations. One of the ECMs appearing from this bifurcation
can be stable and is called the “mode” while the other one isThe two amplitudesX; and X, are functions ofz. X;
always unstable and is called the “antimodd’5]. The an- =0 (X,=0) at the Hopf bifurcation point of mode (Znode
timodes correspond to the low intensity part of each branch). By contrast with the single ECM solutiortd), the inten-
of steady states. Two branches of EPSSs are also shown sities|E,|* and |Ey|? are now pulsating in time with a fre-
Fig. 1(b). They appear at zero feedback rate and disappeajuency given byw; — w,|, meaning a beating between the
through a pitchfork bifurcation ay~0.006. It can be shown ECMs.
analytically that the EPSSs exist only for low valueszpf Typical bridges are shown in Fig. 2 and illustrate different

We next determine the possible Hopf bifurcation points.types of connections. In the first caldéig. 2(a)], a periodic
To this end, we use the continuation package of IREf]. branch emerges from a stable Hopf bifurcation point located
Hopf bifurcation points can be classified into either stable oon an anti-LK mode. As the feedback rate is progressively
unstable points. Stable Hopf bifurcation points mark theincreased, the amplitude of the oscillations increases until a
change of stability of a steady state and lead to either #imit point is reached. The bridge then terminates at a stable
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Ex=Xiexfi(w15+ ¢y1) ]+ Xp exi(ws+ ¢y,

Ey=X;exdi(wiS+ ¢y1) |+ X exdi(w,s+ dyo)]. (8)
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FIG. 1. Steady states &f as a function ofy, for the parameters . )
specified in the text(a) represents the LK ECMs and anti-LK 04 "‘\.\ //
ECMs in black and gray, respectively. ThHe denotes a pitchfork '\.\ =l
bifurcation point to EPSS solutions shown(lm), for clarity. ¢ and 0.35 :}g‘f'ﬂ
O correspond to LK and anti-LK Hopf bifurcation points. Stable /»"' ‘\‘
and unstable branches are shown by solid and dashed lines, respec- 03 '/" i
tively. The arrows indicate supercritical Hopf points. e i

0.25 / i
/ :'
.y . . . 0.2F" -..-..é “’
but subcritical Hopf bifurcation point located on a LK mode.

C oo . . o . 8.2 8.4 8.6 8.8 9 9.2
This implies a small domain of bistability between this LK n <107
mode and the stable branch of periodic solutions. Along the
branch of periodic states, the intensitigsandl, of the two FIG. 2. Enlargements of parts of Fig(al, showing bifurcation

linearly polarized modes of the VCSEL oscillate in an- bridges between ECMs. The maximumlgfis plotted as a function
tiphase, as shown in Fig(&. They represent a typical PSM of 7. The same symbols as in Fig. 1 mark the Hopf bifurcation
regime. The period of the PSM is larger than but close tgpoints.[] and X denote limit points of periodic solutions and torus
twice the external cavity round-trip time. These branches opifurcation points, respectively.
PSM from moderate to high feedback rates correspond to the
experimentally reported PSI2—6,17. They exhibit a fre-  different from the previous one becaukgs)=I(s) [see
quency that results from a beating between two modes, asig. 3(b)].
argued from experimental resu[é—6]. Since the ECM fre- In the third cas¢Fig. 2(c)], an isolated branch of periodic
guency depends on the feedback rate, the frequépgy of  solutions is shown to connect a staldeiberitica) Hopf bi-
PSM depends on the feedback rate as well. We have indeddrcation point located on an anti-LK mode to an unstable
observed numerically thdf 5\, becomes closer to 1/ as  Hopf bifurcation point located on a LK ECM. The stability
we consider bridges at higher feedback rates. This last poirtf the high-intensity part of the twisted branch is determined
is also in good agreement with experimental findihgyg|. by two limit points. Along this branch, the two intensitigs

In the second casé-ig. 2(b)], a branch of periodic solu- andl, evolve in antiphasgsee Fig. &)], but the period is
tions connects a stable Hopf bifurcation point located on donger than in Fig. @).
LK mode to an unstable Hopf bifurcation point located on a The PSM phenomenon interpreted as a beating between
LK antimode. The periodic solution changes stability modes persists as we modify the values of the parameters in
through a torus bifurcation point. This periodic branch isEgs.(1)—(3). The bifurcation transition to PSM is also ob-
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osHa L o p trated in Fig. 2a). Indeed, by contrast with mode-antimode
., bridges, a large part of the bridge is now stable and is there-
’§ N NS N o fore available experimentally. Furthermore, the two beating
= 9% 200 200 500 8(',0\ 1000 ECMs_that create PSM are stable and may be identified by
=. 03 B~ v T y recording optical spectra. Mode-mode bridges have not been
-E documented for edge-emitting lasers. This is because the
S number of ECMs is larger for our laser system compared to
> 0.1 1 . . . the single-polarization Lang-Kobayashi problem. Conse-
]
. o,5o(c) 200 400 600 800 1000 quently, more bridges between ECMs may be expected.
- > Bridges between ECMs are also suspected to exist in a
¢ X A )¢ double-feedback laser systdi9].
0 e A In summary, the experimentally observed PSM in an ex-
0 200 4001: /1 600 800 1000 ternal cavity VCSEL is the result of a beating phenomenon
p

between two distinct but close ECMs. PSM is observed

FIG. 3. Time traces of, (solid ling) and!, (dashed lingfor (ay ~ @long branches connecting two single ECM Hopf bifurcation
7=0.038,(b) »=0.009,(c) =0.00842. They correspond to typi- POINtS or bridges. These bridges se.quenual_ly. appear as we
cal dynamical regimes that are observed along the branches of tim#icrease the feedback rate, suggesting that it is a bifurcation
periodic solutions shown in Figs(@-2(c), respectively(see the ~Mechanism which may be observed in other delayed laser
arrows in Fig. 2. systems. They motivate further experimental studies of the

] ) ] ] ) ) bifurcation diagram of the PSM regimes as well as theoreti-
served if we consider spin relaxation mechanisms in the VCeq) studies in order to determine the conditions for either

SEL model[4,18]. Moreover, both complek4,18] and sim-  ,0de-mode or mode-antimode bridges.
plified [5,8] models reproduce qualitatively well the typically
reported PSM time tracqg]. The authors acknowledge support from the Fonds Na-
Bridges of periodic solutions connecting modes and antitional de la Recherche ScientifiqieNRS, Belgium and the
modes have recently been found for edge-emitting laserfAP IV-07 project of the Belgian government. The research
subject to optical feedbadk 0]. For our VCSEL problem, a of T.E. was also supported by the U. S. Air Force Office of
mode-antimode connection is also poss|islg. 2(b)]. How-  Scientific Research, Grant No. AFOSR F49620-98-1-0400,
ever, our laser system admits other types of bridge. Of parand the National Science Foundation, Grant No. DMS-
ticular interest is the connection between two modes as illus8973203.
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